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1. Introduction 

Carbon nanotubes (CNTs) have shown great promise towards solving some 

of the major challenges in materials science for sustainable and environmental 

applications [1-3]. A better understanding of CNT structures dynamic properties, 

such as thermal, electrical or mechanical, are desperately required to further expand 

their scope of application [4, 5]. Despite the fact that most of CNT nano-composite 

properties rely on the intrinsic and well defined CNT features, such as their length, 

diameter [6] or functional groups within the CNT graphene crystalline walls [7], some 

of the composite properties currently remain un-optimised due to the lack of 

experimental techniques to clearly understand interactions between CNTs and the 

surrounding matrix [8]. 

CNTs have, for instance, been incorporated into a number of nano-devices 

and nano-structures [2], such as flexible circuits in order to form a continuous 

network conducting current with their naturally high electrical conductivity [9, 10] or 

as promising base material for electrodes for fuel cells [11-13]. CNTs assemblies 

were also used to spin yarns [4] and sheets, used in the preparation of electronic 

circuits [4, 14] or as strain sensors [15].  In addition, CNTs used as nano-fluids and 

additives in solvents were also shown to increase the bulk fluid thermal and electrical 

characteristics [16] resulting in highly promising liquids for refrigeration and heat 

management [17, 18]. Research on plain and porous nano-composite materials has 

also demonstrated that the addition of low amounts of CNTs could also enhance the 

mechanical properties of the matrix [19-21]. CNT arrays, used as membrane pores, 

were demonstrated to exhibit superior performance due to their smooth friction-less 

surface potentially improving the permeation by a few decades over current 

commercial membranes [1, 22, 23]. Issues related to CNT aggregation when 

suspended in solution still generate hundreds of publications every year [24-26] 

while the control of the CNT orientation within mixed matrix composites remains 

challenging [27-29], limiting the ability to fully benefit from the CNTs natural 

properties.  

Thermal properties of CNT based materials are critical for many applications, 

as they will typically dictate the boundary conditions within which any material can be 

handled and processed, and may define the scope of their final applications [30, 31]. 
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Despite encouraging predicted values of CNT thermal properties, these remain to 

date the least investigated of their properties [32, 33]. The thermal properties of CNT 

arrays and CNT composites are especially difficult to obtain for a number of reasons. 

Large variations of the reported CNT thermal conductivity, diffusivity or expansion 

coefficients can be attributed to the limitations of some of the experimental 

procedures and discrepancies due to sample preparation or CNT purity, therefore 

making any scale-up of CNT for thermal property application difficult [3, 34, 35]. The 

determination of the thermal conductivity, typically performed with direct contact 

techniques, is for instance greatly affected by the difficulty to correctly evaluate the 

true area of contact between the probe and the sample, due to the high specific 

area, mechanical compressibility and porosity of most nano-structured materials [21]. 

On the other hand, thermal diffusivity, previously obtained with non-contact 

procedures such as the laser flash technique [36-38], has proven to be a more 

reliable way to determine the thermal properties of nano-structured materials [39]. 

Furthermore, although several studies have focused on the measurement of the 

thermal expansion of CNT polymer composites [40] and individual CNTs [41], little 

work has been performed on self-supporting CNT structures such as arrays [42], 

bucky-papers (BPs) or forests. Most of the techniques used to date to evaluate their 

thermal expansion have also relied on direct-contact methods that can be unreliable 

due to difficulty to controlling the interface between the sample and the probe used 

to quantify dimensional changes. Better methods to accurately and reproducibly 

obtain CNT array and composite thermal expansion coefficients are therefore 

desperately needed to provide better understanding of the phonon diffusion within 

CNT arrays and both CNT/CNT and CNT/matrix interactions when subjected to a 

thermal gradient.  

This work reports for the first time the determination of the thermal expansion 

of a number of self-supporting and composite CNT materials with a non-contact 

technique. CNT composites, consisting of self-supporting, acetone densified, metal 

plated and polymer infiltrated BPs, as well as a reference polymer embedded CNT 

forest, were tested over a range of different temperatures. In order to avoid the 

drawbacks of the previously mentioned procedures, thermal expansion data were 

obtained by analysing Small Angle X-ray Scattering (SAXS) patterns of samples at 
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[46], as well as allowing for direct qualitative characterization of dynamic systems 

[47], such as nano-particle aggregation and formation [48]. 

