
Motor imagery skills of children with Attention Deficit 
Hyperactivity Disorder and Developmental 
Coordination Disorder

This is the Accepted version of the following publication

Williams, Jacqueline, Omizzolo, Cristina, Galea, Mary and Vance, Alasdair 
(2012) Motor imagery skills of children with Attention Deficit Hyperactivity 
Disorder and Developmental Coordination Disorder. Human Movement 
Science, 32 (1). pp. 121-135. ISSN 0167-9457  

The publisher’s official version can be found at 
http://ac.els-cdn.com/S0167945712001066/1-s2.0-S0167945712001066-main.pdf?
_tid=53644d46-8edc-11e3-b775-
00000aacb362&acdnat=1391656449_dea5893e3c8ef9e084fdd51f0f27afc7
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/23116/ 



 

Motor imagery skills of children with Attention Deficit Hyperactivity Disorder and 

Developmental Coordination Disorder 

 

Jacqueline Williams 
a,b

, Cristina Omizzolo 
b,c

, Mary P. Galea 
d
, Alasdair Vance 

e,f
 

 

Affiliations: 

a. Institute of Sport, Exercise and Active Living and School of Sport and Exercise Science, 

Victoria University, Footscray Park Campus, P.O. Box 14428, Melbourne, VIC 8001, 

Australia 

b. Murdoch Childrens Research Institute, Royal Children’s Hospital, Flemington Road, 

Parkville, VIC 3052, Australia 

c. School of Psychological Science, La Trobe University, Melbourne, VIC 3086, Australia 

d. Department of Physiotherapy, University of Melbourne, VIC 3010, Australia 

e. Academic Child Psychiatry Unit, Royal Children’s Hospital, Flemington Road, Parkville, 

VIC 3052, Australia 

f. Department of Paediatrics, University of Melbourne, VIC 3010, Australia 

 

Corresponding Author: 

Dr Jacqueline Williams, PhD 

Institute of Sport, Exercise and Active Living  

Victoria University, Footscray Park Campus 

PO Box 14428, Melbourne, VIC, 8001 Australia 

Email: jacqueline.williams@vu.edu.au 

Phone: +61 3 9919 4025 

Fax: +61 3 9919 4891 

 

Word count: 6221 

 

 

 

mailto:jacqueline.williams@vu.edu.au


Abstract 

Up to 50% of children with ADHD experience motor impairment consistent with DCD. 

Debate continues as to whether this impairment is linked to inattention or is a genuine motor 

deficit. This study aimed to determine whether 1) inattention was greater in ADHD+DCD 

than in ADHD alone and 2) motor imagery deficits observed in DCD were present in 

ADHD+DCD. Four groups aged 7-12 years – ADHD, combined type, with motor impairment 

(ADHD+DCD; N = 16) and alone (ADHD; N = 14), DCD (N = 10) and typically developing 

comparison children (N = 18) participated. Levels of inattention did not differ between 

ADHD groups. On an imagined pointing task, children with DCD did not conform to speed 

accuracy trade-offs during imagined movements, but all other groups did. However, on a 

hand rotation task, both the ADHD+DCD and DCD groups were less accurate than the non-

motor impaired groups, a finding not explained by differences in IQ, age, or working memory 

capacity. Overall, there was evidence that children with ADHD+DCD experience genuine 

motor control impairments indicating the impact of motor impairment in ADHD and its 

causal risk factors require more study. Motor impairment in ADHD should not be dismissed 

as a by-product of inattention. 
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1.0 Introduction 

Attention-Deficit Hyperactivity Disorder (ADHD) occurs in up to 12% of children, 

has a negative impact on social, behavioural and educational domains, and many of its 

symptoms are now believed to persist into adulthood (Biederman & Faraone, 2005). As a 

result, ADHD has been studied extensively and we know much about the presentation of the 

disorder. One interesting finding regarding ADHD is its high comorbidity or co-occurrence 

with other developmental disorders in childhood, including Developmental Coordination 

Disorder (DCD) (Dewey, Kaplan, Crawford, & Wilson, 2002). DCD is defined by the 

American Psychiatric Association (APA) as an impairment in motor skills, not attributable to 

a known neurological or physical medical condition, that significantly interferes with a 

child’s activities of daily living and/or academic achievement (APA, 1994). DCD, or motor 

impairment, is commonly observed in a large proportion of children with ADHD. Pitcher, 

Piek and Hay (2003) found that approximately 50% of a sample of children with ADHD, 

regardless of subtype, had definite or borderline motor impairment. In an earlier study, the 

same authors had found approximately two-thirds of their ADHD sample was experiencing 

motor problems (Piek, Pitcher, & Hay, 1999). Despite research showing that children with 

both ADHD and DCD are likely to experience more long-term negative outcomes in a range 

of domains than children with either disorder alone (Rasmussen & Gillberg, 2000; Tervo, 

Azuma, Fogas, & Fiechtner, 2002), DCD in children with ADHD is often overlooked in the 

clinical context as more prominent behavioural issues involving impulsivity and hyperactivity 

overshadow the motor issues (Gillberg, 2003).  

