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Abstract 26 

Disturbance, the response of birds to a stimulus such as the presence of a person, is 27 

considered a conservation threat for some Australian birds. The distance at which a 28 

bird flees from perceived danger is defined as the Flight Initiation Distance (FID), and 29 

could be used to designate separation distances between birds and stimuli which 30 

might cause disturbance. We review the known FIDs for Australian birds, and report 31 

FIDs for 352 species. Most FIDs are from south eastern Australia, and almost all refer 32 

to a single walker as the stimulus. A number of prominent factors correlated with FID 33 

are discussed (e.g. body mass and the distance at which an approach begins). FIDs 34 

have not been used extensively in the management of disturbance, for a variety of 35 

reasons including lack and inaccessibility of available data. We call for standardised 36 

data collection and greater application of available data to the management of 37 

disturbance. 38 

  39 
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Introduction 40 

The response of birds to the presence of a stimulus such as a potential predator or a 41 

human is referred to as ‘disturbance’ (Van Der Zande and Verstrael 1985; Fox and 42 

Madsen 1997). A diverse range of stimuli can disturb birds. Although natural stimuli, 43 

such as predators, cause disturbance (e.g. Ward et al. 1994; Burton et al. 1996), most 44 

studies focus on anthropogenic sources of disturbance. These include humans 45 

themselves, their companion animals, and motorised transport such as aircraft, 46 

vehicles and boats (e.g. Kushlan 1979; Andersen et al. 1989; Buick and Paton 1989; 47 

Kirby et al. 1993; Burger 1998; Delaney et al. 1999).  48 

 49 

The response of birds to disturbance takes many forms, but most reported 50 

responses are behavioural and can be considered vigilance or flight responses 51 

(Hediger 1934; Ydenberg and Dill 1986; Hockin et al. 1992), where ‘vigilance’ 52 

involves birds stopping their current activity to monitor the approaching human (e.g. 53 

Fernández-Juricic et al. 2001) and ‘flight’ involves fleeing on foot, swimming, diving, 54 

or on the wing (e.g. Cooke 1980). An increasing number of studies have demonstrated 55 

physiological responses to stimuli, such as changes in heart rates, body temperature, 56 

and plasma corticosterone levels, which can occur in the absence of any obvious 57 

behavioural responses (e.g. Gabrielsen et al. 1977; Kanwisher et al. 1978; Culik et al. 58 

1990; Wilson et al. 1991; Culik et al. 1995; Nimon et al. 1995, 1996; Regel and Pütz 59 

1997; Weimerskirch et al. 2002; Walker et al. 2006). Responses to disturbance can 60 

vary greatly between species. For example, some shorebirds do not leave their nest 61 

until humans are nearby, while others leave their nests when humans are several 62 

hundred metres distant (e.g. Page et al. 1983; Watson 1988; Yalden and Yalden 63 

1989).  64 
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 65 

These behavioural and physiological responses are presumed to be costly, and 66 

non-benign consequences of human disturbance have been observed among many 67 

species. Disturbance induced by humans can result in ecologically significant shifts in 68 

behaviour, such as changes in habitat use (e.g. Burger 1981), reduced foraging, 69 

diminished parental care (e.g. Weston and Elgar 2005), compromised parental defence 70 

resulting in reproductive failure (e.g. Vos et al. 1985), among other changes. 71 

Behavioural changes, such as those associated with disturbance, are often assumed to 72 

be brief, yet may ultimately have long-lasting impacts on populations (e.g. Flemming 73 

et al. 1988). At the population level, high species sensitivity to disturbance (i.e. long 74 

‘Flight Initiation Distances’ [FIDs]) is associated with population declines among 75 

European birds (Møller 2008) and, in the Cordoba Mountains of Argentina, human 76 

presence negatively influenced avian communities, guilds and populations (Heil et al. 77 

2007).  78 

 79 

Increasing exposure of birds to disturbance, the possibility of significant 80 

negative impacts on the conservation of at least some species, and the legislative 81 

requirements to conserve birds and protect bird welfare, have largely prompted a 82 

dramatic increase in the number of publications on disturbance to birds over the last 83 

35 years (Hockin et al. 1992; Hill et al. 1997; Price 2008). This considerable body of 84 

work has emphasised the high variability of the forms and consequences of 85 

disturbance to birds. Many studies of disturbance examine factors that mediate 86 

responses to disturbance. For example, physical factors such as habitat, internal 87 

factors such as learning, and attributes of the stimulus such as number, height and 88 

width, and speed of approach can all influence avian responses (e.g. Stalmaster and 89 
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Newman 1978; Burger 1986; Keller 1989; Rodgers and Smith 1995; Jorden 2007). An 90 

almost universal theme in the literature is that most forms of disturbance to birds are 91 

already common and are likely to occur with greater frequency in the future. Increases 92 

in disturbance to birds have been predicted for Europe, North America and Australia 93 

(e.g. Boden and Ovington 1973; Goss-Custard and Verboven 1993; Kirby et al. 1993; 94 

Flather and Cordell 1995; Gill et al. 1996; Hill et al. 1997).  95 

 96 

 Here, we briefly review Flight Initiation Distances (FID) among Australian 97 

birds and some of the factors which may mediate FID. Specifically, this review 98 

critically describes FID and associated concepts, describes some prominent factors 99 

which mediate FID, and considers why FID estimates have not enjoyed greater 100 

application in the management of avian disturbance. We redress one barrier to the use 101 

of FID data in management by providing available FID data for Australian birds. We 102 

are unaware of any published reviews dedicated to this topic to date (but see Lane 103 

2003).  104 

 105 

Bridging the theoretical-applied divide: Flight Initiation Distances 106 

One of the most consistent findings of disturbance research is that the response of 107 

birds is inversely related to the distance between the bird and the stimulus. The 108 

distance at which a behavioural escape response occurs is known as Flight Initiation 109 

Distance (FID) (Stankowich and Blumstein 2005), a concept apparently first 110 

described by Hediger (1934). FID is also known as ‘Flush’ (Stankowich and 111 

Blumstein 2005), ‘Displacement’ (Dandenong Valley Authority 1979) or ‘Flight’ 112 

Distance (Hediger 1934).The distance at which a vigilance response is initiated is the 113 

Alarm Initiation Distance (AD), also known as ‘Agitation’ Distance (Dandenong 114 
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Valley Authority 1979) (Fig. 1). The concept of FID is broadly applicable to wild 115 

living birds, though for aggressive, highly habituated or domesticated birds, the 116 

response often involves an approach to humans, and FID may not adequately reflect 117 

the distance at which normal activities are disrupted. Alarm responses vary between 118 

species, but many involve raising the head and communicating with nearby 119 

conspecifics via alarm calls or other signals such as tail flicking among the Rallidae 120 

(Woodland et al. 1980). Non-cryptic promulgation of alarm may also signal to 121 

threatening stimuli that they have been detected (Woodland et al. 1980). If AD is 122 

evident, it is always greater than or equal to FID (Blumstein et al. 2005; Cárdenas et 123 

al. 2005).  124 

 125 

Two other important distances that are often overlooked are: 1) the possible 126 

existence of Detection Distance (DD), the distance at which a bird can first detect a 127 

stimulus (generally assumed to be visually, though auditory cues could potentially be 128 

used to detect loud stimuli such as aircraft, or the sounds of approaching predators in 129 

closed habitats) without reacting in other ways, and 2) the Physiological Initiation 130 

Distance (PID), the distance at which physiological response (e.g. increased heart rate 131 

or corticosteroid secretion) is initiated (Fig. 1). Birds can detect stimuli while not 132 

being overtly vigilant and thus DD is greater than or equal to AD (Lima and 133 

Bednekoff 1999). The few studies of PID suggest that it is longer than either AD or 134 

FID (Nimon et al. 1996), at least in ‘non-startle’ responses (see below).  135 

 136 

Starting distance (the distance at which an investigator approach begins; SD), 137 

is usually positively related to FID (Blumstein 2003, 2006, 2010), however where FID 138 

and DD are very similar or the same, the response of the birds can be considered a 139 



 7 

‘startle’ response, defined as an instantaneous flight response upon detection of the 140 

stimulus. Startles occur at distances below which FID equals SD. Maximum startle 141 

distance can be estimated from the regression of FID and SD as the point where FID 142 

equals SD for a given species. DD is currently not measurable, so startles occur when 143 

the distance at which an approach begins (Starting Distance; SD) equals or is very 144 

similar to FID. Essentially, this represents the presentation of a stimulus to a bird 145 

rather than an approach. For species with long FIDs, caution must be exercised in 146 

relation to achieving sufficient starting distances during approaches; insufficient 147 

starting distance may result in only the least sensitive individuals contributing to the 148 

measure of FID. 149 

 150 

Prominent factors correlated with FID 151 

Life history characteristics influence many aspects of the behaviour of birds, and can 152 

be reasonably expected to influence key aspects of decisions in relation to escape 153 

behaviour such as flight (Møller and Garamszegi 2012). For example, males and 154 

females, old and young individuals, and low and high quality individuals could differ 155 

consistently in direction and magnitude of FID. However, studies which examine 156 

these attributes in relation to FID are few (but see Thiel et al. 2007). FID itself can be 157 

considered a life history trait, whereby FID represents the risk an individual is willing 158 

to take, which is expected to be influenced by residual reproductive value (the 159 

remaining reproductive value for an individual of a particular age, given it’s particular 160 

condition, quality etc.). Thus, associations between FID and other life history traits 161 

represent correlations and do not necessarily imply causation.  162 

Body mass, a life history trait, explains most of the variation in FID among 163 

species (Blumstein 2006). To highlight the importance body mass, residuals from a 164 
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regression of FID on body mass (both logged [10]) for species with at least ten FIDs 165 

and with adequate mass data are presented in Appendix 1 (no phylogenetic 166 

corrections; F1,138 = 131.471, P < 0.001, R
2
 = 0.488, slope = 0.296; Fig. 2). Higher 167 

positive residual values indicate species most sensitive to human approaches while 168 

negative values of higher magnitude indicate species least sensitive to human 169 

approaches. The Hooded Plover Thinornis rubricollis has the highest residual value, 170 

and is a species considered to be threatened by human disturbance (Dowling and 171 