In this work, several specific features could be detected, including the 

CNT/CNT distance, the space between the CNT walls [49], or the type of CNT 

distribution (anisotropic [50], aligned in a plane normal to the beam, twisted around 

an axis or parallel tubes in line with the beam [51, 52]). These qualitative SAXS 

trends, investigating the interactions between CNTs within a small nano-scale 

window will be discussed and compared with thermal expansion results obtained 

from thermo-mechanical analysis, where the macroscopic mechanical properties 

were recorded at different temperatures.  
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2. Materials and method 

 

2.1 Samples preparation and characterization 

Self-supporting BPs were processed from chemical vapour deposition grown 

multi-walled CNTs as described in a previous study [53]. The CNTs were scraped 

from their silicon wafer growth substrates and dispersed in propan-2-ol by 5 repeated 

cycles of freezing at −17 °C followed by bath sonication using a method reported 

previously in [54]. The CNT suspension was then filtered on top of a porous 0.2 μm 

pore size poly(ether sulfone) (SHF – Merck-Millipore) membrane to form a self-

supporting BP. In order to test the impact of solvent evaporation on the CNT network 

[55], self-supporting BPs were immersed in acetone and allowed to dry for 24 h in air 

and at room temperature. BPs were infiltrated by a 5 wt% poly(styrene) (PS) 

dimethyl-formamide (DMF) solution with a house line vacuum system. Gold plated 

BPs were processed by first exposing the self-supporting un-plated BP for 10 min to 

a flow of UV induced ozone in order to form hydroxyl groups at the surface of outer 

CNT walls. These groups are needed to facilitate wetting of the CNTs by the plating 

solutions and as anchors for the initial plating reactions. Then, the procedure for 

electroless gold deposition described by Martin et al. in [11] and previously used to 

fabricate pure gold nanotubes [56] and gold plated CNTs [57] was followed. Plating 

time was fixed at 20 h, in order to allow for reduction of the gold cations onto the 

negatively charged hydroxyl sites on the CNTs and to grow pure gold particles of a 

few nanometres in dimension. As a reference for the CNT scattering patterns, as 

grown CNTs forests were embedded into poly(dimethyl-siloxane) (PDMS) and  

tested without further treatments.  

Every sample was stored in an oven at 60oC prior to SAXS analysis in order 

to avoid water uptake. All chemicals used in this work were of analytical grade. The 

porosity of the samples was evaluated using perm-porosimetry with a He 

pyknometer Accu PYC II 1340 from Micromeritics while the specific surface area of 

the samples was obtained via BET using N2 adsorption [57]. The thickness of the 

samples were estimated with Scanning Electron Microscopy (SEM) image analysis 

and with a Kincrome micrometer [54]. Other references to experimental procedures 

can be found in the references in   
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Table 1. 

 

2.2 SAXS experiments 

The SAXS beam-line at the Australian Synchrotron was used with a 1.6 m 

camera length to investigate the scattering patterns of the BPs within a 0.015 to 

0.095 Å-1 q range. The end-station uses a 1M Pilatus detector for SAXS and a 200k 

Pilatus detector for WAXS (wide angle detection) that provides excellent dynamic 

range, single photon per pixel sensitivity, low noise and fast time resolution (30 and 

150 frames per second respectively). An In-vacuum undulator source, (22 mm 

period, 3 m length maximum, Kmax 1.56) with an energy range between 5 and 21 keV 

was used. Energy beam values were maintained constant during all the 

measurements at 8.15 keV (resolution of 10-4 from a cryo-cooled Si(111) double 

crystal monochromators). The beam size at the sample was 250 µm horizontal × 150 

µm vertical. The samples were heated within the SAXS chamber with a Linkam 

Scientific HFSX350 heating stage fitted with a THMS600 heating block. The stage 

was also fitted with a water cooled jacket in order to keep the stage body cool. The 

temperature of the stage was data-logged and the heating and cooling rates were 

fixed at 50 and 30 K/min respectively. A thermocouple was placed on the heating 

stage and the accuracy of the temperature measurement was estimated to be close 

to 0.1oC. Tests were performed at 50, 100, 150, 200, 300 and 400oC. Scattering 

patterns were acquired at each temperature plateau after stabilization for at least 1 

min. 