 Although the motor impairment observed in both ADHD and DCD appears to be 

similar, it is not clear if they stem from the same underlying aetiological risk factors 

(Sergeant, Piek, & Oosterlaan, 2006). Some researchers argue that the motor impairment 

present in ADHD is a result of the child’s increased inattentiveness and working memory 



deficits rather than being a genuine motor deficit (Barnett, Maruff, & Vance, 2005; Ferrin & 

Vance, 2011). Indeed, the American Psychiatric Association, in the 4
th

 edition of their 

Diagnostic and Statistical Manual (DSM-IV, APA, 1994), suggests that the motor difficulties 

of children with ADHD are “usually due to distractibility and impulsiveness, rather than to 

motor impairment” (pp. 54) in the differential diagnosis section for DCD. Support for this 

comes from studies that have demonstrated a link between the severity of inattentiveness and 

motor impairment (Piek et al., 1999; Tseng, Henderson, Chow, & Yao, 2004); research 

showing that children with ADHD on stimulant medication do not display the same response 

time slowing that is apparent in those not on medication (Klimkeit, Mattingley, Sheppard, 

Lee, & Bradshaw, 2005); and recent research showing that neurological soft signs, including 

those involving fine motor movements, are related to spatial working memory deficits (Ferrin 

& Vance, 2011). 

 In contrast, other studies support the presence of a genuine motor deficit in children 

with ADHD+DCD, unrelated to inattentive symptomatology. Pitcher, Piek and Hay (2003) 

found that an ADHD+DCD group was significantly more impaired on a manual dexterity 

task than both ADHD only and control groups, who did not differ. Interestingly, there were 

no significant differences in the inattentive symptomatology of the two ADHD groups, 

indicating that the poor manual dexterity of the ADHD + DCD group could not be attributed 

to increased inattentiveness. Miyahara, Piek and Barrett (2006) used distractor tasks to 

determine whether an increased attentional load would result in poorer motor performance in 

children with ADHD, but found that there was no decrease in performance as attentional 

demands increased. Due to these conflicting findings, it remains unclear whether the motor 

impairment observed in ADHD stems from the same underlying causal risk factors as that in 

DCD – this is confounded by the fact that we do not yet know exactly what is causing DCD 



itself, with researchers continuing to search for underlying deficits that are likely to play a 

causal role in the disorder (Wilson, 2005). 

 One line of research has demonstrated consistently that children with DCD have a 

reduced ability to accurately represent movements in the brain via motor imagery 

(Deconinck, Spitaels, Fias, & Lenoir, 2009; Maruff, Wilson, Trebilcock, & Currie, 1999; 

Williams, Thomas, Maruff, Butson, & Wilson, 2006; Williams, Thomas, Maruff, & Wilson, 

2008; Wilson et al., 2004; Wilson, Maruff, Ives, & Currie, 2001). Motor imagery (MI) refers 

to the imagination of a motor task without actual movement execution (Decety & Grèzes, 

2006) and is believed to represent one’s ability to accurately utilise forward internal models 

of motor control (Sirigu et al., 1996; Williams et al., 2006; Wilson et al., 2004; Wolpert, 

Goodbody, & Husain, 1998). Forward internal models provide stability to motor systems, by 

predicting the outcome of movements before slow, sensorimotor feedback becomes available 

(Wolpert, 1997). They are important for smooth, accurate movement, reducing the reliance 

on feedback and allowing corrections to the movement to be made as it unfolds when 

necessary. A deficit in the ability to utilise such models results in slow, poorly coordinated 

movements and as such, has been hypothesised to be one of the underlying causes of motor 

impairment in DCD (Wilson et al., 2004; Wilson et al., 2001). 

A recent study examined the motor imagery ability of children with ADHD, 

combined type (ADHD-C) parsed into those with and without comorbid DCD, and compared 

them to a sample of children with DCD only and a sample of healthy control participants 

(Lewis, Vance, Maruff, Wilson, & Cairney, 2008). The study used a test of motor imagery 

that requires participants to complete a series of real and imagined pointing movements 

between targets that vary in size – typically, a speed-accuracy trade-off is found in both real 

and imagined movements, indicating that motor imagery adheres to the same motor control 

laws as actual movement (Sirigu et al., 1996). It was found that, as in previous studies, the 



DCD group did not conform to the speed-accuracy trade-off for the task during their 

imagined movements, indicating atypical motor imagery performance. In contrast, both the 

healthy controls and ADHD only group performed typically. Interestingly, the performance 

of the ADHD+DCD group also conformed to the typically observed pattern, with the group 

displaying no apparent deficits in motor imagery ability. This is the first study to look at 

underlying motor control processes in children with ADHD and suggests that the motor 

impairment present in many children with ADHD might not have the same underlying 

aetiology as that of children with DCD alone. The authors concluded that the motor 

impairment often observed in ADHD may stem from executive and attentional control 

problems, but did not include a measure of either in their study.  

The aim of the current study is to extend the work of Lewis et al. (2008) by including 

1) measures of attention, and for the ADHD groups, working memory and 2) extending the 

motor imagery analysis by using another task commonly used with children with DCD – the 

hand rotation task (Deconinck et al., 2009; Williams et al., 2011; Williams et al., 2006; 

Williams et al., 2008; Wilson et al., 2004). Although correlations have been identified 

between attention and motor skills in children with ADHD (Tseng et al., 2004), direct 

comparisons of attention in ADHD alone versus ADHD+DCD groups have failed to identify 

group differences (Pitcher et al., 2003). Based on this, we did not expect to find a significant 

difference between our two ADHD groups on measures of attention, but expected both 

groups to be significantly more inattentive than the DCD and comparison groups. Based on 

the recent findings regarding a relationship between working memory and neurological soft 

signs in children with ADHD (Ferrin & Vance, 2011), we did expect to find that children 

with ADHD+DCD would score more poorly than children with ADHD alone on measures of 

working memory. Interestingly, motor imagery has long been recognised as having a working 

memory component (Decety, 1996), though some tasks have a greater working memory load 



than others – for example, the hand rotation task requires images of the hand (either the 

stimulus or the participant’s own) to be held in working memory during imagined rotation. 

