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Asynchronous H∞ filtering for switched stochastic

systems with time-varying delay ∗

Jie Lian † Chunwei Mu † and Peng Shi ‡

Abstract– This paper considers the H∞ filtering problem of discrete-time switched delay systems. Attention

is focused on the design of an exponentially mean-square stable filter taking the asynchronous switching and

missing measurements into account. New results on exponential mean-square stability and a weighted l2-gain

analysis for filtering error system are given, where the system is allowed to be unstable during the unmatched

interval, in which the switching signal of filter is different from that of the system. By using the average dwell

time (ADT) method and the Lyapunov-Krasovskii function method, delay-dependent sufficient conditions for

the desired H∞ filter are derived in terms of linear matrix inequalities (LMIs). A numerical example is provided

to demonstrate the effectiveness of the proposed design approach.

Keywords: Asynchronous switching, H∞ filtering, Discrete-time switched systems, Exponential mean-square

stability, time-varying delay.

1 Introduction

Switched system is one of the most important classes of hybrid systems in engineering applications.

It consists of a family of subsystems operated by a particular type of switching rule. According to this

switching rule, one of these subsystems will be activated along the system trajectory at each instant of

time [1]. Due to the theoretical development as well as practical applications, analysis and synthesis

of switched systems have recently gained considerable attention [2-4]. Since time delay frequently

appears in the real systems and is a source of the poor performance and even instability, switched

delay system has been extensively investigated [5-7].

On the other hand, it is very difficult to know precisely the statistics of the additive noise actuating
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in the systems, the noise sources are always arbitrary deterministic signals with bounded energy, or

bounded average power. Thus, this paper resorts H∞ filter, which is concerned with the design of

estimators ensuring that the stability and the l2-gain of the filtering error system. In addition, H∞

filtering is insensitive to uncertainty in the exogenous signal statistics as well as that in dynamic

models. H∞ filtering problem can be described as follow: given a dynamic system with exogenous

inputs and measured outputs, design a filter to estimate an unmeasured output such that the mapping

from the exogenous input to the estimation error is minimized or no larger than some prescribed level

in terms of the norm [8]. Recently, some attempts on the H∞ filtering problem have been investigated

for switched systems [9-13].

While, when considering the filtering problem of switched system, a very common assumption is that

the filter is switched synchronously with the switching of system modes, which is quite unpractical. In

reality, it takes time to identify the system modes and active the matched filter. So the phenomena of

asynchronous switching between system modes and filter candidates generally exist. The necessities

of considering asynchronous switching for efficient control design have been shown in mechanical or

chemical systems [14]. Recently, the asynchronous switching problem has been investigated and various

methodologies have been developed [15-20]. The stabilization of asynchronous linear system has been

included in [15]. Stability, l2-gain and asynchronous H∞ control of discrete-time switched systems are

considered in [17]. Then, the results are expanded to filtering in [20], which discusses the stability and

l2-gain of switched systems.

In almost all the works mentioned above, the hypothesis of consecutive measurements have been

made implicitly. Unfortunately, in many practical applications, such a hypothesis does not hold. For

example, due to sensor temporal failures or network transmission delay/loss, at certain time points,

the system measurements may contain noise only, indicating that the real signal is missing. Switched

system with missing measurements has received much attention during the past few years. Using

binary switching sequence, the missing measurement phenomena can be modeled. The binary is

specified by a conditional probability distribution taking its values of 0 and 1. Much work has been

done on such model [21-28]. However, if the asynchronously switching and missing measurements

happen simultaneously in the systems, it is hard to deal with the stability. All of these motivate us

to shorten such a gap in the present investigation.

This paper investigates the asynchronous H∞ filtering problem for a class of discrete-time switched

delay systems with missing measurements. Based on the average dwell time approach, delay-dependent

sufficient conditions on exponential mean-square stability and a weighted l2-gain are developed for the

filtering error system. It is noted that system is allowed to be unstable within a bounded unmatched
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interval. Then, the corresponding condition for the existence of desired filter is established in terms of

LMIs. Finally, a numerical example is given to demonstrate the effectiveness of the proposed design

approach.

The remainder of this paper is organized as follows. The asynchronous H∞ filtering of switched

systems is formulated in Section 2. Section 3 presents our main results. A numerical example is given

in Section 4, and then we conclude this paper in Section 5.

Notation: The notations used throughout the paper are standard. The superscript ’T’ stands

for matrix transposition; Rn denotes the n-dimensional Euclidean space; N represents the set of

nonnegative integers; the notation P > 0 means that P is real symmetric and positive definite; l2 [0,∞)

is the space of square-integrable vector functions over [0,∞); diag{· · · } stands for a block-diagonal

matrix; λmin(P )(λmax(P ) ) denotes the minimum (maximum) eigenvalue of symmetric matrix P ; ∥ · ∥

denotes the Euclidean norm of a vector and its induced norm of a matrix. In symmetric matrices or

long matrix expressions, we use a star (∗) to represent a term that is induced by symmetry.