 

2.3 Modulated temperature – thermo-mechanometry 

Modulated temperature – thermo mechanometry (mt-Tm) is a novel technique 

to determine reversing and non-reversing specimen changes under the application of 

an oscillating temperature to a linear/isothermal underlying heating rate [58]. A 

sinusoidal response is induced by the modulated temperature program that can be 

resolved into reversing (in phase with dT) or non-reversing (out-of-phase with dT) 

components. A TA Instruments Q400EM thermo-mechanical analyser was used to 

study the thermal expansion of the self-supporting BP samples. Samples with a 
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3. Results and discussion 

A series of 5 independent samples were tested for their thermal expansion 

properties. CNTs exhibited very good thermal stability with a maximum mass loss at 

400oC of only ~3.5% (TGA results presented in [59]). Part of this loss was attributed 

to water, volatile organics and from the combined desorption and evaporation of 

solvent present on the CNTs. In addition, as the self-supporting BPs made of these 

multi-walled CNTs exhibited very large porosity (~90%), they offered an interesting 

platform for the fabrication of porous composite materials, such as the PS or gold 

plated BPs presented in this study. Furthermore, although solvent evaporation from 

a CNT array was previously shown to lead to the densification of the CNT structure 

[60], no proof of the stability of the densified structure was to date demonstrated. 

Despite an increase in mechanical strength and slight decrease of inner porosity, the 

structure of acetone densified yarns was found to be similar to that of non densified 

yarns [55]. For this reason the acetone densified self-supporting BPs should exhibit 

similar structure to non-densified yarns. The purity of the raw material, evaluated by 

thermo-gravimetric analysis, was very high as previously demonstrated in a number 

of our studies, therefore limiting the risk for contaminants to alter the SAXS 

scattering patterns [57, 59, 61]. All relevant properties of these materials are listed in 
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Table 1 for reference. 
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Table 1 Samples properties and preparation procedures 

Sample Nature Treatment Thickness Porosity Specific 

surface 

area 

Mass loss 

at 400oC 

Ref. 

   μm % m2.g-1 %nominal  

Self-

supporting 

CNT BP None 4 90 197 2 [59] 

Acetone 

densified 

CNT BP 

non 

woven 

Dipped in 

acetone 

and dried 

4 <90+ + + [1] 

PS 

infiltrated 

BP 

infiltrated 

with PS 

Infiltrated 

with a 

5wt% 

solution 

25 65 95 * [62] 

Gold 

plated 

BP coated 

with gold 

(90 wt% 

gold in 

mass) 

Electroless 

deposition 

for 20 h 

25 42 37 3.5 [57] 

Reference 

CNT forest 

Forest 

used to 

prepare 

the BP 

Embedded 

in PDMS 

for stability 

~100 N/A $ N/A ~2 [55] 

+lower or similar to self-supporting BP 
* PS melts at 240oC but degrades above 420oC 
$ The CNT surface density was estimated to be close to 1010 CNT.cm-2 from SEM analysis corresponding to ~98 % porosity 

 