Thus, we expected that, in line with Lewis et al. (2008), children with ADHD+DCD would 

perform similarly to children with ADHD alone and typically developing comparison 

children on the visually guided pointing task. In the hand rotation task however, with its 

greater working memory load, we would expect children with ADHD+DCD, like those with 

DCD alone, to be slower and / or less accurate than children with ADHD alone and typically 

developing comparison children. 

 

2.0 Method 

2.1 Participants 

Sixty-nine children (43 males), aged 7-12 years, were recruited to participate in this 

study. All children, regardless of group, were screened to ensure they did not have any 

physical or neurological condition that could contribute to motor impairment (e.g. cerebral 

palsy, Tourette’s syndrome) and all were assessed to have an estimated IQ of more than 70 

using the two-subtest version of the Wechsler Abbreviated Scale of Intelligence (WASI; 

Wechsler, 1999). 

Children with ADHD-C were recruited through the Academic Child Psychiatry Unit 

(ACPU) at the Royal Children’s Hospital, Melbourne. The ACPU patient database identified 

children previously diagnosed with ADHD-C who had attended the hospital within the 

previous two years. Diagnosis of ADHD-C was based on: (a) the DSM-IV (b) a semi-

structured clinical interview with the child’s parents (c) by the parent and/or teacher report of 

subscale scores of the core symptom domains of ADHD being greater than 1.5 standard 

deviations above the mean for a given child’s age and gender. Contact was made with 92 

families to invite them to participate, of which 32 agreed. Of those that did not, reasons for 



non-participation included lack of interest, too many other demands on the child and having 

to travel too far. Of the 32 children, only four were currently taking medication for their 

ADHD (short-acting stimulant medication in all cases). The parents of these children were 

asked to withhold medication for 48 hours prior to their assessment. ADHD-C subgroups 

(ADHD and ADHD+DCD) were formed on the basis of scores on the Movement Assessment 

Battery for Children 2
nd

 edition (Movement ABC-2; Henderson & Sugden, 2007) – children 

scoring on or below the 15
th

 percentile for the total score formed the ADHD+DCD group 

(DCD diagnostic criterion A - DSM-IV-TR; APA, 2000); those scoring on or above the 20
th

 

percentile formed the ADHD group; those scoring on or between the 16
th

 and 24
th

 percentiles 

were excluded. Medical records confirmed that motor impairment was not the result of a 

medical condition or mental retardation (DCD diagnostic criterion C & D). DCD diagnostic 

criterion B, that motor impairment should impact on academic achievement and/or activities 

of daily living was not assessed in this group – deconstructing the impact of ADHD versus 

DCD on either area would be extremely difficult and there is no current measure to 

adequately assess this.  

Children with DCD were recruited through advertisements provided to paediatric 

occupational therapists and in local school newsletters. Interested families were asked to 

contact the research team, who screened the children to exclude those with a diagnosis of 

ADHD (all subtypes). As recruitment advertisements for the study stated that children with 

ADHD were ineligible to participate, only two children were actually excluded on this basis. 

Individual assessments were organised for 15 eligible children, with those scoring on or 

below the 15
th

 percentile on the Movement ABC-2 forming the DCD group (DCD diagnostic 

criterion A). DCD diagnostic criterion B was met implicitly, with children either currently 

involved in therapy (which would not be necessary if their motor impairment was not 

impacting their daily living activities and/or academic achievement) or through parent report 



when contacting researchers. Parent reports were used to confirm compliance with diagnostic 

criterions C and D.  

Children from a local primary school in Melbourne were invited to form the typically 

developing comparison group. Parents of 23 children agreed to participate and completed a 

screening questionnaire to rule out the presence of ADHD (all subtypes) and / or DCD. One 

child was excluded due to a previous diagnosis of dyspraxia, leaving a sample of 22, who 

were assessed using the Movement ABC-2 and included in the comparison group if they 

scored on or above the 25
th

 percentile. 

 

2.2 Measures 

2.2.1 TEA-Ch Score! 

The Test of Everyday Attention for Children (TEA-Ch) is a battery of nine game-like 

tests that assess attention in children aged 6-16 years (Manly, Robertson, Anderson, & 

Nimmo-Smith, 1999). We included the ‘Score!’ subset only, which tests a child’s capacity to 

sustain attention over ten trials by keeping count of computer generated beeps. This was used 

to gain a measure of attention on the day. The number of correct trials was converted to age-

standardised scores, with the M = 10 and SD = 3.  

2.2.2 Conners’ Rating Scale – Revised  

The long form of the Conners’ Parent Rating Scale – 3
rd

 edition (Conners, 2007) was 

used to measure ADHD-related symptoms, including inattention and hyperactivity. Parents 

responded to eighty questions relating to attention, hyperactivity and cognitive problems. T-

scores are obtained for each domain, with T-scores between 60 and 69 considered elevated 

above average and 70 or above very elevated. 

2.2.3 Visually guided pointing task (VGPT).  



In line with Lewis et al. (2008), the VGPT, first used by Sirigu et al. (1996) was used 

to examine the relationship between participants’ real and imagined movements. Participants 

were presented with five individual sheets of laminated paper. Each sheet had an 80mm 

vertical line, as well as a target box with its closest edge 30mm from the vertical line (see 

Figure 1). The width of the target box varied on each of the five plastic sheets (1.9, 3.7, 7.5, 

14.9, or 30mm). Participants were asked to make pointing movements between the vertical 

line and the target box five times, as quickly and accurately possible. One pointing movement 

was defined as a hand motion beginning from the far side of the vertical line to touch the 

inside of the target box and back to the far side of the vertical line. Participants made five of 

these back and forth movements for each trial (2 trials per target size) of each width using 

their preferred hand.  

