

Influence of heat and pH on structure and conformation of whey proteins

This is the Accepted version of the following publication

Dissanayake, Muditha, Ramchandran, Lata, Piyadasa, Chathuri and Vasiljevic, Todor (2013) Influence of heat and pH on structure and conformation of whey proteins. International Dairy Journal, 28 (2). pp. 56-61. ISSN 0958-6946

The publisher's official version can be found at http://www.sciencedirect.com/science/article/pii/S0958694612001987# Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/22190/

Accepted Manuscript

Influence of heat and pH on structure and conformation of whey proteins

Muditha Dissanayake, Lata Ramchandran, Chaturi Piyadasa, Todor Vasiljevic

PII: S0958-6946(12)00198-7

DOI: 10.1016/j.idairyj.2012.08.014

Reference: INDA 3419

To appear in: International Dairy Journal

Received Date: 25 March 2012

Revised Date: 6 July 2012

Accepted Date: 21 August 2012

Please cite this article as: Dissanayake, M., Ramchandran, L., Piyadasa, C., Vasiljevic, T., Influence of heat and pH on structure and conformation of whey proteins, *International Dairy Journal* (2012), doi: 10.1016/j.idairyj.2012.08.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Influence of heat and pH on structure and conformation of whey proteins
2	
3	
4	
5	
6	
7	Muditha Dissanayake ^a , Lata Ramchandran ^a , Chaturi Piyadasa ^b , Todor Vasiljevic ^{a,b,*}
8	
9	
10	
11	
12	
13	^a Advanced Food Systems Faculty Research Unit, School of Biomedical and Health Sciences,
14	Faculty of Health, Engineering and Science, Victoria University, Melbourne, VIC, Australia
15	^b Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC, Australia
16	
17	
18	*Corresponding author: Tel: +61 3 9919 8062
19	<i>E-mail address</i> : todor.vasiljevic@vu.edu.au (T. Vasiljevic)

20	
21	
22	Abstract
23	
24	The aim of this study was to understand the fundamental interactions responsible for
25	aggregation of whey proteins (WPs) at pH 6 and 3 during heating at 140 °C for 30 s in the
26	presence of different acidulants. The conformational changes in the various heat-treated WP
27	dispersions were studied using chemical bond blockers and analysed using differential
28	scanning calorimeter thermograms, polyacrylamide gel electrophoresis and turbidity
29	measurements. Overall, the results indicated that WPs were denatured mainly by disruption
30	of hydrophobic interactions, and that the extent of WP denaturation at pH 3 was affected by
31	the type of acidulant used. The type of acidulant affected the extent of formation of additional
32	high or medium molecular weight aggregates during heating at pH 3, while the types of
33	interactions involved in the formation of such aggregates were affected by the pH at heating.
34	

2	5
.)	
-	-

36 1. Introduction

37

38	Whey proteins (WPs) have distinctive nutritional and functional properties that make
39	them unique food ingredients. Different attractive and repulsive molecular forces, involved in
40	the stability of unique three-dimensional structure of proteins (Damodaran, 2008), affect their
41	functionality. These include intrinsic van der Waals and steric forces, as well as electrostatic,
42	hydrogen bonding and hydrophobic interactions that arise from the influence of the
43	surrounding environment. The physico-chemical properties that govern the overall
44	functionality of WPs are a result of intrinsic factors native to the proteins, mainly their
45	structure and conformation, as well as extrinsic factors, such as environmental conditions
46	including pH and temperature. Any processing condition that influences the intrinsic or
47	extrinsic factors will affect protein conformation and thereby influence the functionality of
48	WPs. Therefore, the inclusion of WPs into food systems is dependent on processing
49	conditions applied and their influence on protein structure that, due to the heat sensitivity of
50	WPs, may even result in complete denaturation and thus limit their application. Recently a
51	novel approach to stabilization of WPs through microparticulation was proposed
52	(Dissanayake & Vasiljevic, 2009; Dissanayake, Liyanaarachchi, & Vasiljevic, 2012) to
53	alleviate this problem.
54	Heating, a common unit operation in food processing, can have an impact on the
55	functionality of WPs since it may induce their denaturation, aggregation and flocculation.
56	Denaturation of WPs results in unfolding of the compact structures, which subsequently
57	causes aggregation mainly due to the exposure of previously buried apolar groups and
58	occurrence of sulfhydryl/disulfide exchange chain reactions via activated thiol groups (Lee,
59	Morr & Ha, 1992). Intrinsic and extrinsic environmental factors, such as protein