Figure 1 shows the diffraction patterns at 50oC and SEMs of the different 

structures while Figure 2 present their scattering intensity as a function of the 

scattering vector q. Due to the cooling of the stage between samples, the 

normalization of the “room temperature value” was rendered difficult and 50˚C was 

therefore chosen as the reference temperature for the study as it allowed for 

consistent and systematic analysis of the different structures. For all the samples 

tested, and at any temperature investigated, the scattered intensity curves gradually 

decrease over the entire scattering vector range indicating the presence of a random 

distribution of scattering in-homogeneities (Figure 9 and Figure 10 – supplementary 

materials). The intensity curves obtained were analysed based on the Guinier 
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All the BP samples, namely self-supporting (A), acetone densified (B), PS 

infiltrated (C) and gold plated (D) present an anisotropic SAXS pattern (Figure 1) 

suggesting a random distribution of particles across the sample with no preferential 

orientation [71]. For crystalline matter homogeneously composed of a single matrix 

phase, such as graphene in this study, the scattering of X-rays occurs 

simultaneously at the interface between the solid-void matrix of the pore space, and 

between the CNT graphene walls. The pattern of scattered intensity versus 

scattering angle is determined by the various length scales corresponding to the d-

spaces between two close features. If the shape of individual pores is known or can 

be reasonably assumed, this scattering pattern can be modelled and translated into 

a pore size distribution [45]. In the present case, due to the complex interconnectivity 

of the pores, formed by the overlapping CNTs, and the anisotropy of the CNT 

distribution across the CNT BP, modelling the pore size distribution was not 

quantitatively performed. 

 As shown in Figure 4, a clear shift of peak positions was found to occur when 

temperature was increased from 50 to 400oC for the self-supporting BPs. 

Interestingly, this shift was not found on the acetone densified and PS infiltrated 

samples (Figure 5), suggesting that the structure in these later composites is set and 

that no further movement of CNTs can be achieved. This observation correlates well 

with the porosity trend shown in   
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Table 1 where porosity was found to be lower for these samples. The addition of PS 

into the structure consequently reduced the porosity by nearly 25%, clearly filling up 

part of the inner porosity. It is, however, surprising that no shift of the PS samples 

was found at temperatures exceeding the melting point of the PS (~240oC). This 

suggests, as seen on the SEM image in Figure 1-C, that the PS network is relatively 

homogeneous and that the melting of the polymer did not lead to high surface 

tension forces which could have been expected to draw the CNTs together following 

the melting of PS. It is also possible that the CNT network was already densified due 

to the evaporation of DMF used for the PS dissolution in a similar fashion as that of 

acetone densified samples. Further tests should be performed to properly 

understand this trend. However, the formation of 2 new permanent peaks above 

300oC (for scattering vectors q of 0.0527 and 0.0534 respectively – see 

supplementary materials) suggests an overall structural modification supporting the 

theory of polymer melting effect over that of solvent densification, as no solvent 

should be left within the sample at this stage of the test. 

In addition the gold plated sample also exhibited both peak shifts and 

disappearances (supplementary materials) suggesting that NP sintering occurred 

during the process. The reactivity of gold NPs [57, 72, 73] is known to be high and 

the exposure to strong X-ray energies could have effectively forced some closely 

packed particles to fuse into more stable larger particles or rearrange into a different 

particle distribution. The non-monotonic regime of this shift (Figure 5) seems to 

indicate that multiple effects are simultaneously affecting the morphology of the 

sample. It was for instance shown by Ristau et al. [73]  that the NP size, temperature 

of aggregation and concentration were affecting the aggregation or splitting 

mechanisms. Unlike that work [73], the large size of the NPs present on the CNTs in 

our work (close to 50-80 nm in diameter) could lead to a split of the NPs into smaller 

aggregates as described in [74]. The SAXS tests performed for these samples do 

not, however, allow a conclusion to be reached on the large scale thermal expansion 

of the structures due to a camera length of only 1.6 m. The scattering of larger 

patterns, such as CNT macro-aggregates of a few dozen nano-meters or more 

would need a longer camera length to gather x-rays generated from such small 

angle scattering. This should be performed in order to generalize the trends obtained 

at the level of CNT bundles and small agglomerates. 
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 According to the definitions of the Guinier radius, RG [43, 49], as the 

temperature increases, the scatter from the small scale features reduce in number 

while their size decreases. It is likely that in this case, due to the increased 

temperature and the natural large porosity of the BPs, CNTs tend to aggregate within 

the BP, thus densifying the structure. The Q-range window, corresponding to the 

total X-ray invariant, chosen for these tests was found afterwards to be slightly too 

low (shift towards small features) to be conclusive. The window covered a range 

from 0.44 to 40 nm, which was initially thought to be sufficient to cover the range 

where CNT would agglomerate and form denser or looser bundles. Therefore, the 

global behaviour on a macro-scale was found difficult to interpret and more SAXS 

tests at higher Q would be required to fully comprehend the BP behaviour. Work by 