 Participants were required to complete this task under two movement conditions: 

‘real’ and ‘imagined’ conditions. The ‘real’ condition involved making actual hand 

movements between the line and target box using a pen. The ‘imagined’ condition required 

participants to imagine they were performing the same movements as in the ‘real’ condition, 

but without making any overt hand movements. The ‘imagined’ trials always followed the 

‘real’ trials, and the order of the targets presented was counterbalanced across participants.  

 A stop watch was used to record the duration of participants’ hand movements for 

each trial. Timing of each trial began when then examiner said “Go” and ended when the 

participant said “Stop” once they completed the actual or imagined movements. If the 

participant lost count of the number of movements completed or lost concentration during a 

trial, it was repeated immediately by the examiner.  

2.2.4 Hand rotation task.   

Single hand stimuli (9cm by 8cm) were presented on a laptop computer using E-

Prime software (Psychology Software Tools, Pittsburgh, PA, USA). The left and right hands 



were represented as high-resolution images presented in the back view (see Figure 2), centred 

in the middle of the screen. Before commencing, researchers showed the participants example 

pictures of the hands, explaining how they would appear on the screen in rotated positions. 

They were asked to decide as quickly and accurately as possible whether the hand was left or 

right and to imagine their own hand in the position of the hand on the screen to help them 

decide. They sat resting their left index finger on the D key and right index finger on the K 

key, which were marked with stickers as a reminder. Stimulus hands were presented 

randomly, in 45  increments between 0-360 , and remained on screen until a response was 

recorded by pressing the designated key (D for left; K for right) on the keyboard or 10s had 

passed. There were five practice trials and 40 test trials (four at each angular increment), each 

followed by a random delay of 2-3s. Responses were recorded to the nearest 1ms. 

2.2.5 Working memory.  

Children with ADHD had previously completed the Cambridge Neuropsychological 

Test Automated Battery (CANTAB; Owen, Downes, Sahakian, Polkey, & Robbins, 1990) as 

a part of their clinical evaluation. The computerised tests are presented on a high resolution 

IBM monitor with a touch sensitive screen. We utilised data from two of the subtests to 

compare the working memory capacity of our two ADHD groups (with and without DCD) – 

the spatial span and spatial working memory tasks. The Spatial Span task is a computerised 

version of the Corsi block-tapping task, requiring participants to remember a sequence of 

squares presented on the screen, and assesses visuospatial short-term memory capacity 

(Milner, 1971). Spatial (short-term memory) span is calculated as the highest level at which 

the participant successfully remembered at least one sequence of boxes (maximum = 9). The 

Spatial Working Memory task is a self-ordered searching task measuring working memory for 

spatial stimuli. It requires participants to use mnemonic information to work towards a goal. 

Returning to an ‘empty’ box already targeted for a particular search constituted a between-



search error, with the number of errors in each trial totalled and summed to provide an overall 

BSE-total score (SWM-BSE). A strategy score was also calculated to reflect how often a 

searching sequence was initiated from the same box during a trial (SWM-Strategy; range 1-

37). Finally, total time to complete the task at each level (from levels 4-8) was recorded 

(SWM-Time 4-8). More detailed explanations and test demonstrations can be found at 

www.cambridgecognition.com/cantab-tests.  

 

2.3 Procedure 

 The study was approved by the Human Research Ethics Committee of the Royal 

Children’s Hospital, Melbourne. A parent or guardian of all participating children provided 

written, informed consent. All assessments were carried out on an individual basis by trained 

research staff and occurred at the Royal Children’s Hospital or at the child’s school. Tasks 

were completed in an order which was counter-balanced across participants. All children 

taking stimulant medication for their ADHD underwent a 24-hour washout period prior to 

their assessment. 

 

2.4 Data Analysis 

 All analyses were conducted using SPSS Version 17. Group means for descriptive 

variables were calculated and group comparisons were made using univariate ANOVA with a 

Bonferroni adjusted critical value for significance of p = .008. A chi-square analysis was 

conducted to identify differences in the gender make-up of the groups. Post-hoc tests were 

conducted using Tukey’s HSD procedure. Descriptive measures were correlated with motor 

imagery measures (VGPT real and imagined slope and Fisher’s z transformation of the 

correlation between real and imagined movements; hand task response time and accuracy) to 

isolate potential covariates for inclusion in further analysis. Descriptive measures were 



included as covariates if they were determined to correlate with imagery measures at a value 

of r = .3 or greater. 

 To analyse performance on the VGPT, each participants’ mean movement duration 

was calculated for each target width in each movement condition. To determine whether a 

speed-accuracy trade-off existed in real and imagined movements for each group, group 

means for movement duration were calculated and plotted against target width for “real” and 

“imagined” conditions.  Logarithmic curves were then fitted to the data points and goodness 

of fit was determined using a least squares regression. Regression estimates and fit (R²) were 

calculated for each group individually.  

 In line with Lewis et al. (2008), we used Fitts’ law to convert the logarithmic 

relationship between target width and movement amplitude to the linear relationship between 

movement duration and index of difficulty using the formula: 

Index of difficulty = Log2(2A/W) 

where A is movement amplitude (constant) and W is the width of the target. Using this, we 

calculated the slope of the linear relationship between movement duration and index of 

difficulty for real and imagined movements for each participant and submitted group means 

to a 4 (group) x 2 (condition) repeated-measures ANOVA. The multivariate approach to 

repeated-measures ANOVA was used throughout to protect against violations to the 

assumption of sphericity. Effect size was calculated using partial eta squared (ηp
2
) and 

pairwise comparisons of estimated marginal means were used to follow-up significant 

findings. 

 To determine whether group differences existed in regard to the similarity of real and 

imagined movement times, and in line with Caeyenberghs et al. (2009), we calculated the 

Pearson’s product moment correlation coefficient and effect size R
2
 for each participant’s real 

and imagined movement times across target widths. The resultant correlation was 



transformed using the Fisher-z transformation and submitted to a univariate ANOVA to 

determine whether there were differences in this relationship between the four groups.  

