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Abstract

Compartment fires are defined as fires in enclosed spaces. They are labeled
as oxygen driven fires and are non-stationary growth phenomenon. A gap exists in
the knowledge of deterministic fire growth models and stochastic fire growth models.
In this thesis we develop non-stationary stochastic models in an endeavor to bridge
the gap.

The class of Epidemic models for infectious diseases are non-stationary growth
models. In the first part of the thesis the Deterministic Simple Epidemic, Determin-
istic General Epidemic and the Stochastic General Epidemic models are investigated
to develop equations for the growth of compartment fires by drawing analogies be-
tween the epidemic variables and the compartment fire variables. The Percolation
and Contact processes are investigated for the spread of compartment fires. A
mechanism for converting deterministic differential equations to stochastic differen-
tial equations based on the theory of Martingales is presented.

In part two of the thesis, two deterministic models based on the risk assess-

ment model of the National Research Council Canada (NRCC) are developed and
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calibrated. One of the deterministic models is a fuel driven model and the other
is an oxygen driven model. The oxygen driven deterministic model is converted to
a stochastic model, based on the theory of Martingales, and used as an input to
calculate a fire severity measure, called Heat Load. Statistical tests are applied to
the Heat Load data set to determine its distribution. A non-parametric statistical
test, W-Test, is used to calculate the upper quartiles of the heat load.

A third model based on the NRCC model is built. This model is closer to the
Epidemic models and its parameters do not require tedious optimisation algorithms
to calculate. They are evaluated from the initial conditions of the physical process.
In this model we make the assumption that the gas temperature inside the com-
partment is a function of the burning rate and develop a two variable model based
on the burning rate and oxygen fraction. A change of variable is applied to simplify
the differential equations, the equations are solved implicitly and their parameters
evaluated using the initial conditions. The temperature equation is modelled using
a first order differential equation with the burning rate and is solved separately.

Finally part three of this thesis investigates automatic sprinkler systems and
the mathematical theory of optimal control. Optimal control theory is applied to
automatic sprinkler systems to model sprinklered compartment fires. To reduce
water damage inside a compartment due to sprinkler activation from small fires,
we model the water spray rate. Two cases are considered, the first when the water
damage is proportional to the total amount of water and the second when the
water damage is proportional to the integral of the square of the water flow rate.
Pontryagin’s principle is used to solve the integrals and obtain the water spray rate

equations.
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Chapter 1

Introduction

Compartment fires continue to pose problems on risk to public life and material
costs to building owners. The methods of statistical analysis described here are
aimed at improving our understanding of compartment fires and their growth and
spread through buildings, with the hope that such additional knowledge will help
in the control of these costs.

A major motivation for developing stochastic models for compartment fire
data is that one can gain knowledge which is useful for determining strategies for the
control of the fire. One useful information is to determine the mechanism of growth
and then use this to estimate the mean duration’s of the fire inside a compartment.
Another useful information is to be able to determine the extent of variations in
these durations and then use this to determine the minimum required precautions
to prevent major fires.

An overview of fires and more specifically of compartment fires will initially
be briefly discussed. It is envisaged that this will provide the reader with some
familiarity with the topic and enable a better understanding of the information

contained within the following chapters.



1.1 Combustion In The Diffusion Flame Phenomenon

Fire is defined primarily as rapid oxidation accompanied by heat and light. In
general, oxidation is the chemical union of any substance with oxygen. The rusting
of iron is oxidation but it is not fire because it is not accompanied by light. Heat
is generated, but so little that it can hardly be measured. Burning can occur as a
form of chemical union with chlorine and some other gases, but for our purpose we

need only consider fire that involves oxygen.

1.1.1 The Classic Triangle Concept of Fire

Fire can usually take place only when three things are present: oxygen in some form,
fuel (material) to combine with the oxygen, and heat sufficient to maintain combus-
tion. Removal of any one of these three factors will result in the extinguishment of
fire. The classic “fire triangle”, see figure (1.1), is a graphical symbolisation of the
recognised elements involved in the combustion process. Opening the triangle by
removing one factor will extinguish a growing fire, and keeping any one factor from

joining the other two will prevent a fire from starting.

1.1.2 The Tetrahedron Concept of Fire

Recent research suggests that the chemical reaction involved in fire is not as simple
as the triangle indicates and that a fourth factor is present. This fourth factor is a
reaction-chain where burning continues and even accelerates, once it has begun.
Haessler(1974), in his study of fire, formulated the theory of the diffusion
flame combustion phenomenon as a tetrahedron. Haessler preferred to symbolise
his concept of fire as a tetrahedron instead of a square because in the tetrahedron
the four entities are adjoining and each is connected with the other three entities.
This reaction-chain is caused by the breakdown and recombination of the
molecules that make up a combustible material with the oxygen of the atmosphere.

A piece of paper, made up of cellulose molecules, is a good example of a combustible



Oxygen — ——p Fuel
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Figure 1.1: Fire Triangle

material. Those molecules that are close to the heat source begin to vibrate at an
enormously increased rate and, almost instantaneously, begin to break apart. In a
series of chemical reactions, these fragments continue to break up, producing free
carbon and hydrogen that combine with the oxygen in the air. This combination
releases additional energy. Some of the released energy breaks up still more cellulose
molecules, releasing more free carbon and hydrogen, which, in turn, combine with
more oxygen, releasing more energy and so on. The flames will continue until fuel is
exhausted oxygen is excluded in some way, heat is dissipated, or the flame reaction-
chain is disrupted.

Supporting this concept has led to the discovery of many extinguishing agents
that are more effective than those that simply manage to open the triangle. Because
of this discovery, we must modify our fire triangle into a three-dimensional pyramid,
known as the “tetrahedron of fire”, see figure (1.2). This modification does not
eliminate old procedures in dealing with fire but it does provide additional means

by which fire may be prevented or extinguished.
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Figure 1.2: Fire Tetrahedron

1.2 Fire Spread

The rate at which fire will develop will depend on how rapidly flame can spread from
the point of ignition to involve an increasingly large area of combustible material,
Flame spread is considered as an advancing ignition front in which the leading edge
of the flame acts both as the source of heat, to raise the fuel ahead of the flame front
to the fire point, and as the source of pilot ignition. There are various factors which
are known to be significant in determining the rate of flame spread over combustible
solids: Material factors and Environmental factors.

Environmental factors consist of composition of atmosphere, temperature,
imposed heat flux and air velocity. Composition of the atmosphere refers to the
oxygen concentration. Combustible materials will ignite more readily, spread flame
more rapidly and burn more vigorously if the oxygen concentration is increased.
Higher rates of flame spread are observed with effective oxygen enrichment which
enhances flame stability at the surface. Temperature refers to the temperature of

the fuel. Increasing the temperature of the fuel increases the rate of flame spread,

Heat



the higher the initial fuel temperature the less heat required to raise the unaffected
fuel to the fire point ahead of the flame. An imposed radiant heat flux causes
an increase in the rate of flame spread, by preheating the fuel ahead of the flame
front. Confluent air movement enhances the rate of flame spread over a combustible
surface. Friedman (1968), reports that the rate will increase quasi-exponentially up
to a critical level at which extinction will occur.

Material factors are further divided into chemical and physical factors. The
chemical factors consist of composition of fuel and presence of retardants. The
physical factors consist of initial temperature, surface orientation, direction of prop-
agation, thickness, thermal capacity, thermal conductivity, density, geometry and
continuity. As an example, of surface orientation effect, Alpert and Ward (1984),
point out that the spread of a flame along a vertical surface accelerates exponentially.

For theoretical models of flame spread, the rate of heat transfer across a
surface determines the rate of fire spread. The ‘fundamental equation of fire spread’

is a simple energy conservation equation, William (1977).
pVAh =gq (1.1)

where ¢ is the rate of heat transfer across the surface, p is the fuel density, V is the
rate of spread, and Ah is the change in enthalpy a unit mass of fuel is raised from
its initial temperature (7,) to the temperature (1;) corresponding to the fire point.
If it is possible to identify ¢ in a given fire spread situation, some insight can be

gained into the factors that affect the rate of flame spread.

1.3 Compartment Fires

Compartment fires are defined as fires in enclosed spaces, typically thought of as
rooms in buildings. Compartment fires are discussed usually in growth stages. These

can be categorised as:

1. Ignition
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Figure 1.3: Graph of the change in temperature over time in compartment fires.

2. Growth

3. Flashover

4. Fully developed fire and
5. Decay.

Figure (1.3) shows an idealised form of temperature variation with time de-
scribed by the growth stages.

The growth period is described as the point from where fire is initiated to the
stage where flashover occurs. Walton (1990), defines a flashover as the “transition
from a growing fire to a fully developed fire within the compartment in which all
combustible items are involved in the fire”.

All fires manifest an ignition stage but, beyond that, may fail to grow through

all or some of the growth stages listed.



1.4 Deterministic and Non-Deterministic Modelling

Modeling the growth and spread of fire can be categorised under two general head-
ings: deterministic and non-deterministic. Deterministic models attempt to derive
equations which model the experimental data gathered on some of the chemical
and physical interactions involved in a fire. They are generally too complicated to
accommodate stochastic variation. Non-deterministic models attempt to model the
inherent variability of fire, using simplified approximations to the fire phenomenon.
Ramachandran (1991) provides a description of deterministic and non-deterministic
models and an explanation of the type of questions/problems that can be modelled
in compartment fire research using these models.

A Stochastic Process (non-deterministic model) is the mathematical abstrac-
tion of an empirical process whose development is governed by probabilistic laws.
From a non-mathematician’s point of view a stochastic process is any probability
process, that is, any process running along in time and controlled by probabilistic
laws. Numerical observations made as the process continues indicate its evolution.
Ramachandran (1995) classifies stochastic models as dynamic as they are capable of
predicting the course of fire development in a particular building. In these models,
the various states, realms, or phases occuring sequentially in space and time dur-
ing fire growth are specified together with the associated probability distributions.
A set of deterministic equations can be turned into a set of stochastic differential
equations by adding on the right-hand side forcing functions which are white noise
multiplied by some function of the variables and/or endowing the parameters with
probability distributions.

Ramachandran (1991) provides an overview on the application of several
probabilistic and stochastic models in non-deterministic modelling of fire spread.
The probability models reviewed are probability distributions, logic trees and the
probabilistic version of a deterministic model. Several papers in each of the prob-

ability models have been reviewed and Ramachandran provides an explanation for



the appropriate application of the probability models in compartment fire research.
He points out that probabilistic models, treat critical events during fire spread as
random and independent. They model final outcomes such as extent of spread, area
damaged and financial loss. These models are ideal for fire protection and insurance
problems concerned with collective risk in a group of buildings.

The stochastic models reviewed are the state transition stochastic model,
Markov models, Network theory, Epidemic theory, Branching processes, Random
walk and Percolation processes. The state transition stochastic model for a com-
partment fire with four states is developed using a probability tree to describe the
development of a fire through the states. For the Markov model, Network theory,
Epidemic theory, Branching process and Percolation process several papers in the
application of compartment fires is reviewed. Ramachandran draws an analogy be-
tween random walk and fire spread. Using the exponential form of the random walk
and making the assumption that damage is proportional to heat output he develops
an equation for the damage exceeding a given value, as a pareto distribution. In this
paper Ramachandran points out that stochastic models describe the critical events
occurring sequentially in space and time, hence, a particular building with specific
design features and fire protection measures can be modelled. Ramachandran also
points out that most of the stochastic models, except for the simple version, involve
computations more complex than probabilistic models.

Ramachandran (1995) discusses stochastic modelling of fire spread and two
types of stochastic models are discussed in detail: (1)Markov Chains and (2) Net-
works. Then some attention is given to other stochastic models such as random
walk, diffusion process, percolation theory, epidemic models and branching pro-
cesses. Ramachandran points out that probability models used to model the growth
of a fire involves complex calculations when the spread to other compartments are
tried to be incorporated. He suggests using network models for fire spread through

a building to simplfy the calculations.
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Figure 1.4: Structure of the Fire Safety System Model.

1.5 Thesis Objectives

The Fire Safety and Engineering Project report, published by the Warren Centre
for Advanced Engineering, Beck (1992), suggests a significant gap exists in the
knowledge of modelling of fire risk in buildings.

The Centre for Environmental Safety and Risk Engineering (CESARE) at
Victoria University of Technology is conducting a program of research to improve fire
safety and develop cost-effective design solutions for fire safety systems in buildings.

One of the projects is to develop an integrated risk assessment model for
fire risk in buildings. CESARE is currently developing a Fire Safety System Model
(FSSM). This is a mathematical model that can be used to provide a systematic
methodology to identify those combinations of building subsystems that provide the
requisite level of safety to the occupants in a cost-effective manner.

The FSSM consists of two parts; the Risk Assessment Model (RAM), and
the Fire Safety Submodels (F'SS), see figure (1.4). The FSS are used to represent
the physical processes associated with fire growth and spread, human behavior, and
building design. The results obtained from the FSS are transferred to the RAM.
The RAM is used to integrate the results of the submodels and to calculate two

parameters: expected risk-to-life safety and fire-cost expectation.



Fire Safety Submodels
[FSS]

Figure 1.5: Structure of the Fire Safety Submodels.

Beck (1992), has defined the submodels within the FSS as follows, also see
figure (1.5):

e Fire Growth and Development,

Smoke Spread,

Flame Spread,

Occupant Response,

Occupant Avoidance and
e Fire Brigade Response.

One essential component of the F'SS is a stochastic model for compartment
fires. This is because multiple interactions of physical and chemical processes and
the composition of a variety of burning material and their geometric arrangements

in a substance produce inherent randomness in fire development.
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This research will look at the development of models to predict the time
dependent, non-stationary and stochastic behavior of fire growth and development
in multistory buildings for the submodel Fire Growth and Development. Including a
stochastic model which accommodates the inherent randomness in fire development
will produce a more realistic and accurate model for fire development. The stochastic
models incorporate uncertainty which enables them to estimate the variability as
well as averages of output parameters. Once the submodels are refined and tested
the FSSM will be routinely used by professionals to identify cost-effective fire safety
system designs for buildings.

Current time-dependent models used to describe the spread of a fire in a
compartment are deterministic mechanical models without appropriate risk compo-
nents. Platt (1989), see section (2.1), has developed a time dependent probability
model to attempt to estimate the cumulative probabilities of fire spread in buildings
over infinite time.

Ling and Williamson (1986) model postflashover fire spread from room to
room using a stochastic analysis beginning with the development of a probabilistic
network and followed by a method for solving the network for discrete probability
distributions. These authors Ling and Williamson have made the assumption that
the fire in a room has to flashover before it can spread.

The authors Ling and Williamson have developed the probabilistic network
to represent fire spread using the following three steps:

(i) The floor plan of a building is transformed into a graph grid, where rooms
are nodes and walls and other fire barriers are links between the nodes. Each link
in the graph represents a possible route of fire spread.

(ii) The graph is then transformed into a probabilistic network by introducing
one node for representing the preflashover state and another node for representing
the postflashover state of each room with the link between them representing the

probability of flashover and the time characteristic to flashover. Three different
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types of links are identified: 1. fire growth in a compartment, 2. the fire breaching
the barrier element, and 3. the fire spreading along the corridor.

(iii) The fire spread probabilistic network is transformed into an equivalent
network which has multiple links between the nodes to represent the uncertainty
intrinsic to fire spread. Mirchandanis equivalent network and procedure is used for
the shortest path calculation.

Finally a numerical example is solved in which the source node is the room in
which the fire originated and the sink node is a section of the corridor. The analysis
examines the possible flows through equivalent networks and the probability of a
source node connecting with the sink node as well as the expected shortest travel
times are calculated. Ling and Williamsons modelling offers a number of advantages
over deterministic fire spread models. It allows a quantitative comparison of the fire
scenarios. It directly addresses uncertainty and allows quantitative assessment of
risk when generating equivalent safety in building designs which do not meet the
traditional code categories. It can also be used as a framework for analysing building
and fire codes.

This thesis will look at using stochastic growth models to model the time
dependent growth and spread of a fire. We have divided the thesis into three parts:

In part one we investigate the class of Epidemic models of infectious diseases
for fire growth. By an infectious disease we mean a disease which is infectious in
the sense that an infected host passes through a stage, called his infectious period,
during which he is able to transmit the disease to a susceptible host, either by a
direct ‘sufficiently close’ host-to-host contact or by infecting the environment and
the susceptible host then making ‘sufficiently close’ contact with the environment.
In chapter (5) we demonstrate how to convert deterministic differential equations
to stochastic differential equations by making use of the fact that forcing functions
are Martingale Differences.

Part two of the thesis focuses on building deterministic models based on the

12



risk assessment model from the National Research Council Canada (referred to in
this thesis as NRCC). The deterministic models are converted to stochastic models
using the theory of Martingales in chapter (5). Using the stochastic differential
equations we simulate the heat load, see chapter (8), of a compartment fire. Then
in chapter (9) we derive a two variable model closer to the General Epidemic model.

Finally in part three we investigate sprinklered compartment fires since in-
creased application of sprinkler protection through a building can reduce fire losses
significantly. However, in many small compartment fires the water damage is far
more extensive than the flame damage. We examine the possibility of controlling
the flow of water from sprinklers in an optimal way so as to minimise the water
damage and the overall property damage. Two cases are considered. The first when
the water damage is proportional to the total amount of water and the second when

it is proportional to the integral of the square of the water flow rate.
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Chapter 2

Literature Review

There appears to be no textbook which describes the modelling of fire growth and
spread using non-deterministic mathematical models. However, some papers have
been published in some of the fire journals which attempt to incorporate probability
in their models.

The probability and statistical contents of the papers by Platt (1987), Takeda
and Yung (1992) and Berlin (1990) have been summarised to show the level of
statistics and probability theory used in the growth and spread of fire modelling.
Although these papers have very little relevance with this research project they do
show a gap between elementary probability models and stochastic models in the fire

research area.

2.1 Time Dependent Probability Model

Platt (1989), has developed a time dependent probability model. He has made an
attempt to estimate the cumulative probabilities of fire spread in buildings over
infinite time. Three steps were used to calculate the probability of fire spread, they

are:
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1. The initial calculations are the probabilities for the three ways in which fire

can spread from a compartment to any of the adjacent compartments, Prg.

Platt divides the way in which fire spreads into three sets to calculate the
probability of fire spreading from a compartment to any of the adjacent com-

partments. The three sets are:

e Spread through open doorways [D]. The probability of fire spread via an

open door is assumed to be the probability that the door is open, Fj.

e Spread vertically up the facade of a building via external windows [W].
The probability of fire spreading via external windows is the probability
that the height of the external flame is greater than or equal to the height

of the spandrel.

e Spread by the failure of an internal barrier [B]. The probability of the fire
spreading via an internal barrier is the probability that the fire resistance

of the barrier is less than the fire severity.
Pg = P[R < S]

where:

R = barrier resistance [time] and

S = compartment fire severity [time].

He has assumed that R and S are independent lognormal variables.

The three ways fire can spread are ranked to form three mutually exclusive sets,
see figure (2.1). Then the probability fire spreads to an adjacent compartment

is the sum of the individual probabilities.

Pps=P[DU(WND)U(BNWnN D)

— P[D] + P[(W 0 D)] + P[(BAW N D)]
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Barrier

Open Door

Figure 2.1: Fire Spread Events - Venn Diagram

Assuming the three events are independent the above sum can be simplified

to

Prs=P[DUWUB] =1— (1- P[D])(1 - P[W])(1 - P[B]).

. In the second step Platt uses conditional probability for calculating the ex-
pected time it will take for the fire to spread from a compartment to any of

the adjacent compartments, given that it does spread, F(T/FS).

. In the third step Platt calculates the probability of a fire spreading from a
compartment to any other compartment, via any path in a given length of
time, given that a fire starts in compartment ¢; Platt employs a stochastic
network representation of fire spread with spaces represented as nodes and the

barriers between nodes being represented as probabilistic links of the network.
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2.2 Deterministic Fire Growth Models

2.2.1 Computer Models For Fire Protection

A paper was compiled by Friedman (1992) that categorises the 62, and an additional
12 more recently available, computer programs for fire protection identified in a re-
port based on an international survey presented at the 1989 Forum for International
Cooperation on Fire Research. The categories are zone models for compartment
fires, field models for compartment fires, submodels for fire endurance, submodels
for building evacuation, submodels for actuation of thermal detectors, fire-sprinkler
interaction models and other fire models and submodels. Friedman also provides a
general discussion of models dealing with a growing and interacting fire in an enclo-
sure and describes the features and advantages of field models and zone models.

Friedman (1992) in his discussion of computer models for a fire in a com-
partment overviews compartment inputs and fire inputs that are required for the
computer models. For the fire inputs he talks about a fire being specified with
various complexities: (a) the heat release rate continuing at a constant rate for a
specified interval then stopping, (b) heat release rate varying in a known manner,
(c) burning rate reducing according to the percentage of oxygen decrease in the
compartment, and (d) the radiative feedback of energy from the compartment to
the burning surface. Friedman highlights the difficulties that prevent the accurate
modelling of the burning rate or spread rate.

After the outputs from the computational models are listed, he outlines ad-
ditional uncertainties incorporated with compartment fires and makes some remarks
on the method of validating computer models. Finally, Friedman points out that
due to the complexity of compartment fires, computer models need to incorporate
variations in the output parameters due to the inherent uncertainties.

Friedman classifies the NRCC1 model as a zone model for compartment

fires. As the NRCC model is used to develop our non-deterministic models, a detail
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account of this model follows.

2.2.2 NRCC Model

Takeda and Yung (1992), have developed a simplified one-zone compartment fire
growth model which is used in the NRCC computer model. The model incorporates
vitiated oxygen conditions and combustion effliciency based on compartment size.

This model includes the two main external factors affecting the flame spread
rate on a burning object in a compartment. The two external factors are the ra-
diative heat flux from the hot ceiling layer and the oxygen concentration in the
compartment. The lateral flame spread rate measured by Quintiere and Harkleroad
(1984) is used to include the effect due to the radiative heat flux. The varying
oxygen concentration is built into the model using the finding by Tewarson and
Pion (1976), that the burning rate decreases with decreasing oxygen concentration
and flaming combustion ceases when the oxygen concentration is lower than 11%
regardless of what the external heat flux may be.

An equation described by Tewarson and Pion (1976) for the mass burning
rate is used but, with the burning surface area being calculated assuming that the
flame spreads radially on the burning object with a speed Vy, where V} is the speed
based on Tewarson and Pion (1976).

The oxygen concentration in the gas mixture at any time is obtained using
two different equations, one when the concentration is above 16% and the other
when the oxygen concentration falls below 16%. This ensures that the oxygen
concentration does not drop too fast and thus cause the fire to be extinguished
prematurely.

The heat loss rate through the compartment walls is obtained by solving the
one-dimensional heat conduction equation with some boundary conditions.

The air ventilation rate through the compartment opening is calculated using

the empirical equations derived by Steckler and Quintiere (1982) and Prahl and Em-
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mons (1975) with a correction factor to take into account the effect of compartment
size.

The CO and C'O4 concentrations in an air ventilated fire are obtained using
a stoichiometric equation, experimental data and the mass ratio of CO to C'Os.

In a smoldering fire the burning rate, R, at any time, ¢, is determined by

Quintiere and Birky (1982) as
R = 0.1t 4 0.0185¢

The C'O and C'O4 concentrations are calculated using the following equations
for the smoldering fire

Yoo = 0.05YpRro
Yoo, = 0.56Ypro

where Yoo, is the concentration of CO; (weight %), Yco is the concentration of
CO (weight %) and Ypgo is the product gas concentration (weight %).

This model of Takeda and Yung (1991) is implemented using the algorithm
in figure (2.2) in the NRCC’s, risk cost assessment model for evaluating the fire risk

and protection costs in apartment buildings

2.3 Stationary Stochastic Models in Fire Research

Berlin (1990) describes a number of simple probability models which can be applied
to fire protection problems. He describes how they can be used in estimating the
annual losses due to fires from a randomly selected transformer in terms of the three
outcome measures: property damage, injuries, and deaths.

Markov chains are described relating to how they could be used to model
a fire in a residence given by the Building Fire Simulation Model. This is done
by dividing the time over which a fire develops into a finite number of stages and
assigning probabilities to the likely transition from one stage to another. From this

model it is possible to answer questions like
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Figure 2.2: Computation algorithm of the NRCC fire growth model

1. What is the maximum extent of the fire growth?
2. What is the expected number of transitions between any stage and another?

The major weakness of this model is the assumption of constant transition proba-
bilities.

Queuing models are described modelling a Fire Brigades availability, where
the arrival process corresponds to fire alarms, and the service rate is the time to
respond to the emergency and then return to the station.

Stress-Strength models are used for the situation where a component accom-
plishes its intended function, provided it is strong enough to sustain the opposing
forces of the operating environment.

The section on Markov Chains by Berlin (1990) has some relevance to this
research. The probability and statistical models described by Berlin, have not been
applied to experimental data to estimate model parameters.

Stochastic fire and smoke spread models available at present are time depen-

dent, Elms and Buchanan (1981), Beck (1987), Beck (1988), Ramachandran (1990).
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Existing models are extremely limited in their ability to accurately predict the levels
of risk to life safety because the time-dependent nature of fire spread is not included.

Fire growth and spread are phenomena that exhibit all the hallmarks of
growth, intrinsic randomness and high variability between one occurrence and the
next. It is necessary to develop new models specially adapted to the description
of fire growth and spread. As a stepping stone into the modelling of fire growth
and spread in buildings this work will examine modelling compartment fires using
several non-stationary stochastic growth models and introduce the use of Percolation

Processes and Contact Processes for the spread phenomena.

2.4 Stochastic Growth Models

There are several models in the class of Epidemic processes, see chapter (3) for a
definition, which could be used to model the growth of compartment fires. The
essential characteristics of any epidemic process is the transfer of infection. The
equivalent characteristic in compartment fires is the transfer of flame/fire. We will
initiate our research with an examination of the Epidemic models and then try to
equate compartment fires to these equations. Detailed accounts of the epidemic
models are given by Becker (1989) and Bailey (1957).

Hammersley (1957) defines a percolation process as typically the spread of
a fluid through a medium under the influence of a random mechanism associated
with that medium, see chapter (4) for a review and a graphical representation of
the percolation process. This model has analogies with fire spreading along a level
of a building, this is investigated further in chapter (4).

Bezuidenhout and Grimmett (1991), define a Contact process as a stochastic
model for the spread of disease amongst the members of a population distributed
about a d-dimensional space, Z% see chapter (4) for a review and a graphical repre-
sentation of the Contact Process. A contact process is a type of oriented percolation

process. This model has analogies with fire spreading through the levels of a build-
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ing, this is investigated further in chapter (4).
The three non-stationary stochastic models described above have two com-
mon characteristics which are also revealed in the physical properties of compart-

ment fires:
1. They are non-stationary growth models,
2. They have a threshold theorem.

With fire the threshold appears to be the point at which flashover is reached, but

further investigation and modelling is required to be more conclusive.
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Part 1

NON-STATIONARY MODELS
FOR COMPARTMENT FIRES
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There are several models in the class of non-stationary processes which could
be used to model the growth and spread of fires inside compartments. Three epi-
demic models are considered for the growth of a fire inside a compartment: The De-
terministic Simple Epidemic, the Deterministic General Epidemic and the Stochastic
General epidemic. Two additional non-stationary stochastic models are considered
for the spread of a fire through a building: The Percolation process and the Contact
process. In the final chapter of this part we develop a methodology for converting

deterministic equations into non-deterministic (stochastic) equations.
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Chapter 3

Epidemic Models

3.1 Introduction

The essential characteristic of any epidemic process is the transfer of infection. Be-
fore looking at some specific epidemic models, we will make a number of assumptions

which will be common to all of these models:

e The disease is transmitted by contact between an infected individual and a

susceptible individual

e There is no latent period for the disease, hence the disease is transmitted

instantaneously upon contact

o All susceptible individuals are equally susceptible and all infected individuals

are equally infectious.

e Susceptibles and infectives mix together homogeneously.

3.2 Deterministic Simple Epidemic Model

The simple epidemic model describes the spread of a relatively mild infection through

a finite population in which none of the infected individuals is removed from the
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population by isolation, recovery or death. This means that no births, deaths or
migration occurs.

To calculate the equations of the model we let time be represented by ¢
and a small change in time by §t. The number of infected individuals at time ¢ is
represented by I(¢) and the number of susceptible individuals (healthy individuals)
at time ¢ is represented by S(¢). The average number of contacts between susceptible
and infected individuals which lead to a new infective per unit of time per infective
per susceptible in the population is represented by (.

Since everyone in the population is either susceptible to the disease or else
infected with the disease. We have S(t) + I(t) = N, where N is the total number
in the population.

It is a simple matter to deduce the number of susceptible individuals at time
t 4+ 0t in terms of the number of susceptibles at time ¢. Clearly, S(t + dt) is just
the number of susceptibles at time ¢, S(¢), minus the number of susceptibles who

contract the disease in the time interval from ¢ to ¢t 4+ 6¢. In mathematical notation,
S(t+48t) = S(t) — BS(t)I(t)dt.

Epidemics are discrete phenomena. However, we approximate them with
continuous variables due to large populations.
Next, rearrange the equation into the form:

S(t +6t) — S(t)

V=50 — _ssi
and then let 4t — 0. This yields
ds(t) _
B _ ssra).
Using S(t) + I(t) = N
dS(t)

CH = SN - S()

This is a nonlinear differential equation, but the equation can be solved using the sep-

aration of variable method of solution as for a linear differential equation. Rewriting
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" 1 as(t)
SMHIN-S@H)] d

Expanding the left-hand side using partial fractions we obtain

— 3.