Zhao et al.  on the bundling kinetics and bundle formation showed that bundles may 

spread over a larger range [49]. In that work, the samples were exposed to different 

acid treatments to provide information on their dispersion state. At CNT bundle sizes 

smaller than 100-300 nm, all their samples behaved identically. However, after 24 h 

of treatment their SAXS patterns undertook a flip at q-ranges values corresponding 

to ~300 nm features. This was attributed to a change in the bundle morphology that 

they described as precipitation, or aggregation, of the tubes. Their dispersion method 

seemed to have a clear effect at longer treatment times increasing intensity, which 

was attributed to looser bundle formation improving the dispersion of CNTs [49].  

The Luh graph [43] (Figure 6) amplifies the structural feature over time. First, 

it is visible that the structural features decrease in steps until 400oC, corresponding 

to the maximum tested temperature. However, at the end of the cooling period, and 

return to the 50 ºC benchmark, a permanent change of relative intensity, noted by h 

on the graph, can be seen. This is an important feature as it shows that the BP are 

thermally stable but can endure permanent deformation due to thermal stress at high 

temperatures (above 200 – 250 ºC). This permanent deformation correlates well with 

the mt-Tm tests, which demonstrated that an important part of the deformation was 

permanent and non-reversible at high temperatures (above 300 ºC) [49].  This test, 

performed on a 100 μm thick BP was performed to assess the thermal expansion of 

the BP structure on a macro-scale (Figure 8-A). Interestingly, the irreversible 

contribution was found to be negative and larger than the reversible contribution, 

indicating a sharp contraction of the structure (Figure 8-B). As the graphene walls of 
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CNTs were previously demonstrated to expand with temperature [75], this macro-

change is therefore attributed to the collapse of the BP structure and not to changes 

of the lattice of individual CNTs. Through computational modelling of their high 

thermal diffusivity and conductivity were computed [76, 77] and single walled CNTs 

were predicted to exhibit thermal conductivity up to 10 kW/mK [78] along their axis, 

which is 3 times greater than diamond, one of the best conducting material known 

[79], while multi-walled CNTs were assumed to go up to ~3 kW/mK [80]. In addition, 

it is interesting to note that this discrepancy occurred despite pre-test heat treatment 

of the sample in order to remove any thermal history. Due to this reasonably high 

pre-treatment temperature, the permanency of the deformation is therefore 

questionable. In fact, the discrepancy of the signal on the Luh graph could be 

explained by a relatively long relaxation time of the material. This relaxation state 

would require higher temperatures to be fulfilled and could have therefore been 

detected with the SAXS at temperatures higher than 250oC. This anomaly could 

therefore be related to remaining mechanical strains across the sample, induced 

during fabrication. The deformation could then be either semi-permanent, the sample 

relaxing back slowly over long time scales, or permanent, if the material allows for 

further deformation, i.e. by more than it did in the pre-relaxing step, under the 

thermal strain of the test. This interesting result does however require further 

investigation in order to be solved. 

A number of studies previously investigated heat transfers across individual or 

arrays made of CNTs. CNTs can be considered 1-D electron conductors because of 

their very high aspect ratio. The thermal conductivity and expansion of materials as 

governed by phonon diffusion and scattering within complex CNT structures such as 

BPs can be affected by a number of factors including the CNTs chirality and the 

amount of impurities and functional groups present on the CNT walls structure [81]. 

Thermal expansion of small single walled nanotubes bundles was shown to be close 

to that of graphite lattice and reported values lay between 2 and 4.2 10-5 K-1 [42, 

82]. Studies on the behaviour of CNT/polymer extruded filaments or cast films 

composite materials showed an important increase in the axial thermal expansion. 