For the hand task, anticipatory responses (less than 250ms) were removed prior to 

mean response times (RT) and accuracy (proportion correct) being calculated for each 

participant at each angle of rotation. To determine whether groups conformed to 

biomechanical limitations of the task, responses to medially (e.g. right hand at 270°; left hand 

at 45°) versus laterally (e.g. left hand at 270°; right hand at 45°) rotated hands were 

examined. Mean response time (RT) and accuracy were calculated for each group in each 

direction and submitted to two 4 (group) x  2 (direction) repeated-measures ANOVA. The 

critical value for significance was adjusted to p = .025. 

To analyse RT and accuracy overall, a commonly used technique in mental rotation 

studies to increase reliability of estimates by increasing the number of trials at each angle was 

employed (see, for example, Harris et al., 2000; Roelofs, van Galen, Keijsers, & Hoogduin, 

2002). This involved combining data from the same angular rotation, regardless of direction. 

For example, responses to stimuli at 90  and 270  were combined as both were 90  from the 

upright. This provided four trials at each of five angles (0  - 180 ) for each hand (left/right). 

A repeated measures ANOVA was conducted to determine group differences in response 

time across angles, with the multivariate approach to ANOVA used to protect against 

violations of sphericity. Mean accuracy across angles was also calculated for each participant 

and again submitted to a univariate ANOVA. For both tests, the critical value for significance 

was adjusted to p = .025. 

 Group means for the spatial span and spatial working memory task variables were 

calculated for the two ADHD groups and submitted to a MANOVA. As variables are not 

standardised, age was included as a covariate. Multivariate and univariate effects for group 

were examined and significant univariate effects were followed up using pairwise 



comparisons of estimated marginal means with Bonferroni adjustments. Variables that were 

identified as differing significantly between groups were included as covariates in follow-up 

univariate ANOVAs involving imagery variables where the two ADHD groups had differed 

significantly. 

 

3.0  Results 

Of the 69 children who were assessed, 11 were excluded on the basis of their 

Movement ABC-2 scores - five children recruited as part of the DCD group were excluded 

after scoring on or above the 16
th

 percentile and in keeping with our exclusion of children 

scoring on or between the 16
th

 and 24
th

 percentiles, four children recruited as comparisons 

and two children with ADHD were excluded. Final group numbers, as well as descriptive 

data for the groups, can be found in Table 1. Significant differences in group means were 

identified on a number of variables (see Table 1), but importantly, there were no significant 

differences between the two ADHD groups on the Inattention t-score from the Conners’ scale 

or the standard score for the TEA-Ch Score! task. The differences among groups on 

Movement ABC scores were not caused by differences in IQ, which did not alter ANOVA 

results when added as a covariate (p < .001). Correlations between descriptive and motor 

imagery variables identified potential covariates. Age was moderately correlated with mean 

accuracy on the hand rotation task (r = .42, p = .001), as was IQ (r = .44, p = .001). IQ and 

TEA-Ch Score! were moderately correlated with the Fishers z transformation of the VGPT 

correlation between real and imagined movements (r = .35, p = .01 and r = .30, p = .023 

respectively).  

 

3.1 Visually Guided Pointing Task (VGPT).  



In all groups, the relationship between real movement duration and target width was 

described well by a logarithmic function, with R
2
 values all above .90 (Table 2). The 

logarithmic function also provided a good fit for the imagined movements of the ADHD and 

comparison groups, and in line with Lewis et al. (Lewis et al., 2008), the ADHD+DCD 

group. In contrast, and in line with previous research (Lewis et al., 2008; Maruff et al., 1999; 

Wilson et al., 2001), the logarithmic function did not provide a good fit for the relationship 

between imagined movement duration and target width for the DCD group.  

Table 2 indicates that for all groups, the slope of the line fitted to the relationship 

between index of difficulty and movement duration was greater in the real movement 

condition compared to the imagined condition. This was supported by the results of the 

ANOVA, which identified a significant effect for condition, Wilks’ Λ = .27, F (1,53) = 

146.98, p < .001, ηp
2
 = .74. The lower values for slope in both real and imagined conditions 

for the DCD group did not result in a significant interaction effect between condition and 

group, or a significant group effect (both p > .05).  

Both IQ and TEA-Ch Score! were included as covariates in the ANOVA comparing 

the four groups’ transformed real:imagined movement correlation, but were removed from 

analysis after it was determined that neither had a significant effect (p = .093 and .20 

respectively).  Although ANOVA did not identify a significant group effect for the 

relationship between real and imagined movement times, F (3,53) = 1.10, p = .36, ηp
2
 = .06, 

the effect sizes demonstrate that the proportion of variation that can be predicted from the 

relationship between real and imagined movements was considerably greater in the two non-

motor impaired groups (ADHD and comparison). The effect size was lowest in the 

ADHD+DCD group, explaining only 29% of the variance, compared to 47% and 57% for the 

ADHD and comparison groups respectively. 

 



3.2 Hand Rotation Task.  

Figure 3 shows the group means for response time and accuracy to medially and 

laterally rotated hands separately. For response time, the DCD group were the only group not 

to respond faster to medially rotated hands compared to hands rotated laterally. There was a 

significant effect for condition, Wilks’ Λ = .77, F (1,52) = 15.73, p < .001, ηp
2
 = .23, but the 

interaction between group and direction did not reach significance (p = .084). All groups 

were more accurate when responding to medially rotated hands, but ANOVA did not identify 

a significant effect for condition (p = .16) nor an interaction between group and condition (p 

= .98). Group effects for RT and accuracy are described below. 

