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Abstract.  23 

Context. The estimation of alert (vigilance) and flight-initiation (escape) distances 24 

(AD and FID) has underpinned theoretical and applied studies of the escape 25 

behaviour and management of disturbance to wildlife. Many studies use multiple 26 

observers, and some conduct meta-analyses; these efforts assume no observer 27 

effects in the estimation of these distances.  28 

Aims and methods. We compare the estimates of FID and AD under ideal 29 

conditions (i.e. of black swans Cygnus atratus, a large species with obvious 30 

behaviour, and at a location where swans allowed close approaches in open 31 

habitats), by one experienced and four inexperienced observers.  32 

Results. FID did not differ between observers but AD differed between the 33 

experienced and all inexperienced observers, and among inexperienced observers. 34 

Thus, FID estimates appear more repeatable than those of AD. Experience 35 

apparently results in more conservative estimates of AD.  36 

Implications. We recommend the use of FID rather than AD for comparative 37 

analyses which involve multiple observers, since FID is more reliably measured.  38 

  39 
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Introduction 40 

The disruption of behaviour or physiology in the presence of a threatening stimulus, 41 

such as a person, is known as disturbance (Hill et al. 1997). The distance at which 42 

an ani al beco es vigilant is  no n as ‘Alert Distance’ (AD; Blumstein 2006) and 43 

the distance at which it flees fro  a threat is  no n as the ‘Flight-initiation Distance’ 44 

(FID; Hediger 1934; Stankowich and Blumstein 2005). These distances are usually 45 

highly correlated and they describe an escalation in response to threat (Eason et al. 46 

2006; Weston et al. 2012). ADs and FIDs offer insights into the behavioural and 47 

evolutionary ecology of escape, threat perception, and options for managing 48 

disturbance, for example, through designating buffers (Rodgers and Smith 1997; 49 

Weston et al. 2012; Guay et al. In Press-b).  50 

 51 

Recently, detailed summaries of FIDs for many bird taxa have been 52 

published, with a call for more publication of raw data to facilitate enhanced 53 

management of disturbance, and to aid comparative studies of FID. Additionally, 54 

recommendations for standard data collection have been made (Weston et al. 2012). 55 

Inevitably, these summaries contain data from multiple observers, and given that 56 

some subjectivity may be expected in judging the exact moment at which vigilance or 57 

escape is initiated, inter-observer variation in estimating ADs and FIDs may exist. 58 

However, escape may be more detectable to observers than more subtle 59 

behavioural responses such as alertness. Observer differences have been 60 

documented in aspects of ornithological field work, including surveys (Cunningham 61 

et al. 1999), mapping (Verner and Milne 1990), estimates of abundance (Van Der 62 

Meer and Camphuysen 1996), reporting of tag numbers on birds (Mulder et al. 63 

2010), and estimating prey size (Goss-Custard et al. 1987). However, we are 64 
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unaware of any studies of observer effects in estimating the distance at which 65 

behaviours, such as alertness and flight, occur. If inter-observer variation exists in 66 

estimating these distances, then analysis of AD or FID data should account for the 67 

influence of observer.  68 

 69 

This study examines whether inter-observer effects exist in estimating ADs 70 

and FIDs using a system where both alert and flight behaviours were easily 71 

observable, thus minimising the impact of subjective interpretation of behaviour on 72 

the measurements. We also used accurate methods of measuring distance, thus 73 

discounted the effect of distance perception on our measurements. The system we 74 

exa ine thus represents a ‘best case’ situation  ith respect to the collection of ADs 75 

and FIDs.  76 

 77 

  78 
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Methods 79 

Study species 80 

The black swan (Cygnus atratus), a large waterfowl endemic to Australasia, was 81 

selected as the model species. We selected this species because swans are large 82 

and obvious, with readily observable behaviours, and they forage in short grass 83 

without visual obstruction, in an easily accessible urban location. 84 

 85 

Study site 86 

The study was conducted  ithin Melbourne’s inner urban  atrix, at Albert Park Lake 87 