60 concentration, pH, temperature, ionic strength and solvent condition, determine the rates and 61 pathways of these physicochemical reactions (Brandenberg, Morr, & Weller, 1992; Iordache 62 & Jelen, 2003; Marangoni, Barbut, McGauley, Marcone, & Narine, 2000), which in turn 63 affects protein functionality. An observed improvement in overrun and stability of foams of 64 WP suspensions at pH 7 when heated to 55 °C was attributed to denaturation of WP. It was 65 also observed that the availability of proteins to form films and emulsions decreased at higher 66 temperatures, in turn impairing foaming and emulsifying characteristics of the proteins 67 (Phillips, Schulman, & Kinsella, 1990). Denatured dispersions of randomly coiled molecules 68 of proteins have been reported to have greater viscosity than solutions of compact folded 69 globular molecules of the same molecular weight (Damodaran, 2008). Therefore, WPs with 70 similar composition may differ in their functionality depending on their extent of 71 denaturation. 72 The denaturation step, consisting of successive unimolecular reactions, is usually 73 considered to be a first-order reaction, while the subsequent step of aggregation involves 74 bimolecular and second-order reactions (O'Kennedy & Mounsey, 2009). Aggregation is 75 strongly influenced by attractive and repulsive forces, which are dependent on pH. The free 76 SH group in β -lactoglobulin (β -LG) is activated by conformational changes of the protein 77 between pH 6.5 and 8.0 (Tanford Transition). At neutral pH, the free SH groups are 78 understood to be the dominant mechanism of heat aggregation (Unterhaslberger, Schmitt, 79 Sanchez, Appolonia-Nouzille, & Raemy, 2006), which is not the case under acidic 80 conditions, since free SH groups are thought to be inactive. Also, lowering of pH has been 81 shown to increase the thermal stability of the proteins and it has been suggested that 82 hydrogen bonding is also responsible for such stability (Lucey & Singh, 2003). These stages 83 of protein denaturation, as well as the rates and reaction orders, may be affected by change of

84 pH. Controlling the rate of denaturation, aggregation and colloidalisation may result in WP

85	preparations with improved functionality. For example in a recent study (Dissanayake et al.,
86	2012) a two-order magnitude reduction in particle size of microparticulated whey proteins
87	was reported at low pH, with substantially enhanced solubility and heat stability as compared
88	with that at neutral pH. Therefore, an understanding of fundamental interactions involved
89	during aggregation will help to further modulate processing of functional ingredients so as to
90	incorporate WP as novel ingredients in foods.
91	This study was designed to understand the fundamental interactions of WPs
92	responsible for protein aggregation at low pH during heating at 140 °C for 30 s in the
93	presence of different acidulants. These interactions were examined using chemical bond
94	blockers and analysed by a turbidity method, differential scanning calorimetry (DSC) and
95	sodium-dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE).
96	
97	2. Materials and methods
97 98	2. Materials and methods
97 98 99	 Materials and methods Sample preparation
97 98 99 100	 Materials and methods Sample preparation
97 98 99 100 101	 Materials and methods Sample preparation Whey protein retentate (30 % total solids) used in the study was supplied by
97 98 99 100 101 102	 2. Materials and methods 2.1. Sample preparation Whey protein retentate (30 % total solids) used in the study was supplied by Warrnambool Cheese and Butter Factory (Warrnambool, Victoria, Australia). The
 97 98 99 100 101 102 103 	 2. Materials and methods 2.1. Sample preparation Whey protein retentate (30 % total solids) used in the study was supplied by Warrnambool Cheese and Butter Factory (Warrnambool, Victoria, Australia). The compositional analysis of the retentate was carried out following established AOAC
 97 98 99 100 101 102 103 104 	 2. Materials and methods 2.1. Sample preparation Whey protein retentate (30 % total solids) used in the study was supplied by Warrnambool Cheese and Butter Factory (Warrnambool, Victoria, Australia). The compositional analysis of the retentate was carried out following established AOAC methodology as reported previously (Dissanayake & Vasiljevic, 2009). Three types of WP
 97 98 99 100 101 102 103 104 105 	 2. Materials and methods 2.1. Sample preparation Whey protein retentate (30 % total solids) used in the study was supplied by Warrnambool Cheese and Butter Factory (Warrnambool, Victoria, Australia). The compositional analysis of the retentate was carried out following established AOAC methodology as reported previously (Dissanayake & Vasiljevic, 2009). Three types of WP retentate dispersions were prepared for the experiment: (a) control (no pH adjustment, pH ~
 97 98 99 100 101 102 103 104 105 106 	 Materials and methods Sample preparation Whey protein retentate (30 % total solids) used in the study was supplied by Warrnambool Cheese and Butter Factory (Warrnambool, Victoria, Australia). The compositional analysis of the retentate was carried out following established AOAC methodology as reported previously (Dissanayake & Vasiljevic, 2009). Three types of WP retentate dispersions were prepared for the experiment: (a) control (no pH adjustment, pH ~ (b) pH adjusted to 3 using citric acid (VWR International, Leicestershire, UK) and (c) pH
 97 98 99 100 101 102 103 104 105 106 107 	 Materials and methods Sample preparation Whey protein retentate (30 % total solids) used in the study was supplied by Warrnambool Cheese and Butter Factory (Warrnambool, Victoria, Australia). The compositional analysis of the retentate was carried out following established AOAC methodology as reported previously (Dissanayake & Vasiljevic, 2009). Three types of WP retentate dispersions were prepared for the experiment: (a) control (no pH adjustment, pH ~ 6); (b) pH adjusted to 3 using citric acid (VWR International, Leicestershire, UK) and (c) pH adjusted to 3 using lactic acid (VWR International, Leicestershire, UK). All samples were
 97 98 99 100 101 102 103 104 105 106 107 108 	2. Materials and methods 2.1. Sample preparation Whey protein retentate (30 % total solids) used in the study was supplied by Warrnambool Cheese and Butter Factory (Warrnambool, Victoria, Australia). The compositional analysis of the retentate was carried out following established AOAC methodology as reported previously (Dissanayake & Vasiljevic, 2009). Three types of WP retentate dispersions were prepared for the experiment: (a) control (no pH adjustment, pH ~ 6); (b) pH adjusted to 3 using citric acid (VWR International, Leicestershire, UK) and (c) pH adjusted to 3 using lactic acid (VWR International, Leicestershire, UK). All samples were adjusted to 7% (w/w) protein by diluting the WP retentate with Milli-Q water. Four chemical