1 1 ds()
N5 T vivosw) @

=5

Integrating both sides with respect to ¢,

/ _Gdt

NS
gives
(InS(t) —In(N = S(t))]=-pt+¢
or
S e~ BNt
N —5(t)
Simplifying further gives
N
S(t) = 71+ %eﬁNt'

Solving for the integration constant, k, from initial conditions, S(0) = N — I,
gives
N -1
1o
N(N — Iy)
(N — Io) + IpePNt

S(t) =
In addition, since the total population size is always IV, and since all individuals are
either susceptible or infected, using I(t) = N — S(¢) we can solve for I(t),

Nl
I(t) = .
() Io—|—(N—Io)€_ﬁNt

A typical solution as a function of time is shown in the figure (3.1):
The graph suggests that in a large population with a small initial number
of infectives, at first the epidemic (as measured by the total number of infectives)

grows exponentially, and then, as fewer susceptibles are available, the rate of growth

27



Time
Figure 3.1: Change in Susceptibles into Infectives over time.
decreases, but the epidemic does not end until everyone in the population has con-
tracted the disease.

The more usual quantity to report is the ’epidemic curve’ which records the
rate at which the disease spreads in the population. For the present model the
epidemic curve, W (t), is the rate of change in the number of infectives, thus

di(t)

W(t) = — = =8SMI1)

_ BNZ(N — Ip) e
N [(N - Io) + IoeﬁNt]z
A graph of this function is in figure (3.2).

This model is an extremely simple first model, and has a rather unrealistic
aspect. Notice that whenever an epidemic gets started, everyone in the population
ultimately contracts the disease. The reason for this can be traced to the fact that
infectives remain infected forever. A more realistic model must take into account

that for most diseases infectives either recover or else they die.

3.2.1 Deterministic Simple Epidemic Fire Growth Model

To adapt the Simple Epidemic model to describe the growth of a fire inside a com-

partment table (3.1) draws an analogy between the variables in the fire growth
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model and the Simple Epidemic model.

To calculate the equations of the model we let time be represented by ¢ and a
small change in time by §t. The amount of burning material at time ¢ is represented
by F(t) and the amount of combustible material at time ¢ is represented by M (¢).
As fire spreads by the contact between flames and the combustible material, the
average number of contacts between combustible and burning material which lead
to a new burning material per unit of time per combustible per burning material in

the compartment is represented by [.

FIRE EPIDEMIC
Combustibles Susceptibles
Burning Material Infectives

Table 3.1: Analogy between fire growth and Simple Epidemic variables

Assumptions of the deterministic fire growth model:

1. When a material catches fire it is immediately capable of spreading the fire

(no latent period).

2. Combustible material is subject to homogeneous mixing. We can relax this
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assumption by using the modification introduced by Becker (1977) for non-

homogeneous mixing.
For the deterministic simple epidemic model for fire growth, if we let
N = Total amount of combustible material in a compartment
t = epoch time
M = combustible material remaining
F = amount of material on fire (burning material)

The average number of contacts between combustibles and burning materials
which lead to a new burning material per unit of time per burning material per
combustible in the compartment be represented by .

We have M (t) + F'(t) = N.

It is a simple matter to deduce the amount of combustible material at time
t + 6t in terms of the amount of combustible material at time ¢ in exactly the same

way as we did for the simple epidemic model.
M(t+6t) = M(t) — M () F(t)dt

Solving the equation gives

N
M(t) = T+ LepNi
Solving for the integration constant, k, from initial conditions, M(0)=N-Fy, gives
__ N—F
k—TOO

N(N — Fp)
(N — Fo) + FoeﬁNt

In addition, since the total combustible material is always NV, and since all material

M(t) =

are either combustible or burning, using F(t) = N — M (t) we can solve for F'(¢).

Ny

F(t) =
() F0—|— (N—Fo)e_ﬁNt
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Time
Figure 3.3: Change in Combustible Material into Burning Material over time.
A typical solution as a function of time is shown in the figure (3.3):

The graph suggests that in a large compartment with a small initial number
of burning material, at first the fire (as measured by the total amount of burning
material) grows exponentially, and then, as fewer combustible material is available,
the rate of growth decreases, but the fire does not end until all of the combustible
material in the compartment has contracted the fire.

A more useful quantity to report would be the ’fire curve’ which records the
rate at which the fire spreads in the compartment. For the present model the fire

curve, X (t), is the rate of change in the amount of burning material, thus

AP (t)
Cdt
_ BNY(N — Fy)Fpe™N
(N = Fo) + FoePN1]2

A graph of this function is in figure (3.4).

x ="~ smyr

This model is a very simple first model and has a rather unrealistic aspect.
Notice that whenever a fire gets started, everything in the compartment ultimately
contracts the fire. The reason for this can be traced to the fact that burning material
remain burning forever. A more realistic model must take into account that for most

fires burning material either stop burning or else they burn out.
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3.3 Deterministic General Epidemic Model

Since for many diseases a natural immunity occurs, it is further assumed that former
infectives enter a new class which is not susceptible to the disease, the Removals. The
General Epidemic model considers the transfer of infection by contact between the
members of the population, as well as the removal of infectives from the population
by recovery, death or isolation.

By introducing a class of removed individuals, we have managed to avoid a
precise statement of the severity of the disease being modelled. The removals may
be recovered and immune, or they may be quarantined and thus out of circulation
or they may be dead. All that is necessary is that the disease not be available
to any individual more than once. Therefore, the basic parameters in the General
Epidemic model are the infection rate, 4, and the removal rate, v. In addition to

the variables defined in the Simple Epidemic model, let:

R(t) = number of removed individuals at time t. Removed from the infected group

and

~ = average rate of removal of infectives from circulation per unit time per infective

in the population.
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Assumptions of the General Epidemic model are:
1. Any individual who has recovered from the disease has permanent immunity.

2. The disease has a negligible short incubation period, no latent period. When

a susceptible is infected it is assumed that he immediately becomes infectious.
3. The assumption of homogeneous mixing.

Since the new class of individuals, the removals, in no way interacts with the sus-
ceptibles, the governing equation for the susceptibles is unchanged from the simple

epidemic model. Thus the differential equation is

ds(t)

T —BS()1(t) (3.1)

The differential equation developed previously for the number of infectives must be
modified to take into account the removals. Using an argument similar to the one

for the Simple Epidemic model, it is not hard to deduce the equation

dI(t)

g = BSOIE) —y1(t) (3.2)

The individuals who are removed from the ranks of the infectives then contribute

to the number of removed individuals according to the relation

dR(1)

T v1(t) (3.3)

Since all individuals in the population are either susceptible, infected or removed

and the population is constant in size,
St)+1(t)+R(t)=N (3.4)

By differentiating this last expression with respect to time, it follows that the three
governing equations must sum to zero (as they in fact do.) In addition, the last
expression guarantees that once the size of any two of the classes is known, the size

of the third follows by simple arithmetic.
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To complete the specification of the model it is necessary to know the initial
state of the population. Assume that at time ¢ = 0 there are no removed individuals,
a very small number, Iy, of infectives, and the remainder of the population, Sy, is
susceptible. Thus, S(0) = So = N — Ip; 1(0) = Iy << N and R(0) = 0. Before
attempting to find a solution to the set of governing equations, it is informative to
look carefully at the equations. Specifically, look at the equation for the number of

infectives in the form

MO g5y - iy p =

(=2

where p is defined as the relative removal rate.

Clearly, since I(t) > 0, the sign of the term in square brackets is the same as
the sign of dI(t)/dt, hence dI(t)/dt > 0 if and only if S(t) > p. Further, since S(t)
is a monotonically decreasing function of time (since susceptibles become infected
and no new susceptibles are made) if S(0) < p then S(¢) < p for all t >0 and
dI(t)/dt < 0 for all future time.

In other words, if the initial number of susceptibles is smaller than some
critical number, p, there will not be an epidemic (where here the word epidemic is
used in the technical sense of a large, one-time outbreak of the disease).

We proceed now to analyse the model in detail. To do so, begin by eliminating
the explicit dependence on [(t) between the first and the third of the governing
differential equation to get

dS(t)  S(t) R()

dt p dt

Separating variables, multiplying through by dt and integrating leads to
S(t) = Spe F /v,
Next, make use of the relation S(t) + I(t) + R(t) = N in the equation for R(¢):
dR(t)

o =) =N = R(t) = S(1)]
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and then use the expression just derived to eliminate S(¢); thus

dljz—it) = 7 1(t) = [N — R(t) — Soe~"0/7]

Note that R(t) is the only one of the dependent variables which appears in this
equation. Although it is possible to solve this differential equation exactly, the
methods are rather complicated. We therefore seek an approximate solution. Since
this difficulty in solving the equation results from the presence of the exponential
term, we proceed to replace the exponential by a polynomial. To do so we expand
the exponential in a Taylor Series about the only point at which we know the value

of R(t). Specifically, we expand about R(0) = 0; this leads to:

) 4 e

P 20 p

)*+

Clearly, if one attempts to retain the entire infinite series, nothing has been gained.
By truncating the series after the first few terms, a separable differential equation
which is fairly easily solved will result. The question remains, how many terms
should be retained? It is not difficult to show that if only terms up to the linear one
are kept, only an absurd answer is possible. On the other hand, if terms up to the
cubic one are kept, the resulting integration is very hard. We therefore choose to
keep terms up to the quadratic one, thereby balancing realism against solvability.

Following a bit of rearranging, the resulting equation is:

dR(t)
Cdt

So 9
Q—sz(t) ]

Separating variables and integrating leads to the expression:

=llo+ (= - DR({) -

2
R(t) = g—o[% S1g atanh(‘%” )]

where a = [(So/p — 1)? + 2S01o/p*])"/? and ¢ = tanh™'[(So/p — 1)/a].
Developing this solution is straightforward, but does involve a considerable

amount of rather messy algebra.
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As with the Simple Epidemic model, we are really more interested in knowing
the shape of the predicted epidemic curve, W (t), than the cumulative number of
removals, R(t). Since cases of the disease are counted as victims seeking medical
attention, and this is also the time at which individuals are removed from active

circulation, it is customary to assume that

dR(t) ~ya?p? 5 ot
Wi(t) = = h*(— —
(t)=— o5, (59
Note that this expression describes a function which rises to a single maxi-

mum at time ¢t = 2¢/a~y and then dies away symmetrically. This is very similar to

the result for the epidemic curve in the Simple Epidemic model; however, in this

model not all susceptibles need to be infected.

3.3.1 Deterministic General Epidemic Model For Fire Growth

To adapt the General Epidemic model to describe the growth of a fire inside a
compartment we let the burning rate be denoted by /3 as fire spreads by the contact
between flames and the combustible material. The rate of removal or decrease of
combustible material in the building can be represented by the burnout rate, 7.
Table (3.2) draws an analogy between the variables in the fire growth model and

the General Epidemic model.

FIRE EPIDEMIC
Combustibles Susceptibles
Burning Material Infectives
Burnt Material Removals

Table 3.2: Analogy between fire growth and General Epidemic variables.

Assumptions of the deterministic fire growth model:
1. Material burnt is removed permanently or immune to catch fire indefinitely
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2. Independent isolated material of a given size is subject to homogeneous mixing

3. When a material catches fire it is immediately capable of spreading the fire

(no latent period)

4. All combustible material are equally combustible and all burning material are

equally capable of spreading fire.
For the deterministic general epidemic model for fire growth, if we let
N = Total amount of combustible material in a compartment
t= epoch time
M = combustible material remaining
F = amount of material on fire (burning material)
B = amount of material combust(burnt-out material).

Then M(t) + F(t) + B(t) = N at any time t. At time ¢ = 0 if one unit amount of
substance is on fire, ' = 1, B = 0 and the remaining N — 1 combustible material
is available to catch on fire. Hence N = M (0) 4 £'(0) 4+ 0. If the rate of fire growth
(burning rate) is proportional to both the amount of combustible material and the
amount of material ignited, then the amount of new material burnt in the time

interval 4t can be written as §M Fét, where [ is the burning rate.
oM = —0MFét

or
M(t) — M(t+ ét) = BM Fot
writing this as differential equation

dM
— = _BMF.
dt P

37



Likewise for the increase in the amount of burnt-out material

dB
= _ . F

a ~

where « is the rate of removal or decrease of combustible material in the building,

the burnout rate. Also for the increase in the amount of burning material

dF
— —BMF — ~F.
dtﬂ ol

Approximate solutions to the above equations can be found by assuming /3
and v constant. If we let p = %, the relative removal rate of combustible material

then

F=N-B-M
M = Mge™ B/
M, avyt
B= p2[70 1y atanh(% — $)]/Mo

where o = [(Mo/p — 1)2 4 2MoFy/p?]Y/? and é = tanh ™' [(Mo/p — 1)/a].
The equations for the variables of this compartment fire model can be deter-

mined similar to the deterministic General Epidemic model.

3.4 Stochastic General Epidemic Model

In the preceding models we have studied deterministic growth models. Such an
analysis is usually satisfactory for the study of a reasonably large population. De-
terministic systems are incompatible for modelling the changes in a small population.
When one is interested in modelling the changes in small populations then the de-
terministic approach is not appropriate. When one is concerned with relatively few
individuals, then the growth of the system may be strongly influenced by chance
events. If the model is to be useful in connection with the explanation and predic-
tion of observable phenomena, then these chance events cannot be ignored, and we

are led naturally to consider stochastic models.
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The predictions produced by the deterministic and stochastic models are in-
trinsically different. Whereas the deterministic model provides a function giving the
size of the population for any specified time, the stochastic model gives a probability
distribution of population size for each time. Thus our goal is to produce a family
of probability distributions, one for each instant in time in which we are interested.

Studying deterministic models is in no way a waste of time. Using determin-
istic models we can gain some insight into the mechanism of large scale phenomena,
and the results will suggest various features worth examining more carefully when
we come to stochastic models.

A set of deterministic equations can be turned into a set of stochastic dif-
ferential equations by either adding on the right hand side forcing functions which
could be for example white noise multiplied by some function of the variables and/or
endowing the parameters with probability distributions.

When dealing with deterministic equations we generally use continuous vari-
ables as it is okay to make this assumption when the populations are large. In the
case of stochastic equations we use discrete variables as it gives new light for the de-
terministic case. Deterministic models can be viewed as an average of the stochastic
model.

If at time ¢ there are S(t) susceptibles, I(¢) infectives and R(t) removals in the
population, and if N is the total population size we have S(¢)+1(t)+R(t) = N. Then
from Becker (1989), the General Epidemic model can be summarised in table (3.3)
using the probabilities of the associated transitions for a time increment (¢,¢+ h),
and the initial conditions S(0) = k, 1(0) = Iy and R(0) = 0.

Using these transition probabilities we are able to write the equations of the
Stochastic General Epidemic model, see Bailey(1957).

Becker (1976), states that associated with the Stochastic General Epidemic
model is the Stochastic Epidemic Threshold theorem, which states essentially that

for large k
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TRANSITION PROBABILITY

(S, I,R)y— (S—-1,I4+1,R) BST + o(h)
— (S, I-1,R+1) YhI+ o(h)
— (5,1, R) no change 1 —~hl —BSI+ o(h)

Table 3.3: Transition probabilities for the Stochastic General Epidemic model.

Pr (minor epidemic) = 1 - Pr (major epidemic)

= min(1, (")

kp
Here the initial infection rate, 12_57 where (3 is the infection rate and v is the removal

rate, determines the probability of a major outbreak.

3.4.1 Stochastic General Epidemic Model For Fire Growth

The Deterministic General Epidemic Model for Fire Growth can be made into a
Stochastic General Epidemic Model for Fire Growth from the transition probabilities
of the model, as done in the Stochastic General Epidemic model. The probabilities of
the associated transitions for a time increment (¢, ¢+h) for the General Epidemic Fire
Growth model can be summarised in a table using the initial conditions M (0) = Mo,

F(0) = Fp and B(0) = 0, see table (3.4).

TRANSITION PROBABILITY
(M,F.B) = (M—1,F +1,B) GMF + o(h)
— (M, F-1,B+1) YhE + o(h)
— (M, F, B) no change 1-~yhF — BMF + o(h)

Table 3.4: Transition probabilities for the Stochastic General Epidemic Fire Growth
model

To write the equations of the Stochastic General Epidemic Model for Fire

Growth suppose that at ¢ = 0 there are n units of combustibles and « units of
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Pr(flashover fire)

1

Figure 3.5: Probability of a flashover fire versus initial ignition rate.

burning material. If we write Py;p(t) for the probability that at time, ¢, there are
M combustible units still to burn and F' units of burning material, and the relative
burnt-out rate is given by, p = % Using the time-scale given by 7 = 3t instead of ¢

leads to the differential-difference equations given by Bailey(1957).

dP,
d]\:F = (M + 1)(F)Pyyr,p—1 — F(M 4 p)Pyr + p(F + 1) Py pia
and
dP,,
o= —a(n + p) P,

where 0 < M4+ F<n+4+a, 0< M <n,0<F <n+a and initial condition
P..(0) = 1 where P,, is the probability that at time ¢ = 0 there are n units of
combustible material and a units of burning material.

These differential-difference equations cannot be solved exactly but, some
asymptotic solutions based on the pure birth-death process exist for the General
Stochastic Epidemic equations.

Using the Stochastic Epidemic Threshold theorem from Becker (1976) we
can state the threshold for the Stochastic General Epidemic Model of Fire Growth.
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Pr(non-flashover fire) = 1- Pr (flashover fire) = min(1, (ﬁWWO)FO) Here the
initial ignition rate, Go = (ﬁWWO)FO , determines the probability of a flashover fire.
Pr(flashover fire) = 1-(1/GY)

The graph of the above equation is in figure (3.5). It shows how the proba-

bility of a flashover fire increases with increasing initial ignition rate.

3.5 Conclusion

As a first approximation these epidemic models appear fine but for fire growth they
have limited physical interpretation. From the fire literature the three main factors
affecting the growth of a compartment fire are the gas temperature in the room, the
burning rate and the oxygen concentration. In part II of this thesis we look at fire

growth models which use these three factors.
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Chapter 4

Fire Spread Using Percolation

and Contact Processes

4.1 Introduction

The rate at which fire will develop will depend on how rapidly flame can spread from
the point of ignition to involve an increasingly large area of combustible material,
Flame spread is considered as an advancing ignition front in which the leading edge
of the flame acts both as the source of heat, to raise the fuel ahead of the flame
front to the fire point, and as the source of pilot ignition. There are various material
and environmental factors which are known to be significant in determining the rate
of flame spread over combustible solids, composition of atmosphere, temperature,
composition of fuel and surface orientation are just some of them.

In this chapter we will attempt to model spread of a fire along a level of a
building using a Percolation process and the spread of a fire through the levels of a

building using a Contact process.
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Figure 4.1: Two dimensional representation of a Percolation process.

4.2 Percolation Process

A percolation process is typically the spread of a fluid through a medium under the
influence of a random mechanism associated with that medium.

Hammersley (1957), considers the medium to be made up of an infinite set
of atoms bonded together with either an undirected bond or a directed bond. An
undirected bond is defined as one which allows passage from either atom to the other
and a directed bond is one which will allow passage from one atom to the other but
not vice versa. Each bond has an independent probability p of being undirected and
g = 1 — p of being directed.

The spread of a fluid in the medium can occur only via undirected bonds.
Hammersley (1957), defines a fluid as wetting an atom in the medium when it
spreads along the undirected bonds of the medium.

The percolation process is above its threshold if there is at least one path of
undirected bonds where a fluid can travel from one end of the medium to the other.
This model can be represented on a two dimensional lattice as in figure (4.1) where
(O represents atoms of the medium with directed bonds and the e represents atoms
in the medium with undirected bonds. The path represented by the thick black line

indicates the system is above the threshold of the medium.
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In this sense a percolation process can be considered to be a restricted random

walk.

4.2.1 Modelling the Spread of Fire Along a Level of a Building

Using a Percolation Process

The spread of a fire through a level of a building under the influence of a random
mechanism associated with the building can be thought of as a percolation process.

The level of a building (medium) can be considered to be made up of a set of
compartments (atoms) separated by barriers (bonds). The barriers are considered
either as walls with openings, doors and/or windows (undirected bonds); or solid
fire rated walls without openings (directed bonds). The walls with openings can be
defined as barriers which allow the passage of flame from one compartment to the
other following or prior to flashover and the solid fire rated walls can be defined as
barriers which do not allow the passage of flame from one compartment to the other.
Each barrier has an independent probability p of being a wall with an opening and
g = 1 — p of being a solid fire rated wall. The analogy is summarised in a table (4.1)

as follows:

FIRE IN A BUILDING || SPREAD OF FLUID IN A MEDIUM
Barrier Bond
Fire Fluid
Building Medium
Walls with openings Undirected Bonds
Solid fire rated walls Directed Bonds
Compartment Atom

Table 4.1: Analogy between a fire in a compartment and a percolation process.

Table (4.1) provides an analogy between a percolation process defined by the

spread of a fire on a level of a building and the spread of a fluid in a medium.
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Figure 4.2: Two dimensional Percolation process for the Spread of Fire.

The spread of a fire in the level of a building can occur only via barriers
which are walls with an opening. The building in this percolation process is above
its threshold when there is at least one path of barriers which are walls with an
opening where the fire can travel from one end of the level of a building to the
other.

This model can be represented on a two dimensional diagram as in figure
(4.2) where the solid lines, —, represents compartments of the building with solid
fire rated barriers and the dotted lines, - - -, represents compartments in the building
with barriers which contain openings. The existence of a path represented by the

shaded region indicates the system is above the threshold of the level of the building.

4.3 Contact Process

Bezuidenhout and Grimmett (1991), define a Contact process as a stochastic model
for the spread of disease amongst the members of a population distributed about a
d-dimensional space, Z¢.

If X is taken as the rate at which an individual infects their neighbour and §

is taken as the rate at which an infected individual is cured, then from Bezuidenhout
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Figure 4.3: A graphical representation of a contact process.

and Grimmett (1991), there is a critical value p. of the ratio p = A/§ such that the
probability 8°(), d) that the disease survives forever from a single initial infective

satisfies

=0 if /o < p.
S0 i A8 > pe

8°(\, 6)

One technique for studying contact processes is via graphical representation,
see figure (4.3). If we consider the graph Z¢ % [0,00), in which Z¢ represents the
spatial component and [0,c0) represents time. Along each time line X x [0, 00) is
positioned a Poisson process of points (with intensity §) called deaths and between
each ordered pair X7 %[0, 00) and X3%[0, 00) of adjacent time lines, there is a Poisson
process (with intensity A) of crossings oriented in the direction X; to Xs.

From this definition 6°()\,d) can be defined as the probability that there is
an unbounded directed path from the origin of Z¢ % [0, o), using time lines in the
direction of increasing time but crossing no deaths, together with crossings in the
direction of their orientations.

The thick lines represent the crossings which have a Poisson process with

parameter A and the shaded ovals represent the deaths, which have a Poisson dis-
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tribution with parameter §, along each Xj.

A contact process is a type of oriented percolation process.

4.3.1 Modelling the Spread of Fire Through a Building Using a

Contact Process

From Bezuidenhout and Grimmett (1991), we can define a Contact process as a
stochastic model for the spread of a fire through the levels of a building.

If A is taken as the rate at which fire spreads from one level to the next and &
is taken as the rate at which burning material is burnt-out, then from Bezuidenhout
and Grimmett (1991), there is a critical value p. of the ratio p = A/§ such that the
probability §°(A, §) that the fire spreads through all levels from a single initial fire

satisfies

=0 if /o < p.
S0 i A8 > pe

8°(\, 6)

If we consider the graph Z? [0, 00), in which Z? represents the building and
[0, 00) represents time the fire travels along a specific level, then along each level
L [0, 00) is positioned a Poisson process of points (with intensity §) at which the fire
burns out and between each level L *[0,00) and Ly [0, 00) of adjacent levels, there
is a Poisson process (with intensity A) of crossings, points where the fire spreads
from one level to the next oriented in the direction Xy to X5. Using this definition
we can represent the Contact process for the spread of fire in a building graphically,
as in figure (4.4).

The thin horizontal lines represent the crossings, openings in the levels within
a building where fire can spread, which have a Poisson process with parameter A
and the thick lines represent the deaths, solid fire rated walls which can stand the
load of the fire, which have a Poisson distribution with parameter &, along each I;.

The existence of a path represented by the shaded region indicates the system is
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Figure 4.4: A graphical representation of a contact process for Fire Spread.

Level 2 (L2)

above the threshold of the building.

4.4 Conclusion

The two non-stationary stochastic models described above have two common char-

acteristics which are also revealed in the physical properties of compartment fires:
1. They are non-stationary growth models, and
2. They have a threshold theorem.

These models can be studied using asymptotic theory, as n approaches infin-
ity. However, in modelling compartment fire spread there are only a finite number of
compartments and levels. Hence the asymptotic theory of Percolation and Contact

processes would not be applicable.
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Chapter 5

Converting Deterministic

Differential Equations to
Stochastic Differential

Equations

5.1 Introduction

The idea of using a mathematical model to describe the behavior of a physical
phenomenon is well established. In particular, it is sometimes possible to derive a
model based on physical laws, which enables us to calculate the value of some time-
dependent quantity nearly exactly at any instant of time. If exact calculations were
possible such a model would be entirely deterministic. Deterministic models attempt
to derive deterministic differential equations which model the experimental data
gathered on some of the chemical and physical interactions involved in a process.
Probably no phenomenon is totally deterministic, because unknown factors

can occur. In many problems we have to consider a time-dependent phenomenon
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in which there are many unknown factors and for which it is not possible to write
a deterministic model that allows exact calculations of the future behavior of the
phenomenon. Nevertheless, it may be possible to derive a model that can be used
to calculate the probability of a future value lying between two specific limits. Such
a model is called a probability model or a stochastic model.

Deterministic differential equations may be thought of as a degenerate form of
a stochastic differential equation in the absence of randomness. Hence deterministic
models are a subset of stochastic models. In this paper we will present a method
to convert ordinary differential equations into stochastic differential equations. But
first it is useful to review some of the basic properties of a differential equation and

a stochastic process.

5.2 Ordinary Differential Equations

Differential equations are separated into ordinary and partial as well as deterministic
and stochastic. Ordinary differential equations are differential equations with only
one independent variable,

dx(t)
dt

=r(t, z)z(t). (5.1)

T =

Partial differential equations are differential equations where there are two or more
independent variables and partial derivatives are used. In our research we deal only
with ordinary differential equations.

Equation (5.1) is the simple population growth model, where z () is the size
of the population at time ¢ and r(t, z) is the relative rate of growth. We can write

equation (5.1) in the symbolic differential form
de(t) =r(t,z)z(t)dt (5.2)

or, as an integral equation
¢

z(t)y=x0+ [ r(s,z(s))x(s)ds (5.3)

to
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where z(t) = x(t;x0,t0) is a solution satisfying the initial condition z(tg) = 0.
Regularity assumptions, such as Lipschitz continuity, are usually made on r to
ensure the existence of a unique solution z(¢; zo, to) for each initial condition. These

solutions are then related by the evolutionary property
x(t; xo,to) = x(t; 2(s; 20, t0), 5) (5.4)

for all tg < s < t, which says that the future is determined completely by the
present, with the past being involved only in that it determines the present. This
is a deterministic version of the Markov property.

A stochastic process is a mathematical abstraction of an empirical process
whose development is governed by probabilistic laws. Numerical observations made
as the process continues indicate one realization of the stochastic process. With this
background for guidance, Karlin (1975) defines a stochastic process as any family

of random variables

where X;(w) is the observation at time ¢, T" is the time range and w is the outcome
space.

The distinguishing feature of a stochastic process X;(w) is the dependence
structure the random variables, X;(w), for teI’. This dependence is, specified by
giving the joint distribution function of every finite family Xy, (w), ...., Xy, (w) of the
variables of the process.

Stochastic processes are a function of two variables ¢ and w; that is, we can
write X (w) as X (¢,w). For a fixed value of w it is just a function of ¢ and is called
a sample function. If T is the set of real numbers, the sample function is merely an
ordinary function of a real variable. On the other hand, for a fixed value of ¢, the

single observation is a random variable.
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5.3 Heuristic Approach

To introduce stochastic variation into the simple population growth model, equation
(5.1), we will assume that r is not completely known, but subject to random effects.
Hence we can replace r(t,z) by r(t, ) + “noise”. Equation (5.1) can now be written

as
dX (1)
dt

If we let r(z,¢) X (t) = a(t, X (t)) and “noise” X (t) = b(t, X (¢))& then equation (5.5)

= [r(x, 1) + “noise”] X (t). (5.5)

can be written as
dX (t)
dit

where a(t, X (¢)) is the deterministic term, b(¢, X (¢)) is the space-time dependent in-

= alt, X (1)) + b(t, X (1))&, (5.6)

tensity factor, & is white noise and b(t, X (¢))&; is the noisy diffusive term. Equation

(5.6) can be written in a differential form as
dX () = a(t, X(t))dt + b(t, X (t))&dt. (5.7)

At this point we can compare equations (5.1) and (5.2) with equations (5.6) and
(5.7). The first term, a(t, X (¢)) in the stochastic equation is an average drift term
and is equivalent to the term, r(¢,z)z(t) in the deterministic differential equation.
The stochastic equation has an extra term included, b(¢, X (¢))&. This extra term
is the forcing function multiplied by white noise, it is responsible for introducing
the stochastic variation. At this point we will define Gaussian white noise and its

relationship to the Wiener process.