Weston 1999). The least sensitive species analysed was the Australian Brush Turkey 172 

Alectura lathami which sometimes inhabits yards and other human-dominated 173 

environments (Marchant and Higgins 1993).  174 

 175 

There are several possible reasons for the general finding that FIDs and body 176 

sizes are positively correlated between species. First, if larger-bodied species are more 177 

at risk from predators due to their higher detectability, they may diminish depredation 178 

risk by initiating the flight response earlier (Holmes et al. 1993). Second, if larger-179 

bodied species are less agile or aerodynamic than smaller species, they may require 180 

more time or space to escape (Fernández-Juricic et al. 2002). Third, smaller-bodied 181 

species may require more foraging time to fulfill their relatively higher energy 182 

requirements and thus may react later to disturbance to maximise foraging time 183 

(Bennett and Harvey 1987; Blumstein 2006). Other possibilities include that humans 184 

may have discriminately hunted or hunt larger species, or that larger species may 185 

exhibit higher longevities (i.e. have, on average, higher residual reproductive values) 186 

and so minimise risk associated with perceived threats. A number of parameters 187 

correlated with body mass may also be correlated with FID, including sensory organ 188 

and brain size and the height of the eye above the substrate; some of these parameters 189 
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are positively correlated with FID once body mass has been accounted for (Møller and 190 

Erritzøe 2010) and others remain to be investigated.  191 

 192 

Larger group sizes are, at least sometimes, associated with longer FIDs; 193 

possibly because the flock’s response is dependent on the reaction of the most alert , 194 

sensitive or risk-averse constituent of the flock (Cooke 1980; Hilton et al. 1999; 195 

Fernández-Juricic et al. 2002), and because at least some birds may initiate a response 196 

when nearby birds respond (Hingee and Magrath 2009). However, the reduction in 197 

individual vigilance associated with an increase in group size is a frequently reported 198 

relationship, and is generally thought to result from a decrease in predation risk to 199 

flock members, or an increase in competition among foraging flock members (Roberts 200 

1996; Beauchamp 2001; Randler 2005). Flocking species may be more susceptible to 201 

disturbance from humans than species that do not flock, both at the individual and 202 

possibly the population levels. More studies are required to determine if a threshold in 203 

group size exists above which FIDs do not increase but theory predicts that because 204 

the benefits of increasing group size attenuate quickly, studies of animals in relatively 205 

small group sizes will be important to describing this function.  206 

 207 

Learning is an oft cited influence on escape behaviour such as FID, but no 208 

studies on birds known to us unambiguously describe changes in FID with experience 209 

i.e. learning (see below). Learning, if it occurs, could potentially influence FIDs in 210 

two directions: 1) facilitation (‘sensitisation’), where FIDs increase with increasing 211 

exposure to humans; and, 2) habituation where FIDs decrease with increasing 212 

exposure to humans. The former is generally suggested to be associated with 213 

dangerous, irregular, rapid and unpredictable stimuli such as hunters (Thiel et al. 214 
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2007), and dogs which are most commonly unleashed in many bird habitats (see 215 

Williams et al. 2009). In contrast, habituation is suggested to result from frequent 216 

benign, slow and predictable stimuli like walkers (Weston and Elgar 2007). Both 217 

types of learning might potentially occur within a species. Such an explanation might 218 

explain examples of behaviour such as  the Pacific Black Duck Anas supercisliosa, 219 

which in urban parks, where the species is fed, actually approaches humans closely, 220 

while in areas where it is hunted, flushes at many hundreds of metres (Unpubl. Data, 221 

but see below). The capacity of learning, if any occurs, on the part of birds to change 222 

FIDs is little studied and poorly known (but see Gould et al. 2004), but within species 223 

variation in FID might at least partly reflect learning .  224 

 225 

Learning has been inferred from the prevalence of humans in particular 226 

habitats and the responses of birds in those habitats (i.e. a space – experience 227 

substitution). For example, Black Swan Cygnus atratus FIDs toward walkers have 228 

been measured by many observers at different sites and vary from 149 m in the 229 

relatively undisturbed Coorong, SA (Paton et al. 2000), to only 3.6 m at the extremely 230 

busy Albert Park Lake, Melbourne (Monie 2011). Such variation has been used to 231 

infer habituation. However, evidence of this type does not necessarily demonstrate 232 

learning, and a number of problems exist when using space-experience substitution 233 

studies to infer learning. Firstly, dispersal and site fidelity of the species measured 234 

will influence the experience of birds at a site and few such studies document the 235 

underlying regimes in the occurrence of stimuli (e.g. density or frequency of humans) 236 

which are often assumed (but see Glover et al. 2011). Additionally, site comparisons 237 

are often confounded with habitat, and many comparisons of these types involve 238 

urban and rural or ‘natural’ comparisons (e.g. Cooke 1980). Space – experience 239 
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substitutions may also be confounded by the possibility of selection for, or biased 240 

recruitment of, less responsive birds in more disturbed habitats. Observed patterns 241 

may thus reflect selective pressure or differential recruitment, rather than learning per 242 

se. We are unaware of any study that examines the actual experience of free-living 243 

individual birds and their response to humans, and we are similarly unaware of any 244 

study which discriminates between the potential mechanisms underpinning reported 245 

differences in bird responses between birds inhabiting sites experiencing different 246 

disturbance regimes. The capacity, if any, for learning on the part of the birds and 247 

subsequent adjustment of FIDs thus remains virtually unstudied, poorly known, and is 248 

ripe for future study.  249 

 250 

Starting distance (i.e. the distance at which an approach begins; SD) is 251 

positively related to FID for most species (Blumstein 2003, 2006). It has been 252 

hypothesised that this intriguing finding results from a judgement regarding the value 253 

of a ‘patch’ under increasing risk (i.e. an approaching human; Blumstein 2003, 2006). 254 

However, an alternative explanation may be that birds monitor approaches and 255 

tolerate them for a certain time (and thus maintain a temporal margin of safety; Dill 256 

1990) perhaps a measure of the ‘persistence’ of the approach. Or, individuals may 257 

tolerate approaches to a certain proportion of AD such as is seen in galahs (Cacatua 258 

roseicapilla; Cárdenas et al. 2005) and perhaps other species (Gulbransen et al. 2006). 259 

Alternatively, animals may tolerate approach until a threshold in the perception of the 260 

stimulus (e.g. increasing size) is reached (Jorden 2007). Many species of birds do not 261 

have a large binocular overlap region frontally and thus may not be able to estimate 262 

distance efficiently. Obviously, time and distance are highly correlated during a 263 

human approach at a constant speed, which could explain the significant correlation 264 
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between SD and FID, although distance per se may not be used by birds to decide 265 

when to respond to stimuli (but see Cárdenas et al. 2005). Further research into 266 

teasing apart these alternative mechanisms remains to be conducted. 267 

 268 

The factors listed above are those that feature prominently in the literature. 269 

Blumstein (2006) suggested after body size, diet and sociality (i.e. whether a species 270 

is a co-operative breeder) also explained significant variation in avian FID. However, 271 

many other potential correlations with FID remain to be investigated thoroughly. For 272 

example, birds with more pointed wings have longer FIDs and fly further when 273 

disturbed compared with birds with more rounded wings (Fernández-Juricic et al. 274 

2006) and ‘personality’ may explain some of the variation of FIDs seen within 275 

species. More ‘exploratory’ individual Collared Flycatchers Ficedula albicollis tend 276 

to have smaller FIDs than less exploratory individuals (Garamszegi et al. 2009). Other 277 

potential influences on FID include age, sex, site attributes including distance from 278 

cover and the presence of barriers to human movement such as fences or canals, 279 

weather, clothing colour and others mentioned throughout this review (see, for 280 

example, Fruziski 1977; Gutzwiller and Marcum 1993; Gould et al. 2004; Thiel et al. 281 

2007; Fong et al. 2009).  282 

 283 

FID as a management tool: strengths and shortcomings 284 

One of the attractions of documenting FIDs is that they provide a scientific basis for 285 

the designation of buffers or separation distances between important habitat and 286 

incompatible surrounding land uses, often recreation (Blumstein and Fernández-287 

Juricic 2010). Other approaches to mitigate the impacts of disturbance include altering 288 

the behaviour of the stimulus, for example by implementing ‘codes of conduct’, 289 
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hiding the stimulus (e.g. hides) or by promoting habituation, such as through the use 290 

of fences (Ikuta and Blumstein 2003), which make stimuli more predictable and 291 

physically separate them from birds so rendering them less threatening (Gates and 292 

Gysel 1978). Despite the potential of buffers to restrict any negative effects of 293 

disturbance (Davies and Lane 1995), and because of a range of competing factors, 294 

FIDs have rarely been used in this way in Australia (Weston et al. 2009). Their use 295 

has been limited by a number of ecological, scientific and social factors which are 296 

discussed below. 297 

 298 

Relatively few studies in Australia have provided measures of FIDs although 299 

data on some species with global distributions are available from overseas (e.g. 300 

Møller and Erritzøe 2010). Many older studies of FID relied on subjective 301 

measurement of distance and so used distance categories (e.g. Woodland et al. 1980). 302 