Mean RT and accuracy at each angle of rotation can be viewed in Figures 4 and 5 

respectively. Repeated measures ANOVA identified a significant effect of angle on RT, with 

RT increasing in line with the angular orientation of the stimulus hand, Wilks’ Λ = .402, 

F(4,49) = 18.24, p < .001, ηp
2
 = .60. However, there were no group differences identified (p = 

.75), nor any interaction between group and angle (p = .46). 

Both IQ and age were included as covariates in the ANOVA comparing the four 

groups’ mean accuracy scores, but were removed from analysis after it was determined that 

neither had a significant effect (p = .108 and .114 respectively).  Mean accuracy across all 

angles for each group was 0.92 (SD = .08) for the ADHD group, 0.70 (SD = .20) for the 

ADHD+DCD group, 0.68 (SD = .10) for the DCD group and 0.86 (SD = .13) for the 

comparison group. There was a significant effect for group, F (3,52) = 10.09, p < .001, ηp
2
 = 

.37, with the ADHD group more accurate than the ADHD+DCD and DCD groups (both p < 

.001). The comparison group was also more accurate than both motor impaired groups (p = 

.008 and .007 for the ADHD+DCD and DCD groups respectively). Neither the ADHD and 

comparison groups, nor the ADHD+DCD and DCD groups, differed from each other (all p > 

.05). 



3.3 Working Memory.  

Age adjusted means for the working memory variables can be found in Table 3. 

MANOVA failed to identify a significant multivariate group effect, Wilks’ Λ = .73, F (6,21) 

= 1.33, p = .29, ηp
2
 = .28. As shown in Table 3, univariate analysis showed that the 

ADHD+DCD group were slower to complete the spatial working memory task than the 

ADHD group at the two highest levels - SWM-Time 6 and SWM-Time 8, F (1,26) = 4.38, p 

= .046, ηp
2
 = .14 and F (1,26) = 4.76, p = .038, ηp

2
 = .16 respectively. No other univariate 

differences were identified (all p > .05). As a significant difference between the two ADHD 

groups had been identified on the total mean score for the hand rotation task, a follow-up 

univariate ANOVA was conducted using SWM-Time 6 and SWM-Time 8 as covariates to 

determine whether this difference in accuracy remained after taking working memory into 

account. Results demonstrated that the ADHD+DCD remained significantly less accurate 

than the ADHD group after accounting for working memory, F (1,24) = 12.59, p = .002, ηp
2
 = 

.34. 

 

4.0 Discussion 

The aim of this study was to examine in detail the motor imagery ability of children 

with ADHD+DCD, extending the work of Lewis et al. (2008) to determine whether 1) 

inattention was greater in ADHD+DCD alone and 2) whether motor imagery deficits 

observed in DCD were present in ADHD+DCD. Firstly, our results did not support the theory 

that motor skill deficits in ADHD are related to inattentive symptomatology. Parent ratings of 

inattention and hyperactivity were slightly, but not significantly, higher in the ADHD+DCD 

group compared to the ADHD group. Similarly, scores on the TEA-Ch Score! subtest, our 

test of sustained attention at the time of assessment, did not differ significantly between the 

two groups. Interestingly, IQ was considerably lower in the ADHD+DCD group compared to 



the ADHD group, but the differences in motor performance on the Movement ABC-2 were 

still present after accounting for this. Although previous studies have identified a correlation 

between inattentiveness and motor impairment (Piek et al., 1999; Tseng et al., 2004), direct 

comparisons of the inattentive levels of motor impaired and non-motor impaired ADHD 

groups, as performed in this study, fail to find a significant difference in inattention between 

the groups (Pitcher et al., 2003). This suggests that motor impairment in ADHD is 

independent of inattentive symptomatology and does not support the recommendation of the 

APA that motor impairment in ADHD is due to distractibility and impulsiveness. 

As in previous studies, the motor imagery performance of children with DCD was 

atypical and will be discussed after first considering the results of the ADHD groups. In line 

with Lewis et al. (2008), the performance of both the ADHD and ADHD+DCD groups 

conformed to a logarithmic pattern for their real and imagined movements, and there were no 

differences in the slope of the linear fit of the data among these two groups and the 

comparison group. Interestingly, we included an additional variable here that was not 

included in the Lewis et al. paper – the correlation between real and imagined movement 

times, transformed using Fisher’s z. Although not significantly different, this figure for the 

ADHD+DCD group was approximately half of that for the ADHD and comparison groups, 

matching the figure for the DCD group. The effect size for this correlation was also 

considerably lower in the two motor impaired groups and in fact, lowest in the ADHD+DCD 

group, suggesting the non-significant finding may actually result from the small sample size. 

This indicates that although similar in many ways to the non-motor impaired groups, the 

performance of the ADHD+DCD group may not have been completely typical. It also 

highlights the importance of variable selection when using the VGPT, in that performance 

may appear typical using one variable, but less so using another.  



For the hand rotation task, both ADHD groups, like the comparison group, were faster 

and more accurate when responding to medially, compared to laterally rotated hands, in line 

with the biomechanical limitations of the task. In regard to response time across angle, there 

were no group differences identified. This is not a surprising finding – although Wilson et al., 

(2004) found children with DCD differed in their RT patterns compared to their peers, others 

since have not (Williams et al., 2006; Williams et al., 2008). However, both the 

ADHD+DCD and DCD groups were significantly less accurate on the hand rotation task than 

both the ADHD and comparison groups, differences that were not the result of the differences 

in IQ or age among the groups. This was as we hypothesised and we suggested that working 

memory capacity may have had some influence on this outcome. However, analysis of the 

working memory data for the two ADHD groups found few differences in performance after 

the influence of age was partialled out, with only two variables identified as differing 

significantly. When these were accounted for, the ADHD+DCD group remained significantly 

less accurate than the ADHD group. That group differences involving the ADHD+DCD 

group were far more apparent on the hand rotation task reflects different nature of motor 

imagery used when compared to the VGPT (the correlation between performances on the two 

tasks was r < .20). Briefly, the hand rotation task requires implicit imagery judgements on 

hand position whereas the VGPT requires a more explicit form of imagery, providing visual 

guidance and involving speed-accuracy components. It is unclear why the ADHD+DCD 

group showed greater deficits on the VGPT, but this is an area for further investigation. 