5.4 Gaussian White Noise and the Wiener Process

Gaussian white noise is an idealization of stochastic phenomena encounted generally
in engineering systems analysis. Gard (1988) defines Gaussian white noise as being
a model for a completely random process whose individual random variables are

normally distributed. Gaussian white noise is mathematically defined as a scalar
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stationary Gaussian process £(t) for —oo < t < oo with F({(¢)) = 0 and a spectral

density function f(A) which is constant on the entire real line, that is, if C'(t) =

E(E(s)§(t+5)) :

[oe] . I(
_ —1At —
fA) = By /_Oo e MO (t)dt = — AeR,

21
for some constant K. Also since
oo
) = [ fir=cx,
—o0
the variance of & is infinite, and such a process cannot be realised. Hence white noise
is not a stochastic process in the usual sense. Furthermore, there is a relationship
between Gaussian white noise and the standard Wiener process. The covariance of
the derivative of the Wiener process is the covariance of white noise, see Gard(1985).
The Wiener process is the mathematical description of the physical process
known as Brownian motion. The standard Wiener process, W = W (t), ¢ >0, is
defined by Kloeden (1994). It is a continuous Gausian process with independent

increments such that

EW(t)=0 and
var(W(t) —Wi(s)) =t —s
for all 0 < s < t. Also from this definition W (t) — W (s) is a Gaussian process,
N(0,t—s),for0 < s <t.
Using these definitions and descriptions we can now define the stochastic

integral.

5.5 Rieman and It6’s Integral

The stochastic integral equation for equation (5.7) is
t

Xi(w) = Xy (w) + t a(s, Xs(w))ds+ [ b(s, Xs(w))&s(w)ds. (5.8)

to to
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&s(w)ds can be written as dW,(w) as white noise is the derivative of a Wiener process.
Thus
Xi(w) = Xy (w) + tt a(s, Xs(w))ds + tt b(s, Xs(w))dWy(w). (5.9)
0 0
Even with this substitution, equation (5.9) still has the problem that a Wiener
process Wy is almost nowhere differentiable. Strictly speaking the white noise process
& does not exist as a conventional function of t. Thus the second integral in equation
(5.9), cannot be an ordinary integral. A method known as Ité’s Integral is used to
address this issue.
Rieman integrals are the ordinary integrals we are taught in calculus in sec-
ondary school and first year university to solve deterministic problems. The Rieman

integral is defined by Kaplan (1984) as follows:
Let f(z) be defined for @ < z < b. Then the definite integral

/ab f(z)da

is defined as a limit
n

li A, q
hg%;f(%) x (5.10)
In this limit one is considering subdivisions of the interval ¢« < z < b by values

a=1a9 < 21 < 23 < ... <xy="0b. The Ajx = z; — z;_1, 27 is the sampling number

;
which is between z;_; < 2F < x;, h is the largest of Ayz, ..., A,x; we call & the mesh
of the subdivision. The limit of equation (5.10) is said to exist and have value ¢ if for
every € > 0, one can choose § > 0 so small that for every such subdivision of mesh
h less than § and no matter how the 2 are chosen in the interval 2,y < 2 < z;,

one has

< €.

Zn:f(xz*)Azx —c
=1

There is also a theorem, Kaplan (1984), which states that if f(z) is a con-

tinuous real function of the real variable x for ¢ < 2 < b, then the Rieman integral

/ab f(z)da
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exists.

It6’s integral is one of the bases for an analysis of solutions of stochastic
equations along the lines of the approaches used in ordinary differential and integral
equations.

The second integral of equation (5.9), j;i b(s, Xs(w))dWs(w), can be approx-
imated using a sum

b(af, X (7)) AW, (5.11)

K3

where AW; = W(t;) — W(t;—1) and 27 is the sampling number which is between

n

z;—; < af < z;. This sum converges in the mean square sense to different values
of the integral depending on the value of the z7. If the z} are taken as z;_y,
then the It6 integral results. Comparing the 1t6 integral with the Rieman integral
we see that for the Rieman integral the z7 can be chosen anywhere in the interval
z;—1 <z < z;, but for the Itd’s integral the ¥ must be taken at the beginning, z;_;.
Another base for the analysis of stochastic equations is the Stratonovich integral.
The Stratonovich integral results when the z¥ in equation (5.11) is taken as the

midpoint, 1/2(x;_1 + @;). The stochastic integral of 1to’s,

[ smaw o),
satisfies
b
Bl g i) =0

and

B[ smaw | = [ ElgoFa.

The reason for using It&’s integral instead of the Stratonovich integral is that when

the It6 integral is viewed as a function of the upper limit of integration, it forms a
Martingale, see Gard (1988) for a more detailed discussion. Hence when necessary,

the rich theory of martingales can be used for estimating parameters in the models.
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5.6 An Example with the General Epidemic Model

Using the Deterministic General Epidemic and the Stochastic General Epidemic
models we will pointing out the similarity with deterministic and stochastic equa-
tions when the stochastic equations are written in Martingale form.

A Martingale is a random process, which evolves over time, whose properties
are specified in terms of conditional expected values, and indeed most Martingale
theory is driven by expected values. The Martingale property is essentially deter-
mined by the fact that its expected value at any future point in time is equal to its
current value.

In a more mathematically precise definition a Martingale is defined as follows:

A process M = {My;t € 7} is a Martingale if, for all ¢ € T,
E(|M;]) < o0 (5.12)

this is a boundedness condition which generally applies in real world applications

and

E(Myyz|Ht) = Myfor all x € 7. (5.13)

This captures the character of a Martingale and is called the Martingale property.
Recall that for the General Epidemic model we have two independent equa-
tions as the third is derived from the relation S(t) + I(t) + R(t) = 0.

From equations (3.1) and (3.3) we can write the deterministic equations as
dS + pSIdt =0

and

dR — ~v1dt = 0.

The corresponding Martingale form of the stochastic general epidemic equations are

dS + pSTdt = dM,
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and

dR — ~vIdt = dM,.

Where dM; and dM; are Martingale differences. This provides a motivation to
turning deterministic differential equations into stochastic differential equations by
adding to the right hand side of the deterministic equations a forcing function
fi(S)dW,; where f;(S) is an appropriately chosen increasing function of S and dW;
is a standard Brownian motion with independent components (each with mean zero

and variance dt). The forcing functions f;(5)dW; are Martingale differences.

5.7 Vector form of Stochastic Integrals

Stochastic differential equations are usually written in differential form with the forc-
ing function being a standard Brownian motion differential dW with independent
components (each with mean zero and variance dt) multiplied by an appropriate

function of the variables. The standard vector form is
dX + o(X, t)dt = (X, t)dW (5.14)

where X, o and dW are vectors of length n and 3 is an n X n matrix. Since the
future behavior of the vector X is independent of its past values, given its present

value, it is a Markov vector.

5.8 Conclusion

A set of ordinary (deterministic) differential equations can be turned into a set of
stochastic differential equations by adding on the right-hand side forcing functions
which are white noise multiplied by some function of the variables. Once this is
done, the next step is to determine the amount of stochastic variation to add. This
can be done by varying the forcing function so that the model is as close as possible

to the experimental data.
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Part 11

MODELS BASED ON NRCC
MODEL
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The models developed in this chapter are derived from physical principles
and the NRCC model. In chapter (7) the deterministic model is calibrated against
the NRCC model and then it is made into a stochastic model using the motivation
in chapter (5). The use of stochastic models is illustrated with the evaluation of
the heat load for fire severity. Finally in this part we develop a two variable model
by making an assumption of a relationship between the gas temperature and the

burning rate inside the compartment.
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Chapter 6

One-Zone Fuel Driven Fire

Model

6.1 Introduction

A variety of models have been developed to represent the environment in an enclo-
sure during a fire. For example, Takeda and Yung (1992) have developed a one-zone
model which can be used to predict the fire environment for a range of fires includ-
ing flaming non-flashover and post-flashover fires. Based on the model of Takeda
and Yung a fuel driven model for the growth of a fire inside a compartment will be
developed. To model the growth of a fuel driven fire we develop three differential
equations for three variables: the gas temperature T' (degrees Celsius), the mass
burning rate R (kg/min), and the amount of burnt-out material B. The three dif-
ferential equations are solved in three stages to derive the equations for the three

variables. Finally the parameters in the models are evaluated using the three stages.
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6.2 Heat Balance Equation

If we assume the heat loss is directly proportional to the temperature, 7', then we

can write

dT
- — —~T
0 BR -y

where SR = rate of heat production (scaled), vI' = rate of heat loss (scaled) and
T(0)=0.

6.3 Burning Rate Equation

Simplified from Quintiere and Harkleroad (1984) we have

d
d_]t% = kT as long as R < Ryaz,

where k is a positive parameter and R,,,,; is the maximum burning rate. When R
reaches R4, dR/dt = 0. Further changes in R are controlled by B, hence we can

write

dR
— = f(T, R, B).
dt f( 7R7 )

6.4 Burnt-Out Material Equation

dB
P R,and B(0) =0

so B(t) = f; R(u)du. When B(t) = By, where B, is the total amount of

combustible material,
dR
— = —bR.
dt u

Thus the three differential equations are:

dr

o = BR—~T (6.1)
dR
dB
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where

kT for R < Ryaz

F(T,R,B)=4 0 for R = R un

—bR for B= B,

with initial conditions 7°(0) = 0, R(0) = Ro, and B(0) = 0.

6.5 Solving Equations (6.1), (6.2) and (6.3) in Three

Stages

To solve the three differential equations we need to solve them in three stages, as

the differential equation for dR/dt has three parts.

6.5.1 Stage 1, When R < R, for 0 <t <ty

For small ¢, the three differential equations become

dr

- = —~T 4
o= BR-7 (6-4)
d

d—lj = kT and (6.5)
dB

— = R. 6.6
= (6.6)

Differentiating equation (6.4) we get
d*T dR dr

— = == 6.7
az = Var 6.7

Substituting differential equation (6.5) into differential equation (6.7) we get
a linear homogeneous second order differential equation.

d*T dT
— +y— —BET = .
di? 7 dt A 0 (6.8)

The characteristic equation of equation (6.8) is #? + vz — Bk = 0. There are
two real roots to this equation, the first root is positive, oy, and the second root is

negative, —ay.
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By substituting the eigen values back into the characteristic equation, we
will find relationships between the eigen values and the constants v, 3 and k. These
relationships will be used to simplify equations further in our calculations of the
solution. Since the eigen values are roots of the characteristic equation, we can

write the characteristic equation as:
(z —aq)(z + az) =0.

Multiplying this out

2%+ (g — ap)ax — avpag = 0.

Now equating coefficients with the original characteristic equation.
Y=g —a (6.9)

ﬁk = 19 (610)

Now continuing with the solution for temperature. The general solution for
the temperature is

T(t) = Ae™" + Be™ 2", (6.11)

Differentiating equation (6.11), substituting it into equation (6.4) and using
the initial conditions T'(0) = 0 and R(0) = Ry, we can solve for A and B:

A:ﬂandB:— BEo

a1+ Qo a1+ Qo

Hence

T(t) = —DR0_gant _ SR e
a1+ Qo a1+ Qo

() = IO (ot _ ooy, (6.12)

a1+ Qo

To calculate the burning rate equation we have

dR
— =kT.
dt
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Substituting equation (6.12) into equation (6.5) gives

0
= Ro+ a’jﬂfz? /Ot(ealz e=2%)
~ R+t ijﬁ_l_RZQ et 4 oeleojla;: — (g + 042)]‘

From equation (6.10), since Sk = ajay we can write

OéQ@alt _I_ ale—agt

—1]
a1+ Qo

R(t) = Ro + Ro[

R —a
R(t) = - +0a2 [age™! + aje™ 2. (6.13)

Substituting equation (6.13) into equation (6.6) and integrating gives

araollo o a2 —anty | g
B(t) = aze?tt —aje”? K
(t) ot 042( 2 1 )+ K,
where K is the constant of intergration. Note: % = a?fng (aqe?tt + age2t) > 0.

Hence, T is always greater than 0 in this stage and so is R since % =kT.

6.5.2 Stage 2, When R = R,,,, for t; <t <t

When R reaches R,,,, say at t = t1, the differential equations become

AT

& —~T 14
o BR—~ (6.14)
dR

- 0 (6.15)
dB

- R (6.16)
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Att=ty, B(t =t1) = By and R(t =t1) = R4z, hence
B(t) = Rzt —t1) + B1 (6.17)

Since R = R4, for t1 <t < tg, then differential equation (6.4) becomes a

linear non-homogeneous equation

dT
— +77 =R (6.18)
dt
with solution
T(t) = ﬁRWu — e7t=)y 4oy e (1) (6.19)
gl

where Ty = T'(t = t;).

6.5.3 Stage 3, When B = B,,,, for t > 1,

When B(t) reaches B, say at t = t; we have T'(t3) = T3 and the differential

equations become

dr

- —~T 2
o= BR—7 (6.20)
dR

— —b 21
dB
i 0 sinceB(t > t3) = Bgs- (6.22)

Since R = R4, for (t; < t < t3), this initial condition can be substituted into

equation (6.21) once it is integrated to get
R(t) = Rmaxe_b(t_t2)-

To find the solution of T'(t) we substitute R(t) into the differential equation (6.20)

T
i BRpapel712) — ~T.

Using T'(t3) = 15 we solve to get

T(t) — Tze—ﬁ(t—m) + iRmagge—Wtz [1 _ 6—(b—w)(t—t2)]‘

b—~
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We see that both R and T decay exponentially to zero from their values at

t.

6.6 Evaluation of Parameters

Assuming that the T" and R curves are available, by inspection of the R curve we
obtain the five values tq, t2, Rya2, o, and ts.

From stage 1 (0 <1t < ;)

_ Rty - Ro
T(2)dz
From stage 2 (t1 <t < t3)

T(ty) J{? T(z)dz — [T(t2) = T(t0)] o' T(2)dz
SUR(2)d> ff T(z)dz — ff R(2)dz f{* T(z)d=

6=

and

_ T() fif RB(2)dz = [T(t2) = T(t1)] fy' R(z)dz
5‘1 R(z)dz j;tf’ T(z)dz — ttlz’ R(z)dz fgl T(z)dz
From stage 3 (to <t <3)

R(ty) — R(t3)
ftig’ R(z)dz

6.7 Conclusion

A simplified one zone deterministic model for the growth of a compartment fire
based on physical principles was constructed.

The equations derived in stages 1, 2 and 3 can be made into stochastic
equations by endowing the parameters k, b, 8 and v with probability distributions
or introducing a stochastic forcing function on the right-hand sides of the equations.
The method of using forcing functions was covered in chapter (5) and its use will

be demonstrated in chapter (7).
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Time(t)

t3

Figure 6.1: General features of the temperature and burning rate graphs over time.

The simplified one zone model developed in this chapter is a fuel driven com-
partment fire model. Generally compartment fires must be considered to be oxygen
driven, as they burn in enclosures where the flow of air or the oxygen concentration
are critical for the growth of the fire. For this reason in the next chapter we build

an oxygen driven model.
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Chapter 7

Oxygen Driven Compartment

Fire Model

7.1 Introduction

In this chapter we develop an oxygen driven compartment fire model. Using the
physical laws of conservation of mass, energy and momentum, deterministic differ-
ential equations are developed to model the three variables temperature, oxygen
deficiency, and burning rate. The stability conditions of the differential equations
are investigated and their parameters evaluated by comparing the equations to a run
of the NRCC model. Finally the deterministic equations are made into stochastic
equations using the method in chapter (5).

The compartment is considered to be a room rectangular in shape with equal
and parallel floor and ceiling areas, and the room has a single vent that may or may
not be open at any given time. A vent may be a door, window, leak, or other
openings in the vertical boundaries of the enclosure. We assume that there are no
horizontal vents, i.e., no openings in the floor or ceiling.

Fire, in a basic sense, is an object that releases heat energy into an enclo-

sure. The rising plume gases collect below the ceiling and form a hot, smoky layer.
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This layer may continue to grow while the fire exists. This hot, smoky gas layer’s
temperature is one of the variables to be described as a function of time.

The compartment fire model which we are going to develop is an Oxygen
Driven Zone Model. Zone models are the most common type of physical models
used in engineering. They are widely accepted and applied due to their relatively
simplistic approach to the modelling problem. Other common names for zone mod-
els are control volume or engineering models. The compartment can be divided into
several distinct zones, the greater the number of zones the more complex the deter-
ministic equations become. For simplicity we will consider the compartment to be a
single zone. The layer is considered to be isothermal and composed of homogeneous

gases.

7.2 The Deterministic Model

The basic physical laws used to derive the equations here are also used by Takeda
and Yung (1992) in the derivation of their model. Drysdale (1985), gives a detailed
discussion of these laws in chapters 9 and 10. See in particular Section 10.3.2
”Mathematical models for compartment fire temperatures” where the compartment
is regarded as a calorimeter and its temperature is obtained from a heat balance
equation.

The model which we are about to develop describes the time-varying condi-
tions produced by a fire within an enclosure. The model consisting of three variables:
the gas temperature 1" (degrees Celsius), the rate of fuel burning R (g/min), and
the oxygen fraction in the compartment z.We shall eventually convert z into the
percentage oxygen deficiency D = 23 — 100z. The initial temperature is Ty = 20°C’

and the time ¢ is measured in minutes.
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7.2.1 Notation

The notation used is given in this subsection. The values of the variable parame-
ters are those used in the NRCC model run that were used for calibration. These
particular values refer to a flashover fire. They were chosen because the emphasis

of the model in this chapter is on post-flashover concepts.

Variable Parameters

|4 = volume of compartment m? = 21.6m>.

S = inside surface area of compartment m? = 46.88m?.
A = area of opening m? = 1.6m?2
Bar = total fuel mass kg = 172.8kg.
Ry = Initial burning rate ¢g/min = 8.38¢/min.
h = height of opening m =2m.

Fixed Parameters
p = gas specific gravity g/m? = 490g/m? at 500°C
=1,300g/m? at 20°C

¢, = specific heat of gas kJ/gK =0.001kJ/gK

o = Stefan Boltzman constant = 3.42107%.J /minm?*K*
€ = gas emissivity = 0.015

v = mass of oxygen used up by 1g of fuel = 1.36¢g

7.2.2 The Heat Balance Equation

Heat for ignition can come from many sources: open flame, the sun, electricity,
friction, and so on. The intensity of heat required to start the chemical action
of combustion varies with each type of fuel. This ignition temperature, is defined
as the minimum temperature to which a substance (fuel) must be heated in order
to initiate or cause self sustained combustion independent of another heat source.

Most solid materials have an ignition temperature between 205°C' and 400°C'. These
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temperatures, however, vary with conditions: time of exposure, size and shape of
container, concentration of oxygen, humidity, and others. Wood, for instance, when
subjected to 400°C' for a short time, will normally start to burn. But, if exposed to
a much lower temperature, say 175°C' to 205°C' for about half an hour, it will begin
to smoke and give off gases that are readily ignited.

For combustion to take place most substances must be heated rather rapidly.
After ignition temperature has been reached, burning will continue as long as the
fuel remains above this temperature. The heat to maintain the ignition temperature
is usually produced by the chemical reaction between the oxygen in the air and the
substance that is burning. The amount of heat produced is called the heat of
combustion. Heat of combustion also varies with every type of fuel and is usually
expressed in kilo Joules (kJ). While this unit is important in determining the
amount of potential heat in a quantity of fuel, remember that it does not indicate
the momentary intensity of the fire as it burns. Intensity depends upon the rate at
which oxygen is supplied.

If we have a material that needs less heat to reach ignition temperature than
the material will produce as heat of combustion, we have the possibility of a self-
sustaining combustion. A few substances that are not combustible themselves may
cause heating and if combustible material is present start a fire. The most common
example of this is unslaked lime. When water is added to unslaked lime, the reaction
generates considerable heat: 1150 kJ per kilogram of lime, to be precise.

In simple terms the amount of heat () in a mass m with a specific heat ¢,

and temperature T can be written as
d@Q = me,dT. (7.1)

Equation (7.1) can be written on a total or time rate of change basis. As a time

rate of change basis the equation is

Q  dT

o = Ml (7.2)
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Considering the compartment as a calorimeter, its temperature can be ob-

tained by solving the heat balance equation,

Qroom =Qc — (Q1+ Qu +Q, +Qs), (7.3)

where () roo s is the heat in the room, (). is the heat release due to combustion, );
is the heat loss due to replacement of hot gases by cold air, @), is the heat loss by
radiation through the openings, (J; is the heat stored in the gas volume and @), is
the heat loss through the walls, ceiling and floor.

Using equation (7.2), equation (7.3) can be simplified and written in a time
rate of change basis as

dI" dQ. dQross

M T Tt dt

where the left hand side is the rate of heat change in the compartment, dgtc is the
rate of heat change due to combustion and % is the net rate of heat loss from
the enclosure.

Let us denote the net rate of heat loss from the enclosure by (J, and replace

m by pV. Then the heat balance equation reads

dT
cppV% =HgR - @y,

where Hp is the net combustion heat per gram of fuel, R is the burning rate in
grams per minute and p is taken to be some average gas specific gravity. We can

rewrite the above equation as

= BR— g(7) (7.4)

where § = Hp/c,pV and q(T') = Qr/c,pV.

The Heat Loss (); Formula

In a general sense, heat transfer is the study of energy transfer that takes place

between material bodies due to a temperature difference between the bodies. Heat
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transfer can occur due to conduction, convection, radiation, or any combination of
the three. All three modes are present in compartment fires.

We will consider heat loss to be made up of two components, as the loss of
heat via conduction is negligible relative to the other two forms.

The radiation loss rate (Jr. Thermal radiation involves transfer of heat by

electromagnetic waves confined to a relatively narrow width, wavelengths between
0.4 and 100 pm, in the electromagnetic spectrum. From Drysdale (1985) using the
Stefan-Boltzmann law and replacing 7" by (1'+ 273) to account for us using degrees

Celsius instead of degrees Kelvin, the radiation loss rate is given by
Qr = ea[(T +273)* — (To +273)")(S + A),

where S is the inside surface area of the compartment, A is the area of the opening,
€ is the effective emissivity of the gases and o is the Stefan-Boltzman constant.

The convection loss rate ).. Convection is the mode of heat transfer to or

from a solid involving the movement of surrounding fluid or gas. From Drysdale
(1985) the convective heat transfer coefficient is known to be a function of the fluid
properties, the flow parameters and the geometry of the surface. From Drysdale

(1985), using the empirical relationship first discussed by Newton, this is given by
Qc = CpMy, (T - TO)7

where m, is the ventilation rate in g/min.
The total heat loss rate is ()5, = Qr + Qc¢. Dividing by c,pV we can rewrite

the formula for heat loss as:
q(T) = S[(T + 273)* — (Tp + 273)] 4+ ®(T — Tp) (7.5)

where ¥ and ® are some calibration parameters.

7.2.3 The Oxygen Mass Balance Equation

Most fires draw their oxygen from the air, which is a mixture of approximately 23

percent oxygen 76 percent nitrogen and small amounts of other gases. If a fire burns
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in a closed room the oxygen will gradually be used up and the fire will diminish.
If no additional supply is available, the fire will go out. However, if a limited but
continuous supply is provided (which is often the case) the fire will smoulder.

Since oxygen is so readily available from the air, eliminating the oxygen side
of the fire tetrahedron, refer to chapter (1) for an explanation, to prevent fires is
not always possible. However, one common method of suppressing a growing fire is
by removing the source of oxygen, referred to as "smothering” the fire.

Let the oxygen fraction in the incoming air be y(= 0.23). Then, assuming
homogeneous mixing, from Takeda and Yung (1992), the oxygen concentration in

the gas mixture inside the compartment is

Cde = pxV + ymg,dt — vRdt
T TV L madt + Rdt

In the numerator the first term is the initial amount of oxygen, the second term is
the amount of oxygen entering the compartment and the third term is the amount
of Oy used by the fire. In the denominator the first term is the initial amount of
gas, the second term is the amount of gas entering the compartment and the third

term is the amount of gas produced by the fire. This yields the differential equation

dez  my, (z+v)R
dt  pV pV

Changing x to D = 23 — 100z, we obtain the equation

CZ—? — 5(ky — D)R — puD (7.6)
where 6 = 1/pV, k1 = 100(y+v) and, p = m,/pV. It is assumed that equation(7.6)
applies only as long as the oxygen concentration is above 7 percent. When this value
is reached, it remains steady at that value until the burning rate starts diminishing,
at which point the oxygen concentration recovers exponentially with the same pa-
rameter p as in equation(7.6). In other words, the oxygen deficiency D obeys the
differential equation

dD
= — _uDh
i H
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when the burning rate starts diminishing.
It should be noted that the algorithm just described results in fire curves
which are less smooth than those obtained from the NRCC model in the transition

phase from increasing burning rate to steady burning rate.

7.2.4 The Burning Rate Equation

The differential equation for the burning rate R is based on two assumptions:

1. R is an increasing function of the gas temperature T'. but rises only slowly for

low temperatures.
2. When the oxygen fraction falls below 0.126, the burning rate stops increasing.

Moreover, when most of the combustible material has been consumed, the
burning rate quickly decreases exponentially.
The above features are incorporated in the equation as follows (as long as

there is still some fuel not burning)

dR

—r=alk-D)Z (7.7)

where Z is some function of T" which is slowly increasing for small T'. In this thesis

we use the calibration formula

1

2(1) = 22T\ = )

(7.8)
The amount of fuel burned ( in kg) is
1 ¢
B(t) = — du.
1) = 1o55 /. R(wdu
After B(t) reaches By,q;, R obeys the exponential decay equation
dR
— = —bR.
dt

The initial burning rate Rg must be given.
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It has been demonstrated that modelling air and smoke as ideal gases and
by considering the pressure within the fire enclosure as a constant allows several
attractive simplifications. The computer code to model this compartment fire is
written in a statistical computer package, S-plus, a copy of the code can be found

in appendix A.

7.3 Stability Conditions

The differential equations (7.4), (7.6) and (7.7) developed in section (7.2) are:

dT
S —_BR— (T
o = OR vq(T)
dD
& —5(ky— D)R— uD
7 (k1 JR—
dR
82 k- D)Z
= o )

To investigate the stability condition of the above differential equations, the
system of three non-linear differential equations are reduced to a system of three

linear differential equations if we take ¢ to be small.

dr
PTI BR—y"(T - To) (7.9)
dR N
dD
— =~ & R-—uD A1
5 R—p (7.11)

Equations (7.9), (7.10) and (7.11) can be written in matrix notation as:

dR/dt 0 ak* 0 R —ak*Ty
dr/dt |=| 8 —* 0 T |+ v*To (7.12)
dD/dt & 0 —pu D 0

The characteristic equation of equation (7.12) is
det(B — \I) = 0,
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where B is the square matrix in equation (7.12), A is an eigen value and [ is the

identity matrix. Simplifying the characteristic equation gives

Y
(—p— A =0 (7.13)

Boo=rm=A
= (== N[-AM=7"=A) = Bak™] =0
= (54 N [=Ay" = M+ Bak] =0
= —(u+ N[N+ M~ Bak*] =0 (7.14)
From equation (7.14) we can find the eigenvalues of the characteristic equation:
Al = —H

The second and third eigenvalues are found using the quadratic formula

—v* £\ /v*? + dafk*
A273 = 5 .
Hence
* _I_ *2 _I_ 4oy k*
N = (VT g p )
and
yo = V2 4 4ok
3= 5 .

From above we see that Ay is -ve, Ay is -ve and A3 is +ve. From the theory
of homogeneous systems the solution approaches infinity if and only if at least one
eigenvalue is > 0. Otherwise the solution approaches zero. See Zitecki (1986) for a
detailed discussion on Nonhomogeneous Systems.

As Az is +ve, the solution approches infinity and the system is said to be
asymptotically unstable.

The general solution for an homogeneous system is of the form

X = cuy e’ 4 cquge™ 4 cauge
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Finding the corresponding eigenvectors by substituting the eigenvalues into the char-

acteristic equation (7.14), the general solution of our homogeneous system is

R 0 1
_ DL *2 L Aq Bk* _ ~* VA *2 tdapk*
T —c |0 €“t—l-02 w-l—zwak*-l—aﬁ 6(72 )t
—26*
D 1
—2u+w*—|—\/w*2—|—4ozﬁk*
1
¥+ da Bk —y* (—v*+\/v*2+4aﬁk* )t
tes | T | € ? :
26"

2u—v*+1/7*2 +40 k>
To find the ¢’s we solve the equation E(t) = clgleAlt + czgze&’t + 63L13€/\3t.
were E(t) is
—ak*Ty
v*To
0

The solution shows that the fire increases exponentially until the combustible

material is burnt.

7.4 Comparison With The NRCC Model

The parameters of the three non-linear differential equations (7.4), (7.6) and (7.7)
will be calibrated using a particular run of the NRCC model.

The data from the NRCC model was obtained by executing the program with
the parameter values described in subsection (7.2.1). The output data consisted of
time (¢) incremented in 0.02 minutes, the gas temperature (1), the burning rate
(R), and the oxygen concentration (z). See appendix E for the data from the
NRCC program.