However, the availability of cost-effective eye-safe laser range finders, which permit 303 

accurate measurements of distances at scales relevant to bird FIDs, means collecting 304 

data on FIDs is now comparatively cheap and accurate. Despite this, published data 305 

on FIDs of Australian birds are only available for 29.3% of the 866 species of birds 306 

that occur in Australia (Table 1). Thus, comparatively few FIDs are readily available 307 

to managers. Of the 352 FIDs on Australian birds we located, only 48.6% were 308 

published in peer-reviewed literature. The remaining FIDs were published in reports 309 

with limited circulation, or reports that are difficult to access (e.g. honours theses or 310 

other ‘grey literature’; a finding that is paralleled on other continents). The lack of 311 

suitable data on which to make management decisions could be addressed by 312 

collecting more FID on more species in more locations and encouraging its 313 

publication in a form usable for managers. In the interim, estimates from the 314 
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widespread, positive relationship between body mass and FID, and the species 315 

specific residuals from the relationship (Blumstein 2006), may be used as a first 316 

approximation or to identify particularly sensitive species and these estimates can be 317 

tested and refined with future study. Clearly, the later approach relies on information 318 

regarding the species present at a site, and assumes the site is not already avoided by 319 

particularly sensitive species. 320 

 321 

There has been a taxonomic bias in available FIDs for Australian birds. 34.0% 322 

(of 377 species) and 45.8% (of 489 species) of passerines and non-passerines 323 

respectively have published FIDs. In particular, most research has targeted waterbirds, 324 

in particular shorebirds (75.9% of 224 species; Table 1). As a result, there are many 325 

groups of birds for which few or no FIDs are available. There has also been a regional 326 

bias in studies of the FIDs of Australian birds, with most reported from temperate 327 

areas (usually coastal), in eastern Australia (where most of the human population 328 

resides; Fig. 3), and a habitat bias, with most FIDs available from wetlands, few from 329 

grasslands, and few studies which specify the microhabitat of focal birds such as 330 

substrate (e.g. for wetland birds, margin or water) (but see Blumstein 2006). 331 

 332 

The great majority of reported FIDs involve non-breeding birds, although 333 

disturbance can reduce reproductive success in some species (Davidson and Rothwell 334 

1993) and disturbance has been associated with decline among breeding populations 335 

of others (Møller 2008). Breeding birds potentially respond very differently to 336 

disturbance compared with non-breeding birds (Glover et al. 2011), and few studies 337 

report FIDs for dependent or flightless young.  338 

 339 
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FIDs are reported in non-standard ways in the scientific literature, and are 340 

presented as averages (e.g. Blumstein 2006) sometimes without measures of variation, 341 

as 95
th

 percentiles (e.g. Taylor 2006), or as maxima (Glover 2009). Moreover, a 342 

central repository for FID data is not available to managers. Given that virtually 343 

nothing is known about the thresholds of response frequencies or intensities which 344 

can be tolerated by birds, the precautionary principle suggests that an upper limit is 345 

required, this could be 95
th

 percentiles (which still assumes thresholds in tolerance), or 346 

maxima (if sampling is sufficient), which  would be most appropriate for the 347 

designation of buffers for conservation purposes. In at least some cases the FIDs 348 

evoked by tangential approaches exceed those evoked by direct approaches (e.g. Heil 349 

et al. 2007; but see Burger et al. 2010) suggesting that such effects should be 350 

investigated before designating buffers, leading some authors to propose various 351 

inflation factors to FIDs (Fernández-Juricic et al. 2005; Blumstein and Fernández-352 

Juricic 2010). We believe that it would seem prudent to present full summary 353 

statistics and methodological details of all FIDs in publications, to enable managers 354 

access and ready interpretation of the data (thus, see Table 2). Additionally, studies of 355 

experimentally implemented buffers, derived from FIDs, could inform how FIDs can 356 

be used to create effective buffers, and could account for a variety of stimulus types 357 

and behaviour, and if studies occur long enough, account for learning on the part of 358 

the birds. Studies which examine different methods of calculating buffers in relation 359 

to actual FIDs (Fernández-Juricic et al. 2005; Glover et al. 2011) are both needed and 360 

useful. 361 

 362 

FIDs from mixed species flocks are not available either because studies have 363 

generally approached only single species flocks (e.g. Paton et al. 2000) or because 364 
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they assume that no species interactions occur and use a focal bird approach 365 

(Blumstein et al. 2003). However, many species usually or often occur in mixed 366 

flocks (e.g. shorebirds, small passerines) and mixed flocks of shorebirds are known to 367 

‘share’ vigilance with other species in flocks (Metcalfe 1983). It may be that in mixed 368 

flocks the FID is that of the most sensitive individual irrespective of species, 369 

especially for closely or highly coordinated flocking species i.e., the ‘sentinel’ 370 

hypothesis (Metcalfe 1983; Paton et al. 2000). Alternatively, it is possible that species 371 

respond only to the flight of conspecifics. These possibilities can be envisaged as the 372 

extremes of a spectrum. Interspecies interactive FIDs remain unstudied and their 373 

study may generate novel and practical insights into managing human disturbance at 374 

multi-species sites. 375 

 376 

Another limitation of the FID data currently available is the emphasis on a 377 

single walker as the stimulus (92.3% of 352 FIDs). FIDs in response to other stimuli 378 

including dog walkers, joggers, powerboats, and canoes have only been reported for 379 

11 species (some authors discuss the influence of different stimuli without directly 380 

reporting the FIDs e.g. Glover et al. 2011). Although walkers are a useful standard for 381 

comparative studies, FID can vary depending on the stimulus involved. For example, 382 

shorebirds have larger FIDs towards dog walkers than walkers without dogs (Paton et 383 

al. 2000; Glover 2009) and cars do not elicit as strong a response as walkers or 384 

cyclists among ducks (Pease et al. 2005). Larger groups of people may evoke longer 385 

FIDs (Geist et al. 2005). Aspects of the behaviour of stimuli also influence responses: 386 

for example, tangential approaches evoke different responses, sometimes longer FIDs, 387 

in comparison with direct ones (Blumstein and Fernández-Juricic 2010; Burger et al. 388 

2010) and the behaviour of a human can dramatically influence the duration of a 389 
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response (Weston et al. 2011). Due to the strong effect of stimulus type, proper 390 

management decisions can only be made if FIDs for the prevailing human activities 391 

are available for the appropriate species. The use of FIDs for single walkers would 392 

underestimate the required buffer needed to protect birds from dog walkers. More 393 

studies of the influence of stimulus type on FID may enable some extrapolation of 394 

FIDs across stimulus types, which could be cautiously used by managers until better 395 

information becomes available. Indeed, currently it is not known whether birds 396 

respond specifically to each stimulus or generalise responses into ‘classes’. Different 397 

classes of FID are presumably correlated between individuals or species; 398 

understanding such patterns might provide general principles regarding what stimuli 399 

are likely to cause greatest disturbance. Ultimately, FID-based buffer zones should be 400 

viewed as hypotheses ripe for testing and studied in an adaptive management 401 

framework (Blumstein and Fernández-Juricic 2010). 402 

 403 

Different authors have used various protocols to measure FIDs. The standard 404 

protocol, which has received the broadest patronage and thus seems logical to 405 

promote to future investigators, involves a slow continuous approach toward the 406 

target bird and the recording of AD and FID as the bird behaviour changes (Blumstein 407 

2003). This would also seem to best mimic the behaviour of most recreationists 408 

(except possibly birdwatchers or photographers). Other researchers have opted for 409 

stepwise advances toward birds with behavioural observations in between each step to 410 

monitor vigilance within flocks (Paton et al. 2000). For birds in elevated positions, 411 

horizontal and vertical components of FID should be recorded and documented 412 

(Møller 2010). SD should be maximised or standardised (see Møller and Garamszegi 413 

2012). Standardisation of the FID measuring protocol would enhance compatibility of 414 
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different datasets and we advocate that the simple method described by Blumstein 415 

(2003) should be adopted whenever possible.  416 

 417 

Finally, FIDs may be impractical for planners, policy makers and other 418 

stakeholders such as the public, researchers and birdwatchers (see Glover et al. 2011). 419 

Some species exhibit FIDs of more than 100 m; the maximum FID recorded for any 420 

Australian species to date is 196 m for the Eastern Curlew Numenius 421 

madagascariensis (Glover et al. 2011); longer FIDs are likely to occur. Although 422 

many Australians accept the need for buffers against human disturbance (Glover et al. 423 

2011), large buffers which exclude humans threaten coexistence, including with 424 

birdwatchers who at least occasionally cause disturbance (Clarke 1965; Sekercioglu 425 

2002). Additionally, close personal encounters with wildlife such as birds, can be a 426 

powerful tool for public education and the recruitment of bird researchers, 427 

conservationists and advocates; strict buffers would exclude such experiences. 428 

However, FIDs can provide information on managing disturbance in ways other than 429 

exclusion zones. For example, constraining the extent of human presence (through 430 

formed paths or barriers such as fences or canals), and the promotion of habituation 431 

(by encouraging predictable and unthreatening behaviour of the stimuli), remain 432 

tantalising management responses to disturbance. 433 

 434 

If response to humans is considered a major issue for bird conservation, then 435 

the lack of published FID data, and its limited use in management, seems at odds with 436 

the concept of scientific management. The divide between science and its application 437 

is hardly new, but it is frustrating and challenging to managers and scientists alike 438 

(Australian Biosecurity CRC 2009). The publication of raw FID data often does not 439 
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fulfil the more theoretical expectations of scientific journals, or aspirations of 440 

potential authors. Nevertheless, such data are required if the management of 441 

disturbance to birds is to improve. We encourage the development of a common data 442 

standard and sharing of these data to enhance the conservation of Australian birds. 443 
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Table 1. Number and percentage of species in different taxonomic groups for which 758 

FID of Australian birds have been reported (Paton et al. 2000; Blumstein et al. 2003; 759 