2 Problem description and preliminaries

Consider a class of discrete-time switched delay systems given by

xk+1 = Aσxk +Adσxk−dk +Bσωk,

zk = Cσxk + Cdσxk−dk +Dσωk ,

ỹk = C2σxk + C2dσxk−dk +D2σωk, (1)

where xk ∈ Rn is the state vector, ωk ∈ Rp is the disturbance input which belongs to l2 [0,∞) , zk ∈ Rq

is the signal to be estimated. σ is a piecewise constant function of time k called a switching signal,

which takes its values in the finite set I = {1, · · · , N}, and N > 1 is the number of subsystems. The

positive integer dk denotes the time-varying delay satisfying

dm < dk < dM . (2)

where dm and dM denotes the lower bound and upper bound of the time-varying delay, respectively.

In system (1), ỹk is the ideal system output that always contains the real signal. However, in

practical engineering systems, the system output usually contains probabilistic missing data. Then,

the actual system output can be described by

yk = γk(C2ixk + C2dixk−dk) +D2iωk, i ∈ I, (3)
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where the stochastic variable γk is a Bernoulli distributed white sequence specified by the following

probabilities:

Prob{γk = 1} = E{γk} = p, (4)

Prob{γk = 0} = 1− E{γk} = 1− p, (5)

with a known constant p > 0. Obviously, for a stochastic variable γk , we have the mean value

E{γk} = p and variance q2 = p(1− p).

Next, we are interested in designing a full-order filter described by

x̂k+1 = Acix̂k +Bciyk,

ẑk = Ccix̂k +Dciyk, (6)

where x̂k ∈ Rn is the state estimate; ẑk ∈ Rq is an estimate for zk; Aci, Bci, Cci and Dci are matrices

to be determined.

It is assumed that the subsystem is activated at the switching instant kl, ∀l ∈ N . Owing to the

real switching time of filters exceeds or lags behind that of the subsystems, so the switching instant of

the filter is kl + T(kl+1,kl), ∀l ∈ N , where T(kl+1,kl) represents the intervals during which the switching

signals of filter are different from that of the subsystem. Also, we use T(kl+1−kl) to denote the length

of T(kl+1,kl).

Therefore, from (1) and (6), we can get the resulting filtering error system as follows:

x̃k+1 = Āix̃k + ĀdiHx̃k−dk + B̄iωk,

z̃k = C̄ix̃k + C̄diHx̃k−dk + D̄iωk,
∀k ∈ (kl, kl + T(kl+1,kl))

x̃k+1 = Ãix̃k + ÃdiHx̃k−dk + B̃iωk,

z̃k = C̃ix̃k + C̃diHx̃k−dk + D̃iωk,
∀k ∈ (kl + T(kl+1,kl), kl+1)

(7)

where,

x̃k =
[
xTk x̂Tk

]T
, z̃k = zk − ẑk, H =

[
I 0

]
,

Āi =

 Ai 0

γkBcjC2i Acj

 , Ãi =

 Ai 0

γkBciC2i Aci

 , Ādi =

 Adi

γkBcjC2di

 , Ãdi =

 Adi

γkBciC2di

 ,
B̄i =

 Bi

BcjD2i

 , B̃i =

 Bi

BciD2i

 C̄i =
[
Ci − γkDcjC2i −Ccj

]
, C̄di = Cdi − γkDcjC2di,

C̃i =
[
Ci − γkDciC2i −Cci

]
, C̃di = Cdi − γkDciC2di, D̄i = Di −DcjD2i, D̃i = Di −DciD2i,
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For convenience, we denote

Ā1i =

 Ai 0

pBcjC2i Acj

 , Ā2i =

 0 0

BcjC2i 0

 , Ā1di =

 Adi

pBcjC2di

 , Ā2di =

 0

BcjC2di

 ,
C̄1i =

[
Ci − pDcjC2i −Ccj

]
, C̄2i =

[
DcjC2i 0

]
, C̄1di = Cdi − pDcjC2di, C̄2di = DcjC2di,

Ã1i =

 Ai 0

pBciC2i Aci

 , Ã2i =

 0 0

BciC2i 0

 , Ã1di =

 Adi

pBciC2di

 , Ã2di =

 0

BciC2di

 ,
C̃1i =

[
Ci − pDciC2i −Cci

]
, C̃2i =

[
DciC2i 0

]
, C̃1di = Cdi − pDciC2di, C̃2di = DciC2di.

We give the following definitions, which will play important roles in deriving our main results

subsequently.

Definition 1 [2]: For any T1 > T2 > 0 , let N(T1, T2) be the switching number of σ over [T1, T2)

. If N(T1, T2) ≤ N0 + (T1 − T2)/τa hold for N0 ≥ 0 and τα > 0 , then N0 and τα are called chatter

bound and average dwell time, respectively. As commonly used in the literature, we choose N0 = 0.