To calibrate the parameters of the non-linear differential equations (7.4),
(7.6) and (7.7) they were made into difference equations, as they cannot be solved

explicitly, and evaluated discretely.
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e The difference equations for the time equation is:
tlr + 1] = t[r] + dt,
were dt = 0.02 of a minute.
e The difference equations for the heat loss equation is:
QL[] = o ((GT[r] + 273)* — (GT[1] + 273)*) + vGT[r], (7.15)

were QL[r] is the heat loss at interval increment r and GT'[r] is the gas tem-

perature at interval increment r.
e The difference equations for the heat balance equation (7.4) is:
Tr+ 1] = GT[r]+ (BR[r] — QL[r])dt, (7.16)
GT[r + 1] = min(1000, T[r + 1]), (7.17)

were T'[r 4 1] is the temperature in the room at interval r+ 1. Equation (7.16)
calculates the temperature for the next interval using the previous tempera-
ture, heat loss and burning rate values. Equation (7.17) is used to ensure that

the gas temperature does not exceed 1000°C.

e The difference equations for the burning rate equation (7.7) is:

B[r + 1] = B[r] + R[r]dt, (7.18)

21r] = a22GTI(1 - 1 (0.0011GT[r])2)’ (7.19)
ifB[r] < B, (7.20)

R[r+ 1] = R[r] + maz (0, (k — D[r])) Z[r]dt, (7.21)
elseR[r + 1] = R[r] — RDECAY R[r]dt, (7.22)

Equation (7.18) calculates the amount of burnt material, B[r + 1], using the

burning rate, R[r]. Equation (7.19) calculates the temperature function, Z[r],
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for the interval r which is used in the calculation of the burning rate value.
Equation (7.20) tests if the combustible material is all burnt, B,,,,;. Equation
(7.21) calculates the burning rate value for the interval r 41 if equation (7.20)
is satisfied. Equation (7.22) is used to calculate the decaying burning rate if
equation (7.20) is not satisfied.

e The difference equations for the oxygen deficiency equation (7.6) is:
D[r 4+ 1] = min(16, D[r]+ (6(k1x — D[r])) R[r]) — uD[r]dt, (7.23)
were D[r] is the oxygen deficiency.

The above difference equations were run with varying values of the parame-
ters through an optimisation algorithm. The values of the parameters were calcu-

lated by minimizing the distance function
A =% (Ty —T)? +c3(Ry — R)* + c3(Dn — D)2, (7.24)

where ¢; = 1073, ¢, = 0.008 and c3 = 23. The values of the ¢’s were chosen so
as to obtain comparable fits for the three variables at their maximum values. See

appendix B for the computer code, written is S-plus, which optimises the distance

function (7.24).
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Figure 7.1: Comparison of the Gas Temperature.

The values of the calibration parameters obtained were as follows:

=25
=0.1125
=0.399

= 1.87521071°

R N B~ RS VR

= 1.52107°

1 =0.58

k =10.4

kq = 158

Brae = 82.5kg

Ry = 280g/min

b = 0.956min~".

A comparison of the time-dependent variation of the burning rate R the temperature
T and the oxygen percentage 23 — D with the corresponding output of the NRCC
model is shown in figures (7.1), (7.2) and (7.3).
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Figure 7.3: Comparison of the Burning Rate.
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7.5 Discussion

Some of the more complex mathematical models evaluate the heat transfer activities
within enclosures at each calculated time step. These models have detailed subrou-
tines that calculate the heat transfer from flames to fuels, from the hot layer to fuel
surfaces, from heated walls and ceilings to fuel surfaces, and so forth. The inclusion
of subroutines increases the model’s ability to successfully model an enclosure fire,
but do so at the expense of long and complex computer codes and run times. Drys-
dale (1985) points out that a simple but acceptable engineering approximation of
the conditions within an enclosure is desired. In this regard, this is a more simplis-
tic approach to the variety of heat transfer activities that are continually occurring
within enclosure fires.

In deriving the simplified equations of our model, we have replaced a number
of parameters which are clearly highly variable by fixed values, and ignored the
effect of certain variables on some other parameters, while retaining the effect of
other variables. This approach has been justified by the fact that the general shape
of the fire curves have been retained. For example, the gas specific gravity p is well
known to be inversely proportional to the gas absolute temperature, but is treated
in our model as constant. Similarly the ventilation rate m, is highly dependent on
the gas temperature, but that effect is ignored. What we propose is to consider only
the dependence of m, on the area A and the height h of the opening in the form
mq = moAvVh. Such a formula is clearly purely nominal, but an appropriate choice
of the calibrating constant mg as well as of the other calibrating constants enables
us to mimic the fire curves of the NRCC model very closely.

The compartment dimensions which clearly affect the size of the fire are the
volume V| the surface area of the walls 5. the area of the opening A and its height

h. Thus, we propose the following nominal formulae for the parameters appearing
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in the three equations of our model:

B = po/V
Y =3(S+4)/V
® = dgAVh
5 =6V
po=poAVh/V.
The form of these formulae is obtained directly from the derivation of the model

equations given above. The calibrating constants from the fitting described in Sec-

tion (7.4) turn out to be:

By =243
Yo =0.8421071°
d, =0.1763

S0 =32.42107°

to = 5.54.
The decay constant for R (taken here to be 0.956) appears to be simply based on
experimental evidence.

As far as the total amount of fuel B,,,; is concerned, the value that provides
the best fit is, as mentioned above, 82.5kg, which is slightly less than half the value
used by the NRCC model. The discrepancy is due to the fact that in the NRCC
model the flame is assumed to spread radially on the top surface of the burning
object with a speed which is independent of geometry. This makes the burning
rate a function of the radius of the burning area. In contrast, in our model ,the
burning rate does not depend on the geometry of the burning surface, only on the
temperature and the oxygen concentration.

A similar argument applies to the burning rate at the start of the fire. The

value used in the NRCC model is 8.38¢/min while the value we use is 280¢g/min.
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7.6 The Stochastic Model

The set of deterministic equations derived in Section (7.2) can be turned into a set
of stochastic differential equations, as described in chapter (5), by adding on the
right-hand side forcing functions which are white noise multiplied by some function
of the variables. The purpose of these forcing functions is to model the intrinsic
variability of the fire phenomenon due to the turbulent behaviour of the hot gases.

Stochastic differential equations are usually written in differential form with
the forcing function being a standard Brownian motion differential dW with inde-
pendent components (each with mean zero and variance dt) multiplied by an appro-
priate function of the variables. The standard form for describing the behaviour of

a set of n coupled variables is
dX + o(X, t)dt = (X, t)dW

where X, o and dW are vectors of length n and 3 is an nxn. matrix. A typical
example of a single-dimensional stochastic differential equation is the “Langevin”

equation developed to model Brownian motion. The equation reads
mdv + avdt = dW

where m is the mass of a free particle, v is the component of the particle velocity
along the z-axis, « is the damping constant and SdW represents the momentum
due to the irregular force exerted on the particle by molecular collisions. See Soong
(1973) for a more detailed exposition of the elements of Stochastic Differential Equa-
tions. Since the future behaviour of the vector X is independent of its past values,
given its present value, it is a Markov vector.

For our purposes, we shall not make « and 3 depend explicitly on the time,
i.e., they will be functions of X only. Moreover, we shall assume at this preliminary
stage that the forcing functions for each of T, D, R are independent. This implies

that the matrix, f is diagonal. Furthermore, it is a plausible assumption that the
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randomness of the fire will increase with increasing temperature. Bearing in mind
that the variance of a scalar forcing function differential 3dW is 5%dt, we obtain the

following set of stochastic equations to describe the fire:

AT — BRdt + ¢(T)dt = f,(T)dW, (7.25)
dR — a(k — D)Zdt = f5(T)dWs (7.27)

where ¢(7') is given by equation (7.5) and Z(T') by equation (7.8). The functions
fi(T), f2(T) and f5(7T') are appropriately chosen increasing functions of 7.

At this point of time, there is a great paucity of information about the
intrinsic variability of enclosure fires, so that a more precise formulation for the
functions fi, fo and fs must await further experimental results specifically designed
to identify these functions. Some experiments are being planned at present.

It remains to tackle the problem of the statistical variability whose source
is our lack of knowledge of the parameters governing the fire. Assuming that we
are dealing with a well-defined enclosure for which the geometry is defined and the
amount and nature of the fuel is accurately known, the most important unknown
parameter is the initial burning rate Rg. Since it is by definition a non-negative
quantity, we propose to assign to it a lognormal distribution. However, at this
point, it is not possible to give any guide-lines for choosing the parameters of that
distribution (i.e. the mean and the variance).

Of course, if the other parameters affecting the fire, such as the geometry of
the compartment, the size of the openings and whether they are open or shut and
the nature, amount and position of the fuel load are also unknown, then further
parameters of the model must be allocated a probability distribution to cater for

the added uncertainty.
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Figure 7.4: Stochastic output comparison of the Gas Temperature.

7.6.1 A simulation illustration

To illustrate the capacity of the model to simulate the intrinsic variability of a fire,
a Monte-Carlo simulation of a fire with the parameters given in Section (7.2) was
carried out, using equations (7.25), (7.26) and (7.27). The functions f; were chosen

as follows:

i(T) = ¢T'/1000
f2(T) = 15¢T/1000
f3(T) = 12¢T/10°.

Figures (7.4), (7.5) and (7.6) are an examples of the output by running the stochastic
equations and plotting the results with the NRCC model results. See appendix C
for the S-plus code used to produce figures (7.4), (7.5) and (7.6).

By varying the parameter ¢, varying degrees of stochasticity may be achieved.

Figures (7.7) (¢ = 50), (7.8) (¢ = 100) and (7.9) (¢ = 150) illustrate the
type of fire curve obtained.

As far as varying the value of Ry is concerned, the general form of the result

can be guessed by remembering that (7', R, D) is a Markov vector and that initially
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Figure 7.5: Stochastic output comparison of the Burning Rate.
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Figure 7.6: Stochastic output comparison of the Oxygen Concentration.
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Figure 7.7: Stochastic output of the Gas Temperature - ¢ = 50.
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Figure 7.9: Stochastic output of the Gas Temperature - ¢ = 150.

all three components increase monotonically, so that any decrease in Ry will just
shift all three curves to the right. Thus, choosing a random value for Ry and a
non-zero value for ¢ will produce curves for T, R and D similar to figures (7.1),

(7.2) and (7.3), but shifted either to the right or to the left.

7.7 Conclusion

The main advantage of our proposed model over the present complex models based
on fluid mechanics is that it is extremely easy to simulate and its output realistically
models the observed behaviour of fires. By realistically we mean that the readings
recorded in an experiment on the gas temperature, burning rate and oxygen fraction
show non-smooth plots. With the addition of reasonable assumptions regarding the
variability of the phenomenon (intrinsic or due to lack of knowledge), the probability
of extreme values of the fire load can be estimated by a Monte-Carlo simulation and
can be used as an input to the probabilistic fire risk analysis of the building under

consideration.
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Chapter 8

Calculating the Upper Quantiles
of Heat Load using W-test

8.1 Introduction

The main projected use of the stochastic fire curves developed in the previous chap-
ter is as an input to modules which will calculate the effect of the fire on proposed fire
barriers, and subsequently trace the possible spread of the fire to adjacent compart-
ments. As an illustration of the kind of result obtainable, one particular measure
of fire severity, namely the "Normalized Heat Load” proposed by Harmathy and
Mehaffy (1982) was studied. For a full discussion see Harmathy (1980). We ignored

the normalising parameters and simply evaluated the variable H defined by

H:/Odet

where f is heat flux penetrating the enclosure boundaries, ¢ is the time and 7 is the
time when the burning rate is reduced to a negligible value.

To calculate the upper quantile of heat load we will cover a statistical test
in Non-parametric Estimation of Failure Probabilities, developed by Hasofer and

Wang (1992), known as the "W-Test’. The W-test enables the failure probability to
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be accurately estimated from a sample, provided the sample size is large enough,
without making any assumptions about the underlying joint distribution.

In this chapter a brief outline of Extreme Value Theory is given, followed by
a description of the W-test, and finally a simulation is run to calculate heat loads

and apply the W-test.

8.2 Extreme Value Theory

Extreme value theory is concerned with probability calculations and statistical in-
ferences connected with extreme values in random samples and stochastic processes.
Environmental extremes and Structural reliability are the two main areas where Ex-
treme Value theory is used. Examples of environmental extremes are river flow, wind
speed, temperature and rainfall. Structural reliability is the study of the strength of
materials where it is the maximum load, the weakest component or part of a system
which is ultimately responsible for failure.

Other areas where extreme value concepts are being increasingly applied
include financial calculations such as probabilities of large insurance claims, mon-
itoring of air pollution (ozone, acid rain, etc.) and some rather more novel ones
such as horse races and athletics records. Finally, there are applications of extreme
value theory in other areas of statistics, such as testing for outliers and change point
problems.

In recent years a lot of research has been conducted on the calculation of
small probabilities of failure. Almost all of the work assumed that the distribution
of the physical variables was multivariate normal. When the joint distribution is
not multivariate normal, Hohenbichler and Rackwitz (1981) advocate the use of
the Rosenblatt transformation to transform the variables to joint normality. It
is then necessary to specify a family of conditional distributions to carry out the
transformation. Provided one stays in the realm of theory, this can be done, at least

in principle. If the vector of physical variables is known only through a sample,
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either by simulation or from field measurements, then it is not possible to calculate

the required conditional probability distributions.

8.2.1 One Dimensional Case

Let the upper e—quantile ¢(¢) of a random variable X be defined by P[X > ¢(€)] = ¢,
where ¢ is some small number. Suppose that we are interested in evaluating the
quantile ¢(e), and the probability distribution of X is not known explicitly. The

only information we have about X is either:

e a random sample of size n, or

e some algorithm for simulating such a random sample.

In classical statistics it is customary to postulate a parametric form for the distri-
bution of X depending on one or more unknown parameters. The validity of the
form of the distribution would be tested by applying some goodness of fit test such
as the chi-squared test. The parameters are then estimated from the sample and
the estimators used to obtain an estimator ¢(¢) of the required quantile.

A typical example of such a procedure would be to assume that X is normally
distributed with mean p and standard deviation o. The parameters p and o are
estimated by i = Y2 X;/n and 62 = Y)(X; — X)?/(n). The quantile ¢(¢) is then
estimated by G(¢) = g + k(e)d where k(e€) is the corresponding quantile of the

standard normal distribution.

8.2.2 Brief Mathematical Description of Extreme Value Theory

Suppose X1, Xg,---, X,, is a random sample from the distribution function F'(z).
Let Xy, Xon, -+, Xy, be the corresponding descending order statistics, satisfying
Xin > Xop > -+ > X, Then, of course, Xy, is the maximum of Xy, Xo,---, X,

and

0 if F(z) <1
lim P(Xy, <z)= lim F"(2) = (8.1)
el el 1 if Fz) = 1.
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We are interested in finding a sequence of real constants «,, and b,,,n= 1,2,- - -
such that F”(a,x+b,,) converges (weakly) to a non-degenerate distribution function
D(z). If such a sequence exists, the distribution function F(z) is said to belong to
the domain of attraction of the extreme value distribution D(z). The sequences a,
and b, are called the coefficients of attraction of F(z).

The central result of extreme value theory is that the distribution D(z) must

be, up to a change of scale and origin, of the form
Dafa) = eap[~(1 + az) "]
e For « =0, D,(z) is defined as

Do(z) = lim D, ()

a—0
= exp[— exp(=2)], —00 < @ < o0
This distribution is known as Type I (or Gumbel) extreme value distribu-
tion. The Negative Exponential, Normal, Exponential, Weibull, Lognormal,
Rayleigh and Gamma (including chi-square), distributions belong to the do-

main of attraction of Type 1

e For a > 0,

exp|—(1 + azx =121 forz > —1/a
T e (R O R <
0 for z < —1/a.
This distribution is known as Type Il extreme value distribution. The Cauchy,

Pareto and t-distributions belong to the domain of attraction of Type II.

e For a < 0,

1 forz > —1/a
D,(z) = / (8.3)
exp[—(1+ azx)'/?] forz < —1/a.
This distribution is known as Type Il extreme value distribution. The Uni-

form and Negative Gamma (i.e. the distribution of -Y where Y is Gamma

distributed) belong to the domain of attraction of Type III.
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It is easy to see that if X has distribution Dg(z) then
Y = [ezp(aX) — 1]/«

has distribution D, (z) and conversely, if ¥ has distribution D,(z), then
X =n[(1+aY)/?]

has distribution Dg(z).
The above theory has been developed in terms of the distribution of the maxi-

mum of a sample. If we are interested in the asymptotic properties of the minimum of

the sample, we simply use the fact that min(Xy, Xg,---, X)) = —maa(— X1, —Xg, -

and modify the equations appropriately.

It should be emphasised that although the Type I distribution belongs to the
continuum of extreme value distributions, as shown above, it differs fundamentally
from Type Il and Type III and has to be treated separately. In essence, a Type |
variable basically behaves like the logarithm of a Type II or Type III variable.

8.3 Wang’s Procedure : W-Test

The W-Test is a non-parametric test in extreme value theory used to calculate the
upper and lower quantiles of a measure. In this section the major concepts and the
procedure of the W-Test from Hasofer and Wang (1992) is outlined.

8.3.1 Estimation of High Quantiles for Type I

Using Weissman’s estimator which is an asymptotically minimum variance estimator
G(¢€) for the quantile ¢(€) based on the top k order statistics X1, X2n, ..., Xgn when
F(z) belong to the domain of attraction of Type I. It is given by

j(e) = aln(k/ne) + Xy,
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where
k

i= (" Xin)/k = Xp.

=1
Because it is linear in the order statistics, this estimator is also the Best Linear

Unbiased Estimator (“BLUE”) of ¢(¢).

8.3.2 Test for Extreme Value Domain of Attraction

Before Weissman’s estimator can be applied, it must be determined that the hypoth-
esis that F'(z) belongs to the domain of attraction of Type | is consistent with the
relevant data, namely the high order statistics of the given sample. If that hypothe-
sis is rejected, a suitable transformation of the variable studied must be carried out
to fulfill the above requirement. Hasofer and Wang (1992) have developed a simple
but effective statistic (based on the top k order statistics) to test the hypothesis
that F'(z) belongs to the domain of attraction of Type I. It is denoted by W and is

given by the formula

W= k(Xk_ Xn)® (8.4)
(k= D2 (X = Xip)?]
where i
X = (3 Xjn)/k.

The W-test can be considered as a generalisation of the Shapiro-Wilk test of nor-
mality. It is easy to see that W is invariant under a linear transformation of X,
(which will apply the same linear transformation to each order statistic).

The null hypothesis is that F'(z) belongs to the domain of attraction of Type
I, while the alternatives are that F'(z) belongs to the domain of attraction of Type
IT or of Type III.

The critical regions of the test are as follows: Let Wy and Wy be the lower
and upper chosen percentage points of W. Then if W < Wy we accept Hy : X
belongs to the domain of attraction of Type II, while if W > Wy we accept Hs : X
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belongs to the domain of attraction of Type III. Otherwise, we accept that X belongs
to the domain of attraction of Type I and use Weissman’s estimator as it is.

The rationale for the above choice of critical regions is as follows: We recollect
that the extreme value domains of attraction can be indexed by a parameter «
varying from —oo to 4 co. a > 0 corresponds to Type Il while o < 0 corresponds
to Type IlI. But it can be shown, see Hasofer and Wang (1992), that as « increases
the distribution of W shifts continuously towards the left. Thus large values of W
correspond to Type III, while low values correspond to Type Il and intermediate
values to Type 1.

The upper and lower percentage points of W (asymptotic for large n) are
given as functions of the number & of high-order statistics, see Table 1 of Hasofer
and Wang (1992). For larger values of k, W may be taken to be normally distributed

with mean 1/k and standard deviation 2/k%/2.

8.3.3 Estimating quantiles for Type III

The most serious departure from Type I occurs when the W test indicates a Type
IIT domain of attraction. This is because in this case the variable X must have an
upper bound. Of course all physical variables are theoretically bounded, but often
the bound is so high that it is of no practical significance (e.g. wind velocity) and
the variable may be assumed to be unbounded. However, some load variables have
a practically significant upper bound, e.g. rainfall and earthquake magnitude. On
the other hand, practically all resistance variables have a significant lower bound,
simply because they cannot be negative.

Let X have a finite upper bound wg, and let as before Xy, > Xo, > --- >
Xin be the k top order statistics from a sample of size n. Clearly we must have
wo > Xi,.. It can be shown that the limiting distribution of the Y, = —in(wg —
Xin) (1 =1,...,k), is after a transformation of scale and origin by a suitable pair

of sequences, the limiting distribution of the top k order statistics corresponding
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to Type 1. We recollect that the statistic W is invariant with respect to a linear
transformation of the order statistics, and is thus only a function of the X, and of
the additional parameter wy.

To estimate wg we use a recently developed method called the “estimating
equation method”. This consists in finding a function G of the sample and of the
required parameters that has zero mean (when the parameters take the correct
value) and then solving the equation G' = 0 for the parameters. Special cases of
the “estimating equation” method are the method of moments, the method of least
squares and the method of maximum likelihood. One great advantage of the method
is that it is often possible to find a G that excludes some nuisance parameters,
thus considerably simplifying the form of the estimators. Let Y (w) be the vector

—In(w — X14), -+, —In(w — Xg,). We shall take as an estimating function for wy.
G = WIY ()] - BOWIY (@)oo = wo).

Clearly F(G') = 0 when w = wy. Also, for large k, we have approximately £'(W/w =
wp) = 1/k. Simulation work indicates that this value can be used in the estimating
equation for k as low as 10.

The important fact that gives the proposed method the edge over other
methods which have been proposed to estimate wqg is that if the W-test rejects the
null hypothesis that X belongs to the domain of attraction of Type I in favour
of the alternative that X belongs to the domain of attraction of Type Il with a
significance level of less than 20 percent, then our estimating equation has always a
unique solution. This follows from the properties of W given in Hasofer and Wang
(1993):

Indeed, it is then clear that W[Y (w)] increases monotonically from 1/(k —1)?
which is less than E(W[Y (w)]|lw = wo) to W (X, ..., Xp,) which is greater than
Wu > E(W[Y (w)]|w = wp) for k > 3, so that our equation has a unique solution.
Moreover, it can be shown that the obtained estimator is consistent as k tends to

infinity, see Hasofer and Wang (1993). In the reference just quoted will be found
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numerous simulation results which indicate that the proposed estimation method
for wp as well as for the high quantiles of the variable under study is efficient and
easy to use.

High quantiles in the situation under consideration are obtained by carrying

out the transformation

Y, = ln(wo - Xm)7

where &g is the obtained estimator of wy, evaluating the required quantile of Y by
using the Weissman estimator, and then carrying out the reverse transformation to

obtain the estimator of the quantile of X.

8.3.4 Estimating quantiles for Type II

When the W-test indicates that X is in the domain of attraction of Type II, this
is not as critical as in the case of the domain of attraction of Type III. Indeed,
the sequence a,, may be taken to be null without affecting the asymptotic results.
Thus, the limiting distribution of Y;, = In(X;,) will be of Type I and the Weissman
estimator may be applied to it.

However, in the practical application of the method, where the asymptotic

theory is applied to finite samples, this approach is unsatisfactory on two counts:

1. A quantile estimator should be invariant under translation, in the sense that
if the underlying variable is increased by some amount Xy then the quantile
estimator should be increased by the same amount. This is clearly not the

case with the algorithm just described.

2. There is no good reason to believe that all sample values will be necessarily
positive. For example, our sample may measure sea levels below some refer-
ence level. If some sample values are negative, taking logarithms will not be

possible.
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For the above reasons, we advocate the use of the transformation Y;,, = In(X;, —wo),
with wg < Xi,, when the W-test rejects the null hypothesis that X belongs to the
domain of attraction of Type I in favour of the alternative that X belongs to the
domain of attraction of Type II. We use again the estimating function method to
obtain an estimator of wg. Let Y (w) be the vector In(Xy, — w), ..., In( Xk, — w). As

previously, we shall take as an estimating function for w
G = WY (@)] = BOVIY ()] = w).

Clearly E(G) = 0 when w = wq. Also, for £ > 10, we still have approximately
EWlw=uwy) =1/k.

Here W (Xy,, -+, Xgp) is less than E(W[Y (w)]|w = wp), since it is less than
Wi, at a significance level of less than 20 percent. Also, E(W[Y (w)]lw = wg), which
is approximately 1/k for large k, is less than unity and this ensures the existence
of a unique solution for the estimating equation. As for Type III, it can be shown
that the obtained estimator is consistent as k tends to infinity, see Hasofer and Li
(1999). In that reference will be found numerous simulation results which indicate
that the proposed estimation method for wg as well as for the high quantiles of the
variable under study is efficient and easy to use. Evidence is also brought out to
show that the assumption that wg = 0 may lead to serious error in finite samples.

High quantiles in the situation under consideration are obtained by carrying
out the transformation

Yin = In(X;n — @0),

where &g is the obtained estimator of wy evaluating the required quantile of Y by
using the Weissman estimator, and then carrying out the reverse transformation to

obtain the estimator of the quantile of X.

8.3.5 The choice of &

There have been two main approaches to the selection of the appropriate sample size

in the one-dimensional case: the “threshold” method and the k top order statistics
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method. In the threshold method some high level u is chosen and only the sample
values above u are considered. In the alternative method it is the number %k of top
order statistics which is chosen. In this chapter attention will be to focused on the
k top order statistics method.

The choice of an optimal value for the number k of high order statistics to be
used involves conflicting considerations. On the one hand, the standard deviation
of the quantile estimator § is approximately equal to 1/k. More precisely

(k—1) =?

ERRE O
where ¢, = In(k/ne), ¢, = q(1/ne) — q(1/n), (e = 2.718...), and Ry = S FZ1(1/n2).

a(q) = cn [Cﬁ

In the formula just given ¢(¢) denotes the true quantile corresponding to
¢, which is of course unknown. However, the standard deviation of ¢ can be esti-
mated from the above formula by replacing ¢(1/ne) and ¢(1/n) by their Weissman
estimators.

Thus, to enhance the precision of the estimation, k should be chosen as large
as possible. However, when k/n is taken too large, bias is introduced by departure
from the asymptotic distribution. To balance the effects of variance decrease against
bias increase the recommendation is, for € < 0.05, k/n = 0.02 for 50 < n < 500 and
k/n = 0.1 for 500 < n < 5,000. In Hasofer and Wang (1992), investigations suggest
that k can be taken to equal approximately 1.5y/n.

It is worth noting that as long as & > ne, ¢ is a monotonically increasing
function of the order statistics, except Xp,. To ensure that the coefficient of Xy,
be positive as well, the additional condition & > 2.718n¢ should be fulfilled. This
will ensure that Lind’s Principle of Reliability and Consistency, Lind (1987), will be
satisfied.

A more sophisticated approach to the determination of the optimal &k has
been proposed by Wang (1995). The proposed procedure treats as a whole the
two problems of determination of the domain of attraction and selection of k. It

consists in calculating for each value of k = 3,4, - - - the value of W based on Xy, >
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Xon > -+- > Xyg,. The values are then plotted against & on a graph, together
with the corresponding values of Wr, and Wy for some chosen significance level.
If the graph of W shows an early downward or upward trend, this is taken as an
indication that the domain of attraction is Type II or Type III respectively. An
appropriate logarithmic transformation is then carried out and a new set of W
values is computed. These transformations, by their very nature, will bring back W
to the region between Wy, and Wy. We then take the optimal k to be equal to the
first value of k for which W leaves the region between Wy and Wy minus one. A
further improvement would be to then recalculate the parameter of the logarithmic

transformation and repeat the procedure.

8.4 Calculating the Upper Quantile of Heat Load

The destructive potential of compartment fires was traditionally measured assuming
that the temperature history of the compartment fire is the primary descriptor of
its severity. As a rule the time integral of the temperature-time curve above some
arbitrarily selected level was taken. Harmathy (1980) rejected this traditional con-
cept and introduced a measure known as ‘heat load’ (H) to measure the destructive
potential of compartment fires. Heat load is defined as the total heat absorbed by

a unit surface area of an enclosure during a fire, and is evaluated by

H:/ fdt,
0

where f is heat flux penetrating the enclosure boundaries, ¢ is the time and 7 is the
duration of the fire.

Some key load-bearing elements of compartment boundaries for example
steel and reinforced concrete depend highly or solely on the maximum tempera-
ture reached. Hence if we are able to quantify the maximum temperature we have a
measure for the destructive potential of a compartment fire. Harmathy and Mehaffy

(1982) state that Harmathy (1980) went on to prove that heat load is a measure of
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the maximum temperature attained by key load-bearing elements of the enclosure
boundary as a result of fire exposure. Hence it is of great importance to be able
to calculate the upper quantile of heat load as it is a measure of the destructive
potential of a compartment fire.

If we were able to assume that the heat load was normally distributed we
could use basic probability theory to calculate the g(€) quantile of heat load. As
this can be shown not to be the case, we demonstrate the use of the non-parametric
estimator of extreme value theory known as, Wang’s procedure to estimate the ¢(c)

quantile of heat load.

8.4.1 Heat load generated by a fire in a compartment

In this subsection the ” Normalized Heat Load” proposed by Harmathy and Mehaffy
(1982) is studied. We ignored the normalizing parameters. The values of heat load
are stored in a vector of length 1500 and the vector is refereed to as hload. The
stochastic model for compartment fires developed by Hasofer and Beck (1995) has
been used for the Monte-Carlo simulation of a compartment fire to calculate heat
load, see appendix D for the S-plus code.