110	various molecular interactions: (i) 0.5% polyoxyethylene sorbitan monolauarate (Tween 20)
111	(Sigma, St. Louis, USA) for hydrophobic interactions; (ii) 1% sodium-dodecylsulphate (SDS)
112	(Merck, KGaA, Darmstadt, Germany) for non-covalent interactions; (iii) 20 mM N-
113	ethylmaleimide (NEM) (Sigma) and (iv) 10 mM dithiothreitol (DTT) to prevent formation of
114	new covalent bonds. In addition, DTT reduces existing covalent disulfide bonds present in
115	proteins (Havea, Watkinson, & Kuhn-Sherlock, 2009). The samples not containing any of the
116	four chemical bond blockers tested acted as controls. Thus, each of the three WP retentate
117	dispersions prepared had 5 types of sample for analysis.
118	
119	2.2. Heat treatment of whey protein dispersions
120	
121	Approximately 3.0 mL samples of WP retentate dispersions were transferred into
122	small glass tubes (10 mm in diameter and 75 mm in length), sealed with rubber stoppers and
123	immersed and shaken in an oil bath (Ratek, Boronia, Victoria, Australia) at 140 °C for 30 s,
124	followed by immediate cooling in an ice bath. The selection of pH and temperature for this
125	study was made on the basis of preliminary studies (data not shown) and recently published
126	data (Dissanayake et al., 2012) that indicated that WP aggregates formed at low pH and high
127	temperature had improved functional properties. After heat treatment, the samples were
128	homogenized by vortexing for 5 s before analysis.
129	
130	2.3. Polyacrylamide gel electrophoresis
131	
132	The electrophoretic analysis of heat-treated WP dispersions was performed to
133	fractionate and compare individual proteins present in the samples by native or reducing/non-
134	reducing SDS-PAGE by the method described by Havea, Singh, Creamer, and Campanella

135	(1998), with some minor modifications. All heat-treated WP dispersions and standards were
136	diluted with the treatment buffer (0.125 M Tris-HCl, 4% SDS, 20%, v/v, glycerol, 0.2 M
137	dithiothreitol, 0.02% bromophenol blue, pH 6.8). About 6 μ L of WP dispersion samples, α -
138	lactalbumin (α -LA), β -LG and 8 μ L of molecular weight standards were loaded onto either 4
139	– 15% Tris-HCl Ready gels (Bio-Rad, Hercules, CA, USA) for native PAGE or 4 – 20%
140	iGels (NuSep, French Forest, NSW, Australia) for SDS PAGE (reducing/non reducing) using
141	a cell (Bio-Rad Protean [®] II xi) filled with relevant tank buffer. Native PAGE was run at 25
142	mA while SDS-PAGE gels were run at 50 mA for ~ 50 min. The gels were then placed in de-
143	staining solution I (40% methanol, 7% acetic acid) for 30 min, and stained with staining
144	solution (0.025% Coomassie Brilliant Blue R 250, 40% methanol, 7% acetic acid) for 24 h
145	followed by de-staining in solution I for 1 h and in solution II (5% methanol, 7% acetic acid)
146	until the background became clear. Broad-range pre-stained SDS-PAGE standards (Ref. 161-
147	0318, Bio-Rad) were used to compare the molecular weights. A Fuji Film Intelligent Dark
148	Box II with Fuji Film LAS – 1000 Lite V 1.3 software (Fuji Photo Film Co., Ltd., Tokyo,
149	Japan) was used to obtain gel images and analyse the intensity of protein bands formed.
150	
151	2.4. Measurement of turbidity
152	
153	Turbidity of heat-treated WP dispersions was determined to measure the extent of
154	aggregation of the denatured WPs. The heat-treated and cooled samples were immediately
155	diluted to 0.1% (w/w) protein and absorbance measured at 420 nm using a spectrophotometer
156	(Novaspec II, Parmacia LKB, Norfolk, UK). The apparent optical density read at 420 nm was
157	used to express the turbidity of the samples (Ju & Kilara, 1998).