(37º50’S, 144º58’E; Victoria, Australia) between 17 July and 30 August 2012. The 88 

225 ha parkland contains a 48.5 ha artificial lake with a concrete edge. The lake 89 

harbours a large and apparently highly habituated population of C. atratus which 90 

forage on the extensive grassy verges and frequently encounter pedestrians (see 91 

Weston et al. 2012 for a discussion of other possible explanations of shorter FIDs in 92 

areas where people are common). Habituation, the processes whereby animals 93 

learn to reduce responses upon exposure to a stimulus, is thought to reduce FID, 94 

and is one possible explanation of the particularly short FIDs we report here. Despite 95 

the high density of people, swans still avoid pedestrians and display increased 96 

stress-induced corticosterone levels in reaction to handling (Monie 2011; Payne et 97 

al. 2012). Most swans in the population have been marked with a neck collar 98 

allowing identification from a distance (Guay and Mulder 2009; Mulder et al. 2010). 99 

 100 

Volunteers 101 

Four university students or recent graduates were recruited for this project. All 102 

students had some experience working with wildlife, but none had ever measured 103 
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FIDs or ADs. Prior to the start of the project, each observer received a 2-hour 104 

training session, at the study site, with one experienced observer who had measured 105 

in excess of 700 FIDs in various species of birds including C. atratus, and who also 106 

collected FIDs and ADs for this study. Training involved learning the basic protocols, 107 

then conducting approaches in conjunction with the experienced observer, to 108 

standardise protocols and agree which behavioural cues constituted alertness and 109 

flight. Training of this type has been suggested for studies where new observers are 110 

recruited (Fernández-Juricic et al. 2001). Following the training session, each 111 

observer was provided with all required equipment (see below) and instructed to 112 

return to the site and measure between 40 and 50 FIDs and ADs for C. atratus in 113 

their own time. Fieldwork was scheduled to ensure that no two observers were 114 

present at the field site simultaneously. 115 

 116 

Measurements of FID and AD 117 

Alert distance was defined as the distance between an observer and a swan at 118 

which a foraging or resting swan raised its head and looked at the observer (after 119 

Fernández-Juricic et al. 2002). FID was defined as the distance between an 120 

observer and a swan at which time the swan initiated escape behaviour either 121 

through walking, running or flying away (Weston et al. 2012).  122 

 123 

 Swans to be observed (‘focal’ s ans) were selected as follows: a haphazard 124 

starting point was selected on the lake shore and the lake was circumnavigated in a 125 

randomly selected direction determined by coin toss. Only collared swans standing 126 

up and foraging on land were studied and they were targeted as they were 127 

encountered. Additionally, we selected only individuals not currently disturbed, and 128 
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situated further than 10 m away from other park users. Typically, the observer would 129 

walk alone along the path around the lake until a group of swans was detected. The 130 

approach was then started from the point where the swan was identified. We 131 

recorded neck collar identification to determine sex (white collars for females, black 132 

for males; Guay et al. 2009), using binoculars or the range finder, either from a 133 

distance before the approach or after the approach was complete. We avoided 134 

repeat sampling of individuals on the same day. The closest swan to the observer at 135 

the start of the approach was always selected for observation (i.e. was the focal 136 

bird). Non-focal swans located further from the observer that had been disturbed 137 

during an experimental approach were excluded as candidates for following 138 

approaches.  139 

 140 

All approaches were made parallel to the shore of the lake because angle of 141 

approach can influence response in birds (Burger et al. 2010). All approaches were 142 

conducted at standard walking speed (c. 1 m sec-1; Glover et al. 2011). We used a 143 

Bushnell® Elite 1500 Laser Rangefinder to record FID (± 1 m). Start Distance (SD), 144 

the distance from the focal bird at which the experimental approach is started, is an 145 

important parameter influencing the response of birds (e.g. Blumstein 2003). Given 146 

the difficulties of standardising SD as part of our experimental design, we measured 147 