Figures (8.1) and (8.2) show histograms of the values of H based on 1,500
simulations of the stochastic fire model when Ry and B,,,, are fixed and random
respectively. It is interesting to note that for some simulations the fire was extin-
guished at the outset, and for some others the heat load remained low. However,
the main body of the data is bell shaped and there are no particular anomalies at
the upper end.

Using the data for figure (8.1) the mean of H was 8063.5 and the standard
deviation 849.8. A test of normality (Kolmogorov-Smirnov) was applied to the heat
load vector and the normality hypothesis was rejected, even when the outliers at
the lower end were removed. This was clearly due to the non-linearities in the

compartment fire equations. As the normality assumption is rejected we will use
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Figure 8.1: Histogram of Heat Load: Ry and B,,,, fixed.
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Figure 8.2: Histogram of Heat Load: Ry and B,,,, random.
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the non-parametric method, W-Test, to calculate the upper quantile of heat load.

Using equation (8.4)

_ k(X — Xpn)?
(k= DIXho (X = Xin)?)
where i
> (E:j:1lxﬁn)
X = —

and X, is the k" smallest order statistic.
To calculate the W-statistic in Wang’s algorithm we used the statistical pack-

age ‘S-plus’; the function is as follows:

> wtest

function(k)

{

1k <- length(k)

muk <- mean(k)

den <- sum((muk - k)~2)

W <- (1k * (muk - k[11)72)/((1k - 1) * den)
W

}

To calculate the values of W for & = 2,3, ... we wrote a function in S-plus called

WANG

> WANG

function(hload, size)

{

Calculates values of W for WANG’S TESt
W <- rep(0, 30)

for(j in (1:30)) {

order <- hload[(1501 - size[j]):1500]
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Figure 8.3: Graph of original values of W versus k.

W[j] <- wtest(order)
+
W
+

To determine an appropriate value for k, the W-test was applied to the data
with various values of k. The results, together with the 5 percent confidence limits
for W, from Table (4.1) of Hasofer (1996), are plotted in Figure (8.3). From the
plot, the W values show an early upward trend, hence, we take it to be a domain of
attraction of Type I11. Domain of attraction of Type I1I is the most serious departure
from Type 1. The optimal k appears to be k = 40 — 1 = 39 as the 40" value crosses
the upper bound. To estimate the finite upper bound, wg, the ‘estimating equation’
method is used. If Y (w) = {In(w—X1,,), In(w—X3,),...,In(w—Xk,)} The estimating
function of wq is

G=WY(w)] - EW[Y(w)]/w=wo).
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Since for large k E(W/w=wq) = 1/k
G =WIIn(X — Sample)] — 1/k.

This is written as a function in S-plus called W3 and is optimised using the

function uniroot in S-plus.

> W3

function(x, sample)

{

W3 : W(log(x-sample))-1/k

k <- length(sample)

r <- length(x)

y <= rep(0, r)

for(i in 1:r) {

y[i] <- wtest(log(x[i] - sample)) - 1/k
+

y
+

The finite upper bound, wg, was found to be 10,236 for heat load.

The next step is to carry out the transformation
H* = —log, (10,236 — hload),

using the value of wy = 10,236, to transform hload to the domain of attraction of
Type I.

Using the vector H* a new set of W values, W* with various values of k are
plotted. The results are shown in figure (8.4) from which we now conclude that H*
may be assumed to be in the domain of attraction of Type I.

From figure (8.4) the values of W* appear to belong to the domain of attrac-

tion of Type I. The optimum k appears to be £ = 200 — 1 = 199.
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Figure 8.4: Graph of transformed values of W* versus k.

We will now calculate the upper quantile using Weissman’s estimator as we
assume that the cumulative distribution function, F'(z), belongs to the domain of
attraction of Type I.

() = aln(-0) + X,

ne

k
(2 iz Xin)
k

where @ = — Xin

§(0.01) = —6.521523.
Transforming G(€) back to the original heat load we find
3(0.01) = 10,236 — exp(—6.521523) = 9555.977.

Finally some quantiles of H* were calculated, using the Weissman estimator
and the corresponding value of H found. For comparison purposes the quantiles were
also calculated on the assumption that H belonged to the domain of attraction of
Type I, and also on the assumption that H was normally distributed with the mean
and standard deviation given above. The results are given in Tables (8.1,8.2,8.3and

8.4).
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€ Type I || Type 111 Normal
wo = 10,236

0.01 || 9551 9556 10040

0.02 || 9360 9397 9808

0.05 || 9108 9130 9461

Table 8.1: Quantiles when k=100 mean==8063.5 s.d.=849.8

€ Type I || Type 111 Normal
wo = 10,236

0.01 || 9599 9539 10040

0.02 || 9378 9387 9808

0.05 || 9087 9132 9461

Table 8.2: Quantiles when k=199, mean==8063.5, s.d.=849.8

[+ Je=001 [[e=0.02 [e=0.05 ]| e=0.10
40 ] 9538.499 [ 9359.939 [ 9123.895 || 8945.335
45 ][ 9537.836 || 9370.018 || 9148.173 || 8980.355
50 || 9538.812 || 9366.188 || 9137.991 || 8965.367
60 || 9540.862 || 9365.221 || 9133.036 || 8957.395
70 || 9550.402 || 9358.792 || 9105.498 || 8913.888
80 || 9546.818 || 9359.807 || 9112.592 || 8925.582
90 || 9551.911 || 9360.372 || 9107.171 || 8915.632
100 [ 9550.511 || 9360.260 || 9108.761 || 8918.510

Table 8.3: Quantiles Assuming Type |

[k [ e=001[¢=0.02 [¢=0.05 ]| ¢=0.10 |
40 ][ 9095.714 || 9049.518 || 8985.565 || 8934.906
60 || 9190.085 | 9112.799 || 9001.796 || 8910.591
70 || 9252.24 | 9157.739 || 9018.737 || 8901.796
80 || 9329.253 || 9215.526 || 9042.999 || 8893.353
90 || 9420.497 || 9287.178 || 9076.902 || 8887.383
100 [ 9555.977 || 9397.594 [| 9130.21 || 8872.603

Table 8.4: Quantiles Assuming Type 111 with wy = 10,236
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From the above tables it can be seen that quantile estimation in this case
is insensitive to the choice of domain of attraction as well as to the precise value
of k. On the other hand, it is quite clear that quantile evaluation under the nor-
mality assumption is grossly in error. For ¢ = 0.01 the quantile is overestimated
by more than half a standard deviation! Of course, as is to be expected, the error
diminishes as the tail probability increases, but since in reliability applications it
is small tail probabilities which are of interest, the example illustrates dramatically
the superiority of the method advocated in this paper over methods based on the

entire sample.

8.5 Conclusion

In this chapter we provided a brief outline of Extreme Value theory and provided a
detailed account of the W-Test. The measure Heat Load was defined and used to il-
lustrate the superiority of the W-Test compared to assuming the normal distribution

of the data.
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Chapter 9

Simpler Oxygen Driven
Compartment Fire Model

9.1 Introduction

Even though the deterministic General Epidemic model and the fire growth model

proposed by Hasofer and Beck (1995) are not the same, they do show similarity.

Since equation (9.4) relates the three differential equations together, the General

Epidemic model is given by any two of the following three differential equations.

The differential equation describing the susceptibles is

as(e) _
D = s,

the differential equation describing the number of infectives is

dI(t)

“di = BS(OI(t) —vI(1),

and the differential equation describing the number of removals is

dR(1)

7:7]@).
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Since all individuals in the population are either susceptible, infected or removed

and the population is constant in size,
S(t)+ 1(t)+ R(t) = N. (9.4)
The assumptions of the General Epidemic model are:
1. Any individual who has recovered from the disease has permanent immunity.

2. The disease has a negligible short incubation period, no latent period. When

a susceptible is infected it is assumed that he immediately becomes infectious.

3. The assumption of an independent isolated group of given size, subject to

homogeneous mixing.
The fire growth model proposed by Hasofer and Beck (1995) is comprised of:

e The heat balance equation

Cﬁl—f = AR - q(T), (9.5)
where
q(T) = S[(T +273)* — (To + 273)* + o(T — To). (9.6)

e The oxygen mass balance equation

dD

pra O(k1 — D)R — uD, where D =23 -100z. (9.7)

e And the burning rate equation

dR

— = alk=D)Z(T). (9.8)

The deterministic General Epidemic model has a product term S(¢)I(t) appearing
and the model by Hasofer and Beck (1995) has, D(t)R(t) and D(t)Z(T). The two
sets of differential equations are a system of three non-linear differential equations

and need numerical methods to be solved.
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To make the fire growth model set of equations closer to the General Epidemic
model set of equations, we simplify the model by Hasofer and Beck (1995) by making
the assumption that the rate of increase in temperature is a function of the burning
rate only. Thus we can ignore the gas temperature at first and write a set of
differential equations which describe a compartment fire based only on the burning
rate and the oxygen concentration. We then introduce the gas temperature by
finding a relationship between gas temperature and burning rate. We chose to use
this method to reduce the system of three non-linear differential equations to a
system of two non-linear differential equations and to have only one product term
which will make it more like the General Epidemic model. Aligning the Hasofer
and Beck (1995) model closer to the deterministic General Epidemic model will
reduce the computer processing time, and further more if the new set of equations
is aligned close enough to the General Epidemic model we can use the available rich

asymptotic theory of epidemic models.

9.2 Two Variable Oxygen Driven Model

Let R (g/min) be the burning rate and & be the oxygen fraction in the compartment.
If we assume no air comes into the room, the rate of decrease of the oxygen fraction is
directly proportional to the burning rate. Then we can write a differential equation
for the oxygen fraction as

dx

el .
- R (9.9)

where k; is a constant. Also since the rate of increase in burning rate depends on
the current burning rate and the oxygen fraction, the differential equation for the
burning rate can be written as

dR

Tk 1

where ks is a constant. Solving these two equations numerically and plotting them

shows z(t) has negative values, see figures (9.1) and (9.2). As they stand these
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Figure 9.1: Plot of oxygen fraction Figure 9.2: Plot of burning rate

equations are not appropriate for modelling the fire growth within a compartment.
To make physical sense, equations (9.9) and (9.10) are modified. Instead of

writing the oxygen fraction equation as dz/dt = —k; R, we modified it to

d
0 — kR hafeo - 2) (9.11)

where zq is the oxygen fraction at time ¢ = 0 and k5 is a constant. This differential
equation says the rate of the oxygen fraction is decreased due to increased burning
rate, —k1 R, and is increased due to new oxygen coming into the compartment,
ka(zo — ).

Also, instead of writing the burning rate equation, dR/dt = ksz R, we modi-
fied it to

= ks(z — 21)R

where z7 is the oxygen fraction at which the fire is extinguished. This differential
equation says that the rate of change in burning rate is increased with burning rate
increase and oxygen fraction increase above the threshold z;.

To stop (z—z1) from becoming negative we introduce max(0,z), the max(0,z)

can be refined by introducing the function pos(w, 3). The pos(w, ) is a smoothed
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Graphs of Y=X and POS(X, beta=1) Functions

Y=X
I POS(X, beta=1)
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Figure 9.3: Plot demonstrating pos function against Y=X

version of max(0,z).

1

m)L

pos(w, #) = max[0, w(1 —

see figure (9.3) for a graphical illustration of the pos(w, 3) function.

Hence the two differential equations for the compartment fire are:

dz

L bR+ k(o 2) (912
and

dR

T kspos((z — x1), B)R. (9.13)

The initial conditions for equations (9.12) and (9.13) are R(0) = Ry and z(0) =
zo = 0.23. From Hasofer and Beck (1995) the oxygen concentration at which the
fire is extinguished is z; = 0.126.

To simplify equations (9.12) and (9.13) we introduce a change of variables
by dividing the time ¢ by t.,, and R by Rg.

dz

At —k1(R/Ro)teap + kateap(zo — ) (9.14)
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Figure 9.4: Illustation of the path of p

and
d(R/Ro)
d(t/teap)

We represent the new variables as 7 = ¢/t.,, and p = R/Ry and choose t.,, such

= ksteappos((z — 1), B)(R/Ry). (9.15)

that Rokiteqp = p1. Also equating koteqp = 1 and ksteq, = p2, the equations reduce

to:
dz
= et (o —2) (9.16)
and
dp
7y = bapos((z — 1), B)p. (9.17)
Now the initial conditions imply p(0) = 1, since p(t = 0) = R(Itgo) = g—g =1;

o= 2(t =0) =0.23 and z; = 0.126.

9.3 Behaviour

The variable p increases from 1 to p,,., at time 7, see figure(9.4). The parameters

117



Xo

S A

Figure 9.5: Simplified [llustation of «

To and pp,q: are both functions of p; and py. After 79, p remains constant at p,q.
because © < x7.

The variable 2 decreases steadily from 0 to 5. At 7, j—f is negative. We
introduce (j—f)T:TO = —A. Then we have —A = —p1pae + (20 — z1). Note A
depends on pqz, p1 and pa. SO Prar = p%[A + (2o — 21)]-

After 75 the behaviour of z is governed by the equation

dz

E = P1Pmax + ($0 - $)

with initial condition 7 = 79 and z = 2.

The differential equation

dx
+ 2 = —P1Pmar T %o
dr

has a transient solution # = C'e™". and a particular solution # = zg — p1 pmas- Hence
the general solution is

z=Ce 7 + ($0 — plpmax)-
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Figure 9.6: Illustation of the path of «
To find € we substitute the initial condition into the above equation,
T, = Ce™™ + ($0 - plpmal’)

C=e [plpmaac - ($0 - $1)]
= A,

So
z=Ae (777 _ A + 24

— Ae_(T_TO) —|— Ty — A

N R

So the asymptotic value of z is,
Ty =1 — A

= To — P1Pmaz-

See figure (9.6) for an illustration.
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Figure 9.7: Simplified Illustation of R
9.4 Method For Evaluating The Parameters

From the data of the NRCC model run we observe at t = 0, R = Ry and & = zg;
the oxygen concentration reaches its threshold at ¢ = ¢;, and at this point R = Ry
and & = z; the burning rate reaches it maximum value R,,,, at t = {3. Finally,
the lowest asymptotic value the oxygen fraction approaches is @ = 5.

Now ppmar = Rmaz/Ro, which we can calculate. Using ppq.. and xo we

calculate an approximate value of py.

T2 = To — P1Pmaxz

Lo—=T2

which implies p; = P

Knowing p; we can find the value of py using the S-Plus function “approx”
on the simulation results of the S-Plus Two Parameter Model, see appendix (G) for
the code.

Finally we find

togn = —————
r To(Pth)
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where ¢; is observed. Using the relationship

t

T =
tcap

and the observed values when ¢ = t; = 5.66 minutes, * = x1. When z = z{, 7 = 79,
see figures (9.6) and (9.7). Hence g is found from the simulation run in calculating
p2 and t.,, is calculated using
1
tcap — T—O
Using tcqp, Ro, p1 and py we can calculate the parameters %y, ko and k3 of

the differential equations (9.12) and (9.13) using:

P
ey =
}%Otcap
1
ko =
tcap
kg = L2,
tcap

Finally using these parameters we can solve the differential equations (9.12) and

(9.13) numerically using difference equations.

9.5 Fitting The Equation To The NRCC Model

From Hasofer and Beck (1997), at ¢ = 0, 2 = 29 = 0.2299 and R = Ry =
8.38¢/minute; at & = xy = 0.126,¢ = t; = 5.66 minutes and R = Ry = 3,971.18¢g/minute.
Also at t =ty = 8.74 minutes, R = R4, = 7991¢g/minute and the asymptotic value
of = x5 is approximately x5 = 0.0727.

Rpae 7991

mar — = —— = 953.580
P Ry 838

zo— xy _ 0.2299 — 0.0727
Pmar 953.580

= 1.684 x 107

P1 =

From the simulation run py; = 15.7632 and 19 = 5.32.
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To calculate f.,,, we have the relationship 7 = ¢/t.,, or tep = t/7. At

x =1, t=1t; =5.66 and 7 = 79 = 5.32. Hence t.qp = 255 = 1.0639.

We can now evaluate the parameters k1, ko and ks of the differential equation.

I3 1.648x10~* e
"7 Roteap  8.38x1.0639
1

foy = — = = 0.9399
" ey 1.0639
15.7632

fy = L2 = — 14.8164.

teap  1.0639

Hence equation (9.12) and equation (9.13) can be written as

d
d_f — —1.84x107°R 4 0.9399 (2 — ) (9.18)

d
d_]: = 14.8164pos((z — 1), B)R (9-19)

The deterministic differential equations (9.18) and (9.19) are non-linear au-
tonomous systems. They cannot be solved explicitly, so we will use numerical solu-
tions using S-plus.

Before we represent equations (9.18) and (9.19) as difference equations, we
will find the relationship between the burning rate and the gas temperature in the

compartment.

9.6 Gas Temperature Equation

Making the assumption that the rate of increase in temperature is a function of the
burning rate, we can write
dr

=R (9.20)

This says that the rate of change in temperature increases with burning rate and
decreases due to heat loss. We have assumed that the heat loss is a simple linear
function of temperature. This assumption ensures that the differential equation is

a first order differential equation which can be solved explicitly.
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Rewrite the above equation

T
& T =38R
a T =7k

As R(t) is the solution of a non-linear differential equation we will solve equation

(9.20) numerically with equations (9.18) and (9.19).

9.6.1 Parameter Evaluation

When dT/dt =~ 0, T = T4 and R = R,,,,. Substituting this condition into

equation (9.20) we obtain

Yl e = BRmaz- (9.21)
Hence
_ 7Tmax
ﬁ N Rmal’ '

Tinar and R, are constants, and can be obtained from the NRCC model. Due to
this relationship only v needs to be evaluated.

A method for evaluating the parameter v of the model is to use ten points
on the temperature curve of the NRCC model and minimise the sum of the squared
differences between the temperatures at these points.

10

Sum =3 (Tnrec@) — Tpren()” (9.22)
=1

The S-plus algorithm for the above optimisation is given in appendix F.

9.6.2 Parameters of The Temperature Equation

From Hasofer and Beck (1995), at ¢ = 0, 2 = 29 = 0.2299 and R = Ry =
8.38¢/minute; at & = xy = 0.126,¢t = t; = 5.66 minutes and R = Ry = 3971g/minute.
At t =ty = 8.74 minutes, R = R4, = 7991g/minute and © = 29 = 0.0727. The

maximum temperature observed is approximately 990°C" at ¢ = 10 minutes. Hence

990 x v
p= 7991 °
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The ten time and temperature points respectively are (1.00, 48.5), (3.30,
200.2), (4.00, 250.0), (5.00, 345.3), (5.70, 601.5), (6.10, T43.4), (7.00, 848.1), (8.10,
900.7), (10.00, 943.3) and (14.00, 981.8). Using these points with the S-plus opti-
misation algorithm in appendix I gave the following results. Minsum in table (9.1)
is the result of equation (9.22).

From the table (9.1) we see that the optimum estimate of v is
v = 0.855

and as a result

3 = 0.1059.

Hence the differential equation (9.20) is

T
— = 0.1059R — 0.855T (9.23)

To calculate the gas temperature in the compartment with the difference
equations, we calculate 7" at each time step using equation (9.23) with the value of

R at that time step.

9.7 Difference Equations

To compare the non-linear differential equations (9.18), (9.19) and (9.23) with the
NRCC model they are made into difference equations, as they cannot be solved

implicitly, and evaluated discretely.

e The difference equation for the time equation is:
tlr + 1] = t[r] + dt,
were dt = 0.02 of a minute.
e The difference equations for the burning rate equation (9.19) is:
B[r + 1] = B[r] + R[r]dt, (9.24)
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H Values of ~ H Minsum H

0.1 1807086.85716672
0.2 898158.656669525
0.3 483682.646541452
0.4 271985.16012209
0.5 159185.734563122
0.6 99613.7102306882
0.7 70377.7139765986
0.8 59028.9260236807
0.82 58215.4160004428
0.84 57782.1155860546
0.84 57782.1155860546
0.845 57728.8359263009
0.85 57696.482140381
0.855 57684.5314347369
0.86 57692.4737846328
0.865 57719.8115890781
0.87 57766.0593363037
0.875 57830.7432794264
0.88 57913.4011219492
0.9 58414.9094940273
0.92 59169.7939643521
0.94 60153.3510461516
0.96 61343.1287965174
1.0 64261.4879879102
1.1 73940.3347811421
1.2 85801.9505316803
1.3 98797.2756379585
1.4 112254.766612557
1.5 125744.930343411
1.6 138995.857987799
1.7 151839.408233694

Table 9.1: Optimisation Results for the Parameter
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it B[] < B (9.25)
R[r + 1] = R[r] + (14.8164 * maz (0, (z[r] — 0.126)) « R[r]dt), (9.26)
else R[r+ 1] = R[r] — RDECAY R|[r]dt, (9.27)

where RDECAY is a decay constant evaluated in Hasofer and Beck (1995).
Equation (9.24) keeps a record of the amount of fuel burnt, B. If equation
(9.25) is satisfied; the amount of fuel burnt is less than the total amount of fuel
available, By,q,; equation (9.26) is used to calculate the burning rate value for
the interval r 4+ 1. If equation (9.25) is not satisfied; there is no unburnt fuel
left; equation (9.27) is used to calculate the decaying burning rate value for

the intervals following.

e The difference equation for the oxygen concentration equation (9.18) is: If
equation (9.25) is satisfied; the amount of fuel burnt is less than the total

amount of fuel available, B,,,.; equation
z[r+ 1] = =k R[r] + u(z[r], a)dt + k2(0.2299 — 2[r])dt, (9.28)

is used to calculate the oxygen fraction value for the interval r+ 1. If equation

(9.25) is not satisfied; there is no unburnt fuel left; equation
z[r+ 1] = a[r] — p(z[r] — 0.2299)dt, (9.29)
is used to calculate the increasing oxygen fraction value for the interval r + 1.

e The difference equations for the gas temperature equation 9.23) is:

Tlr+ 1] = T[r] 4+ (=0.855T[r]dt) + (0.1059R[r]dt), (9.30)

9.8 Comparison With The NRCC Model

The three non-linear differential equations (9.18), (9.19) and (9.23) have been com-
pared with the data of the NRCC model in section (7.4), see appendix E for the data
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Figure 9.8: Comparison of the Burning Rate.

from the NRCC program and appendix G for the code of the difference equations
using S-plus.

A comparison of the time-dependent variation of the burning rate R, the
oxygen percentage z* 100 and the gas temperature T with the corresponding output
of the NRCC model is shown in figures (9.8), (9.9) and (9.10).

Using the forcing functions for oxygen fraction, burning rate and gas tem-
perature equations outlined in chapter (7) the above equations can be made into

stochastic differential equations.

9.9 Conclusion

The advantage of the compartment fire model in this chapter over the one in chapter
(7) is that this model is simpler i.e. it has fewer parameters to evaluate. The

optimisation algorithm to estimate the parameters of the temperature equation is
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extremely simple and quick in comparison to the optimation algorithm in Hasofer
and Beck (1995). Hence it is easier and quicker to use with Monte-Carlo simulations

in probabilistic fire risk analysis.
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Part 111

OPTIMAL CONTROL OF
COMPARTMENT FIRES
WITH SPRINKLERS
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Automatic sprinkler systems are by far the most important type of fire pro-
tection. They provide a continuous protection against fires by both detecting and
fighting a fire. This part of the thesis has three chapters. The first chapter covers
a brief review of an automatic sprinkler system. In the next chapter we describe a
topic in mathematical theory known as Optimal Control. Finally in the last chapter
we combine the operation of sprinklers and the theory of optimal control to model

the flow of water from sprinklers to minimise water damage.
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Chapter 10

Automatic Sprinkler Systems

10.1 Introduction

An automatic sprinkler installation consists of a water supply connected by pipes
to sprinkler heads. The sprinkler head is a heat sensitive valve, it is the sprinkler
head which automatically detects the fire and as a consequence an alarm is given
and water delivered to the seat of the fire. Thus, the fire is extinguished or kept
under control until the fire brigade arrives. Figure (10.1) is a picture of one of the
commonly used sprinkler heads.

When sprinkler systems are being designed for a building, the building is

classified into one of three hazard classes:

o Futra Light Hazard. Buildings where the amount and combustibility of the

material is low.

o Ordinary Hazard. Buildings involving the handling, processing and storage of
material in which intensely burning fires are unlikely to develop in the initial

stages.
o Futra High Hazard. Buildings with abnormal fire loads.

See FPA (1989) for a more comprehensive account of the hazard classes. Sprinkler
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Figure 10.1: Medium velocity sealed and open spray sprinkler head.

heads are also rated into classes according to their operating temperature. See
section (10.2) for a short outline or Bush and Mclaughlin (1979) for a detailed
account.

The literature on sprinkler systems is very rich and as a result frequent
reference is made to some of these publications for a detailed account of the topic.
To help us with the chapters to follow some general features of automatic sprinkler
systems are briefly described. This chapter is divided into three sections. The first
section provides a brief description of sprinkler heads and their spacing. Then in the
second section some time is spent on the pipework and the water supply. Finally,
in section three some of the major factors which contribute to the fluctuation of the

operating temperature of the sprinkler head are discussed.

10.2 Sprinkler Heads

A sprinkler head is a heat sensitive valve which opens when its heat sensitive element
reaches a specific temperature. Changes in the design of sprinkler systems and their
components have arisen in various ways over the years, both by experience from
within the industry and by requirements from the users and the approving bodies.

The first “modern” sprinkler was the Grinell type of 1922. The standard
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sprinkler head is the result of a complete redesign of the deflectors during 1952
and 1953. This design creates a spray pattern shaped much like an umbrella with
the open side down, the discharge covers a circular area. The first statement of
the relationship between “response time and time constant” occurred in 1957. The
heat sensitive detector was developed fifteen years later and was known as the “fast
response” or “life safety” sprinkler. The second area of development started with
the need to use the water discharged as economically and as effectively as possible,
with the realisation that the spacing of the sprinklers in an array could be increased
considerably without danger of the fire “getting away” once it was surrounded.
The result was the so called “spray” sprinkler which had a much larger deflector
plate than the conventional sprinkler, designed to throw the water further and more
uniformly than the previous ones. The third area of development has arisen because
of the requirement to use sprinklers in places where their appearance has been
important, such as in hotels, and public places. This has led to more smaller and
decorative sprinklers being made.

According to Bush and McLaughlin(1979), an ordinary sprinkler will operate
at temperatures between 54.4°C and 73.9°C. This type is used where the ceiling
temperatures do not exceed 37.8°C. Intermediate sprinklers are used when the ceiling
temperatures do not exceed 65.6°C and operate between 79.4°C and 100°C. High,
extra-high and very extra high rated heads may be obtained for unusual ceiling
temperatures up to 246°C.

There are two basic types of operation, the Frangible bulb and the Soldered
Strut, see figure (10.2). With the Frangible bulb, the sealed glass bulb contains
liquid and a small gas bubble which can accommodate small changes in the volume
of the liquid due to temperature changes. High temperatures cause the liquid to
expand sufficiently to absorb the bubble, the resultant increase in pressure fractures
the bulb, see figure (10.3), allowing water to flow through the pipe work.

With the Soldered Strut sprinkler head, heat melts the solder allowing the
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Figure 10.2: Soldered Strut and Glass Bulb sprinkler heads.

Figure 10.3: Breaking of the glass of the Frangible Bulb sprinkler head.
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Figure 10.4: Spray patterns of Conventional type sprinkler heads.

strut of soldered strut types to part, letting water escape. Solders are alloys of tin,
lead, cadmium, bismuth and antimony.

The water distribution pattern of the head depends on the type of deflector
used. Conventional sprinklers produce a spherical discharge pattern with some of
the water being thrown up towards the ceiling. See figure (10.4)for an illustration of
the water spray pattern of a Conventional Sprinkler head. Spray sprinklers produce
a hemispherical discharge below the sprinkler with little or no water reaching the
ceiling. Side wall sprinklers are situated close to a wall. They deflect most of
the water away from the wall. Figure (10.5) shows pictures of the three different
deflector types.

Sprinkler heads should be spaced so that the area covered by each sprinkler
overlaps that of its neighbour leaving no part of the floor unprotected. The standard
method for arranging sprinklers is to locate them in square or rectangular formula-
tion within the protected area, see figure (10.6). There are regulations according to
hazard classes, specifying the maximum/minimum distance allowed between sprin-
kler heads and their height below the ceiling or roof, see FPA (1989) for details.

The minimum distance is to prevent sprinklers from wetting adjacent heads which
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Figure 10.5: Types of sprinkler head deflectors: Side Wall, Conventional and Spray.
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Figure 10.6: Square or Rectangular spacing of sprinkler heads.
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might result in the cooling of these heads and so prevent their opening.

Sprinklers are suitable protection for all domestic and most industrial and
commercial buildings. They have traditionally been used to protect property. Their
ability to protect life is now also being increasingly recognized. With a few special
exceptions sprinklers should be installed throughout a building because sprinkler
systems are designed to control small fires and not designed to control large fires

which have developed and spread from an unprotected area.

10.2.1 Pipework And Water Supply

Pipework above ground is normally medium grade steel tube. Pipes have different
names according to their position in the system: Range pipes are pipes on which
sprinklers are attached either directly or via short arms. Distribution pipes are
horizontal pipes feeding range pipes. Risers are vertical pipes connecting installation
valves with distribution pipes, or range pipes with distribution pipes. See figure
(10.7) for an illustration of these pipes in the sprinkler system. The sizes of these
pipes are determined by hydraulic calculations, either individually or by reference
to precalculated tables to achieve the designed discharge density over the assumed
maximum area of operation. They vary according to where they are positioned
in the installation and the degree of hazard the installation is designed to meet.
Typical sizes are 20-50 mm internal bore for range pipes and 32-150 mm internal
bore for risers and distribution pipes, see FPA (1989) for a more comprehensive
specification.