Price 2003; Blakney 2004; Blumstein 2006; Taylor 2006; Kitchen et al. 2010; Glover 760 

et al. 2011; Monie 2011). Blanks indicate no FIDs have been located. 761 

Order (family) Stimulus Percentage of 

species in 

group  

Walker Dog Boat Canoe 

 Casuariiformes 

    

25.0 

    Casuariidae 1 

   

25.0 

Galliformes 

    

30.8 

    Megapodiidae 2 

   

66.7 

    Phasianidae 2 

   

25.0 

Anseriformes 

    

35.7 

    Anatidae 10 1 2 1 37.0 

Podicipediformes 

    

50.0 

    Podicipedidae 2 

   

50.0 

Columbiformes 

    

32.4 

    Columbidae 11 

   

32.4 

Caprimulgiformes 

    

25.0 

    Podargidae 1 

   

33.3 

    Eurostopodidae 1 

   

50.0 

Phalacrocoraciformes 

    

29.4 

    Anhingidae 1 

   

100.0 

    Phalacrocoracidae 4 

   

57.1 

Ciconiiformes 

    

58.6 

    Pelecanidae 1 

   

100.0 

    Ardeidae 11 

   

50.0 

    Threskiornithidae 5 

 

1 1 100.0 

Accipitriformes 

    

28.6 

    Accipitridae 6 

   

28.6 

Falconiformes 

    

33.3 

    Falconidae 2 

   

33.3 

Gruiformes 

    

25.0 

    Rallidae 6 

   

28.6 

Charadriiformes 

    

33.6 

    Burhinidae 1 

   

50.0 

    Haematopodidae 2 

   

66.7 

    Recurvirostridae 3 2 3 3 100.0 

    Charadriidae 10 

   

52.6 
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    Scolopacidae 17 3 5 5 38.6 

    Turnicidae 1 

   

14.3 

    Laridae 7 

   

21.9 

Psittaciformes 

    

28.6 

    Cacatuidae 7 

   

50.0 

    Psittacidae 9 

   

22.0 

Cuculiformes 

    

31.3 

    Cuculidae 5 

   

31.25 

Coraciiformes 

    

50.0 

    Alcedinidae 1 

   

33.3 

    Halcyonidae 4 

   

44.4 

    Meropidae 1 

   

100.0 

    Coraciidae 1 

   

100.0 

Passeriformes 

    

31.6 

    Menuridae 1 

   

50.0 

    Climacteridae 3 

   

50.0 

    Ptilonorhynchidae 4 

   

40.0 

    Maluridae 3 

   

13.6 

    Acanthizidae 16 

   

38.1 

    Pardalotidae 1 

   

25.0 

    Meliphagidae 24 

   

32.4 

    Pomatostomidae 2 

   

50.0 

    Orthonychidae 2 

   

100.0 

    Eupetidae 1 

   

12.5 

    Campephagidae 3 

   

37.5 

    Pachycephalidae 5 

   

35.7 

    Oriolidae 2 

   

66.7 

    Artamidae 7 

   

50.0 

    Dicruridae 1 

   

100.0 

    Rhipiduridae 3 

   

42.9 

    Corvidae 2 

   

28.6 

    Monarchidae 5 

   

35.7 

    Corcoracidae 2 

   

100.0 

    Paradisaeidae 1 

   

25.0 

    Petroicidae 5 

   

22.7 

    Cisticolidae 1 

   

50.0 

    Acrocephalidae 1 

   

50.0 

    Megaluridae 2 

   

40.0 

    Timaliidae 1 

   

14.3 

    Hirundinidae 2 

   

28.6 

    Pycnonotidae 1 

   

100.0 

    Turdidae 3 

   

60.0 

    Sturnidae 2 

   

28.6 
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    Nectariniidae 1 

   

33.3 

    Estrildidae 5 

   

23.8 

    Passeridae 2 

   

100.0 

    Motacillidae 2 

   

25.0 

    Fringillidae 3 

   

75.0 

 762 

  763 
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Table 2. Recommended fields for documenting Flight Initiation Distance data, 764 

assuming basic methods are fully documented. 765 

Aspect Fields 

Stimulus Stimulus type (e.g. walker) and number of stimuli per approach 

Clothing colour 

Speed of approach 

Relative angle of approach (direct or tangential) 

Distance at which approach ceased (if required) 

Response SD (m) 

AD (m) if evident 

FID (m) if evident 

Type of escape (e.g. run, hide, swim, dive) 

Relative direction of escape 

Distance at which escape behaviour ceases 

Context Flock size and composition (e.g. number of conspecifics within 

10 and 50 m) 

Age 

Sex 

Life history stage (e.g. non-breeding) 

Barriers (e.g. fences, channels) 

Height (m) if perched 

Starting behaviour 

Substrate 

Weather particularly wind speed and direction 



 30 

Date, location (including tenure and indices of human presence), 

species/subspecies being approached 

  766 
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Figure 1. Visual representation of the Detection Distance (DD; ), Physiological Initiation Distance (PID; ), Alarm 767 

Initiation Distance (AD; ) and Flight Initiation Distance (FID; ). Presented to illustrate a conceptual framework; distances are 768 

not to scale. 769 
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Figure 2. Linear regression of mean FIDs (from Appendix 1, where n ≥ 10), on mean 772 

body mass (g; averaged across sexes and Australian masses only; Dunning 2008 773 

supplemented with Higgins et al. 1990-2006). Residual values and ranks are presented 774 

in Appendix 1.  775 

 776 

 777 

 778 

  779 

0 

0 
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 780 

 781 
Figure 2. Locations in Australia where substantial numbers of FIDs have been 782 

reported (Paton et al. 2000; Blumstein et al. 2003; Price 2003; Blakney 2004; Gould 783 

et al. 2004; Cárdenas et al. 2005; Adams et al. 2006; Boyer et al. 2006; Taylor 2006; 784 

Kitchen et al. 2010; Monie 2011). Many FIDs are not associated with locations that 785 

could be mapped, and incidental collections of small numbers of FIDs have been 786 

omitted.  787 

 788 
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 789 

Appendix 1. Available Flight Initiation Distances for birds in Australia (including introduced species) from published sources plus a partly 790 

unpublished database provided by DTB. Each row represents the FIDs reported by separate studies or in relation to treatment variables used 791 

in studies e.g., different habitats (thus, some taxa are in multiple rows). Only cited figures are presented, data have not been estimated from 792 

graphical presentation of results in source documents. Sources were: 1) Blumstein (2006); 2) Monie (2011); 3) Paton et al. (2000); 4) Taylor 793 

(2006); 5) Glover et al. (2011); 6) Blakney (2004); 7) Price (2003); 8) Kitchen et al. (2010); 9) Blumstein et al. (2003); 10) D. T. Blumstein 794 

Unpubl. Data; 11) Dandenong Valley Authority (1979). Residual values (and ranks, where 1 is the highest positive residual value) are also 795 

presented (see Fig. 2 and text), with highly positive values indicating FIDs substantially above that predicted by body mass, highly negative 796 

values indicating FIDs substantially below that predicted by body mass. 797 

 798 

Family Common name  Scientific name Mean St. Dev. n 95
th

 percentile Residual 

(rank) 

Source 

Casuariidae Emu Dromaius novaehollandiae 58.7 36.2 6 118.1  10 

Megapodiidae Australian Brush Turkey Alectura lathami 12.0 13.0 11 33.4 -0.51 (140) 1 

Megapodiidae Orange-footed Scrubfowl Megapodius reinwardt 25.9 8.8 4 40.4  10 

Phasianidae Stubble Quail Coturnix pectoralis 1.9 0.5 2 2.8  10 

Phasianidae Brown Quail Coturnix ypsilophora 5.5 4.7 5 13.1  10 

Anatidae Musk Duck Biziura lobata 18.9 1.5 2 21.4  10 

Anatidae Black Swan Cygnus atratus 50.4 35.8 19 109.3  1 

Anatidae Black Swan Cygnus atratus 3.6 3.8 92 9.9 -0.09 (89) 2 

Anatidae Black Swan^ Cygnus atratus 149.0 0.0 1 149.0  3 

Anatidae Black Swan^
2
 Cygnus atratus 113.0 0.0 1 113.0  3 

Anatidae Black Swan Cygnus atratus n/a n/a 90 159  4 

Anatidae Black Swan Cygnus atratus 40.0 

 

n/a 

 

 11 

Anatidae Black Swan
1
 Cygnus atratus 53.0 

 

n/a 

 

 11 

Anatidae Australian Shelduck^ Tadorna tadornoides 145.0 0.0 1 145.0  3 

Anatidae Australian Shelduck Tadorna tadornoides n/a n/a 35 270  4 

Anatidae Australian Wood Duck Chenonetta jubata 25.5 24.9 44 66.5 -0.04 (74) 1 

Anatidae Australasian Shoveler Anas rhynchotis 19.2 0.0 1 19.2  10 

Anatidae Grey Teal Anas gracilis 41.6 22.8 23 79.1 0.24 (24) 1 
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Family Common name  Scientific name Mean St. Dev. n 95
th

 percentile Residual 

(rank) 

Source 

Anatidae Grey Teal^ Anas gracilis 106.9 10.1 2 123.5  3 

Anatidae Grey Teal^
2
 Anas gracilis 59.0 8.5 2 73.0  3 

Anatidae Grey Teal^
3
 Anas gracilis 49.5 

 

1 

 