SD and controlled for it by including it as a covariate in our analyses. Measurements 148 

were conducted as follows: the initial distance between the bird and the observer 149 

(SD) was measured directly using the range finder. A marker was then left at the 150 

starting point. Following the alert and flight responses (i.e., the target swan taking a 151 

step or flying), separate makers were placed on the ground. Flight can be confused 152 

with foraging movements in some species, which can lead to an overestimate of FID 153 
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(Chamaillé-Jammes and Blumstein 2012). However, C. atratus adopt an alert 154 

posture with the neck raised high before initiating escape behaviour, which permits 155 

unambiguous identification of flight. This simplifies the analyses of the relationship 156 

between SD and FID and allows the use of ordinary least-squares regression rather 157 

than quantile regression (Chamaillé-Jammes and Blumstein 2012). At the completion 158 

of the approach, the observer moved to the initial position of the swan and measured 159 

the distance to the different markers using the rangefinder. The perpendicular 160 

distance between the initial position of the swan and the edge of the lake was also 161 

measured using a range finder because distance from shore has been shown to 162 

influence FID in C. atratus (Guay et al. In Press-a). For each approach we also 163 

recorded potential covariates, namely sex and group size (number of swans within 164 

10 m of the focal bird).  165 

 166 

Statistical analyses 167 

Data were analysed using General Linear Mixed Models (GLMM) on IBM SPSS (v. 168 

20, IBM Corporation, Armonk, NY, USA) with a random factor of swan identity 169 

included to account for the influence of multiple sampling of the same collared swan 170 

on different days. All two-way interactions were included in the model. All distances 171 

and group size were log10 transformed prior to analysis to improve normality 172 

(Blumstein 2006). For significant factors, we calculated pairwise comparisons based 173 

on estimated marginal means to determine where significant differences resided. 174 

Summary statistics are presented as means ± one standard deviation and include 175 

the range and sample size in brackets.  176 

 177 

  178 
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Results 179 

Overall, AD was 28.2 ± 15.9 m (3 – 85; n = 218; 38 – 50 per observer) and FID was 180 

13.9 ± 10.8 m (0.2 – 63; n = 225; 40 – 50 per observer). As expected, AD was highly 181 

correlated with FID (R2 = 0.342, F1, 216 = 112.3, P < 0.001) and was recorded in 182 

96.9% of approaches. GLMM results revealed an observer effect for AD but not FID, 183 

no effect of group size for either response distance, a significant effect of distance 184 

from shore for FID but not AD and an effect of start distance on FID and AD (Table 185 

1). Pairwise comparisons revealed that estimates of AD were higher for 186 

inexperienced observers than for the experienced observer. Although three of four 187 

inexperienced observers did not differ from one another, inexperienced observer 1 188 

differed from inexperienced observer 2 (p = 0.003; see Figure 1) and inexperienced 189 

observer 3 (p = 0.043; see Figure 1). Thus, FID estimates appear more reliable than 190 

those of AD.  191 

 192 

INSERT TABLE 1 AND FIGURE 1 193 

 194 

  195 
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Discussion 196 

While some studies of FID and/or AD involve only one observer (e.g. Møller and 197 

Erritzøe 2010; Glover et al. 2011; Guay et al. In Press-b), those conducted over 198 

large geographical or taxonomic scales inevitably use multiple observers (e.g. 199 

Blumstein 2006; Weston et al. 2012). Variation between observers can result in poor 200 

precision, thus requiring increased sample sizes or statistical control of bias (Verner 201 

and Milne 1990; Cunningham et al. 1999). We found consistent estimates of FID 202 

among observers, suggesting that inter-observer differences are negligible, at least 203 

for the species and observers we tested. It appears that the training we provided to 204 

novice observers was adequate to ensure consistency in FID estimates. 205 

 206 

Alert distances have been proposed as a way of defining buffer distances to 207 

manage disturbance to birds; unlike setting buffers using FIDs, buffers set using ADs 208 

may additionally reduce behavioural disruption associated with vigilance (Fernández-209 