158

159 2.5. Differential scanning calorimetry

1	<n< td=""></n<>
н	611
	()()

100	
161	Thermal analysis of WP dispersions was performed using a differential scanning
162	calorimeter (DSC 7, Perkin Elmer, Norwalk, CT, USA) and software (Pyris Manager,
163	v.5.0002) to examine the nature of thermal denaturation of WP, as described by Dissanayake
164	and Vasiljevic (2009). The instrument was calibrated using indium (Tpeak = 155.87 °C, Δ H =
165	28.234 J g ⁻¹) and zinc (T _{peak} = 417.4 °C, ΔH = 93.337 J g ⁻¹). About 30 µL of the heat treated
166	WP retentate dispersions was weighed into aluminium pans. An empty pan of equal weight
167	served as the reference and all pans were hermetically sealed before placing in the
168	instrument. The samples were scanned from 25 to 100 °C at a scanning rate of 10 °C min ⁻¹ ,
169	and ΔH values and onset, endset and peak temperatures of the thermograms were recorded.
170	
171	2.6. Statistical analysis
172	
173	The data obtained were statistically analysed using a randomised-block full-factorial
174	design with the acidulant at two levels (citric or lactic acid) and bond-blocking chemicals
175	(Tween 20, SDS, NEM and DTT, excluding the control) as the major factors and replicates as
176	blocks. The experimental set was replicated with subsampling and analysed using a general
177	linear model (Dissanayake et al., 2010). The level of significance, P , was set at 0.05.
178	
179	3. Results and discussion
180	
181	3.1. Thermal analysis of whey protein dispersions
182	
183	The DSC thermograms (Fig. 1) and parameters that describe the thermal behaviour of
184	WP dispersions under the defined experimental conditions are presented in Table 1. The

185	results (Table 1) showed that the peak/denaturation temperature (T_d) of samples in the acidic
186	medium was significantly ($P < 0.05$) higher than at pH 6, irrespective of the type of chemical
187	bond blocker used, indicating reduced heat denaturation. This observation was in line with
188	the observations of an earlier study that showed enhanced heat stability of WP at low pH
189	(Dissanayake et al., 2012). The relatively low ΔH values of WP dispersion heated at pH 6
190	further indicated destruction of hydrophobic bonds, resulting in denaturation of WPs
191	(Damodaran, 2008). The lowest ΔH values were for dispersions containing chemical bond
192	blockers, with the exception of SDS when used with lactic acid as acidulant, indicating
193	greater rupturing of hydrophobic interactions and thereby implying greater denaturation of
194	WP under these conditions. The enthalpy of samples with SDS in citric acid and water was
195	comparatively lower than those in the presence of lactic acid, which again confirmed the
196	different thermal behaviour of these samples.
197	The elevated peak temperatures of WP dispersions in the presence of SDS and lactic
198	acid also indicated improved heat stability of WPs under these conditions. This concurred
199	with the significantly ($P < 0.05$) increased onset and endset temperatures of WP dispersions
200	containing SDS and lactic acid as acidulant. Overall, the reduced onset temperature of WPs in
201	the presence of NEM, DTT and Tween 20 than the corresponding controls indicated
202	facilitated denaturation of WPs, likely mediated by enhanced unfolding via altered intra-
203	molecular hydrophobic, covalent or other interactions.
204	
205	3.2. Electrophoretic analysis of whey protein dispersions heated in the presence of

206 chemical blockers

207

Fig. 2 shows the native PAGE patterns of heat-treated WP dispersions at pH 6 and 3 in the presence or absence of the selected chemical bond blockers. Lane 1 for each of the

210 three types of WP dispersions was the control without any chemical bond blocker addition. 211 The addition of chemical bond blockers affected protein aggregation by preventing formation 212 of different molecular associations or resolving aggregates by breaking the bonds formed. 213 Hydrophobic interactions were affected by Tween 20, while SDS affected all types of non-214 covalent interactions. NEM prevented formation of new covalent associations due to 215 blockage of thiol groups. In the presence of DTT, all existing intra-molecular disulfide 216 linkages were reduced and formation of new disulfide bonds during heating was prevented, 217 restricting protein aggregation to only non-covalent linkages (Baldwin, 2010; Havea et al., 218 2009). 219 Native PAGE patterns of heat-treated WP in the presence of different chemical bond 220 blockers at pH 6 (Fig. 2A) indicated that most of the native WP were denatured, except when 221 they were heated in the presence of SDS. The bands observed at the top of each lane 222 suggested the formation of high molecular weight aggregates, while those labelled (a) and (b) 223 indicated the formation of medium molecular weight aggregates. Since α -LA and β -LG bands 224 are clearly visible only in lane 3 (Fig. 2A), most of the denatured WP apparently aggregated 225 during heating through non-covalent associations, since SDS prevented formation of all types 226 of non-covalent associations. This was further confirmed by the absence of α -LA and β -LG 227 bands in the PAGE gel of WP dispersion containing DTT (Fig. 2A, lane 5). Non-covalent 228 interactions prevail at temperatures above 90 °C and play an important role in the aggregation 229 pathways of proteins (de la Fuente, Singh, & Hemar, 2002). Also, except for the sample 230 containing SDS, the faint protein bands indicating the medium molecular weight aggregates 231 (a) and (b) present in lanes 1, 4 and 5 suggest that such aggregates may have been formed via 232 hydrophobic and non-covalent associations, since they were absent from lanes 2 and 3, i.e., 233 in the WP dispersions containing Tween 20 and SDS. The band corresponding to (b), as well

as the two bands present in lane 4 (with NEM), corresponding to even smaller protein

aggregates, may be smaller non-covalent WP aggregates.