 3 

Anatidae Grey Teal Anas gracilis n/a n/a 72 330  4 

Anatidae Chestnut Teal Anas castanea 46.5 21.4 55 81.7 0.25 (18) 1 

Anatidae Chestnut Teal Anas castanea n/a n/a 20 260  4 

Anatidae Northern Mallard Anas platyrhynchos 12.8 5.0 3 21.1  10 

Anatidae Pacific Black Duck Anas superciliosa 38.9 29.0 50 86.6 0.1 (41) 1 

Anatidae Pacific Black Duck Anas superciliosa n/a n/a 28 205  4 

Anatidae Hardhead Aythya australis 37.1 20.9 9 71.5  10 

Podicipedidae Australasian Grebe Tachybaptus novaehollandiae 23.4 14.1 19 46.6 0.09 (46) 1 

Podicipedidae Hoary-headed Grebe Poliocephalus poliocephalus 23.8 7.3 4 35.8  10 

Columbidae White-headed Pigeon Columba leucomela 26.0 34.5 2 82.7  10 

Columbidae Spotted Dove Streptopelia chinensis 12.9 9.0 52 27.7 -0.13 (100) 1 

Columbidae Brown Cuckoo-dove Macropygia amboinensis 8.1 4.8 11 16.0 -0.38 (137) 1 

Columbidae Emerald Dove Chalcophaps indica 14.2 8.8 2 28.7  10 

Columbidae Common Bronzewing Phaps chalcopetra 21.6 9.1 21 36.6 0.01 (61) 10 

Columbidae Crested Pigeon Ocyphaps lophotes 12.7 9.2 31 27.8 -0.16 (109) 1 

Columbidae Peaceful Dove Geopelia striata 12.1 7.8 27 24.9 -0.01 (67) 10 

Columbidae Bar-shouldered Dove Geopelia humeralis 22.1 14.8 93 46.4 0.13 (32) 1 

Columbidae Wonga Pigeon Leucosarcia picata 18.5 10.9 22 36.4 -0.09 (90) 1 

Columbidae Pied Imperial-pigeon Ducula bicolor 21.5 11.3 4 40.1  10 

Columbidae Topknot Pigeon Lopholaimus antarcticus 15.0 7.2 6 26.7  10 

Podargidae Tawny Frogmouth Podargus strigoides 6.2 4.4 2 13.3  10 

Eurostopodidae Spotted Nightjar Eurostopodus argus 10.8 0.0 1 10.8  10 

Anhingidae Australasian Darter Anhinga novaehollandiae 24.0 14.9 20 48.5 -0.15 (108) 1 

Phalacrocoracidae Little Pied Cormorant Microcarbo melanoleucos 19.8 14.3 58 43.3 -0.14 (105) 1 

Phalacrocoracidae Great Cormorant Phalacrocorax carbo 32.3 20.6 34 66.2 -0.06 (81) 1 

Phalacrocoracidae Little Black Cormorant Phalacrocorax sulcirostris 24 15.3 38 49.2 -0.1 (94) 1 

Phalacrocoracidae Pied Cormorant Phalacrocorax varius 31.3 18.0 25 60.9 -0.05 (77) 1 
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Family Common name  Scientific name Mean St. Dev. n 95
th

 percentile Residual 

(rank) 

Source 

Pelecanidae Australian Pelican Pelecanus conspicillatus 32.6 25.4 39 74.4 -0.18 (112) 1 

Ardeidae Australasian Bittern Botaurus poiciloptilus 10.0 0.0 1 10.0  10 

Ardeidae Australian Little Bittern Ixobrychus dubius 12.9 4.5 4 20.2  10 

Ardeidae White-necked Heron Ardea pacifica n/a n/a 26 170  4 

Ardeidae White-necked Heron Ardea pacifica 45.3 36.9 2 106.0  10 

Ardeidae Eastern Great Egret Ardea modesta  39.9 24.8 79 80.7 0.15 (31) 1 

Ardeidae Eastern Great Egret Ardea modesta  n/a n/a 31 155.0  4 

Ardeidae Intermediate Egret Ardea intermedia n/a n/a 27 210.0  4 

Ardeidae Intermediate Egret Ardea intermedia 42.7 36.9 4 103.4  10 

Ardeidae Cattle Egret Ardea ibis 63.1 46.8 11 140.1 0.46 (5) 10 

Ardeidae Striated Heron Butorides striata 31.7 18.9 8 62.83  10 

Ardeidae White-faced Heron Egretta novaehollandiae 31.2 20.1 33 64.3 0.1 (44) 1 

Ardeidae White-faced Heron Egretta novaehollandiae n/a n/a 25 215  4 

Ardeidae Little Egret Egretta garzetta 52.4 23.0 10 90.2 0.4 (10) 1 

Ardeidae Eastern Reef Egret Egretta sacra 31.1 13.6 2 53.5  10 

Ardeidae Nankeen Night-heron Nycticorax caledonicus 16.6 5.8 4 26.1  10 

Threskiornithidae Glossy Ibis Plegadis falcinellus n/a n/a 35 195  4 

Threskiornithidae Glossy Ibis Plegadis falcinellus 83.1 0.0 1 83.1  10 

Threskiornithidae Australian White Ibis Threskiornis molucca 32.8 20.4 48 66.4 -0.04 (76) 1 

Threskiornithidae Australian White Ibis^ Threskiornis molucca 80.8 2.5 2 84.9  3 

Threskiornithidae Australian White Ibis^
2
 Threskiornis molucca 62.2 26.2 3 105.3  3 

Threskiornithidae Australian White Ibis^
3
 Threskiornis molucca 58.3 37.8 2 120.5  3 

Threskiornithidae Australian White Ibis Threskiornis molucca n/a n/a 20 130.0  4 

Threskiornithidae Straw-necked Ibis Threskiornis spinicollis 42.4 25.2 10 83.9 0.11 (39) 1 

Threskiornithidae Straw-necked Ibis Threskiomis spinicollis n/a n/a 15 135.0  4 

Threskiornithidae Royal Spoonbill Platalea regia 44.4 24.9 24 85.4 0.1 (45) 1 

Threskiornithidae Royal Spoonbill Platalea regia n/a n/a 25 70.0  4 

Threskiornithidae Yellow-billed Spoonbill Platalea flavipes n/a n/a 24 80.0  4 

Threskiornithidae Yellow-billed Spoonbill Platalea flavipes 51.0 41.5 4 119.2  10 

Accipitridae Black-shouldered Kite Elanus axillaris 23.1 14.9 10 47.6 0.05 (50) 1 
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Family Common name  Scientific name Mean St. Dev. n 95
th

 percentile Residual 

(rank) 

Source 

Accipitridae Pacific Baza Aviceda subcristata 18.0 0.0 1 18.0  10 

Accipitridae Whistling Kite Haliastur sphenurus 28.2 12.3 3 48.5  10 

Accipitridae Black Kite Milvus migrans 57.0 0.0 1 57.0  10 

Accipitridae Grey Goshawk Accipiter novaehollandiae 24.6 0.0 1 24.6  10 

Accipitridae Spotted Harrier Circus assimilis 22.0 0.0 1 22.0  10 

Falconidae Nankeen Kestrel Falco cenchroides 43.4 44.1 14 116.0 0.4 (9) 10 

Falconidae Brown Falcon Falco berigora 34.1 28.1 2 80.3  10 

Rallidae Purple Swamphen Porphyrio porphyrio 34.5 21.8 68 70.4 0.4 (8) 1 

Rallidae Purple Swamphen Porphyrio porphyrio 65.0 0.0 n/a 65.0  11 

Rallidae Lewin's Rail Lewinia pectoralis 4.3 0.0 1 4.3  10 

Rallidae Buff-banded Rail Gallirallus philippensis 8.0 0.0 1 8.0  10 

Rallidae Baillon's Crake Porzana pusilla 8.2 4.6 3 15.8  10 

Rallidae Dusky Moorhen Gallinula tenebrosa 14.8 10.7 37 32.4 -0.22 (120) 1 

Rallidae Eurasian Coot Fulica atra 19.2 15.8 10 45.2 -0.03 (73) 1 

Rallidae Eurasian Coot Fulica atra 23.0 0.0 n/a 23.0  11 

Burhinidae Bush Stone-curlew Burhinus grallarius 25.9 20.7 13 59.9 -0.01 (64) 1 

Haematopodidae Australian Pied Oystercatcher Haematopus longirostris  38.5 18 23 68.1 0.15 (30) 1 

Haematopodidae Australian Pied Oystercatcher^ Haematopus longirostris  82.5 64.4 2 188.4  3 

Haematopodidae Australian Pied Oystercatcher Haematopus longirostris  41.5 16.2 21 68.1  5 

Haematopodidae Sooty Oystercatcher Haematopus fuliginosus 30.5 15.8 59 56.5 0.04 (52) 1 

Haematopodidae Sooty Oystercatcher Haematopus fuliginosus 64.3 43.1 14 135.1  5 

Recurvirostridae Black-winged Stilt Himantopus himantopus 38.3 21.1 63 73 0.24 (21) 1 

Recurvirostridae Black-winged Stilt^ Himantopus himantopus 39.3 22.9 3 77  3 

Recurvirostridae Black-winged Stilt^
1
 Himantopus himantopus 43.5 15.0 2 68.0  3 

Recurvirostridae Black-winged Stilt^
2
 Himantopus himantopus 33.5 2.1 2 37.0  3 

Recurvirostridae Black-winged Stilt^
3
 Himantopus himantopus 35.8 14.5 2 59.7  3 

Recurvirostridae Black-winged Stilt Himantopus himantopus n/a n/a 42 80  4 

Recurvirostridae Black-winged Stilt Himantopus himantopus 38.0 16.7 20 65.4  5 

Recurvirostridae Black-winged Stilt Himantopus himantopus 30.0 0.0 n/a 30.0  11 

Recurvirostridae Red-necked Avocet^ Recurvirostra novaehollandiae 60.4 7.8 3 73.2  3 
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Family Common name  Scientific name Mean St. Dev. n 95
th

 percentile Residual 

(rank) 