Those enhancements were attributed to lattice vibrations between carbon atoms 

[83]. On the other hand, the present authors previously presented [84] thermal 

expansion results on the same type of BP structure performed within an 
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Environmental SEM at temperatures between 50 and 400oC. In this work performed 

in a low pressure nitrogen atmosphere, the self-supporting BPs were also 

demonstrated to undertake thermal contraction under thermal gradient. A technical 

difficulty with this technique was shown to be related to the accuracy of the 

measurement of the sample thickness. Very small changes visible on the SEM 

micrographs could not be definitely attributed to true dimensional changes as a 

number of factors, including drift of the mounting stage due to the thermal gradient, 

contact between the sample and the holder as well as expansion of the copper 

holder, could clearly affect the readings. Although the self-supporting BP structure 

was 100 microns thick, changes of the order of 0.1 microns were difficult to detect 

due to the inability to simultaneously image at high (CNT scale) and low resolution 

(BP scale). Very little has been published on the thermal expansion of pure macro 

structures made of multi-walled CNTs and more research is therefore required to 

fully comprehend the phonon diffusion mechanisms and the impact of large thermal 

gradients on macro-structures made of CNTs.  

Despite the fact that no thermal expansion coefficients were calculated from 

this experiment, the SAXS measurements clearly showed that CNT BP were 

physically affected by large temperature variations and that thermal ageing such as 

permanent or semipermanent deformation was to be expected above 200 ºC. As 

shown in Figure 7, the radius of gyration and the Guinier scattering radius did 

change as a function of temperature. A significant decrease in the gyration radius is 

visible above 250 ºC, corresponding to the formation of larger features [43, 49]. A 

possible explanation of the origin of this thermal contraction could reside in the 

fundamentals of the CNT/CNT interactions. CNT self-assemblies have been shown 

to be held together by van-der-Waals forces only, which are affected by temperature, 

as previously demonstrated for colloid and agglomerate formation in liquids [49]. The 

Van der Waals forces may help attract the CNTs together, thus overwhelming the 

individual CNT thermal expansion to form denser structures up to a maximum 

bundling density. This might explain the negative thermal expansion, corresponding 

physically to a thermal contraction but further experiments and research is required 

to assess this theory.  
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4. Conclusions 

Investigations of 5 different CNT composites were performed in order to evaluate 

the impact of temperature on their thermal expansion with a non-contact method 

based on SAXS. Although this qualitative new method offers interesting perspective 

for the analysis of the thermal properties of nano-materials, the main limitation at this 

stage remains in benchmarking the results with a specific material in order to obtain 

quantitative trends. This should be investigated as it would open a new era to the 

characterisation of materials for sustainable development. The present results 

indicate that solvent densification leads to more thermally stable structures and that 

considerable contraction can occur within CNT BP structures when undertaking 

thermal stress. Although these preliminary results give guidelines for medium to high 

temperature applications for self-supported CNT structures, it was also 

demonstrated that polymer reinforcement prevented this thermal contraction. 
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Figure 2 Typical scattering intensity as a function of the scattering vector q for the 5 

different samples at 50oC 
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Figure 4 Self-supporting BP peak shift with temperature 
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Figure 5 Shift of the 1st peak – acetone densified and PS infiltrated samples were 
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Figure 6 Luh graph for the self-supporting BP 
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Figure 7 Radius of gyration as a function of temperature for a BP self-supporting 

sample 
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Table 2 Main scattering dimensions found from the integrated scattering patterns – 

unit (Å) – the feature number corresponds to the main peaks or knees visible on the 

scattering patterns 

CNT forest 97.4    21.5 18.3  14.1 

Gold coated 83.6 24.5 23.7 22.2  18.3 14.6 14.2 

PS infiltrated 79.4 24.5 23.7 22.9  18.2  14.1 

Acetone 76.8 24.5 23.7 22.9 21.5 18.3  14.2 

Self-
supporting 

80.8 24.5 23.7 22.9 21.3 18.2  14.1 

 

 

 

  

Figure 9 Scattering intensity of the self-supporting BP at different temperatures 
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