236 As indicated by the native PAGE pattern of WP dispersion at pH 3 (Fig. 2B,C), the 237 bands representing α -LA and β -LG were visible regardless of the acidulant type, indicating 238 increased stability of WPs against heat-induced denaturation at pH 3 compared with pH 6. 239 WPs are completely denatured when heated at 90 °C for 10 min (O'Connell & Fox, 2003). In 240 addition, some protein aggregation has occurred, as observed by the appearance of bands on 241 top the stacking gels as well those labelled (a) and (b) (Fig. 2B,C). These bands were more 242 pronounced when citric acid (Fig. 2B) was used as the acidulant than in the case of lactic acid 243 (Fig. 2C). This suggested that either WP dispersions that had been adjusted to pH 3 already 244 contained covalently aggregated materials before heating or that formation of other non-245 covalent associations have been facilitated by existing covalent associations at pH 3. This is 246 contrary to the general understanding that covalent-bond-mediated WP aggregation is very 247 unlikely at pH 3 (Lucey & Singh, 2003). It is generally expected that about 8 – 10% 248 denatured and aggregated proteins may be present in fresh commercial whey protein 249 concentrate products and that some of these aggregates may be formed through covalent 250 interactions (Havea et al., 2009). 251 Non-reducing SDS-PAGE patterns of the heated WP dispersions at pH 6 or 3 in the 252 presence of different chemical bond blocking agents are shown in Fig. 3. As shown in lanes 1 253 and 2 of Fig. 3A, corresponding to the control and the sample with Tween 20, some 254 aggregated materials on top of the stacking gel, as well as resolved protein bands 255 corresponding to α -LA and β -LG, were observed which were absent from the native gels 256 (Fig. 2A). This indicated that WP aggregates formed during heating via both covalent and 257 non-covalent interactions in the control as well as in the presence of Tween 20 where only the 258 hydrophobic interactions were prevented. This was further confirmed by the presence of

259	strong β -LG bands and weaker bands at the top of the stacking gels in lanes 4 and 5 (Fig.
260	3A), since NEM and DTT prevent formation of additional aggregates via covalent bonds. The
261	sample with SDS, in which non-covalent aggregations were restricted, also confirmed the
262	occurrence of certain degree of covalent aggregation at pH 3 as the intensity of β -LG band
263	was less pronounced (Fig. 3A, lane 3) compared with those in lanes 4 and 5. Furthermore,
264	faint protein bands attributed to medium and low molecular weight aggregates appeared in
265	lanes 1, 2 and 3, but not in lanes 4 and 5, verifying that they were newly formed covalent
266	associations.
267	Reducing SDS PAGE patterns of heat-treated WPs (Fig. 4) showed that, in the
268	presence of β -mercaptoethanol, WPs formed high molecular weight aggregates when the
269	medium was acidic but not at pH 6 where only protein bands corresponding to α -LA and β -
270	LG appeared. This was more apparent in the presence of lactic acid, as observed by the
271	appearance of intense bands on top of the stacking gel. However, the appearance of two
272	bands corresponding to α -LA may be its two genetic variants that have separated in the acidic
273	pH.
274	
275	3.3. Turbidity of heated whey protein dispersions
276	
277	Fig. 5 shows the turbidity of WP dispersions in water (at pH 6) or in the presence of
278	citric or lactic acid (at pH 3) in the presence of Tween 20, SDS, NEM and DTT, and the
279	corresponding control samples after heat-treatment at 140 °C for 30 s. Significant ($P < 0.05$)
280	differences in turbidity were observed when WPs were heated at pH 6. The presence of SDS
281	significantly ($P < 0.05$) lowered the turbidity at pH 6, while the opposite effect was found at

- 282 pH 3. The lower turbidity observed at pH 6 was due to the ability of SDS to block non-
- 283 covalent interactions, indicating that WP aggregation occurred mainly *via* non-covalent

284	associations. The extent of aggregate formation was not significantly $(P > 0.05)$ influenced
285	by the presence of Tween 20, compared to the control at pH 6. However, the turbidity of WP
286	dispersions containing NEM was equivalent to that of the control, and the turbidity with DTT
287	was significantly higher ($P < 0.05$) than for both the control and sample with NEM. This
288	emphasised that aggregation of WPs under these particular experimental conditions could be
289	driven by other molecular interactions, such as electrostatic, covalent and van der Waals
290	forces. It could be concluded that WP aggregation via non-covalent interactions was
291	facilitated more in the presence of DTT than NEM.
292	In fact, WP dispersions containing DTT showed highest aggregate formation at pH 6,
293	consistent with the results shown by native PAGE gels (section 3.1). This may be a result of
294	efficient unfolding of WPs, due to cleavage of intra-molecular disulfide covalent linkages by
295	DTT, which in turn facilitated consequent aggregation via non-covalent interactions.
296	Under acidic conditions (pH 3), the turbidity of all heat-treated WP dispersions was
297	significantly ($P < 0.05$) lower (except WPs with SDS) than at pH 6, implying a significant
298	reduction in aggregation of WPs, which further confirmed the PAGE findings (section 3.1).
299	The type of acidulant, as well as the type of chemical bond blocker used, did not influence
300	the turbidity of the WP dispersions, with the exception of SDS. The increased turbidity
301	observed in the presence of SDS indicated increased aggregation, which could be a
302	consequence of possible complexation of β -LG with SDS at low pH (Jung, Savin, Pouzot,
303	Schmitt, & Mezzenga, 2008).
304	
305	4. Conclusions