Source 

Recurvirostridae Red-necked Avocet^
2
 Recurvirostra novaehollandiae 57.0 0.0 1 57.0  3 

Recurvirostridae Red-necked Avocet^
3
 Recurvirostra novaehollandiae 43.0 0.0 1 43.0  3 

Recurvirostridae Red-necked Avocet Recurvirostra novaehollandiae n/a n/a 20.0 110.0  4 

Recurvirostridae Red-necked Avocet Recurvirostra novaehollandiae 73.0 39.2 5 137.4  5 

Recurvirostridae Banded Stilt^ Cladorhynchus leucocephalus 32.8 23.7 8 71.8  3 

Recurvirostridae Banded Stilt^
1
 Cladorhynchus leucocephalus 40.2 11.0 2 58.3  3 

Recurvirostridae Banded Stilt^
2
 Cladorhynchus leucocephalus 28.8 8.1 4 42.1  3 

Recurvirostridae Banded Stilt^
3
 Cladorhynchus leucocephalus 24.7 7.7 5 37.4  3 

Charadriidae Pacific Golden Plover Pluvialis fulva 21.9 12.1 21 41.8 0.12 (34) 1 

Charadriidae Pacific Golden Plover Pluvialis fulva 49.3 10.1 3 65.9  5 

Charadriidae Grey Plover Pluvialis squatarola 36.0 18.7 41 66.8 0.27 (16) 1 

Charadriidae Grey Plover Pluviali squatarola 44.0 0.0 1 44.0  5 

Charadriidae Red-capped Plover Charadrius ruficapillus  22.0 7.7 16 34.7  1 

Charadriidae Red-capped Plover Charadrius ruficapillus  n/a n/a 18 45.0  4 

Charadriidae Red-capped Plover Charadrius ruficapillus  32.8 15.4 20 58.1 0.47 (4) 5 

Charadriidae Double-banded Plover Charadrius bicinctus 32.1 7.5 7 44.5  5 

Charadriidae Double-banded plover Charadrius bicinctus 13.9 6.1 10 23.8 0.04 (54) 10 

Charadriidae Lesser Sand Plover Charadrius mongolus 16.7 7.7 7 29.4  10 

Charadriidae Black-fronted Dotterel Elseyornis melanops 22.7 9.3 46 37.9 0.33 (14) 1 

Charadriidae Black-fronted Dotterel Elseyornis melanops 23.9 8.2 17 37.3  5 

Charadriidae Hooded Plover Thinornis rubricollis 54.4 35.4 30 112.7 0.56 (1) 6 

Charadriidae Hooded Plover Thinornis rubricollis 41.1 17.1 8 69.3  5 

Charadriidae Hooded Plover Thinornis rubricollis 26.3 3.3 4 31.6  10 

Charadriidae Red-kneed Dotterel Erythrogonys cinctus n/a n/a 22 40.0  4 

Charadriidae Red-kneed Dotterel Erythrogonys cinctus 21.2 6.2 10 31.3 0.24 (23) 5 

Charadriidae Red-kneed dotterel Erythrogonys cinctus 15.4 1.5 2 17.8  10 

Charadriidae Banded Lapwing Vanellus tricolor 74.0 0.0 1 74.0  5 

Charadriidae Masked Lapwing Vanellus miles 46.8 30.5 37 96.9  1 

Charadriidae Masked Lapwing Vanellus miles 62.6 43.1 55 133.5 0.45 (6) 5 

Scolopacidae Latham's Snipe Gallinago hardwickii 18.6 9.6 30 34.5 0.05 (51) 5 
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Family Common name  Scientific name Mean St. Dev. n 95
th

 percentile Residual 

(rank) 

Source 

Scolopacidae Latham's Snipe Gallinago hardwickii 13.7 7.8 8 26.6  10 

Scolopacidae Black-tailed Godwit Limosa limosa  31.3 3.3 4 36.7  5 

Scolopacidae Black-tailed Godwit Limosa limosa 21.0 11.3 6 39.7  10 

Scolopacidae Bar-tailed Godwit^ Limosa lapponica  48.6 0.9 2 50.1  3 

Scolopacidae Bar-tailed Godwit^
2
 Limosa lapponica  53.5 7.8 2 66.3  3 

Scolopacidae Bar-tailed Godwit^
3
 Limosa lapponica  41.9 4.5 2 49.3  3 

Scolopacidae Bar-tailed Godwit Limosa lapponica  59.5 10.5 4 76.8  5 

Scolopacidae Bar-tailed Godwit Limosa lapponica 22.1 14.8 196 46.5 0.06 (49) 10 

Scolopacidae Whimbrel Numenius phaeopus 37.7 30.4 28 87.7 0.22 (25) 1 

Scolopacidae Whimbrel Numenius phaeopus 90.0 0.0 1 90.0  5 

Scolopacidae Eastern Curlew Numenius madagascariensis 65.5 41.6 42 133.9 0.37 (12) 1 

Scolopacidae Eastern Curlew^ Numenius madagascariensis 97.5 23.3 2 135.8  3 

Scolopacidae Eastern Curlew Numenius madagascariensis 126.1 29.2 22 174.2  5 

Scolopacidae Common Sandpiper Actitis hypoleucos 43.0 0.0 1 43.0  5 

Scolopacidae Grey-tailed Tattler Tringa brevipes 17.3 8.6 45 31.4 0.03 (56) 1 

Scolopacidae Grey-tailed Tattler Tringa brevipes 23.0 0.0 1 23.0  5 

Scolopacidae Common Greenshank^ Tringa nebularia  70.0 11.8 3 89.4  3 

Scolopacidae Common Greenshank^
1
 Tringa nebularia  80.3 13.0 2 102.0  3 

Scolopacidae Common Greenshank^
2
 Tringa nebularia  60.7 4.0 3 67.3  3 

Scolopacidae Common Greenshank^
3
 Tringa nebularia  51.5 3.5 2 57.3  3 

Scolopacidae Common Greenshank Tringa nebularia  n/a n/a 17 75.0  4 

Scolopacidae Common Greenshank Tringa nebularia  55.4 27.8 17 101.2 0.49 (3) 5 

Scolopacidae Common Greenshank Trigna nebularia 47.6 17.8 7 77.0  10 

Scolopacidae Marsh Sandpiper Tringa stagnatilis n/a n/a 20 105.0  4 

Scolopacidae Marsh Sandpiper Tringa stagnatilis 44.1 23.2 20 82.3 0.52 (2) 5 

Scolopacidae Ruddy Turnstone Arenaria interpres  13.8 6.4 51 24.3 -0.06 (78) 1 

Scolopacidae Ruddy Turnstone Arenaria interpres  29.7 14.3 6 53.2  5 

Scolopacidae Short-billed Dowitcher** Limnodromus griseus 12.7 6.2 11 22.9  1 

Scolopacidae Red Knot Calidris canutus 21.3 9.2 8 36.4  10 

Scolopacidae Sanderling Calidris alba  32.0 7.9 5 44.9  5 
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Family Common name  Scientific name Mean St. Dev. n 95
th

 percentile Residual 

(rank) 

Source 

Scolopacidae Red-necked Stint Calidris ruficollis 16.4 8.7 61 30.7 0.21 (26) 1 

Scolopacidae Red-necked Stint^ Calidris ruficollis 20.0 3.5 4 25.8  3 

Scolopacidae Red-necked Stint^
1
 Calidris ruficollis 32.6 14.0 3 55.3  3 

Scolopacidae Red-necked Stint^
2
 Calidris ruficollis 28.1 1.8 3 31.1  3 

Scolopacidae Red-necked Stint^
3
 Calidris ruficollis 17.3 4.2 3 24.2  3 

Scolopacidae Red-necked Stint Calidris ruficollis 18.7 8.7 23 33.0  5 

Scolopacidae Pectoral Sandpiper Calidris melanotos 23.0 9.9 2 39.3  5 

Scolopacidae Sharp-tailed Sandpiper Calidris acuminata 14.8 8.7 28 29.1  1 

Scolopacidae Sharp-tailed Sandpiper^ Calidris acuminata 33.2 3.9 5 39.6  3 

Scolopacidae Sharp-tailed Sandpiper^
1
 Calidris acuminata 39.3 3.7 2 45.4  3 

Scolopacidae Sharp-tailed Sandpiper^
2
 Calidris acuminata 35.7 4.2 3 42.6  3 

Scolopacidae Sharp-tailed Sandpiper^
3
 Calidris acuminata 28.1 4.0 4 34.7  3 

Scolopacidae Sharp-tailed Sandpiper Calidris acuminata n/a n/a 30 55.0  4 

Scolopacidae Sharp-tailed Sandpiper Calidris acuminata 20.3 7.5 31 32.7 0.16 (28) 5 

Scolopacidae Sharp-tailed Sandpiper Calidris acuminata 20.0 0.0 n/a 20.0  11 

Scolopacidae Curlew Sandpiper^ Calidris ferruginea 34.8 6.0 4 44.7  3 

Scolopacidae Curlew Sandpiper^
2
 Calidris ferruginea 29.8 4.8 3 37.7  3 

Scolopacidae Curlew Sandpiper^
3
 Calidris ferruginea 26.8 2.9 3 31.6  3 

Scolopacidae Curlew Sandpiper Calidris ferruginea 25.2 6.4 21 35.7 0.3 (15) 5 

Scolopacidae Curlew Sandpiper Calidris ferruginea 24.9 6.0 8 34.8  10 

Turnicidae Red-chested Button-quail Turnix pyrrhothorax 3.6 2.1 5 7.0  10 

Laridae Little Tern Sternula albifrons 21.5 7.9 18 34.5 0.24 (20) 1 

Laridae Caspian Tern Hydroprogne caspia 35.0 10.4 12 52.1 0.1 (43) 1 

Laridae Whiskered Tern Chlidonias hybrida 21.4 8.5 3 35.3  10 

Laridae Common Tern Sterna hirundo 20.5 10.9 8 38.4  10 

Laridae Crested Tern Thalasseus bergii  17.3 10.7 37 34.9 -0.08 (86) 1 

Laridae Kelp Gull Larus dominicanus 24.4 11.4 14 43.2 -0.08 (83) 1 

Laridae Silver Gull Chroicocephalus novaehollandiae 16.8 12.1 136 36.7 -0.09 (87) 1 