Every automatic sprinkler system must have at least one water supply with
adequate pressure and volume to meet its demand. The standards provide a guide
to the amount of water required. For a light hazard occupancy the amount of
water required varies from 1140//min for a small system to 2840(/min for a large
installation. Ordinary hazards require from 2650(/min to 5678(/min, or even more.

Water supplies for a sprinkler system need to be reliable, at a suitable pressure,
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Figure 10.7: Sprinkler system - general layout.

and be able to supply a sufficient flow of water, long enough, to fight the largest
expected fire.

Pressurized water for a sprinkler installation may be obtained from one or
more of: Town mains, preferably fed from both ends. Gravity tank or elevated
private reservoir where pressure is supplied by the height of the supply above the

control valves.

10.2.2 Factors Affecting Sprinkler Operation

The temperature of operation is not constant even for similar sprinkler heads (sprin-
kler heads for the same hazard class). Several factors play an important role in the
variation of the operating temperature of similar sprinklers. According to Nash

(1978) these factors are:
1. Actual operating temperature of sprinkler

2. Thermal capacity of those parts of the sprinkler which affect operation
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3. Ease of transfer of heat from the air to the affected parts of the sprinkler
4. Rate of growth of the fire in terms of its convective heat output

5. Height of the ceiling below which the sprinkler is mounted

6. ’Shape’ of the ceiling, e.g. flat, paneled, concave, north-light

7. Thermal qualities of the ceiling assembly

8. Distance between sprinkler and ceiling

9. Horizontal distance of sprinkler from the fire

10. Any extraneous factors affecting the pattern of flow of the hot gases from the

fire to the sprinkler, e.g. lift shafts and staircases, or venting arrangements
11. Rate of rise of air temperature surrounding the sprinkler.

Factors (1), (2) and (3) are controlled by the design of the sprinkler. Factor (4) de-
pends upon the type of combustible material involved in the fire, method of stacking,
aeration, etc. and can vary enormously with different classes of occupancy and types
of goods. Factors (5), (6), (7), (8), (9) and (10) are controlled by the design of the
building and the layout of the sprinkler array. Their influence, and that of factor (4)
will result in the specific value of factor (11) which will determine, in conjunction
with factors (1), (2) and (3), the actual time of operation of the sprinkler after the
start of the fire.

The glass bulbs are made and filled in various ways by different manufactur-
ers. The quantity of liquid in them, the thickness of glass in the walls, the shape of
the bulbs and the type and condition of the glass used, can vary quite widely be-
tween manufacturers and between the bulbs made to any one ‘nominal temperature
rating” by one manufacturer. These disparities result in a variation of the actual

operating temperatures of different samples of the same type of sprinkler.

140



Glass bulbs are also subject to some degree of ‘aging’ or crystallisation of the
glass under the compression of the assembly and water pressure forces within the
sprinkler; this may also, in time, further increase the range of operating temperatures
of sprinklers of one nominal rating. Some glass bulb manufacturers include special
devices in their bulbs to ensure uniform and regular operation. For example, carbon
particles or a coil of wire in the liquid of the bulb will tend to ensure operation at
a specific temperature, regardless of the rate of rise of temperature.

In the case of soldered-strut type sprinklers, the solder used for the struts is
usually a eutectic alloy of low melting point components, generally bismuth, lead
and tin, with small quantities of cadmium, silver and antimony according to the
melting point required. The eutectic point is sharply defined and a small change
in the composition of the alloy can result in a relatively large change in its melting
point - and hence in the operating temperature of the sprinkler.

Aging of the solder can also produce variations. The first of these is due
to the migration of one or more of the metallic components of the solder into the
parent metal of the strut, with a consequent increase in the melting point of the
remainder. In one extreme case of a soldered-strut type sprinkler manufactured
in 1898, the Fire Research Station found in 1960 that this would not operate after
prolonged heating because the solder had migrated completely into the parent metal
of the strut so that the latter had become virtually a single piece. In other cases,
the crystallisation of the solder - to which these fusible alloys are particularly prone
- has weakened the solder to such an extent that it has collapsed under non-fire

conditions.

10.3 Conclusion

There is a recognition that sprinklers provide a reliable method of controlling fire
spread and raising the alarm, hence, their installation can mean that a lower stan-

dard of structural fire precautions is acceptable than would otherwise be necessary
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for building types which exceed normal compartment size limits. Still adequate
means of escape must be provided, but a good case can be made for fewer and
larger fire-resisting compartments (or compartments of a lower fire resistance stan-
dard) if sprinklers are provided. Greater flexibility in the construction of building
and layout of plant can be achieved at the design stage of new projects if sprinklers
are incorporated.

Two common factors in large fires are a delay in the discovery of the fire
(because the premises were unoccupied) and/or a delay before fire fighting begins.
Sprinklers overcome both factors and are thus extremely successful in keeping in-
cipient fires small and flame damage to a minimum.

An automatic link between the sprinkler system and the fire brigade or a
central alarm depot reduces the possibility of unnecessary water damage resulting
from delay in calling the fire brigade to fires in unoccupied premises. For even if the
fire took ten minutes to respond and if the fire was small enough for the sprinkler
to extinguish the flame then 100’s if not 1000’s of litres of water would be dumped
from the sprinkler into the compartment possibly causing an enormous amount of
water damage.

In order to reduce the water damage after the fire is extinguished, we propose
the use of solenoid valves to vary the water spray rate according to the burning rate

inside the compartment.
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Chapter 11

Optimal Control

11.1 Introduction

Optimal control is about controlling a system in some ‘best’” way. The optimal con-
trol strategy will depend on what is defined as the best way. This is usually achieved
in terms of a performance index or criterion. For example consider sprinklers try-
ing to extinguish a fire inside a compartment. A control problem would be that of
choosing a set of parameters (rate of water spray, the number of sprinklers) so that
some aim is achieved (fire is extinguished). An associated optimal control problem
would be to choose the controls to achieve the aim with, for example, minimum

water or minimum time.

11.2 Functionals

A large number of problems involve finding, subject to varying constraints, an ex-

tremum value of an integral of the form
t2

J = F(z, &, t)dt (11.1)
to

where F' depends on the function z(t), its derivative & = da/dt and the independent

variable t. The function z(¢) is the evolution of the system and is defined for
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t, < t < ty. For a given function, say z(t) = z1(t), equation (11.1) gives the
corresponding value of J, say J = Ji. For a second function, say z(t) = z2(t),
equation (11.1) gives a value of J say J = Jy. In general J; # J3, and we call
integrals of the form (11.1) functionals.

The above problem is solved using a branch of mathematics known as Vari-
ational Calculus.

If the function z(¢) is to have an extremum value, F' must satisfy the equation

d

F,— —
i

;) =0 (11.2)

where F, means 0F/0x and F; means 0F/0&. Equation (11.2) is known as Fuler’s
equation. For a more extensive discussion of Euler’s equation see Burghes and

Graham (1980).

11.3 General Problem

Using Variational calculus it is possible to define and solve the general optimal con-
trol problem when the controls are continuous and unbounded. Often, the problem
is to find the optimal control u(t), where u is a function of ¢, which yields extremal

values of
t2
J = / fo(x,u, t)dt
0
subject to the differential constraint equations
& = fi(x,u,t) (1=1,2,...,n), (11.3)

where x = [#123...2,), and u = [ujug...uy] .

We introduce the Lagrange multipliers, say p;(i = 1,2,..,n) usually called

the adjoint variables and form the augmented functional

ts n
J' = /0 {fo+ ;Pi(fi — @;) }dt.
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We also define the Hamiltonian, H, as

H=/fo+Y pif:

=1

so that
t n
J = / (H — Zpiii)dt.
0 i=1
The integrand F' = H — > p;@; depends on x, u and t, and we form (n + m)

Euler equations, namely

oF d  OF
- — = =1,2, ...
-G =0 (=12
that is,
oH
y = — 11.4
=5 (11.4)
which are known as the adjoint equations; and
oF d  OF
— — —(=—) = =1,2,...
that is,
oH
— =0. 11.5
Jdu; ( )

The optimal solution for x, u and p = [p1, p2, ..., pn]’ is determined from the (2n+4m)
equations given from (11.3), (11.4) and (11.5). If we assume the boundary conditions
2;(0) (1 =1,2,...,n) and 2;(t2) (I =1,2,...,q) are given, then the remaining values
Tat1(t2), 2gq2(t), ..., ,(t2) are free, and so we can apply the free end point condition

oF
Di;

0 (k=q+1,9g+2,...n) at t=t,.

A more detailed explanation of the General Optimal Control problem can be found

in Burghes and Graham (1980).

11.4 Pontryagin’s Principle

In the above explanation we dealt with optimal control problems, where the controls

were continuous and no restrictions were put on the range of possible values of the
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controls. For many practical applications, the control will be bounded, and it might
well be possible to have discontinuities in the control values.

Pontryagin and his colleagues published a general principle (referred to as
a minimum principle) which deals not only with continuous controls but also with
unbounded and possibly discontinuous controls. Pontryagin’s minimum principle
states that on the optimal control the Hamiltonian, H, is minimised with respect to
the control variable, u. Hence for discontinuous and/or bounded control variables
the optimal control is obtained by minimising the Hamiltonian with respect to the
control variable. This can occur at the boundary of the control region.

A typical example of a discontinuous control variable is the Bang-Bang con-
trol which is a control which has a switch (discontinuity) at time ¢ = ¢; and the

control takes only its maximum and minimum values.
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Chapter 12

Optimal Control of Sprinklered

Compartment Fires

12.1 Introduction

Compartment fires are defined as fires in enclosed spaces, typically thought of as
rooms in buildings. As presented by Hasofer and Beck (1995), the three most
important physical factors which describe a compartment fire appear to be the gas
temperature, the burning rate, and the oxygen concentration inside the room.

The gas temperature, T, inside a compartment is discussed usually in growth
stages. All fires manifest an ignition stage but, beyond that, may fail to grow
through all or some of the growth stages listed in Tat and Hasofer (1995).

The burning rate, R, is an ambiguous, though useful expression. Quantita-
tively, it is expressed either as a mass loss rate, kg/min, or as a heat release rate,
kW.

Most fires draw their ozygen, Os, from the air, which is a mixture of ap-
proximately 23 percent oxygen, 76 percent nitrogen and 1 percent other gases. If a
fire is burnt in a closed room the oxygen will gradually be used up and the fire will

eventually diminish. If no additional supply is available, the fire will die out once the
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oxygen concentration reaches about 7 percent. However, if a limited but continuous
supply is provided (which is often the case) the fire will smolder. Smoldering causes
the fuel to vaporise into flammable gases that are only partly burned, since there is
not enough oxygen for complete combustion.

Figures (12.1) and (12.2) show the three factors (7', R, and O3) along in time
as the fire inside a standard compartment develops. The data was obtained from
a run of the NRCC model using the input parameters used by Hasofer and Beck
(1995).

The oxygen concentration affects the growth of the fire at time ¢ & 5.9  mun.
At this time the gas temperature inside the room is over 600°C and the room has
already reached flashover, thus most of the damage by the fire has already been
done. To prevent flashover inside a compartment, one measure of fire safety used is

the installation of wet pipe sprinklers throughout a building.

12.2 Wet Pipe Sprinklers

The automatic sprinkler system is one of the most effective means of fire protection
for both life and property. There is no doubt that increased application of sprinkler
protection throughout a building can significantly reduce fire losses. The main
function of a sprinkler is to detect and control a compartment fire, in the early
stages, before it spreads beyond a limited area, and develops into a flashover fire.
By far the most common sprinkler system is the wet pipe type. A wet
pipe sprinkler system consists of an automatic sprinkler attached to piping that
holds water, and the pipes are connected to a water supply with adequate pressure
and volume to meet its demand. When heat melts the sprinkler’s fusible element,
water is discharged immediately, extinguishing any fire in the area. One of the
significant extinguishing properties of water is cooling, see Marryatt (1988) for the
other extinguishing properties of water. Water cools the surface of the combustible

material to below the point at which the material can produce vapor to support
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combustion. Water also absorbs the heat of combustion so that other material in
the vicinity of the fire is not heated to participate in combustion. For water to have
the maximum absorption effect it must reach the fire as droplets. This is because
all things being equal the rate of heat transfer is proportional to the free surface of
the liquid.

Present fire sprinklers are designed to activate when the temperature inside
the sensor reaches a certain temperature. Once the sprinklers are activated they
continue to spray water at a constant rate until the fire brigade arrives and turns
the water tap off when they believe the fire is out.

With sprinklers operating in this way we can have two major problems. One
is that if the sprinklers fail to activate, the fire will grow to flashover, damage the
entire compartment and put at risk the other compartments in the building. On the
other hand if the sprinklers are activated and spray out the fire, they are generally

left on far too long, and the water causes a lot of property damage as well.

12.3 Property Damage

In the fire literature property damage, PD, in the event of a fire is categorised into

three classes:
e Flame damage, F'D, due to the flames of the fire,
o Water damage, WD, due to the water from sprinklers and
e Smoke damage, due to the smoke produced by the fire.

In this paper we will concentrate on the property damage due to flame damage and
water damage. We will assume that property damage can be written as a linear

sum of the flame and water damages.
PD=0FD+4+ WD (12.1)
where # and ¢ are some calibration parameters.
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Ramachandran (1986), proposed an exponential model for flame damage.
Ramachandran states that experimental evidence supports the scientific theory that
heat output of a fire increases as an exponential function of time, t, and this implies
that the area damaged by direct burning, flame damage area, has an exponential

relationship with duration of burning;

A(t) = A(0) exp[Bata + Bots]

where A(t) is the floor area damaged in t minutes since ignition, A(0) is the floor
area initially ignited, 3, is the fire growth parameter and ¢, is the time, from time
of ignition to the time of fire brigade arrival at the scene of fire; fp is the fire growth
parameter and ¢, is the time, fire brigade arrival at the scene of fire to the time
when the fire is brought under control.

Using the flame damage model proposed by Ramachandran we can define

the flame damage when sprinklers are involved as;
A(t) = A(0) exp[Bit; + Bsts] (12.2)

where (3; is the fire growth parameter and ¢; is the time, from time of ignition to the
time of sprinkler activation and 3, in this case is the fire growth parameter and ¢; is
the time, from time of sprinkler activation to the time when the fire is extinguished.

In the survey of the fire literature, there was no mention of a quantitative
model for water damage. We will consider two functions of the water spray rate
to quantify water damage. First we will assume water damage to be directly pro-
portional to the integral of the water spray rate. This is because it makes sense
to assume the water damage to be proportional to the total amount of water dis-
charged. Secondly we assume water damage to be proportional to the integral of
the square of the water spray rate. This is because when the sprinkler is activated
the discharged water will absorb the heat produced by the fire, vaporise into steam

and escape with the smoke; resulting in very little water damage at the start. Then
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as the fire is brought under control the surplus water will increase and cause the
water damage to increase, hence the non linear function.

As cleaning up water damage is probably just as expensive as flame damage,
one way to minimise the water damage would be to install fire sprinklers which can
vary the amount of water being sprayed. As mentioned in chapter (10) one way
of varying the amount of water would be by controlling the water flow rate using
solenoid valves which are connected to a computer. Minimising the water damage is
a problem of optimal control, which is a branch of mathematics very well researched.

A brief review of the theory of optimal control was presented in the previous chapter.

12.4 Interaction of Burning Rate With Water Discharge
Rate

Let R(t) be the burning rate and u(t) be the rate of discharge of water at time ¢.
To model the use of a wet pipe sprinkler inside a compartment fire we would like
the sprinkler to activate once the gas temperature reaches a given temperature, say
T, at time ¢,.¢. This would correspond to a burning rate Ry. If the water flow and
pressure is adequate to reduce the burning rate, we would assume that the burning
rate will start decreasing from Ry to become zero, fire extinguished, at time ¢...
From the NRCC model graphed in figures (12.1) and (12.2) the burning rate
has an approximate exponential growth until the oxygen concentration becomes
important. This occurs when the gas temperature inside the compartment is over
600°C. Since the activation temperature of the ordinary sprinkler is to be taken
as 73.9°C, as given by Bush and McLaughlin (1979), and this is well below the
600°C, it seems reasonable to assume that the uncontrolled burning rate increases
exponentially with time. This assumption is also made in the Madrzykowski and

Vittori equation, Madrzykowski and Vittori (1992) and the NIST equation, Fleming
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(1993). Thus the uncontrolled burning rate can be modelled by the equation

dR
T BR (12.3)
where § is a positive constant.
We further assume that the sprinkler effect is to reduce the change in burning
rate proportionally to the rate of water flow. We make this assumption as the
availble results are not suited for modelling the relationship between the burning

rate and the water spray rate. Equation (12.3) can be modified to

dR
— _ 12.4
= BR — yu ( )

where v is a positive constant and 0 < u < U,,4z, Where U, 45 is the maximum flow
rate determined by size of the pipe, as given in section (10.2.1).

Using the NRCC model, when we take the T,. to be 73.9°C for an ordi-
nary sprinkler, this corresponds to the sprinkler activating at approximately ¢,.; =

2.0 min and at this stage the burning rate is approximately R =300 kg/min.

12.5 Optimal Control of Sprinklers

The time to control or reduce the burning rate, R, of a compartment fire is dependent
on the activation time and the time required for the suppression agent to become
effective. If the suppression agent is not capable of reducing the burning rate we get
limited control. However, if the suppression agent is capable of stopping the burning
rate from increasing due to the fire, then we get control and if the suppression
agent is capable of decreasing the burning rate then we get extinguishment. This is
illustrated in figure (12.3). The shape of the R curve following ¢,.; will be determined
by the agent and type of system. The paths sketched are there to indicate that R
can continue to increase, level out or decrease.

As mentioned, it would be useful to have the optimum amount of water to

extinguish the fire with the minimum amount of water damage. The solution of the
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Figure 12.3: Burning rate versus time of a compartment fire with an automatic
sprinkler

optimal control problem produces the function to be used to vary the amount of

water being sprayed.

12.5.1 Water damage proportional to total amount of water

If we assume that water damage is directly proportional to the total amount of
water discharged from the sprinklers, our functional, (see the previous chapter for
the definition of a functional) would be the integral of the water discharge,
o]
J = u(t)dt. (12.5)
tact
Given R(t = tye) = Ry, where t,. is the time when the sprinkler has activated and
tewt 18 the time when the fire is extinguished, and R is free at t = 0o, i.e. .z < 00.

We need to calculate u(t), t,. <t < oo, such that the functional is minimised,

subject to the equation (12.4)

dR
’ = BR —yu.

Since there is no restriction on R at the upper end point the optimal control

problem is a free end point optimal control problem, see Burghes and Graham (1980)
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pg. 219. The free end point solution curve will also be the solution to the fixed end
point problem which has the same values as the free end point solution, it will also
satisfy the Euler Equation, see Burghes and Graham (1980) pg. 220.

We use the classical Hamiltonian approach to find the function u(t) to ex-
tinguish the fire with the minimum amount of water. If we introduce a Lagrange

multiplier, say p, we can define the Hamiltonian, H, as
H = u+p(BR - yu).
Using Euler’s equation (11.2) we get p= —0dH/JR = —pp. Hence

p = poe .

Since we are treating this problem as a free endpoint problem we apply the transver-

sality condition p(oco) = 0 which is automatically satisfied, see Burghes and Graham

(1980) pg. 240. So the Hamiltonian can be written as
H=u(l- 'ypoe_ﬁt) + pofBRe™ "L,

Using Pontryagin’s principle, on the optimum control the Hamiltonian must be
minimised. As H is a linear function of u, when we try to minimise H with respect

to w it will attain its minimum value at the boundary, either at u = 0 or v = U, 4.

e Case 1
(1 —vpoe™ ") >0

From figure (12.4), H is a minimum when « = 0, hence

Uopt — 0

When U,,; = 0 equation (12.4) becomes

dR
aU BR.

The general solution to this equation is R = C'e¢”. In this case R will increase

to infinity unless C' = 0. This solution will apply for ¢ > t.p:.
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Figure 12.4: When 1 — ypge=? > 0

lj\:.ﬁTﬁr

Figure 12.5: When 1 — ypge™? < 0
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Case 2
(1 —ypoe™PH) <0

From figure (12.5), H is a minimum when u = U,,4,, hence

Uopt - Umaac .

If we take ¢4 to be the reference point t = 0 and U,y = Uy, equation (12.4)

becomes

dR

— =R - Umaac-

o = PR
The general solution to the above equation is

R = I(@ﬁt + %Umax-

Using the initial condition R(t = 0) = Ry, we can solve for K,

K:&-%@m.

Hence

R (R — %Umm)eﬁt + %Umw when 0 <t < ot

0 when t > t...

(12.6)

The burning rate will go to zero provided U4, > 3Ry /7. This condition forces
the coefficient of the exponential to be negative. The burning rate given by

equation (12.6) is sketched in figure (12.6).

By rearranging equation (12.6) and substituting R = 0 we can calculate the

time for the burning rate, R, to go to zero

ol
1 ﬁUT)’Lal’

tex =—Inlz—7——%5
! ﬁ n[%Umax_Rl

The optimal solution is of the Bang-Bang type

). (12.7)

Umaac when 0 S t < text
U= (12.8)
0 when t > t...

The Bang-Bang solution of u is illustrated in figure (12.7).
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Figure 12.6: Path of the Burning Rate
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Figure 12.7: Bang-Bang Solution of u
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Hence the optimum value of the water damage, .J, can be obtained by substituting

equation (12.8) into the integral equation (12.5),

Jopt - Umawtext-

12.5.2 Water damage proportional to the integral of the square of

the water flow rate

Let R(t) be the burning rate at time ¢ and u(t) be the rate of discharge of water at
time t. The functional can be written as the integral of the square of the water flow
rate

o0

J={ T[u(t)]?dt.

tact

As before, R(t = t,t) = Ry, where t,. is the time when the sprinkler has activated,
tewt 18 the time when the fire is extinguished, and R is free at t = 0o, i.e. .z < 00.

We need to calculate u(t), t,. <t < oo, such that the functional is minimised,

subject to
dR
bl — 12.
o = PR = (12.9)
and
0 S u S Umaac-

Since there is no restriction on R at the upper end point we have an optimal
control problem with an upper free end point. Introducing the Lagrange multiplier,

p, the Hamiltonian, H, is defined as

H = u’ 4+ p(BR — yu).
From Euler’s equation (11.2) p = —% = —p/f. Hence

p = poe 7"

Here again the transversality condition p(co) = 0 is automatically satisfied and the

Hamiltonian can be written as
H=1u- ('ypoe_ﬁt)u + pofSRe™ Pt
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Figure 12.8: Sketch of the Hamiltonian with respect to u

The Hamiltonian is a quadratic in u. The location of the turning point has four
different cases. The sketch of the appropriate curve is given in figure (12.8). For

this quadratic the minimum is at

Uopt = %Poe_ﬁt

where pp must be positive for a meaningful solution.
If we take ¢,.¢ to be the reference point ¢ = 0 and U,,s = py/2 equation
(12.9) becomes

dR Y
2 gp - ~2L
0 PR =77
,)/2

= AR poe™. (12.10)

The general solution to equation (12.10) is
Gt 72 Gt
R=K —poe” 7.
e’ + 13 Poe€
Using the initial condition R(t = 0) = Ry, K = Ry — v%po/48.

R=(R _r eﬁ”t—l—ﬁ e~ Pt when 0 <t < tuy
R= (1 = agpo)e™ + b = ‘ (12.11)

0 when t > t.p.
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Figure 12.10: Exponential solution of u
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For R not to increase to infinity, we must have po > 48R;/y% By rearranging
equation (12.11) and substituting R(t = t.y:) = 0 we can calculate the time for the

burning rate, R, to go to zero

1 Po
tewt = — In[——————].
Qﬁ po — 4%R1
Using the initial conditions we obtain
4ﬁRleﬁtemt

po = 72(€ﬁtemt — e_ﬁte.rt) )
Substituting po into R(t)

Rl eﬁtemt

t
B Rleﬁ ext —Bt
eﬁtemt — e_ﬁte.rt )

e — 6
eﬁtemt — e_ﬁte.rt)

R= (R, )elt 4 ( (12.12)

For equation (12.12) not to increase to infinity, we must have
eﬁtemt

eﬁtemt — e_ﬁte.rt > 1

which is always true. See figure (12.9) for the graphical illustration of equation

(12.12). Now substituting po into Uy

2R1ﬁ€_ﬁt
Uopt = —7(1 20ty (12.13)
provided
2R
Uppt (0) > 1h, (12.14)
g
Hence the maximum value of Uy, Upyap is given by
20R,
Upor = —————. 12.15
’)/(1 — 6_2ﬁte:pt) ( )
We can now write
Uune Pt when 0 <t < tept
Uopt = (12.16)

0 when t > t...

See figure (12.10) for the graphical illustration of equation (12.16).

Hence the optimum value of the water damage, .J, is Jp

Umaac (1 _ e—Qﬁtemt) — &
20 gl

Jopt -
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12.6 Discussion

A large percentage of building fires require only a small number of sprinkler heads
in operation. According to Marryatt (1988), of fires where automatic sprinkler
systems have been involved in Australia and New Zealand 64.55% of fires required
only one sprinkler head in operation and 80.41% of fires required two or fewer
sprinkler heads for extinguishment or control. Marryatt (1988), supports a quote
from the N.F.P.A. Handbook, 13 Edition, that “Fear of water damage comes in
part from the thoughtless emphasis placed upon water damage in news reports of
fires.” However, a large percentage of fires, (according to him about 80%) are small
fires, and the water damage in these cases is far more extensive than the flame
damage. In this chapter we proposed the use of sprinkler heads with a solenoid
valve connected to a computer which will continue spraying water only until the
fire is extinguished. In this way we can optimise the amount of water used and
minimise the water damage. Further research and experimentation is required to
estimate the parameters of these models and to evaluate their appropriateness. In
addition research is needed to clearly define water damage and develop appropriate
equations to quantify water damage. For building owners and insurance companies

this is an area of research which has the potential to save millions of dollars.
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Part IV

THESIS CONCLUSION
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The first two parts of this thesis has tried to satisfy the growing need to
develop more realistic models which couples deterministic and stochastic methods to
take account of uncertainties governing the growth of actual fires in compartments.
In the final part of the thesis we have provided a solution to address the need to
minimise water damage in small compartment fires with sprinklers.

In part 1 of the thesis 1 have covered the stochastic models suggested by
Ramachandran (1991). The epidemic models would have been interesting to de-
velop and apply as they are rich in theory. However, for fire growth in buildings
they have limited physical interpretation. The percolation and contact processes
as a first approximation to fire spread appear fine, but these models are studied
using asymptotic theory, as n approaches infinity. Since there are a small number
of compartments and levels in a building these processes were not applicable for fire
spread. In the final chapter of part 1 we present a method for converting deter-
ministic equations to stochastic equations as the theory of deterministic models are
extensive.

In part 2 of the thesis we have developed three deterministic models based on
the three main factors affecting the growth of compartment fires. The first model
is a one zone fuel driven model. This model does not incorporate the effect of
decreasing oxygen in compartments, which is a critical factor in compartment fires.
The second model is an oxygen driven model which is converted to a stochastic model
using the method in part 1. This model is run through a Mounte Carlo simulation
to calculate the upper quartile of the heat load. The upper quartile of heat load
is calculated using the non-parametric statistic W-Test. This second model has a
tedious optimisation algorithm to calculate the parameters of the model. The third
model is also a one zone oxygen driven with simpler equation to solve. The equations
are simplified by assuming that the oxygen fraction rate is dependent on the burning
rate and the incoming oxygen, and the rate of change in burning rate increases with

burning rate increase and oxygen fraction increase. These two equations are solved

165



together. The rate of change of temperature is assumed to increase with burning rate
and decrease with heat loss, where the heat loss is assumed to be a linear function of
temperature. The advantage of this model is that this model has fewer parameters
to evaluate, and even more, the estimation of the parameters is extremely simple
and quicker than the optimisation algorithm in Hasofer and Beck (1995). As a result
this model is easier and quicker to use in Monte Carlo simulations for probabilistic
fire risk analysis.

In part 3 of the thesis we use optimal control theory to model the water spray
rate from sprinklers to minimise the water damage in small compartment fires. The
results show that the use of sprinkler heads with a solenoid valve connected to
a computer which will continue spraying water only until the fire is extinguished
will reduce the water damage in small fires. For building owners and insurance
companies this is an area of research which has the potential to save them millions
of dollars.