306

307 The current study showed that, during heating of WP dispersions at pH 3 and 6,308 various interactions were affected, influencing the extent of denaturation of WPs and their

309	consequent aggregation. The results indicated that the denaturation temperatures (T_d) of WPs
310	in acidic medium was significantly ($P < 0.05$) higher than those at pH 6, irrespective of the
311	type of chemical bond blocker used. It was also shown that, during heating at pH 6, most of
312	the WPs denatured and aggregated mainly through non-covalent associations, but that
313	aggregation could be driven by other molecular interactions such as electrostatic, covalent
314	and van der Waals forces. WPs also exhibited increased stability against heat-induced
315	denaturation at pH 3 and formed additional aggregates via covalent interactions before
316	heating or through other non-covalent associations during heating. Reducing-PAGE patterns
317	indicated that WPs had greater tendency to form high molecular weight aggregates when the
318	medium was acidic than at pH 6, which was most apparent when lactic acid was used as
319	acidulant.
320	
321	Acknowledgements
322	
323	The authors gratefully acknowledge the financial and technical support from Victoria
324	University. The Warrnambool Cheese and Butter Factory (Warrnambool, Victoria, Australia)
325	is sincerely appreciated for the provision of required raw materials.
326	
327	References
328	
329	Baldwin, A. J. (2010). Insolubility of milk powder products – A minireview. Dairy Science
330	and Technology, 90, 169-179.
331	Brandenberg, A. H., Morr, C. V., & Weller, C. L. (1992). Gelation of commercial whey
332	protein concentrates: effect of removal of low molecular-weight components. Journal
333	of Food Science, 57, 427-432.

334	Damodaran, S. (2008). Amino acids, peptides and proteins. In S. Damodaran, K. L. Parkin, &
335	O. R. Fennema (Eds.) Fennema's food chemistry (4 th edn; pp 217-330). Boca Raton,
336	FL, USA: CRC Press, Taylor and Francis Group.
337	de la Fuente, M. A., Singh, H., & Hemar, Y. (2002). Recent advances in the characterisation
338	of heat-induced aggregates and intermediates of whey proteins. Trends in Food
339	Science and Technology, 13, 262-274.
340	Dissanayake, M., & Vasiljevic, T. (2009). Functional properties of whey proteins affected by
341	heat treatment and hydrodynamic high-pressure shearing. Journal of Dairy Science,
342	92, 1387-1397.
343	Dissanayake, M., Liyanaarachchi, S., & Vasiljevic, T. (2012). Functional properties of whey
344	proteins microparticulated at low pH. Journal of Dairy Science, 95, 1667-1679.
345	Havea, P., Singh, H, Creamer, L. K., & Campanella, O. H. (1998). Electrophoretic
346	characterization of the protein products formed during heat treatment of whey protein
347	concentrate solutions. Journal of Dairy Research, 65, 79-91.
348	Havea, P., Watkinson, P., & B. Kuhn-Sherlock. (2009). Heat induced whey proteins gels:
349	Protein-protein interactions and functional properties. Journal of Agricultural and
350	Food Chemistry, 57, 1506-1512.
351	Iordache, M., & Jelen, P. (2003). High Pressure microfluidization treatment of heat denatured
352	whey protein for improved functionality. Innovative Food Science and Emerging
353	Technologies, 4, 367-376.
354	Ju, Z. Y., & Kilara, A. (1998). Aggregation induced by calcium chloride and subsequent
355	thermal gelation of whey protein isolate. Journal of Dairy Science, 81, 925-931.
356	Jung, J., Savin, G., Pouzot, M., Schmitt, C., & Mezzenga, R. (2008). Structure of heat-

- 357 induced β -lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate.
- *Biomacromolecules*, *9*, 2477-2486.

359	Lee, S., Morr, C. V., & Ha, E. Y. W. (1992). Structural and functional properties of caseinate				
360	and whey protein isolate as affected by temperature and pH. Journal of Food Science,				
361	57, 1210-1214.				
362	Lucey, J. A., & Singh, H. (2003). Acid coagulation of milk. In P. F. Fox, & P. L. H.				
363	McSweeney (Eds.) Advanced dairy chemistry – Proteins (Vol. 1, 3rd edn., Part B; pp				
364	1001-1026). New York, NY, USA: Kluwer Academic/Plenum Publishers.				
365	Marangoni, A. G., Barbut, S., McGauley, S. E., Marcone, M., & Narine S. S. (2000). On the				
366	structure of particulate gels-the case of salt-induced cold gelation of heat-denatured				
367	whey protein isolate. Food Hydrocolloids, 14, 61-74.				
368	O'Connell, J. E., & Fox, P. F. (2003). Thermal denaturation, aggregation and gelation of				
369	whey proteins. In P. F. Fox, & P. L. H. McSweeney (Eds.) Advanced dairy chemistry				
370	- Proteins (Vol. 1, 3 rd edn., Part B; pp 1261-1288). New York, NY, USA: Kluwer				
371	Academic/Plenum Publishers.				
372	O'Kennedy, B. T., & Mounsey, J. S. (2009). The dominating effect of ionic strength on the				
373	heat-induced denaturation and aggregation of β -lactoglobulin in simulated milk				
374	ultrafiltrate. International Dairy Journal, 19, 123–128.				
375	Phillips, L. G., Schulman, W., & Kinsella, J. E. (1990). pH and heat treatment effects on				
376	foaming of whey protein isolate. Journal of Food Science, 55, 1116-1119.				
377	Unterhaslberger, G., Schmitt, C., Sanchez, C., Appolonia-Nouzille, C., & Raemy, A. (2006).				
378	Heat denaturation and aggregation of β -lactoglobulin enriched WPI in the presence of				
379	arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0. Food Hydrocolloids, 20,				
380	1006-1019.				