Taken together, these findings indicate that although often not as apparent as the 

impairment observed in children with DCD alone, children with ADHD+DCD do have 

genuine motor control deficits that do not result from increased levels of inattention or 

decreased working memory capacity. Accurately imagining the outcome of a motor plan is an 

important part of motor planning and a crucial component of forward internal modelling 



(Blakemore, Wolpert, & Frith, 2002; Flanagan, Vetter, Johansson, & Wolpert, 2003). The 

results of this study suggest that deficits in motor imagery ability may underlie, or at least 

contribute to, some of the motor skill deficits observed in many children with ADHD. It is 

important to note that these results do not provide evidence that motor impairment is caused 

by motor imagery deficits, which may instead occur as a by-product of the motor impairment 

itself. That is, it may be difficult for children with motor skill impairment to form accurate 

internal representations of a given movement if their motor abilities have never been 

sufficient to accurately perform that movement. Intervention studies to determine whether 

imagery ability is enhanced when motor skills are improved and whether improvements in 

motor imagery capacity result in improvements to motor skills are the only way to resolve 

such an issue. Of note, it has been demonstrated that motor imagery training programs can 

have a beneficial impact on the motor skills of children with motor impairment (Wilson, 

Thomas, & Maruff, 2002), favouring the hypothesis that an inability to accurately represent 

movements internally plays a contributing role in motor skill impairment in children. 

The results of the DCD group in this study generally followed the expected pattern of 

performance for this group on motor imagery tasks and is in line with previous work by 

ourselves and others (Deconinck et al., 2009; Lewis et al., 2008; Maruff et al., 1999; 

Williams et al., 2006; Williams et al., 2008; Wilson et al., 2004; Wilson et al., 2001), and 

provides further evidence of deficits to represent movements internally in this group of 

children. The only exception to this was the finding that the DCD group did not show the RT 

advantage when responding to medially versus laterally rotated hands that has been observed 

previously (Deconinck et al., 2009; Williams et al., 2011). This might indicate that the 

children were not engaging in motor imagery (see Wilson et al., 2004, for a discussion on the 

use of visual imagery as an alternative technique), or that if they were, this was not restricted 

by the biomechanical limitations of actual movement. If they were not engaging in motor 



imagery, we would argue that this was the result of their deficits in motor imagery ability – 

there is clearly no advantage to engaging in another, less accurate technique and we can 

assume that based on the results of their peers, using motor imagery to complete the task is 

the most efficient, and perhaps even default, method. Switching, then, to another technique 

would suggest an inability to accurately complete the task using motor imagery. 

An interesting aside to the motor imagery results in this study were the findings 

relating to the descriptive measures. The difference in IQ among the groups was striking, 

particularly between the two ADHD groups. Remembering that these children were drawn 

from an academic child psychiatry unit with no prior information on their motor skill status, 

the large difference in estimated IQ between the two groups is quite remarkable, providing 

further evidence that the presence of the two disorders combined is likely to be more 

detrimental than either disorder alone (Rasmussen & Gillberg, 2000; Tervo et al., 2002). 

Another intriguing finding related to the DCD group and their inattention and hyperactivity 

scores. These children were carefully screened to ensure that they had no history of a 

suspected or actual diagnosis of ADHD and, in addition, their parent/guardian completed a 

screening questionnaire based on the DSM-IV criteria for ADHD to rule out those with levels 

of inattention or hyperactivity that were suspected to be elevated. Despite this careful 

screening, parent ratings on the full version of the Conners’ Parent Rating Scale indicated 

elevated scores on both factors. Further, their scores on the sustained attention test during 

their assessment were also quite low, and in fact lower than the ADHD group, although these 

differences were not significant. This is not unprecedented, with previous research indicating 

that levels of inattention can often be high in children with DCD without a diagnosis of 

ADHD (Kaplan, Wilson, Dewey, & Crawford, 1998), but indicates that inattention levels 

should be carefully considered when researching children with DCD. 



Though we were able to isolate clear group differences on the motor imagery tasks 

presented here, a limitation of these findings is that these tasks are implicit measures of motor 

imagery. We expect that most participants engaged in motor imagery based on their pattern 

of performances, which generally fall in line with previous research using neuroimaging to 

support their findings (e.g. Kosslyn, Digirolamo, Thompson, & Alpert, 1998). Without 

neuroimaging to support our findings, it should be clear that participants could potentially 

have been utilising some other method to complete the tasks. Further limitations include the 

limited sample size, particularly in the DCD group, and that working memory data was not 

available for all groups. 