A problem with this thesis is the intended use of the developed models. It is
relatively easy to include or remove effects from a model, making it more complex
or simple as a result. However, methodological guidance is needed in making such
choices. The choice of the degree of approximation is very much helped by knowing
how the model is to be used, the output required of it and the quality and availability
of its sources of data. In this thesis, a number of alternative models are proposed
and described, but there is little basis given for comparison between them, as to
the preferred context, for instance, of their use. In practice, it would be important
that the parameters required for a model should be derivable from real data. Here,
however, parameters have been generated artificially by fitting the model results
to the results of a more complex computer model. The necessary connection with
real data is absent. Without this being present, changing from deterministic to
stochastic does not, on the face of it make sense, except as a demonstration that it

can be done.
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We have taken the approach we have in this thesis due to a lack of exper-
imental and statistical data. We must remember that experimental data for com-
partment fires is very costly and hence slow coming. However, with all these models
further research and analysis of experimental and statistical data is still necessary

for applying and validating these models to practical problems in fire safety.
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Appendix A

Simulation of Oxygen Driven

Compartment Fire Model

FPART7

list(alpha = 2.5, beta = 0.1125, gamma = 0.318948, rho = 1.25,
sigma = 1.875e-010, delta = 0.000015, mu = 0.58, k = 10.4, k1 = 158,

BMAX = 82500, RDECAY = 0.956, time = 25, RO = 280, frac = 0, dt = 0.1)
FCURVE7

function(FPAR7, tmax, dt)
{

FPAR <- FPAR7

alpha <- FPAR$alpha

beta <- FPAR$beta

gamma <- FPAR$gamma
sigma <- FPAR$sigma
delta <- FPAR$delta

rho <- FPAR$rho

mu <- FPAR$mu
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k <- FPAR$k

k1 <- FPAR$k1

BMAX <- FPAR$BMAX

RDECAY <- FPAR$RDECAY

time <- tmax # FPAR$time

RO <- FPAR$RO

n <- round(time/dt, 0)

tt <- rep(0, n)

GT <- rep(0, n)

R <- rep(0, n)

D <- rep(0, n)

B <- rep(0, n)

QL <- rep(0, n)

GT[1] <- 20

R[1] <- RO

D[1] <- 0

B[1] <- 0

tt[1] <- 0

for(r in (1:(n - 1)) {

ttlr + 1] <= tt[r] + dt

QL[r] <- sigma * ((GT[r] + 273)74 - 27374) + gamma * GT[r]
gtlr + 1] <- GT[r] + (beta * R[r] - rho * QL[r]) * dt
GT[r + 1] <- min(1000, gtl[r + 1])

Blr + 1] <- B[r] + R[r] * dt

Z[r] <- alpha * 22 * GT[r] * (1 - 1/(1 + (0.001 * GT[r])~2))
if (B[r] < BMAX) {

Rlr + 1] <- R[r] + max(0, (k - D[r])) * Z[r] * dt

D[r + 1] <- min(16, D[r] + (delta * (k1 - D[r]) * R[r] - mu * D[r]) * dt)
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+

else {

R[r + 1] <- R[r] - RDECAY #* R[r] #* dt

D[r + 1] <= D[r] - mu * D[r] * dt

+

+

02 <- 23 -D

x <- round(dt/0.02, 0) * (1:n)
graphics.off () #par(mfrow = c(2, 2))

y <= round(1/dt, 0)

GT.ts <- ts(GT, start = dt, frequency = y)
R.ts <- ts(R, start = dt, frequency = y)
02.ts <- ts(02, start = dt, frequency = y)
NGT.ts <- ts(FIRE2.1ist$GT[x], start = dt, frequency = y)

NR.ts <- ts(FIRE2.list$R[x], start = dt, frequency = y)

NO2.ts <- ts(FIRE2.1ist$02[x], start = dt, frequency = y)
#postscript(file = "B:GT.ps")

win.graph()

tsplot(GT.ts, NGT.ts, type = "pl", 1ty = c(1, 1))
legend(9.5, 700, "NRCC", lty = 1)

title(xlab = "Time t (min)", ylab = “Gas temp T (deg C.)")
win.graph() #postscript(file = "B:R.ps")

tsplot(R.ts, NR.ts, type = "pl", lty = c(1, 1))
legend(9.5, 11, "NRCC", 1ty = 1)

title(xlab = "Time t (min)", ylab = "Burning rate R (kg/min)")
win.graph() #postscript(file = "B:02.ps")

tsplot(02.ts, NO2.ts, type = "pl", 1ty = c(1, 1))

legend(9.5, 20, "NRCC", 1ty = 1)
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title(xlab = "Time t (min)", ylab = "Oxygen (4)")
}
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Appendix B

Optimisation Algorithm for

Oxygen Driven Compartment

Fire Model

fcurveS8

function(alpha, beta, gamma, sigma, rho, delta, mu, k, k1, BMAX, RDECAY, RO)
{

FPAR <- fpar8 #
#RDECAY <- FPAR$RDECAY
time <- FPAR$time

frac <- FPAR$frac #
#RO <- FPAR$RO

#gamma <- FPAR$gamma
#sigma <- FPAR$sigma
#delta <- FPAR$delta
#mu <- FPAR$mu

#k <- FPAR$k
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#k1 <- FPAR$k1

dt <- FPAR$dt

n <- round(time/dt, 0) + 1

tt <- rep(0, n)

GT <- rep(0, n)

R <- rep(0, n)

D <- rep(0, n)

B <- rep(0, n)

QL <- rep(0, n)

GT[1] <- 20

R[1] <- RO

D[1] <- 0

B[1] <- 0

tt[1] <- 0

SD <- sqrt(dt)

for(r in (1:(n - 1)) {

dWGT <- (frac * GT[r] * rnorm(1l, O, SD))/1000

dWR <- (15 * frac * GT[r] * rnorm(i, O, SD))/1000

dWwD <- (12 * frac * GT[r] * rnorm(1, O, SD))/1000000

ttlr + 1] <= tt[r] + dt

QLLr] <- sigma * ((GT[r] + 273)74 - 27374) + gamma * GT[r]
#gtlr + 1] <- GT[r] + (beta * R[r] - rho * QL[r]) * dt
GT[r + 1] <- GT[r] + rho * (beta * R[r] - QL[r]) * dt + dWGT #<- min(1000, gtl[r + 1])
Blr + 1] <- B[r] + R[r] * dt

Z[r] <- 22 * GT[r] * (1 - 1/(1 + (0.001 * GT[r])"2))

if (B[r] < BMAX) {

R[r + 1] <- R[r] + alpha * max(0, (k - D[r])) * Z[r] * dt + dWR

D[r + 1] <- min(16, D[r] + (delta * (k1 - D[r]) * R[r] - mu * D[r]) * dt) + dWD

180



}

else {

R[r + 1] <- R[r] - RDECAY #* R[r] * dt + dWR
D[r + 1] <= D[r] - mu * D[r] * dt + dWD

}

}

pred <- cbind(GT, R, D)

pred

}

sum3

function(alpha, beta, gamma, sigma, delta, mu, k, k1, BMAX, RO)

{

calc <- fcurve8(alpha, beta, gamma, sigma, delta, mu, k, ki1, BMAX, RO)
minsum <-1e-006*(sum((tot[,1]1-calc[, 1])°2))+0.000084*(sum((tot[, 2] -
calc[, 21)°2)) + 23~ (-2)*(sum((tot[, 3] - calc[, 3]1)°2))

minsum

}
sum4

function(r0)

{

calc <- fcurve8(2.815511, 0.0900053, 0.318948, 1.5e-010, 1.25, 0.0000151634, 0.582113,
minsum<-1e-006 *(sum((tot[, 1]- calc[,11)°2)) + 0.000064*(sum((tot[, 2] -
calc[,2])°2))+23" (-2)*(sum((tot[, 3]-calc[, 3]1)°2))

minsum

¥

test
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function(x)

{

for(r in (1:(length(x)))) {
y <= c(x[r], sum4(x[r]))
cat(y, "\n")

}

}
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Appendix C

Stochastic Oxygen Driven
Compartment Fire Model

fpar9

list(alpha = 2.5, beta = 0.1125, gamma = 0.399, rho = 1.25, sigma

1.875e-010, delta = 0.000015, mu = 0.58, k = 10.4, ki

158, BMAX = 82500, RDECAY = 0.956, time = 25, RO = 280,

frac = 100, dt = 0.1)
fcurve? (fpar9, 25, 0.1)

function(fpar6, tmax, dt)
{

FPAR <- fpar6

RDECAY <- FPAR$RDECAY
time <- FPAR$time

frac <- FPAR$frac

BMAX <- FPAR$BMAX

RO <- FPAR$RO

alpha <- FPAR$alpha
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beta <- FPAR$beta

gamma <- FPAR$gamma

sigma <- FPAR$sigma

delta <- FPAR$delta

rho <- FPAR$rho

mu <- FPAR$mu

k <- FPAR$k

k1 <- FPAR$k1

dt <- FPAR$dt

n <- round(time/dt, 0) + 1
tt <- rep(0, n)

GT <- rep(0, n)

R <- rep(0, n)

D <- rep(0, n)

B <- rep(0, n)

QL <- rep(0, n)

h <- rep(0, n)

h[1] <- 0

GT[1] <- 20

R[1] <- RO

D[1] <- 0

B[1] <- 0

tt[1] <- 0

SD <- sqrt(dt)

for(r in (1:(n - 1)) {
dWGT <- (frac * GT[r] * rnorm(1l, O, SD))/1000
dWR <- (15 * frac * GT[r] * rnorm(i, O, SD))/1000

dWwD <- (12 * frac * GT[r] * rnorm(1, O, SD))/1000000
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ttlr + 1] <- tt[r] + dt

QL[r] <- sigma * ((GT[r] + 273)°4 - 27374) + gamma * GT[r]

hlr + 1] <- hlr] + QL[r] * dt

GT[r + 1] <- GT[r] + rho * (beta * R[r] - QL[r]) * dt + dWGT

B[r + 1] <- B[r] + R[r] * dt

Z <-22 % GT[r] » (1 - 1/(1 + (0.001 * GT[r])"2))

if(B[r] < BMAX) {
R[r + 1] <- R[r] + alpha * max(0, (k - D[r])) * Z * dt + dWR
D[r + 1] <- min(16, D[r] + (delta * (k1 - D[rl) * R[r] - mu * D[r]) *)+dWD

}

else {

R[r + 1] <- R[r] - RDECAY * R[r] * dt + dWR

D[r + 1] <- D[r] - mu * D[r] * dt + dWD

}

}

02 <- 23 - D

x <- round{(dt/0.02, 0) * (1:n)

graphics.off() #par(mfrow = c(2, 2))

y <= round(1/dt, 0)

GT.ts <- ts(GT, start = dt, frequency = y)
R.ts <- ts(R, start = dt, frequency = y)

02.ts <- ts(02, start = dt, frequency = y)

NGT.ts <- ts(FIRE2.1ist$GT[x], start = dt, frequency = y)
NR.ts <- ts(FIRE2.list$R[x], start = dt, frequency = y)
NO2.ts <- ts(FIRE2.1ist$02[x], start = dt, frequency = y)
#postscript(file = "B:GT.ps")

win.graph()

tsplot(GT.ts, NGT.ts, type = "pl", 1ty = c(1, 1), pch = "*")

185



legend(9.5, 700, "NRCC", lty = 1)

title(xlab = "Time t (min)", ylab = “Gas temp T (deg C.)")
win.graph() #postscript(file = "B:R.ps")

tsplot(R.ts, NR.ts, type = "pl", lty = c(1, 1), pch = "#")
legend(9.5, 11, "NRCC", 1ty = 1)

title(xlab = "Time t (min)", ylab = "Burning rate R (kg/min)")
win.graph() #postscript(file = "B:02.ps")

tsplot(02.ts, NO2.ts, type = "pl", 1ty = c(1, 1), pch = "*")
legend (9.5, 20, "NRCC", 1ty = 1)

title(xlab = "Time t (min)", ylab = "Oxygen (4)")

+
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Appendix D

Simulation of Stochastic Oxygen

Driven Compartment Fire

Model for Heat Load

FCURVES

function(fpar6, tmax, dt)
{

FPAR <- fpar6

RDECAY <- FPAR$RDECAY
time <- FPAR$time

frac <- FPAR$frac

BMAX <- FPAR$BMAX

RO <- FPAR$RO

alpha <- FPAR$alpha

beta <- FPAR$beta

gamma <- FPAR$gamma
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sigma <- FPAR$sigma

delta <- FPAR$delta

rho <- FPAR$rho

mu <- FPAR$mu

k <- FPAR$k

k1 <- FPAR$k1

dt <- FPAR$dt

n <- round(time/dt, 0) + 1

tt <- rep(0, n)

GT <- rep(0, n)

R <- rep(0, n)

D <- rep(0, n)

B <- rep(0, n)

QL <- rep(0, n)

h <- rep(0, n)

h[1] <- 0

GT[1] <- 20

R[1] <- RO

D[1] <= 0

B[1] <- 0

tt[1] <- 0

SD <- sqrt(dt)

for(r in (1:(n - 1)) {

dWGT <- (frac * GT[r] * rnorm(1l, O, SD))/1000
dWR <- (15 * frac * GT[r] * rnorm(i, O, SD))/1000
dWwD <- (12 * frac * GT[r] * rnorm(1, O, SD))/1000000
ttlr + 1] <= tt[r] + dt

QL[r] <- sigma * ((GT[r] + 273)74 - 27374) + gamma * GT[r]
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h[r + 1] <- h[r] + QL[r] * dt

GT[r + 1] <- GT[r] + rho * (beta * R[r] - QL[r]) * dt + dWGT
B[r + 1] <- B[r] + R[r] * dt

Z <-22 % GT[r] » (1 - 1/(1 + (0.001 * GT[r])"2))

if(B[r] < BMAX) {

R[r + 1] <- R[r] + alpha * max(0, (k - D[r])) * Z * dt + dWR
D[r + 1] <- min(16, D[r] + (delta * (k1 - D[r]) * R[r] - mu * D[r]) * dt) + dWD
b

else {

R[r + 1] <- R[r] - RDECAY * R[r] * dt + dWR

D[r + 1] <- D[r] - mu * D[r] * dt + dWD

b

b

y <= h[n]/1000

write(y, file = "hload", append = T)

b

fpar6é

list(alpha = 2.815511, beta = 0.0900053, gamma = 0.318948, rho = 1.25,

sigma = 1.5e-010, delta = 0.0000151634, mu = 0.582113,k = 9.7, k1 = 158,

BMAX = 82500, RDECAY = 0.956, time = 25, RO = 279.85, frac = 100, dt = 0.1)

fpar8

list(alpha = 3, beta 0.09, gamma 0.3, rho = 0.9530336, sigma =1.5e-010,

delta = 0.000015, mu = 0.5, k = 11, k1 = 158, BMAX = 85000, RDECAY = 0.8,

time = 25, RO = 280, frac = 0, dt = 0.2)
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Appendix E

NRCC Data

CNT TIME(min) TEMP B.RATE OXYGEN

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017

0.

0.
0.

o O O O O O O o o o o o o o

000

020
040

.060

.080

.100

.120

.140

.160

.180

.200

.220

.240

.260

.280

.300

.320

20.

20.

20.

20.

20.

20.

21.

21.

21.

22.

22.

22.

22.

23.

23.

24.

24.

020 8.380 22.999

187 9.180 22.997

367
561
769
991
228
479
746
029
328
642
974
321
686
068
467

10.

10.

11.

12

13.

14.

15.

16.

18.

19.

20.

21.

22.

24.

25.

017 22.995

890 22.993

799

.744

725
742
795
884
008
169
364
595
862
163
500

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

991
988
986
983
980
977
974
971
967
963
959
955
950
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0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

o O O O O O O O O O O O O O O O O O O o o O o o o o o o

.340
.360
.380
.400
.420
.440
.460
.480
.500
.520
.540
.560
.580
.600
.620
.640
.660
.680
.700
.720
.740
.760
.780
.800
.820
.840
.860
.880

24.
25.
25.
26.
26.
27.
27.
28.
28.
29.
30.
30.
31.
31.
32.
33.
33.
34.
35.
36.
36.
37.
38.
39.
40.
41.
41.
42.

883
317
769
238
725
231
754
295
854
432
027
640
271
920
587
272
974
694
431
185
957
745
551
372
211
065
936
822

26.
28.
29.
31.
32.
34.
35.
37.
39.
40.
42.
44,
46.
47.
49.
51.
53.
55.
57.
59.
61.
63.
65.
67.
69.
72.
74.
76.

871
278
719
194
704
249
827
439
085
765
478
224
003
815
660
537
446
387
360
364
400
467
564
692
851
039
257
505

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

946
941
936
930
925
919
913
906
900
893
886
879
871
863
855
847
838
830
820
811
802
792
782
771
761
750
739
727
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0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073

o O O O o

.900

.920

.940

.960

.980

.000

.020

.040

.060

.080

.100

.120

.140

.160

.180

.200

.220

.240

.260

.280

.300

.320

.340

.360

.380

.400

.420

.440

43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
60.
61.
62.
63.
64.
65.
67.
68.
69.
70.
71.
73.

724
642
575
522
485
461
452
457
476
509
564
613
684
768
864
972
091
222
364
517
681
855
040
233
437
649
871
102

78.
81.
83.
85.
88.
90.
93.
95.
98.
100

103.
105.
108.
110.
113.
116.
118.
121.
124.
127.
130.
132.
135.
138.
141.
144 .
147.
150.

782
088
423
786
177
596
043
517
017
.545
099
679
284
915
572
253
958
688
441
219
019
842
688
556
446
358
291
245

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

716
704
692
679
667
654
641
627
614
600
586
572
557
542
528
512
497
481
466
450
434
417
401
384
367
350
333
315
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0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101

.460
.480
.500
.520
.540
.560
.580
.600
.620
.640
.660
.680
.700
.720
.740
.760
.780
.800
.820
.840
.860
.880
.900
.920
.940
.960
.980
.000

74.
75.
76.
78.
79.
80.
81.
83.
84.
85.
87.
88.
89.
91.
92.
93.
95.
96.
97.
99.

100.
101.
103.
104.
106.
107.
108.
110.

341
588
844
108
379
658
944
237
536
843
155
473
798
128
463
804
149
500
855
214

945
316
691
070
451
836
224

153.
156.
159.
162.
165.
168.
171.
174.
177.
180.
184.
187.
190.
193.
196.
200.
203.
206.
209.
213.

578 216.
219.
223.
226.
229.
233.
236.
240.

220
214
229
264
318
390
482
592
720
866
029
209
405
619
848
093
354
629
920
225

878
224
584
957
343
741
151

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

298
280
262
244
226
207
189
170
152
133
114
095
075
056
036
017
997
978
958
938

544 21.918

898
878
857
837
817
796
776
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0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129

NN N NN RN N RNNNNNNNRNRNDNDNNNNN N NNNNNDNNN

.020

.040

.060

.080

.100

.120

.140

.160

.180

.200

.220

.240

.260

.280

.300

.320

.340

.360

.380

.400

.420

.440

.460

.480

.500

.520

.540

.560

111.
113.
114.
115.
117.
118.
120.
121.
122.
124.
125.
127.
128.
129.
131.
132.
134.
135.
136.
138.
139.
141.
142.
143.
145.
146.
148.
149.

614
007
403
800
200
602
005
410
816
224
633
043
453
865
277
690
102
515
929
342
755
167
579
991
402
812
221
630

243.
247.
250.
253.
257.
260.
264.
267 .
271.
274.
278.
281.
285.
288.
292.
296.
299.
303.
306.
310.
314.
317.
321.
324.
328.
332.
335.
339.

572
005
450
905
370
846
332
827
332
846
368
899
439
986
540
103
672
248
830
419
014
614
220
831
447
067
692
321

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

755
735
714
694
673
652
632
611
590
569
549
528
507
486
465
445
424
403
382
361
341
320
299
278
258
237
216
196

194



0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157

W W W W W w W NDNNNNNDNRNNNDNNDNNNN NN NN

.580
.600
.620
.640
.660
.680
.700
.720
.740
.760
.780
.800
.820
.840
.860
.880
.900
.920
.940
.960
.980
.000
.020
.040
.060
.080
.100
.120

151.
152.
153.
155.
156.
158.
159.
160.
162.
163.
165.
166.
167.
169.
170.
171.
173.
174.
176.
177.
178.
180.
181.
182.
184.
185.
186.
188.

037
443
847
251
652
053
451
848
242
635
026
414
800
184
565
944
321
694
065
433
798
160
519
875
228
578
924
266

342.
346.
350.
353.
357.
361.
364.
368.
372.
375.
379.
383.
386.
390.
394.
397.
401.
405.
408.
412.
416.
419.
423.
426.
430.
434.
437.
441 .

953
590
229
872
517
165
815
468
122
777
434
093
751
411
071
731
391
050
709
367
024
680
335
988
639
287
934
578

21.

21.

21.

21.

21.

21.

21.

21.

21.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

175
155
134
114
093
073
052
032
012
992
971
951
931
911
891
871
851
832
812
792
773
753
733
714
695
675
656
637

195



0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185

W W W W W W W W W W WwWwWw W W W W W W W W W W W W W W W w

.140

.160

.180

.200

.220

.240

.260

.280

.300

.320

.340

.360

.380

.400

.420

.440

.460

.480

.500

.520

.540

.560

.580

.600

.620

.640

.660

.680

189.
190.
192.
193.
194.
196.
197.
198.
200.
201.
202.
204.
205.
206.
208.
209.
210.
212.
213.
214.
216.
217.
219.
220.
221.
223.
224.
226.

606
942
274
603
927
249
566
880
189
495
796
120
449
784
123
469
820
178
541
910
286
668
056
451
852
260
675
097

445,
448 .
452.
456.
459.
463.
466 .
470.
474 .
477 .
482.
487.
491.
495.
500.
504.
508.
513.
517.
522.
526.
531.
536.
540.
545.
20.136 550.
555.213 20.

560.092 20.

219
858
493
125
753
378
999
616
228
836
911
137
400
700
037
412
825
278
770
302
875
490
147
847
591

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

618
599
580
561
542
523
504
486
467
449
430
411
392
373
353
334
315
295
276
256
236
217
197
177
156
379
116
095

196



0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213

N Y N Y Y Y Y Y N Y Y Y N O I S T I o~ N ¢~ TN ¢~ T O Y O B 7 BN o~ BN VNN OV OV BN ¢V N 0%

.700
.720
.740
.760
.780
.800
.820
.840
.860
.880
.900
.920
.940
.960
.980
.000
.020
.040
.060
.080
.100
.120
.140
.160
.180
.200
.220
.240

227.
228.
230.
231.
233.
234.
236.
237.
239.
240.
242.
243.
245.
246.
248.
249.
2b1.
253.
254.
256.
257.
259.
261.
262.
264.
265.
267 .
269.

526
962
406
856
315
781
255
737
227
724
230
745
268
800
341
891
450
019
597
185
783
391
010
639
279
930
592
266

565.
569.
575.
580.
585.
590.
595.
600.
606.
611.
617.
622.
628.
633.
639.
645.
651.
656.
662.
668.
674.
681.
687 .
693.
700.
706.
713.
719.

018
992
015
087
209
383
609
889
223
613
059
564
128
752
438
187
002
882
830
847
936
097
333
645
036
507
062
701

20.

20.

20.

20.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

074
054
033
012
990
969
947
926
904
882
860
838
815
792
770
747
723
700
676
653
629
604
580
555
530
505
480
454
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0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241

N N N Y Y Y Y N Y Y S S S Y Y Y Y N Y Y N N N S S

.260
.280
.300
.320
.340
.360
.380
.400
.420
.440
.460
.480
.500
.520
.540
.560
.580
.600
.620
.640
.660
.680
.700
.720
.740
.760
.780
.800

270.
272.
274.
276.
277.
279.
281.
283.
284.
286.
288.
290.
292.
294.
295.
297.
299.
301.
303.
305.
307.
309.
311.
313.
315.
317.
320.
322.

951
648
357
079
814
562
323
098
887
690
508
342
191
056
937
836
752
686
638
610
601
613
646
701
779
880
006
156

726.
733.
740.
747 .
754.
761.
768.
776.
783.
791.
799.
806.
814.
823.
831.
839.
848.
857.
865.
874.
884.
893.
903.
912.
922.
932.
943.
954.

427
243
152
155
257
459
765
179
703
342
098
977
982
117
388
800
357
066
932
961
161
538
101
857
815
985
376
000

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

429
403
376
350
323
295
268
240
212
184
155
126
096
067
036
006
975
943
912
879
847
813
780
745
711
675
639
603
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0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269

oo oo o0 o0 o0 o0 o0 o o0 o0 Ov o o O o0 oo o o O W o o o

.820

.840

.860

.880

.900

.920

.940

.960

.980

.000

.020

.040

.060

.080

.100

.120

.140

.160

.180

.200

.220

.240

.260

.280

.300

.320

.340

.360

324.
326.
328.
331.
333.
335.
338.
340.
342.
345.
347.
350.
352.
355.
358.
361.
363.
366.
369.
372.
375.
379.
382.
385.
389.
392.
396.
400.

334
538
771
034
328
654
014
410
844
317
832
391
996
650
357
119
940
826
779
805
911
104
391
782
286
917
689
620

964 .868 18.566

975.992 18.528

987.387 18.489

999.068 18.450

1011.
1023.
1035.
1048.
1062.
1076.
1090.
1105.
1120.
1135.
1152.
1169.
1186.
1205.
1224.
1244,
1265.
1288.
1311.
1336.
1363.
1391.
1422.
1455.

049 18.410

350
989
987
367
156
380
071
264
998
316
268
911
306
529
662
806
o077
611
574
163
625
262
463

18.
18.
18.
18.
18.
18.
18.
18.
18.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.

369
328
285
242
197
152
105
058
009
958
906
853
798
741
683
622
559
493
424
353
278
199
115

199



0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297

oo oo oo 0 o0 0o oo oo ov. oo o o ot Oov o0 Oov o0 Oov OO0 o0 o0 o O O O oo O O

.380
.400
.420
.440
.460
.480
.500
.520
.540
.560
.580
.600
.620
.640
.660
.680
.700
.720
.740
.760
.780
.800
.820
.840
.860
.880
.900
.920

404.
409.
413.
418.
423.
429.
435.
442.
450.
459.
472.
498.
524.
546.
566.
584.
601.
616.
629.
641.
652.
661.
670.
677.
684.
691.
697 .
702.

731
050
610
455
646
263
426
321
265
891
869
445
149
360
268
705
470
519
918
808
365
777
223
864
842
274
256
864

1491.
1531.
1576.
1626.
1685.
1754.
1839.
1949.
2106.
2379.
3235.
3505.
3587.
3744.
3971.
4185.
4388.
4580.
4762.
4934.
5097.
5251.
5397.
5536.
5667.
5790.
5908.
6019.

724
708
316
828
134
202
071
336
780
284
572
640
918
784
181
509
412
499
347
500
478
768
833
111
019
948
272
341

17.
16.
16.
16.
16.
16.
16.
16.
15.
15.
15.
14.
13.
13.
12.
12.
11.
11.
10.
10.

9.

~N N 00 0 0 o W

027
932
831
721
600
465
313
135
916
615
017
376
779
202
631
074
539
030
551
103
688

.303

.950

.625

.329

.059

.814

.592

200



0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325

(o) TN > N ) N ) B ) N o> NN o> N o> NN e N e e N ) N ) N © ) N o> BN e ) N o) N o) N e T e N e B © ) N o B © ) I > B ¢ 2 B ¢ 2 N O

.940

.960

.980

.000

.020

.040

.060

.080

.100

.120

.140

.160

.180

.200

.220

.240

.260

.280

.300

.320

.340

.360

.380

.400

.420

.440

.460

.480

708.
713.
717.
722.
727 .
731.
735.
739.
743.
747 .
750.
754.
757.
761.
764.
767 .
770.
774.
777 .
779.
782.
785.
788.
790.
793.
795.
798.
800.

160
193
999
608
043
322
459
467
354
128
820
412
908
310
623
850
992
055
040
950
790
560
262
899
473
986
439
836

6124.
6224.
6318.
6407 .
6491.
6571.
6647 .
6719.
6787.
6851.
6912.
6969.
7024.
7075.
7124.
7170.
7214.
7256.
7295.
7332.
7367.
7400.
7432.
7462.
7490.
7517.
7542.
7566.

490
033
271
484
942
899
592
251
091
313
113
671
161
746
582
814
583
017
243
378
534
815
323
151
389
121
429
387

®» o o o0 o0 ;v o g1 O O O O O Oy O O O OO OO OO OO OO OO O N NN

.391
.210
.048
.903
L7773
.658
.555
.465
.386
.316
.256
.204
.159
.121
.089
.063
.041
.024
.011
.001
.995
.991
.990
.991
.994
.999
.005
.013
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0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353

~N N N O O Yy o,y Oy O

.500
.520
.540
.560
.580
.600
.620
.640
.660
.680
.700
.720
.740
.760
.780
.800
.820
.840
.860
.880
.900
.920
.940
.960
.980
.000
.020
.040

803.
805.
807.
809.
812.
814.
816.
818.
820.
822.
823.
825.
827.
829.
831.
832.
834.
836.
837.
839.
840.
842.
843.
845.
846.
848.
849.
850.

178
467
704
891
029
122
168
171
131
050
929
770
574
341
074
772
437
071
674
246
789
304
791
252
687
096
482
845

7589.
7610.
7630.
7650.
7668.
7685.
7701.
7717
7731.
7745.
7758.
7771,
7783.
7794 .
7804 .
7814.
7824 .
7833.
7841.
7849.
7857.
7864 .
7871.
7877.
7883.
7889.
7894 .
7900.