Table 1.

Thermal analysis of whey protein dispersions containing 7% protein at pH 6 (prepared in water) or pH 3 (pH adjusted with citric or lactic acid) in the presence or absence of chemical blockers.^a

Medium	Chemical	Temperature (°C)		T_d	ΔΗ
		Onset	Endset	(°C)	(J g ⁻¹)
Water	Control	66.2 ^b	81.4 ^a	74.2 ^a	3.3 ^{bcd}
(pH ~ 6)	Tween 20	60.7 ^a	82.8 ^a	76.8 ^a	3.6 ^{bcde}
	SDS	64.4 ^b	83.3 ^a	80.7 ^b	0.6 ^a
	NEM	64.5 ^b	80.9 ^a	73.3 ^a	2.3^{abc}
	DTT	65.9 ^b	81.2 ^a	74.5 ^a	3.3 ^{bcd}
Citric acid	Control	72.9 ^{cd}	91.2 ^{bc}	81.5 ^b	4.3 ^{cde}
(pH 3)	Tween 20	72.1 ^c	92.7 ^{bc}	83.2 ^b	6.0 ^{ef}
	SDS	73.4 ^{cd}	88.4 ^b	83.5 ^b	1.2^{ab}
	NEM	66.8 ^b	90.7 ^{bc}	80.3 ^b	7.1 ^a
	DTT	67.3 ^b	96.6 [°]	82.9 ^b	10.0 ^g
Lactic acid	Control	69.8 ^{bc}	94.8 ^c	81.4 ^b	4.7 ^{cdef}
(pH 3)	Tween 20	69.4 ^{bc}	90.4 ^{bc}	82.1 ^b	5.2 ^{def}
	SDS	77.7 ^d	$111.7^{\rm d}$	95.8 ^c	14.5 ^h
	NEM	65.6 ^b	86.7 ^b	78.8 ^b	5.1 ^{def}
	DTT	71.5 ^c	88.6 ^b	80.3 ^b	5.1 ^{def}

^a Abbreviations: T_d , denaturation temperature of whey proteins; ΔH , denaturation enthalpy. Values are the average of at least 4 independent observations (n \geq 4); values with different superscript letters in a column were significantly different (P < 0.05). Pooled standard errors of the mean are 1.71, 1.82, 1.40 and 1.26 for onset temperature, endset temperature, T_d and ΔH , respectively.

1 Figure 1.

Figure legends

Fig. 1. DSC thermograms of whey protein dispersions at pH 6 with water (A; control) and adjusted to pH 3 using citric acid (B) or lactic acid (C) in the presence of different chemical bond blockers: control (——); Tween20 (— —); SDS (- - -); NEM ($\cdot - \cdot -$); DTT (……).

Fig. 2. Non-reducing sodium dodecyl sulphate-polyacrylamide gel electrophoresis patterns of whey protein (WP) dispersions (7%, w/w, protein) in water (panel A; pH not adjusted) and at pH 3 in citric acid solution (panel B) or lactic acid solution (panel C) after heating at 140 °C for 30 s. The bands given by α -lactalbumin and β -lactoglobulin are shown in a separate panel (Std). For panels A, B and C: lane 1, WP dispersion with no chemical bond blocker; lanes 2, 3, 4 and 5, WP dispersions with Tween 20, SDS, NEM and DTT, respectively. Bands labelled (a) and (b) indicated the formation of medium molecular weight aggregates.

Fig. 3. Reducing sodium dodecyl sulphate-polyacrylamide gel electrophoresis patterns of whey protein (WP) dispersions (7%, w/w, protein) in water (panel A; pH not adjusted) and at pH 3 in citric acid solution (panel B) or lactic acid solution (panel C) after heating at 140 °C for 30 s. Lane S1, molecular mass markers; lane S2, α -lactalbumin; lane S3, β -lactoglobulin; lane 1, WP dispersion with no chemical bond blocker; lanes 2, 3, 4 and 5, WP dispersions with Tween 20, SDS, NEM and DTT, respectively.