 

5.0. Conclusion 

In conclusion, this study demonstrated that children with ADHD+DCD experience 

genuine motor control impairments (manifest by a reduced ability to accurately represent 

movement at a neural level) that do not appear to be linked to increased levels of inattention 

or decreased working memory capacity (relative to children with ADHD alone). On the 

VGPT, this group’s imagined movements conformed to the same laws as their actual 

movements, unlike those with DCD alone, but the correlation between their real and 

imagined movements was very low, indicating performance may not have been completely 

typical. Clear deficits in motor imagery ability were noted for the ADHD+DCD group on the 

hand rotation task, with performance as poor as that for children with DCD alone. Though it 

is unclear whether motor imagery deficits play a causal role in motor impairment in ADHD 

or are in fact a symptom of such impairment, an inability to accurately represent movements 

internally is likely to result in problems with motor planning and the efficient use of 

feedforward models of motor control (Blakemore et al., 2002; Flanagan et al., 2003). In 

DCD, this is reflected not only in motor imagery as it is here, but also in motor planning (van 



Swieten et al., 2010) and online movement control (Hyde & Wilson, 2011a, 2011b). It is 

critical therefore that clinically, motor skill assessments are included in assessments of 

children with ADHD and impairments are considered seriously, with interventions provided. 

It is also vital that researchers continue to explore motor control in ADHD+DCD to further 

delineate the underlying aetiological risk factors of motor impairment, which will enhance 

not only interventions provided, but also improve clinical recognition. 
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Table 1. 

Group descriptive data – Means (SD) unless otherwise specified. 

 ADHD ADHD+DCD DCD COMP. p Post-hoc results 

 N = 14 N = 16 N = 10 N = 18   

Age (years)                       10.11 (1.41) 9.07 (1.65) 8.45 (1.21) 10.20 (1.31) .006 DCD < ADHD & Comparison 

Age range (years) 8.19-12.86 7.32-11.33 7.03-10.51 7.56-11.84 -- -- 

Percentage of males 57% 87.5% 60% 56% .19 -- 

M-ABC2  Total SS  10.21 (2.91) 4.38 (1.71) 3.00 (1.16) 11.33 (2.00) <.001 DCD & ADHD+DCD < ADHD & Comparison 

Manual Dexterity SS 8.29 (2.92) 3.50 (1.32) 3.44 (1.17) 8.39 (2.70) <.001 DCD & ADHD+DCD < ADHD & Comparison 

Aiming & Catching SS 11.36 (2.59) 8.44 (2.63) 6.60 (2.95) 12.61 (2.43) <.001 DCD & ADHD+DCD < ADHD & Comparison 

Balance SS 10.79 (2.99) 6.13 (2.34) 4.10 (1.66) 13.94 (8.46) <.001 DCD & ADHD+DCD < ADHD & Comparison 

WASI IQ               

 

104.50 (9.31) 88.73 (8.99) 96.78 (19.34) 110.59 (10.55) <.001 ADHD+DCD < ADHD & Comparison; DCD < 

Comparison 

Inattention  t-score      78.14 (9.57) 86.54 (12.90) 65.00 (19.98) 45.36 (8.18) <.001 Comparison < all others; DCD < ADHD 

Hyperactivity t-score 87.14 (17.33) 91.92 (14.54) 60.50 (15.12) 44.50 (4.83) <.001 Comparison < all others; DCD < ADHD & 

ADHD+DCD 



TEA-Ch Score! SS 8.36 (3.41) 6.38 (2.83) 7.40 (4.03) 9.78 (2.18) .016 ADHD+DCD < Comparison 

Note: COMP. = Comparison;  M-ABC2 = Movement Assessment Battery for Children 2; SS = Standard Score; WASI = Wechsler Abbreviated Scale of Intelligence. 

  



Table 2. 

Visually-Guided Pointing Task (VGPT) outcomes. 

Group Condition Logarithmic 

equation 

R
2 

* p Slope Fisher’s z - 

correlation 

R
2 ** 

ADHD Real y = -1.21x + 7.5 .96 .004 .97 (.33)   

Imagined y = -0.31x + 4.63 .91 .013 .25 (.23) .82 (.72) .47 

ADHD+DCD Real y = -1.14x + 8.67 .93 .008 .90 (.47)   

Imagined y = -0.43x + 5.63 .92 .011 .35 (.28) .44 (.57) .29 

DCD Real y = -0.94x +8.36 .97 .002 .74 (.37)   

Imagined y = -0.01x + 5.03 .55 .151 .09 (.34) .47 (1.00) .36 

Comparison Real y = -1.11x + 7.20 .97 .002 .89 (.41)   

Imagined y = -0.30x + 4.79 .91 .011 .24 (.25) .88 (1.00) .57 

Note: Slope and Fisher’s z – correlation = group means and (SD); * R
2
: describing fit of logarithmic relationship; ** R

2
: mean effect size for 

correlation between real and imagined movements. 

  



Table 3. 

Mean and standard error (adjusted for age) and univariate significance value for the CANTAB test for the ADHD and ADHD+DCD groups. 

Variable ADHD ADHD+DCD p 

Spatial Span 4.62 (0.30) 3.96 (0.29) .14 

SWM-BSE 49.96 (5.93) 63.50 (5.72) .12 

SWM-Strategy 38.19 (0.95) 38.16 (0.92) .98 

SWM-Time 4 (s) 68.42 (11.44) 97.33 (11.03) .090 

SWM-Time 6 (s) 125.48 (19.26) 183.32 (18.56) .046 

SWM-Time 8 (s) 190.00 (26.28) 272.32 (25.33) .038 

Note: SWM = CANTAB spatial working memory task; BSE = between search errors. 



Figure captions 

Figure 1.  Visually Guided Pointing Task (VGPT) example. 

 

 

Figure 2.  Hand stimuli: left hand at 45  and right hand at 225 . 

 

 



Figure 3. Group means for hand task RT and accuracy - medial and lateral stimuli rotations. 

Note: Dotted bars represent medial rotations; Solid bars represent lateral rotations. 

 

Figure 4. Group means for hand task RT – stimuli rotations 0-180°. 

 

 

 

 

 



Figure 5. Group means for hand task accuracy – stimuli rotations 0-180°. 

 

 

 

 