069
542
869
113
332
579
906
364
998
851
966
382
136
263
797
770
211
149
610
621
204
383
180
614
705
472
931
099

(o) TN > N ) N ) B ) N o> BN o) N o> NN e N e N ) N ) N ) N o> BN o) N o) N o> N e e N B ) N ) N ) I ¢ BN o> BN ¢ BN ¢ )

.022
.032
.043
.055
.068
.081
.094
.108
.123
.138
.153
.168
.184
.200
.215
.231
.247
.263
.279
.295
.311
.327
.343
.358
.374
.390
.405
.420
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0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381

~N N N N N N N N N N NN NN NN NN NN NN NN NN NN

.060

.080

.100

.120

.140

.160

.180

.200

.220

.240

.260

.280

.300

.320

.340

.360

.380

.400

.420

.440

.460

.480

.500

.520

.540

.560

.580

.600

852.
853.
854.
856.
857.
858.
859.
860.
862.
863.
864.
865.
866.
867.
868.
869.
870.
871.
872.
873.
874.
875.
876.
877.
878.
879.
880.
881.

185
504
800
075
330
564
778
972
148
306
446
568
674
763
835
893
935
962
975
973
958
928
886
831
763
683
590
486

7904.
7909.
7914.
7918.
7922.
7925.
7929.
7932.
7935.
7938.
7941.
7944 .
7946.
7949.
7951.
7953.
7955.
7957.
7959.
7961.
7962.
7964 .
7965.
7967 .
7968.
7969.
7970.
7972.

991
623
008
159
089
809
331
666
822
811
640
318
853
253
526
677
714
642
467
195
831
379
845
233
547
791
968
083

(o) TN > N ) N ) B ) N o> BN o) N o> NN e N e N ) N ) N ) N o> BN o) N o) N o> N e e N B ) N ) N ) I ¢ BN o> BN ¢ BN ¢ )

.436
.451
.466
.480
.495
.510
.524
.539
.553
.567
.581
.594
.608
.621
.635
.648
.661
.674
.686
.699
711
.724
.736
.748
.760
771
.783
.794
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0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409

® o o ™ W W W o o ~N ~N ~N N ~N N ~N ~N ~N ~N N ~N N ~N N ~N ~N N~

.620
.640
.660
.680
.700
.720
.740
.760
.780
.800
.820
.840
.860
.880
.900
.920
.940
.960
.980
.000
.020
.040
.060
.080
.100
.120
.140
.160

882.
883.
884.
884.
885.
886.
887.
888.
889.
889.
890.
891.
892.
892.
893.
894.
895.
895.
896.
897.
897.
898.
899.
900.
900.
901.
901.
902.

370
243
105
956
796
627
446
255
055
846
627
399
162
916
661
398
127
847
560
265
962
651
333
007
675
335
989
635

7973.
7974 .
7975.
7975.
7976.
7977.
7978.
7979.
7979.
7980.
7981.
7981.
7982.
7982.
7983.
7983.
7984 .
7984 .
7984 .
7985.
7985.
7985.
7986.
7986.
7986.
7987.
7987.
7987.

139
138
083
979
827
629
389
108
789
434
044
622
168
686
177
641
080
496
889
262
615
949
265
564
848
116
371
611

~N N NN NN NNy oy oy Oy O

.806
.817
.828
.839
.850
.860
.871
.881
.892
.902
.912
.922
.932
.941
.951
.961
.970
.979
.989
.998
.007
.016
.024
.033
.042
.050
.059
.067
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0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437

o © o o0 o0 o« W o o o o o o o W W W o o o o o o o o oo o o

.180
.200
.220
.240
.260
.280
.300
.320
.340
.360
.380
.400
.420
.440
.460
.480
.500
.520
.540
.560
.580
.600
.620
.640
.660
.680
.700
.720

903.
903.
904.
905.
905.
906.
906.
907.
908.
908.
909.
909.
910.
911.
911.
912.
912.
913.
913.
914.
914.
915.
915.
916.
916.
917.
917.
918.

275
909
536
157
771
380
982
578
169
754
333
907
475
038
596
148
695
238
775
307
835
358
876
390
899
403
903
399

7987.
7988.
7988.
7988.
7988.
7988.
7988.
7989.
7989.
7989.
7989.
7989.
7989.
7989.
7990.
7990.
7990.
7990.
7990.
7990.
7990.
7990.
7990.
7990.
7990.
7990.
7990.
7990.

838
054
258
451
634
807
971
126
273
412
544
668
787
898
004
104
199
289
374
454
530
602
670
735
796
854
909
960

~N N N N N N N N N N NN NN NN NN NN NN NN NN NN

.075
.083
.091
.099
.107
.115
.123
.131
.138
.146
.153
.160
.168
.175
.182
.189
.196
.203
.210
.217
.223
.230
.236
.243
.249
.256
.262
.268
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0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465

© O W W W YW YW W VO VW VO W W W O W W W o o o o o0 o0 o o oo oo

.740
.760
.780
.800
.820
.840
.860
.880
.900
.920
.940
.960
.980
.000
.020
.040
.060
.080
.100
.120
.140
.160
.180
.200
.220
.240
.260
.280

918.
919.
919.
920.
920.
921.
921.
922.
922.
923.
923.
924.
924.
924.
925.
925.
926.
926.
927.
927.
927.
928.
928.
929.
929.
929.
930.
930.

891
378
861
340
815
286
754
217
677
133
585
033
478
919
357
791
222
649
073
493
911
326
737
145
550
952
351
747

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

009
056
100
142
181
218
264
287
319
349
377
404
430
454
477
498
519
538
556
574
590
605
620
634
647
660
672
683
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.275
.281
.287
.293
.299
.305
.311
.317
.322
.328
.334
.339
.345
.351
.356
.361
.367
.372
.377
.383
.388
.393
.398
.403
.408
.413
.418
.423
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0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
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.300
.320
.340
.360
.380
.400
.420
.440
.460
.480
.500
.520
.540
.560
.580
.600
.620
.640
.660
.680
.700
.720
.740
.760
.780
.800
.820
.840

931.
931.
931.
932.
932.
933.
933.
933.
934.
934.
934.
935.
935.
935.
936.
936.
937.
937.
937.
938.
938.
938.
939.
939.
939.
940.
940.
940.

141
531
918
303
684
064
440
813
184
553
918
281
642
999
355
708
059
407
753
096
437
777
113
448
780
110
438
763

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

693
704
713
722
730
738
746
753
760
767
773
779
784
789
794
799
803
808
812
815
819
822
825
828
831
833
836
839
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.428
.433
.438
.442
.447
.452
.456
.461
.465
.470
.474
.479
.483
.488
.492
.496
.501
.505
.509
.513
.518
.522
.526
.530
.534
.538
.542
.546
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0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
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10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

.860

.880

.900

.920

.940

.960

.980

.000

020

040

060

080

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

941.

941.

941.

942.

942.

942.

942.

943

943

943.
944 .
944 .
944 .
945.
945.
945.
945.
946.
946.
946.
947.
947.
947.
947.
948.
948.
948.
949.

087

408

728

045

360

673

984

.294
.601
906
210
512
811
109
405
700
992
283
572
859
144
428
710
990
269
546
822
096

7991.
7991.
7991.
7991.
7991.
7991.
7991.

7991

7991

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

841

843

845

847

849

851

853

.854
.855
857
858
859
860
862
863
864
865
865
866
867
868
869
870
870
871
871
872
872
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.550

.554

.558

.561

.565

.569

.573

.580
.584
.588
.591
.595
.598
.602
.606
.609
.613
.616
.620
.623
.626
.630
.633
.636
.640
.643
.646
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0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960

949.

949.

949.

950.

950.

950.

950.

951.

951.

951.

952.

952.

952.

952.

953.

953.

953.

953.

954.

954.

954.

954.

954.

955.

955.

955.

955.

956.

368
639
908
175
441
706
968
230
490
749
006
261
515
768
019
269
518
765
012
256
499
741
982
221
459
695
932
166

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

873
874
874
874
875
875
875
875
876
876
876
876
877
877
877
878
878
878
878
878
878
879
879
879
879
879
879
880
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.650
.653
.656
.659
.662
.666
.669
.672
.675
.678
.681
.684
.687
.690
.693
.696
.699
.702
.705
.708
711
.713
.716
.719
.722
.725
727
.730
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0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577

10.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

980

000

020

040

060

080

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

520

956.
956.
956.
957.
957.
957.
957.
957.
958.
958.
958.
958.
959.
959.
959.
959.
959.
960.
960.
960.
960.
961.
961.
961.
961.
961.
962.
962.

398
630
861
091
319
546
771
996
220
442
664
883
102
321
538
753
967
181
394
606
816
025
233
441
647
853
057
260

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

880

880

880

880

880

880

880

880

880

880

880

880

880

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881
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.733
.736
.738
.741
.744
.T747
.749
.752
.754
.T57
.760
.762
.765
.767
.770
772
775
N
.780
.782
.785
.787
.790
.792
.795
L7997
.799
.802

210



0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

11.

12.

12.

12.

12.

12.

540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
000
020
040
060
080

962.
962.
962.
963.
963.
963.
963.
963.
964.
964.
964.
964.
964.
965.
965.
965.
965.
965.
965.
966.
966.
966.
966.
966.
967.
967.
967.
967.

463
664
865
064
263
460
657
853
048
241
434
627
818
008
198
386
574
761
947
133
317
500
683
865
046
227
406
584

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881
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.804
.806
.809
.811
.813
.816
.818
.820
.823
.825
.827
.829
.831
.834
.836
.838
.840
.842
.845
.847
.849
.851
.853
.855
.857
.859
.861
.863
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0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560

580

600

620

640

967.
967.
968.
968.
968.
968.
968.
968.
969.
969.
969.
969.
969.
970.
970.
970.
970.
970.
970.
971.
971.
971.
971.
971.
971.
971.
972.
972.

762
940
116
292
466
640
814
986
158
329
500
669
838
006
174
341
507
672
836
000
163
326
488
649
810
969
129
288

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881
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.866
.868
.870
.872
.874
.876
.878
.880
.882
.884
.886
.888
.889
.891
.893
.895
.897
.899
.901
.903
.905
.907
.908
.910
.912
.914
.916
.918
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0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
000
020
040
060
080
100
120
140
160
180
200

972.
972.
972.
972.
973.
973.
973.
973.
973.
973.
973.
974.
974.
974.
974.
974.
974.
975.
975.
975.
975.
975.
975.
975.
976.
976.
976.
976.

446
603
759
915
071
226
380
534
687
839
990
142
292
442
592
741
889
036
183
330
476
621
765
910
053
196
339
481

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881
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.919
.921
.923
.925
.927
.928
.930
.932
.934
.935
.937
.939
.940
.942
.944
.946
.947
.949
.951
.952
.954
.956
.957
.959
.961
.962
.964
.965

213



0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760

976.
976.
976.
977.
977.
977.
977.
977.
977.
977.
978.
978.
978.
978.
978.
978.
978.
978.
979.
979.
979.
979.
979.
979.
979.
979.
980.
980.

622
763
903
043
183
321
460
598
735
872
008
144
279
414
548
682
815
948
080
212
343
474
605
735
864
993
122
250

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

881

881

881

881

881

881

881

881

881

881

881

881
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881

881

881

881

881

881

881

881

881

881
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881

881
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.967
.969
.970
.972
.973
.975
.976
.978
.980
.981
.983
.984
.986
.987
.989
.990
.992
.993
.995
.996
.998
.999
.001
.002
.004
.005
.007
.008
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0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

13.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

780
800
820
840
860
880
900
920
940
960
980
000
020
040
060
080
100
120
140
160
180
200
220
240
260
280
300
320

980.

980.

980.

980.

980.

981.

981.

981.

981.

981.

981.

981.

981.

981.

982.

982.

982.

982.

982.

982.

982.

982.

983.

983.

983.

983.

983.

983.

377
504
631
758
884
009
134
258
382
506
629
752
875
996
118
239
360
480
600
719
839
957
075
193
311
428
545
661

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881
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.009
.011
.012
.014
.015
.017
.018
.019
.021
.022
.024
.025
.026
.028
.029
.030
.032
.033
.035
.036
.037
.039
.040
.041
.042
.044
.045
.046
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0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

14.

340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880

983.

983.

984.

984.

984.

984.

984.

984.

984.

984.

984.

985.

985.

985.

985.

985.

985.

985.

985.

985.

986.

986.

986.

986.

986.

986.

986.

986.

777
892
007
122
237
351
465
578
690
803
915
027
138
249
360
470
580
690
799
908
017
125
233
341
448
564
661
767

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881
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.048
.049
.050
.052
.053
.054
.055
.057
.058
.059
.060
.062
.063
.064
.065
.067
.068
.069
.070
.072
.073
.074
.075
.076
.078
.079
.080
.081
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0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773

14.

14.

14.

14.

14.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

900

920

940

960

980

000

020

040

060

080

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

986.
986.
987.
987.
987.
987.
987.
987.
987.
987.
987.
988.
988.
988.
988.
988.
988.
988.
988.
988.
988.
989.
989.
989.
989.
989.
989.
989.

873
979
084
189
293
397
501
605
708
811
914
016
118
220
321
422
523
623
724
824
923
023
121
220
318
416
514
612

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881

881
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.082
.084
.085
.086
.087
.088
.089
.091
.092
.093
.094
.095
.096
.097
.098
.100
.101
.102
.103
.104
.105
.106
.107
.108
.110
111
.112
.113

217



0774
0775
0776
o777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

16.

460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
000

989.
989.
989.
989.
990.
990.
990.
990.
990.
990.
990.
990.
990.
990.
990.
990.
990.
990.
990.
990.
990.
990.
989.
989.
989.
988.
988.
987.

709
806
903
999
095
190
286
381
476
571
662
743
809
857
883
883
859
804
718
597
438
239
996
706
367
931
342
625

7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7991.
7988.
7979.
7965.
7944 .
7917.
7884 .
7845.
7801.
7750.
7694 .
7631.
7563.
7488.
7408.
7321.
7203.
7044 .
6889.
6736.

881
881
881
881
881
881
881
881
881
904
970
082
238
438
683
973
307
686
108
576
088
646
247
893
945
760
092
864
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.114
.115
.116
L1117
.118
.119
.120
.121
.122
.124
.126
.130
.135
.142
.152
.164
.179
.196
.217
.240
.267
.297
.330
.367
.411
.466
.530
.601
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0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

16.

020

040

060

080

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560

986.
985.
984.
983.
982.
981.
979.
978.
976.
975.
973.
971.
969.
968.
966.
964.
961.
959.
957.
954.
952.
950.
947.
944 .
941.
939.
936.
933.

794
862
834
716
512
224
853
395
861
252
567
806
969
057
069
005
866
650
360
992
546
024
424
748
996
167
263
282

6588.
6442.
6300.
6160.
6024.
5891.
5761.
5634.
5509.
5387.
5268.
5152.
5038.
4927 .
4818.
4711.
4607 .
4505.
4406.
4308.
4213.
4120.
4029.
3940.
3853.
3768.
3685.
3603.

000
425
067
855
719
591
405
096
600
855
800
375
524
188
313
843
726
909
342
976
761
650
596
564
480
330
062
633
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10.

10.

10.

10.

10.

10.

10.

10.

11.

11.

11.

11.

11.

.678
.760
.845
.934
.026
.120
.216
.313
.413
.513
.615
.718
.822
.927

.032
139
247
355
464
574
685
796
908
021
134
249
363
479
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0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857

16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
17.
17.
17.
17.
17.
17.
17.

580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
000
020
040
060
080
100
120

930.
927.
923.
920.
917.
913.
910.
906.
903.
899.
895.
891.
887.
883.
879.
875.
871.
866.
862.
858.
853.
849.
844 .
839.
835.
830.
825.
820.

225
093
885
602
243
810
303
721
065
337
535
663
719
704
620
467
247
959
606
190
712
174
575
918
204
433
609
733

3524.
3446.
3369.
3295.
3222.
3151.
3081.
3013.
2947.
2882.
2818.
2756.
2695.
2635.
2577.
2520.
2464.
2410.
2357.
2304.
2253.
2204.
2155.
2107.
2061.
2015.
1971.
1927.

004
135
986
519
698
487
849
749
155
032
348
071
170
615
376
424
731
268
008
926
994
188
482
852
275
728
186
629

11.

11.

11.

11.

12.

12.

12.

12.

12.

12.

12.

12.

13.

13.

13.

13.

13.

13.

13.

13.

14.

14.

14.

14.

14.

14.

14.

14.

595
712
829
947
066
185
305
425
545
667
788
910
032
155
277
400
523
647
770
894
017
140
263
387
509
632
754
876
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0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885

17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

520

540

560

580

600

620

640

660

680

815.
810.
805.
800.
795.
790.
785.
780.
774.
769.
764.
758.
753.
748.
742.
737.
731.
726.
720.
715.
709.
704.
698.
693.
687 .
682.
676.
671.

806
831
809
744
635
487
300
o077
820
533
215
871
502
111
700
270
825
367
898
420
935
444
950
456
962
471
985
504

1885.
1843.
1802.
1762.
1723.
1685.
1648.
1612.
1576.
1541.
1507.
1474 .
1441.
1409.
1378.
1348.
1318.
1289.
1260.
1232.
1205.
1179.
1152.
1127.
1102.
1078.
1054.
1031.

034
381
648
815
862
770
520
093
470
635
570
257
681
824
671
207
416
283
794
934
690
048
995
517
602
238
412
113

14.
15.
15.
15.
15.
15.
15.
15.
15.
16.
16.
16.
16.
16.
16.
16.
16.
16.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.

997
118
239
358
477
596
713
830
945
060
174
287
398
509
618
727
833
939
043
146
248
348
447
545
641
735
828
920
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0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913

17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.

700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
000
020
040
060
080
100
120
140
160
180
200
220
240

666.
660.
655.
649.
644.
638.
633.
628.
622.
617.
612.
606.
601.
596.
590.
585.
580.
575.
570.
565.
560.
555.
550.
545.
540.
535.
530.
525.

031
568
116
676
250
839
444
066
707
367
048
750
476
225
998
797
622
473
352
258
194
160
155
182
239
329
451
605

1008.329 18.010

986.
964.
942.
922.
901.
881.
862.
843.
824.
806.
788.
771.
754.
737.
721.
705.
689.
674.
659.
644.
630.
616.
603.
589.
576.
564.
5b1.

048 18.099

259
952
116
740
814
329
274
640
418
599
173
133
469
173
237
654
414
512
939
688
751
123
796
763
019
555

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

186
272
356
439
521
601
680
757
833
908
981
053
123
193
261
328
393
458
521
583
644
704
762
820
876
932
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0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

18.

260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800

520.
516.
511.
506.
501.
497 .
492.

488

483.
479.
474 .
470.
465.
461.
457.
452.
448 .
444 .
440.
436.
432.
428.
424,
420.
416.
412.
408.
404.

793
015
271
561
886
246
642

.074

542
047
590
170
788
443
138
870
642
452
302
191
119
087
095
143
231
359
528
736

539.
527.
515.
504.
493.
482.
471.

461

451.
441 .
431.
421.
412.
403.
394.
385.
377.
368.
360.
352.
344.
337.
329.
322.
315.
308.
301.
295.

368
449
794
397
251
352
694

.271

078
110
363
832
510
395
481
765
240
904
753
781
986
363
908
618
489
518
701
034

19.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

21.

21.

21.

21.

986
040
092
143
194
244
292
340
387
433
478
522
566
609
651
692
732
772
811
849
887
923
960
995
030
064
098
131
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0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969

18.

18.

18.

18.

18.

18.

18.

18.

18.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

820

840

860

880

900

920

940

960

980

000

020

040

060

080

100

120

140

160

180

200

220

240

260

280

300

320

340

360

400.
397.
393.
389.
386.
382.
379.
375.
372.
369.
365.
362.
359.
355.
352.
349.
346.
343.
340.
337.
334.
331.
328.
325.
322.
320.
317.
314.

985
274
602
971
381
830
321
851
422
033
684
375
106
877
687
536
425
353
320
326
370
452
573
731
927
160
431
738

288.
282.
275.
269.
263.
258.
252.
246.
241.
235.
230.
225.
220.
215.
211.
206.
201.
197.
192.
188.
184.
180.
176.
172.
168.
165.
161.
157.

515
139
905
808
846
016
315
740
287
956
742
643
657
781
013
350
791
332
971
707
537
460
472
573
759
030
384
817

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

163
195
226
257
287
317
346
375
403
430
457
484
510
536
561
586
610
634
657
680
703
725
747
769
790
811
831
851
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0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

19.

380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920

312.
309.
306.
304.
301.
299.
296.
294.
292.
289.
287.
285.
282.
280.
278.
276.
274.
272.
270.
268.
266.
264.
262.
260.
258.
256.
254.
2b1.

081
461
878
330
817
339
896
488
113
773
466
192
952
743
567
423
310
229
178
158
168
208
277
375
502
658
925
390

154.
150.
147.
144 .
141.
138.
134.
131.
129.
126.
123.
120.
118.
115.
112.
110.
107.
105.
103.
100.

330
920
585
324
135
016
966
984
068
216
427
699
032
424
874
379
940
555
223
942

21.

21.

21.

21.

21.

21.

21.

21.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

871
890
909
928
946
964
982
999
017
033
050
066
082
098
113
129
144
158
173
187

98.711 22.201

96.530 22.215

94.397 22.228

92.311 22.241

90.271 22.254

0.000 22.267

0.000 22.307

0.000 22.344
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0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

19.

19.

19.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

940

960

980

000

020

040

060

080

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

247.
244 .
241.
238.
235.
232.
229.
227.
224.
222.
219.
217.
215.
213.
211.
209.
207.
205.
203.
201.
200.
198.
197.
195.
194.
192.
191.
190.

977
684
507
443
486
635
886
235
678
213
837
545
337
207
155
176
269
430
657
947
299
710
177
699
273
898
572
292
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.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

22.

22.

22.

22.

22.

22.

22.

22

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

379
411
442
471
498
523
547

.570

591
611
630
647
664
680
695
709
723
736
748
759
770
781
790
800
809
817
825
833
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1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

20.

21.

21.

21.

500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
000
020
040

189.
187.
186.
185.
184.
183.
182.
181.
180.
179.
178.
177.
177.
176.
175.
174.
174.
173.
172.
172.
171.
170.
170.
169.
169.
168.
168.
167.

057
865
715
604
532
497
497
531
598
695
823
979
164
375
612
874
159
467
797
148
519
909
318
745
188
649
125
616
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.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

22.

840
847
853
860
866
871
877
882
887
892
896
900
905
908
912
916
919
923
926
929
932
934
937
940
942
944
946
949
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1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

21.

060

080

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400
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1250 24.980 133.980 0.000 23.000
1251 25.000 133.878 0.000 23.000
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Appendix F

Parameter Estimation For
Simplified Oxygen Driven
Compartment Fire Model

S-PLUS : Copyright 1988, 1994 MathSoft, Inc.
S : Copyright AT&T.
Version 3.2 Release 1 for MS Windows 3.1 : 1994

Working data will be in _Data

> EPGAMMA
[1] 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880

> EPRESULT

function(x)

{
for(r in (1:(length(x)))) {
y <= c(x[r], EPSUM(x[r]))
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cat(y, "\n")

}

}

> EPSUM

function(GAM)

{

calc <- EP4(GAM)

minsum <- ((48.5 - calc[11, 2])°2 + (200.2 - calc[34, 2])°2 + (250 - calc[41, 2])"2
+ (345.3 - calc[51, 2])°2 + (601.5 - calc[58, 2])"2 + (743.4 - calc[62, 2])"2

+ (848.1 - calc[71, 2]1)°2 + (900.7 - calc[82, 2])°2 + (943.3 - calc[101, 2])"2
+ (981.8 - calc[141, 2])°2)

minsum

¥

> EP4

function(GAM)

{

RMAX <- 7991

BMAX <- 96250 #FPAR$BMAX
RDECAY <- 0.8 #FPAR$RDECAY
mu <- 0.5 #FPAR$mu

time <- 25 #tmax FPAR$time
dt <- 0.1

RO <- 8.38

x0 <- 0.2299

x1 <- 0.126

GTO <- 20.02

n <- round(time/dt, 0)
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tt <- rep(0, n)

GT <- rep(0, n)

R <- rep(0, n)

B <- rep(0, n)

x <- rep(0, n)

GT[1] <- GTO

R[1] <- RO

B[1] <- 0

x[1] <- x0

tt[1] <- 0

for(r in (1:(n - 1))) {

tt[r + 1] <- tt[r] + 4t

GT[r + 1] <- GT[r] + ((0.1239 * GAM) = R[r] * dt) - (GAM * GT[r] * dt)

B[r + 1] <- B[r] + R[r] * dt

if(B[r] < BMAX) {
R[r + 1] <- R[r] + (14.8164 - 0) * max(0, (x[r] - x1)) #* R[r] * dt
x[r + 1] <- x[r] + ((-0.0000184 * 1) % R[r] * dt) + (0.9399 * (x0 - x[r])dt)

+

else {

R[r + 1] <- R[r] - RDECAY * R[r] * dt

x[r + 1] <- x[r] - {mu * (x[r] - 0.23) * dt}

+

+

pred <- cbind(tt, GT)

pred

+

> EPRESULT(0.4)
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0.4 271985.16012209

A\

1.

o O O O O O o o o

2
3
4
.5
6
7
8
9

~N O 0o oW N

EPGAMMA<-seq(0.1,0.9,0.1)

EPRESULT (EPGAMMA)

.1

EPGAMMA<-seq(1,1.9,0.1)

1807086.85716672
898158.656669525
483682.646541452
271985.16012209
159185.734563122
99613.7102306882
70377.7139765986
59028.9260236807
58414 .2094940273

EPRESULT (EPGAMMA)

64261.4879879102

.1

73940.3347811421
85801.9505316803
98797 .2756379585
112254 .766612557
125744 .930343411
138995.857987799

151839.408233694

Dumped
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>

0
0
0
0
0.
0
0
0
0

EPGAMMA<-seq(0.8,1,0.02)

EPRESULT (EPGAMMA)

.8 59028.9260236807
.82 58215.4160004428
.84 57782.1155860546
.86 57692.4737846328

88 57913.4011219492

.9 58414.9094940273
.92 59169.7939643521
.94 60153.3510461516

.96 61343.1287965174

Dumped

A\

o O O O O O o o o

EPGAMMA<-seq(0.84,0.88,0.005)

EPRESULT (EPGAMMA)

.84 57782.1155860546
.845 57728.8359263009
.85 57696.482140381
.855 57684.5314347369
.86 57692.4737846327
.865 57719.8115890781
.87 57766.0593363037
.875 57830.7432794264
.88 57913.4011219492
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Appendix G

Two Variable Model for

Comartment Fires

EPCURVE

#EP3

> EP3

function(FPAR, tmax, dt)
{

RMAX <- 7991

BMAX <- FPAR$BMAX
RDECAY <- FPAR$RDECAY
mu <- FPAR$mu

time <- tmax # FPAR$time
RO <- 8.38

x0 <- 0.2299

x1 <- 0.126

GTO <- 20.02

n <- round(time/dt, 0)
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tt <- rep(0, n)

GT <- rep(0, n)

R <- rep(0, n)

B <- rep(0, n)

x <- rep(0, n)

GT[1] <- GTO

R[1] <- RO

B[1] <- 0

x[1] <- x0

tt[1] <- 0

for(r in (1:(n - 1))) {

tt[r + 1] <- tt[r] + 4t

GT[r + 1] <- GT[r] + ((0.1239 * 0.855) * R[r] * dt ) - (0.855 * GT[r] * dt)

B[r + 1] <- B[r] + R[r] * dt

if(B[r] < BMAX) {
R[r + 1] <- R[r] + (14.8164) * max(0, (x[r] - x1)) * R[r] * dt
x[r + 1] <- x[r] + ((-0.0000184 * 1) * R[r] * dt) + (0.9399 * (x0 - x[r])#*dt)

+

else {

R[r + 1] <- R[r] - RDECAY * R[r] * dt

x[r + 1] <- x[r] - {mu * (x[r] - 0.23) * dt}

+

+

02 <- 100 * x

w <- round{(dt/0.02, 0) * (1:n)

graphics.off() #par(mfrow = c(2, 2))

y <- round(1/dt, 0)

GT.ts <- ts(GT, start = dt, frequency = y)
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R.ts <- ts(R, start = dt, frequency = y)

02.ts <- ts(02, start = dt, frequency = y)

NGT.ts <- ts(FIRE2.1ist$GT[w], start = dt, frequency = y)
NR.ts <- ts(FIRE2.list$R[w], start = dt, frequency = y)
NO2.ts <- ts(FIRE2.1ist$02[w], start = dt, frequency = y)

#postscript(file = "B:GT.ps")

win.graph()

tsplot(GT.ts, NGT.ts, type = "pl", 1ty = c(1, 1))
legend(9, 60, "NRCC", 1ty = 1)

title(xlab = "Time t (min)", ylab = “Gas temp T (deg C.)")
win.graph() #postscript(file = "B:R.ps")

tsplot(R.ts, NR.ts, type = "pl", lty = c(1, 1))

legend(8, 600, "NRCC", lty = 1)

title(xlab = "Time t (min)", ylab = "Burning rate R (kg/min)")
win.graph() #postscript(file = "B:02.ps")

tsplot(02.ts, NO2.ts, type = "pl", 1ty = c(1, 1))
legend(9, 25, "NRCC", 1ty = 1)

title(xlab = "Time t (min)", ylab = "Oxygen (4)")

+

POS

function(x, alpha)

{

#P0S: smoothed version of max(0,x)
n <- length(x)

y <= rep(0, n)

for(r in 1:n) {

v <- x[r]
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if(v > 0)

u<-vx* (1-1/(1 + v) alpha)
else u <- 0

ylr] <= u

+

y
+
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