Cacatuidae Red-tailed Black-cockatoo Calyptorhynchus banksii 10.9 15.2 3 35.9  10 

Cacatuidae Yellow-tailed Black-cockatoo Calyptorhynchus funereus 11.7 6.7 4 22.8  10 



 41 

Family Common name  Scientific name Mean St. Dev. n 95
th

 percentile Residual 

(rank) 

Source 

Cacatuidae Gang-gang Cockatoo Callocephalon fimbriatum 7.5 5.6 2 16.6  10 

Cacatuidae Galah Eolophus roseicapillus 8.9 5.6 64 18.1 -0.39 (138) 1 

Cacatuidae Long-billed Corella Cacatua tenuirostris 3.8 0.0 1 3.8  10 

Cacatuidae Little Corella Cacatua sanguinea 20.0 15.2 8 45.0  10 

Cacatuidae Sulphur-crested Cockatoo Cacatua galerita 15.3 14.9 41 39.8 -0.26 (126) 1 

Psittacidae Rainbow Lorikeet Trichoglossus haematodus 10.0 8.1 11 23.3 -0.21 (116) 1 

Psittacidae Scaly-breasted Lorikeet Trichoglossus chlorolepidotus 1.0 0.0 1 1.0  10 

Psittacidae Australian King Parrot Alisterus scapularis 8.7 3.8 9 14.9  10 

Psittacidae Red-winged Parrot Aprosmictus erythropterus 32.3 11.1 5 50.5  10 

Psittacidae Crimson Rosella Platycercus elegans 9.1 6.4 83 19.6 -0.25 (124) 1 

Psittacidae Eastern Rosella Platycercus eximius 13.9 8.8 31 28.4 -0.04 (75) 1 

Psittacidae Pale-headed Rosella Platycercus adscitus 21.0 8.7 3 35.2  10 

Psittacidae Australian Ringneck Barnardius zonarius 14.1 9.5 3 29.7  10 

Psittacidae Red-rumped Parrot Psephotus haematonotus 11.2 6.6 9 22.1  10 

Cuculidae Pheasant Coucal Centropus phasianinus 30.5 42.8 14 101.0 0.16 (29) 10 

Cuculidae Asian Koel** Eudynamys scolopaceus 4.6 2.2 2 8.2  10 

Cuculidae Horsfield's Bronze-Cuckoo Chalcites basalis 3.5 1.6 2 6.1  10 

Cuculidae Pallid Cuckoo Cacomantis pallidus 8.5 1.1 2 10.3  10 

Cuculidae Fan-tailed Cuckoo Cacomantis flabelliformis 10.6 5.7 19 19.9 -0.06 (79) 1 

Alcedinidae Azure Kingfisher Ceyx azureus 11.7 4.5 10 19.1 0.03 (55) 10 

Halcyonidae Laughing Kookaburra Dacelo novaeguineae 13.8 12.3 54 34.0 -0.18 (113) 1 

Halcyonidae Blue-winged Kookaburra Dacelo leachii 23.0 0.0 1 23.0  10 

Halcyonidae Forest Kingfisher Todiramphus macleayii 11.0 4.3 11 18.1 -0.01 (65) 10 

Halcyonidae Sacred Kingfisher Todiramphus sanctus 20.9 6.8 16 32.1 0.25 (19) 1 

Meropidae Rainbow Bee-eater Merops ornatus 23.0 17.8 10 52.3 0.34 (13) 10 

Coraciidae Dollarbird Eurystomus orientalis 25.9 22.5 23 62.9 0.20 (27) 1 

Menuridae Superb Lyrebird Menura novaehollandiae 10.5 8.6 26 24.6 -0.46 (139) 1 

Climacteridae White-throated Treecreeper Cormobates leucophaea 5.8 2.9 17 10.6 -0.22 (121) 1 

Climacteridae White-browed Treecreeper Climacteris affinis 3.1 0.0 1 3.1  10 

Climacteridae Brown Treecreeper Climacteris picumnus 5.1 3.1 13 10.2 -0.32 (133) 1 
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Ptilonorhynchidae Spotted Catbird Ailuroedus melanotis 18.7 16.2 16 45.3 0.02 (59) 10 

Ptilonorhynchidae Green Catbird Ailuroedus crassirostris 9.7 4.1 16 16.4 -0.29 (130) 1 

Ptilonorhynchidae Tooth-billed Bowerbird Scenopoeetes dentirostris 5.2 1.1 2 7.1  10 

Ptilonorhynchidae Satin Bowerbird Ptilonorhynchus violaceus 9.5 5.1 22 17.9 -0.3 (131) 1 

Maluridae Superb Fairy-wren Malurus cyaneus 6.5 3.4 93 12.1 -0.06 (80) 1 

Maluridae Variegated Fairy-wren Malurus lamberti 4.5 3.4 38 10.1 -0.2 (115) 1 

Maluridae Southern Emu-wren Stipiturus malachurus 7.0 3.3 13 12.4 0.0 (62) 1 

Acanthizidae Pilotbird Pycnoptilus floccosus 16.9 10.0 3 33.4  10 

Acanthizidae Rockwarbler Origma solitaria 17.1 4.0 2 23.8  10 

Acanthizidae Yellow-throated Scrubwren Sericornis citreogularis 5.6 4.3 51 12.7 -0.21 (119) 1 

Acanthizidae White-browed Scrubwren Sericornis frontalis 4.2 2.5 41 8.3 -0.31 (132) 1 

Acanthizidae Atherton Scrubwren Sericornis keri 4.9 4.5 11 12.3 -0.21 (118) 10 

Acanthizidae Large-billed Scrubwren Sericornis magnirostra 4.4 4.4 17 11.6 -0.23 (122) 1 

Acanthizidae Chestnut-rumped Heathwren Hylacola pyrrhopygia 11.4 0.0 1 11.4  10 

Acanthizidae Striated Fieldwren Calamanthus fuliginosus 8.6 0.0 1 8.6  10 

Acanthizidae Brown Gerygone Gerygone mouki 4.2 1.9 32 7.3 -0.17 (111) 1 

Acanthizidae Western Gerygone Gerygone fusca 5.4 0.0 1 5.4  10 

Acanthizidae White-throated Gerygone Gerygone albogularis 5.1 3.8 3 11.4  10 

Acanthizidae Striated Thornbill Acanthiza lineata 4.2 2.0 4 7.5  10 

Acanthizidae Yellow Thornbill Acanthiza nana 6.3 2.4 17 10.2 -0.02 (71) 1 

Acanthizidae Yellow-rumped Thornbill Acanthiza chrysorrhoa 6.6 3.7 4 12.7  10 

Acanthizidae Buff-rumped Thornbill Acanthiza reguloides 4.3 1.8 14 7.3 -0.21 (117) 1 

Acanthizidae Brown Thornbill Acanthiza pusilla 6.7 9.9 28 22.9 0.0 (63) 1 

Pardalotidae Spotted Pardalote Pardalotus punctatus 4.0 1.9 7 7.1  10 

Meliphagidae Eastern Spinebill Acanthorhynchus tenuirostris 5.8 2.6 39 10.1 -0.13 (102) 1 

Meliphagidae Lewin's Honeyeater Meliphaga lewinii 8.2 6.0 32 18.1 -0.13 (101) 1 

Meliphagidae Yellow-faced Honeyeater Lichenostomus chrysops 5.8 3.6 29 11.7 -0.19 (114) 1 

Meliphagidae Singing Honeyeater Lichenostomus virescens 12.0 0.0 1 12.0  10 

Meliphagidae Yellow Honeyeater Lichenostomus flavus 6.4 1.2 6 8.4  10 

Meliphagidae White-eared Honeyeater Lichenostomus leucotis 8.8 3.7 7 14.8  10 
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Meliphagidae Fuscous Honeyeater Lichenostomus fuscus 14.6 0.0 1 14.6  10 

Meliphagidae White-plumed Honeyeater Lichenostomus penicillatus 9.8 5.6 23 19 0.02 (58) 1 

Meliphagidae Bell Miner Manorina melanophrys 5.0 3.0 44 9.9 -0.33 (135) 1 

Meliphagidae Noisy Miner Manorina melanocephala 7.5 14.9 37 32 -0.24 (123) 1 

Meliphagidae Spiny-cheeked Honeyeater Acanthagenys rufogularis 9.2 1.3 3 11.4  10 

Meliphagidae Little Wattlebird Anthochaera chrysoptera 7.3 3.0 40 12.2 -0.28 (129) 1 

Meliphagidae Red Wattlebird Anthochaera carunculata 8.7 6.4 15 19.2 -0.25 (125) 1 

Meliphagidae White-fronted Chat Epthianura albifrons 22.6 7.8 23 35.4 0.44 (7) 1 

Meliphagidae Dusky Honeyeater Myzomela obscura 2.0 0.0 1 2.0  10 

Meliphagidae Tawny-crowned Honeyeater Glyciphila melanops 9.8 6.7 11 20.8 0.03 (57) 1 

Meliphagidae Brown Honeyeater Lichmera indistincta 9.8 5.6 16 19.0 0.09 (48) 1 

Meliphagidae New Holland Honeyeater Phylidonyris novaehollandiae 7.9 6 47 17.8 -0.08 (85) 1 