Fig. 4. Native polyacrylamide gel electrophoresis patterns of whey protein (WP) dispersions (7%, w/w, protein) in water (panel A; pH not adjusted) and at pH 3 in citric acid solution (panel B) or lactic acid solution (panel C) after heating at 140 °C for 30 s. Lane S1, molecular mass markers; lane S2, α -lactalbumin; lane S3, β -lactoglobulin; lane 1, WP dispersion with no chemical bond blocker; lanes 2, 3, 4 and 5, WP dispersions with Tween 20, SDS, NEM and DTT, respectively.

Fig. 5. Heat-induced changes in turbidity of 7% (w/w) whey protein dispersions after heat treatment at 140 °C for 30 s at pH 6 (in water) or at pH 3 (in the presence of citric acid or lactic acid) without a chemical bond blocker (control, \boxdot), or in the presence of Tween 20 (**■**), SDS (**⊠**), NEM (**⊞**) and DTT (**⊡**). Reported data are the means of at least 4 independent observations (n≥4); error bars represent standard error of means.

References

15

25

Baldwin, A. J. (2010). Insolubility of milk powder products – A mini review. *Dairy Science and Technology*, 90, 169 – 179..

Brandenberg, A. H., Morr., C. V. & Weller, C. L. (1992). Gelation of commercial whey

5 protein concentrates: effect of removal of low molecular-weight components. *Journal of Food Sci*ence, 57, 427-432.

Damodaran, S. (2008). Amino acids, peptides and proteins. In Damodaran, S. Parkin, K. L. & Fennema, O. R. (Eds.), *Fennema's Food Chemistry* (4th ed.) (pp 217-330), CRC Press, Taylor and Francis Gp, Boca Raton, FL, USA.

10 de la Fuente, M. A., Singh, H. & Hemar, Y. (2002). Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. *Trends in Food Science and Technology*, 13, 262-274.

Dissanayake, M. & Vasiljevic, T. (2009). Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. *Journal of Dairy Science*, 92, 1387-1397.

Dissanayake, M., Kelly, A. L., & T. Vasiljevic (2010). Gelling properties of microparticulated whey proteins. *Journal of Agriculture and Food Chemistry*, 58, 6825–6832

Dissanayake, M., Liyanaarachchi, S. & Vasiljevic, T. (2012). Functional properties of whey proteins microparticulated at low pH. *Journal of Dairy Science*, 95, 1667-1679.

20 Havea, P., Singh, H, Creamer, L. K., & Campanella, O. H. (1998). Electrophoretic characterization of the protein products formed during heat treatment of whey protein concentrate solutions. *Journal of Dairy Research*, 65, 79-91.

Havea, P., Watkinson, P. & B. Kuhn-Sherlock. (2009). Heat induced whey proteins gels: Protein–protein interactions and functional properties. *Journal of Agricultural and Food Chemistry*, 57, 1506-1512.

Iordache, M. & Jelen, P. (2003). High Pressure microfluidization treatment of heat denatured whey protein for improved functionality. *Innovative Food Science and Emerging Technologies*, 4, 367-376.

Ju, Z. Y. & Kilara, A. (1998). Aggregation induced by calcium chloride and subsequent thermal gelation of whey protein isolate. *Journal of Dairy Science*, 81, 925-931.

Jung, J., Savin, G., Pouzot, M., Schmitt, C. & Mezzenga, R. (2008). Structure of heat-induced β -lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. *Biomacromolecules*, 9, 2477-2486.

Lee, S., Morr, C. V. & Ha, E. Y. W. (1992). Structural and functional properties of caseinate
and whey protein isolate as affected by temperature and pH. *Journal of Food Science*, 57, 1210-1214.

Lucey, J. A. & Singh, H. (2003). Acid coagulation of milk. In Fox, P. F. & McSweeney, P. L. H. (Eds.) *Advanced Dairy Chemistry – Proteins*, Vol. 1, 3rd edition, Part B (pp 1001-1026), Kluwer Academic/Plenum Publishers, New York, USA.

40 Marangoni, A. G., Barbut, S., McGauley, S. E., Marcone, M. & Narine S. S. (2000). On the structure of particulate gels-the case of salt-induced cold gelation of heat-denatured whey protein isolate. *Food Hydrocolloids*, 14, 61-74.

O'Connell, J. E. & Fox, P. F. (2003). Thermal denaturation, aggregation and gelation of whey proteins. In Fox, P. F. & McSweeney, P. L. H. (Eds.) *Advanced Dairy Chemistry – Proteins*,

Vol. 1, 3rd edition, Part B (pp 1261-1288), Kluwer Academic/Plenum Publishers, New York, USA.

O'Kennedy, B. T. & Mounsey, J. S. (2009). The dominating effect of ionic strength on the heat-induced denaturation and aggregation of â-lactoglobulin in simulated milk ultrafiltrate. *International Dairy Journal*, 19, 123–128.

50 Phillips, L. G., Schulman, W. & Kinsella, J. E. (1990). pH and Heat Treatment Effects on Foaming of Whey Protein Isolate. *Journal of Food Science*, 55, 1116-1119.

Unterhaslberger, G., Schmitt, C., Sanchez, C., Appolonia-Nouzille, C. & Raemy, A. (2006). Heat denaturation and aggregation of â-lactoglobulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0. *Food Hydrocolloids*, 20, 1006-1019.