Juricic et al. 2001). Several workers have also studied tolerance of birds to people, 210 

using the difference between AD and FID as a measure (Fernández-Juricic et al. 211 

2001; O'Neal Campbell 2006). However, inter-observer differences were evident in 212 

the estimation of AD, and the difference between AD and FID varied dramatically 213 

between the observers we used; FID was estimated to be between 30 - 60% of AD 214 

among observers. Experience apparently results in more conservative estimates of 215 

AD, estimates of which apparently vary between inexperienced observers. AD is 216 

arguably more difficult to define and detect than FID, and several of the novice 217 

observers apparently used different behavioural cues to determine alertness or were 218 

less able to detect it. In general, vigilance in birds involves a greater variety of 219 
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behaviours and postures than escape, these are often subtle, and vigilance may 220 

occur more frequently than escape, making the clear definition and recognition of 221 

alertness difficult. Birds often display alert behaviour even in absence of humans. C. 222 

atratus on land spend 8.2% of their time alert (unpubl. data). Failure to discriminate 223 

general alert behaviour from alertness directed toward the approaching investigator 224 

may result in overestimated AD. Additionally, birds may not necessarily become alert 225 

before initiating escape behaviour and vigilance may occur before birds adopt 226 

behaviours which observers recognise as alertness (Lima and Bednekoff 1999), 227 

which is not the case when measuring escape. Indeed, Weston et al. (2012) 228 

separately defined Detection Distance from AD. In our experience, AD is less 229 

efficient to measure than FID (AD is often not discernible during an approach); in a 230 

study of shorebird flight behaviour, AD’s  ere reported by one experienced observer 231 

in only 23.8% of 753 approaches (unpubl. data) and in a study of waterbirds an 232 

experienced observer recorded AD in 14.6% of 245 approaches (unpubl. data), 233 

either because alertness was sometimes difficult to detect or did not always occur. In 234 

this study we recorded AD on almost every approach, a reflection of the study 235 

species and site. Thus, AD is less reliable, and sometimes less reliably recorded, 236 

than FID.  237 

 238 

As for any study of ADs and FIDs, the applicability of these results to other 239 

species, habitats, and circumstances (e.g. observers, training regimes) remains to 240 

be examined (see Fernández-Juricic et al. 2001). However, repeatability of both AD 241 

and FID warrants consideration when analysing multi-observer datasets, and 242 

applying their findings to the management of disturbance. Where multiple observers 243 
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are used, it may sometimes be appropriate to report inter-observer reliabilities in 244 

estimating FIDs.  245 
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 363 

Table 1. General Linear Mixed Model results of the logged Flight-initiation and Alert 364 

Distance against observer identity, log of swan group size, log of starting distance, 365 

and log distance from shore. * indicate parameters which have been log10 366 

transformed, ** indicated significant results.  367 

 368 

Parameter Flight-initiation 

Distance* 

Alert Distance* Qualitative results 

the same? 

Observer identity F4,216.525 = 0.620, p 

= 0.649 

F4,208.428 = 8.476, p 

< 0.001 ** 

No 

Starting distance* F1,213.609 = 6.402, p 

= 0.012 ** 

F1,205.803 = 39.295, 

p < 0.001 ** 

Yes 

Group size* F1,216.771 = 0.688, p 

= 0.408 

F1,208.848 = 0.383, p 

= 0.537 

Yes 

Distance from 

shore* 

F1,172.814 = 12.066, 

p = 0.001 ** 

F1,187.303 = 0.019, p 

= 0.891 

No 

 369 

  370 
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Figure 1. The Alert (triangle) and Flight-initiation (circles; both logged) Distances for 371 

one experienced and four inexperienced observers who approached C. atratus. 372 

Estimated marginal means and 95% confidence intervals are shown.  373 

 374 

 375 
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