Meliphagidae White-cheeked Honeyeater Phylidonyris niger 2.3 0.0 2 2.3  10 

Meliphagidae Blue-faced Honeyeater Entomyzon cyanotis 30.8 0.0 1 30.8  10 

Meliphagidae Helmeted Friarbird Philemon buceroides 12.0 9.6 20 27.8 -0.1 (92) 10 

Meliphagidae Noisy Friarbird Philemon corniculatus 11.1 5.3 55 19.8 -0.14 (104) 1 

Meliphagidae Little Friarbird Philemon citreogularis 6.8 3.1 2 11.9  10 

Meliphagidae Striped Honeyeater Plectorhyncha lanceolata 4.6 2.3 5 8.4  10 

Pomatostomidae White-browed Babbler Pomatostomus superciliosus 16.9 4.4 2 24.1  10 

Pomatostomidae Chestnut-crowned Babbler Pomatostomus ruficeps 11.8 4.0 2 18.3  10 

Orthonychidae Australian Logrunner Orthonyx temminckii 4.5 1.5 5 7.0  10 

Orthonychidae Chowchilla Orthonyx spaldingii 4.0 0.0 3 4.0  10 

Eupetidae Eastern Whipbird Psophodes olivaceus 5.9 3.3 50 11.3 -0.34 (136) 1 

Campephagidae Black-faced Cuckoo-shrike Coracina novaehollandiae 21.1 13.2 20 42.8 0.13 (33) 1 

Campephagidae White-bellied Cuckoo-shrike Coracina papuensis 7.1 2.6 4 11.4  10 

Campephagidae Varied Triller Lalage leucomela 38.7 0.0 1 38.7  10 

Pachycephalidae Crested Shrike-tit Falcunculus frontatus 8.5 6.6 4 19.4  10 

Pachycephalidae Olive Whistler Pachycephala olivacea 3.8 1.6 6 6.5  10 

Pachycephalidae Golden Whistler Pachycephala pectoralis 7.9 3.9 18 14.3 -0.11 (95) 1 

Pachycephalidae Rufous Whistler Pachycephala rufiventris 5.2 2.0 4 8.5  10 
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Pachycephalidae Grey Shrike-thrush Colluricincla harmonica 12.8 11.4 15 31.6 -0.01 (68) 1 

Oriolidae Australasian Figbird Sphecotheres vieilloti 7.8 3.7 12 13.9 -0.33 (134) 10 

Oriolidae Olive-backed Oriole Oriolus sagittatus 11.3 5.9 33 21.0 -0.12 (99) 1 

Artamidae White-breasted Woodswallow Artamus leucorynchus 15.8 1.6 2 18.5  10 

Artamidae Masked Woodswallow Artamus personatus 6.5 4.9 2 14.6  10 

Artamidae Black-faced Woodswallow Artamus cinereus 11.8 5.6 3 21.1  10 

Artamidae Grey Butcherbird Cracticus torquatus 19.3 13.3 10 41.2 0.12 (35) 1 

Artamidae Pied Butcherbird Cracticus nigrogularis 9.5 4.9 8 17.5  10 

Artamidae Australian Magpie Cracticus tibicen 10.9 8.7 91 25.2 -0.26 (127) 1 

Artamidae Australian Magpie
~
 Cracticus tibicen 40.3 28.2 21 86.6  7 

Artamidae Australian Magpie
‡
 Cracticus tibicen 11.1 5.9 27 20.8  7 

Artamidae Pied Currawong Strepera graculina 15.1 11.6 26 34.2 -0.15 (107) 1 

Dicruridae Spangled Drongo Dicrurus bracteatus 15.4 5.3 9 24.1  10 

Rhipiduridae Rufous Fantail Rhipidura rufifrons 6.4 2 11 9.7 -0.08 (82) 1 

Rhipiduridae Grey Fantail Rhipidura albiscapa 6.8 4.3 37 13.9 -0.02 (72) 1 

Rhipiduridae Willie Wagtail Rhipidura leucophrys 11.8 9.7 46 27.8 0.10 (42) 1 

Rhipiduridae Willie Wagtail
~
 Rhipidura leucophrys 23.5 12.1 21 43.4  7 

Rhipiduridae Willie Wagtail
‡
 Rhipidura leucophrys 8.7 4.5 20 16.2  7 

Corvidae Australian Raven Corvus coronoides 25.8 22.2 63 62.3 -0.01 (66) 1 

Corvidae Torresian Crow Corvus orru 19.0 6.2 5 29.2  10 

Monarchidae Leaden Flycatcher Myiagra rubecula 10.0 0.0 1 10.0  10 

Monarchidae Satin Flycatcher Myiagra  cyanoleuca 9.7 8.1 2 22.9  10 

Monarchidae Black-faced Monarch Monarcha melanopsis 11.0 9.2 6 26.2  10 

Monarchidae Spectacled Monarch Symposiarchus trivirgatus 5.7 2.9 3 10.4  10 

Monarchidae Magpie-lark Grallina cyanoleuca 19.0 10.5 97 36.3 0.39 (11) 1 

Monarchidae Magpie-lark
~
 Grallina cyanoleuca 35.0 n/a n/a n/a  8 

Monarchidae Magpie-lark
‡
 Grallina cyanoleuca 12.0 n/a n/a n/a  8 

Monarchidae Magpie-lark~ Grallina cyanoleuca 35.4 13.9 22 58.3  7 
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Monarchidae Magpie-lark
‡
 Grallina cyanoleuca 11.5 7.6 33 24.0  7 

Corcoracidae White-winged Chough Corcorax melanorhamphos 16.2 7.3 14 28.2 -0.13 (103) 1 

Corcoracidae Apostlebird Struthidea cinerea 20.7 23.8 4 59.9  10 

Paradisaeidae Victoria's Riflebird Ptiloris victoriae 6.5 0.7 2 7.7  10 

Petroicidae Scarlet Robin Petroica boodang 8.0 0.0 1 8.0  10 

Petroicidae Rose Robin Petroica rosea 13.1 9.8 2 29.2  10 

Petroicidae Pale-yellow Robin Tregellasia capito 8.5 1.7 3 11.3  10 

Petroicidae Eastern Yellow Robin Eopsaltria australis 9.9 5.6 77 19.1 0.01 (60) 1 

Petroicidae Grey-headed Robin Heteromyias cinereifrons 9.2 6.9 26 20.6 -0.10 (91) 9 

Cisticolidae Golden-headed Cisticola Cisticola exilis 5.4 3.0 41 10.3 -0.11 (97) 1 

Acrocephalidae Australian Reed-warbler Acrocephalus australis 11.5 9.4 20 26.9 0.11 (38) 1 

Megaluridae Tawny Grassbird Megalurus timoriensis 6.0 3.6 7 12.0  10 

Megaluridae Little Grassbird Megalurus gramineus 6.5 5.1 6 14.9  10 

Timaliidae Silvereye Zosterops lateralis 6.1 3.8 34 12.4 -0.11 (98) 1 

Hirundinae Welcome Swallow Hirundo neoxena 11.0 5.6 32 20.2 0.11 (36) 1 

Hirundinidae Fairy Martin Petrochelidon ariel 8.9 4.5 2 16.4  10 

Pycnonotidae Red-whiskered Bulbul Pycnonotus jocosus 18.4 13.2 25 40.1  1 

Turdidae Bassian Thrush Zoothera lunulata 8.9 3.1 31 13.9 -0.26 (128) 1 

Turdidae Russet-tailed Thrush Zoothera heinei 11.0 6.2 4 21.1  10 

Turdidae Common Blackbird
~
 Turdus merula 35.5 17.5 20 64.2 -0.10 (93) 7 

Turdidae Common Blackbird
‡
 Turdus merula 11.6 8.4 30 25.3 -0.1 (93) 7 

Sturnidae Common Starling Sturnus vulgaris 13.6 9.0 32 28.4 -0.02 (69) 1 

Sturnidae Common Myna Sturnus tristis 11.6 9.4 40 27.1 -0.14 (106) 1 

Nectariniidae Olive-backed Sunbird Nectarinia jugularis 10.9 5.7 7 20.2  10 

Estrildidae Zebra Finch Taeniopygia guttata 14.7 11.3 10 33.2 0.26 (17) 10 

Estrildidae Double-barred Finch Taeniopygia bichenovii 6.2 3.5 7 12.1  10 

Estrildidae Red-browed Finch Neochmia temporalis 7.5 5.1 51 15.9 -0.02 (70) 1 

Estrildidae Nutmeg Mannikin Lonchura punctulata 11.0 6.3 43 21.4 0.1 (40) 1 

Estrildidae Chestnut-breasted Mannikin Lonchura castaneothorax 14.4 4.5 10 21.8 0.24 (22) 1 
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Passeridae House Sparrow Passer domesticus 13.2 8.6 18 27.3 0.11 (37) 1 

Passeridae Eurasian Tree-sparrow Passer montanus 8.0 3.0 15 12.9 -0.08 (84) 1 

Motacillidae Australasian Pipit Anthus novaeseelandiae 12.4 5.2 63 20.9 0.09 (47) 1 

Motacillidae White Wagtail** Motacilla alba 7.7 1.8 16 10.7 -0.11 (96) 1 

Fringillidae Common Chaffinch Fringilla coelebs 7.7 2.1 15 11.2 -0.09 (88) 1 

Fringillidae European Goldfinch Carduelis carduelis 9.2 2.5 18 13.3 0.04 (53) 1 

Fringillidae Common Greenfinch Chloris chloris 6.9 1.6 15 9.5 -0.17 (110) 1 
1
 stimulus was dog, 

2
 boat, or 

3
 canoe; ^ data was not collected using the direct continuous method; 

~
 data collected in rural habitats; 

‡ 
data 799 

collected in urban habitats, ** species vagrant in Australia. 800 