Definition 2: Consider the filtering error system (7), suppose that there exist constants c > 0,

d ∈ (0, 1) and f > 1 such that E{∥ xk∥2} ≤ cdkE{∥ xk0∥2} and
∞∑

k=k0

f−kE
{
z̃Tk z̃k

}
< γ2

∞∑
k=k0

ωT
k ωk

hold, then the filtering error system is said to be exponentially mean-square stable with ωk = 0 under

switching signal σ and has a weighted l2-gain no greater than γ.

3 Main results

3.1 Stability and H∞ performance analysis

In this section, delay-dependent sufficient conditions on exponential mean-square stability with a

weighted l2-gain are derived for the filtering error system (7) via the average dwell time approach.

Theorem 1: Given scalars 0 < α < 1, β > 0 and γ > 0, the filtering error system (7) is exponentially

mean-square stable with a weighted l2-gain γs = γ

√
p1θTmax(1− α̃p

1/τa
1 )

/
(1− α̃θTmax/τap

1/τa
1 ) under

ADT switching signals σ, if there exist symmetric and positive definite matrices Pi, Qi, Rbi, Zci, and

matrices Ωi, Mci, Nci, b = 1, 2, c = 1, 2, 3, such that the following inequalities hold

ψ1 − α̃Pi HTMT
2i +HTNT

2i HTMT
3i +HTNT

3i Ξ̃11 Ξ̃1

∗ −α̃dMQi 0 Ξ̃12 Ξ̃2

∗ ∗ −γ2I Ξ̃13 Ξ̃3

∗ ∗ ∗ Ξ̃4 0

∗ ∗ ∗ ∗ Ξ̃5


< 0, (8)
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

ψ1 − β̄Pi HTMT
2i +HTNT

2i HTMT
3i +HTNT

3i Ξ̄11 Ξ̄1

∗ −β̄dmQi 0 Ξ̄12 Ξ̄2

∗ ∗ −γ2I Ξ̄13 Ξ̄3

∗ ∗ ∗ Ξ̄4 0

∗ ∗ ∗ ∗ Ξ̄5


< 0, (9)

where,

Ξ̃1c =
[
−Nci −Mci τ11Mci τ12Nci

]
, Ξ̃1 =

[
C̃T
1i qC̃T

2i ÃT
1iΩ

T
i qÃT

2iΩ
T
i HT (AT

i − I)Z3i

]
,

Ξ̃2 =
[
C̃T
1di qC̃T

2di ÃT
1diΩ

T
i qÃT

2diΩ
T
i AT

diZ3i

]
, Ξ̃3 =

[
D̃T

i 0 B̃T
i Ω

T
i 0 BT

i Z3i

]
,

Ξ̃4 = diag
{

−α̃dmR1i −α̃dMR2i −τ11Z1i −τ12Z2i

}
, Ξ̃5 = diag

{
−I −I ψ̃2 ψ̃2 −Z3i

}
,

Ξ̄1c =
[
−Nci −Mci τ21Mci τ22Nci

]
, Ξ̄1 =

[
C̄T
1i qC̄T

2i ĀT
1iΩ

T
j qĀT

2iΩ
T
j HT (AT

i − I)Z3i

]
,

Ξ̄2 =
[
C̄T
1di qC̄T

2di ĀT
1diΩ

T
j qĀT

2diΩ
T
j AT

diZ3i

]
, Ξ̄3 =

[
D̄T

i 0 B̄T
i Ω

T
j 0 BT

i Z3i

]
,

Ξ̄4 = diag
{

−β̄dmR1i −β̄dMR2i −τ21Z1i −τ22Z2i

}
, Ξ̄5 = diag

{
−I −I ψ̄2 ψ̄2 −Z3i

}
,

ψ1 = HT (τQi +R1i +R2i)H +M1iH +HTMT
1i +N1iH +HTNT

1i, ψ̃2 = Pi − ΩT
i − Ωi,

ψ̄2 = Pi − ΩT
j − Ωj , Z3i = dMZ1i + dmZ2i, τ11 = (α̃−dM − 1)

/
α, τ12 = (α̃−dm − 1)

/
α,

τ21 = (1− β̄−dM )
/
β, τ22 = (1− β̄−dm)

/
β, τ = dM − dm + 1, β̄ = 1 + β, α̃ = 1− α,

and the average dwell time τα

τa > τ∗a = −(Tmax ln θ + ln p1p2)/ln α̃ (10)

where, θ = β̄/α̃, p1 = max
i∈I

{κ2i/κ4i} , κ4i = λmin(Pi) + dmτλmin(Qi) + dmλmax(R1i) + dMλmax(R2i),

p2 = max
i,j∈I,i̸=j

{κ1i/κ3j} , κ3i = λmin(Pi) + dmτλmin(Qi) + dmα̃
dmλmax(R1i) + dM α̃

dMλmax(R2i),

κ1i = λmax(Pi) + dMτ β̄
dMλmax(Qi) + dM β̄

dMλmax(R2i) + d2M β̄
dMλmax(Z1i) + d2mβ̄

dmλmax(Z2i),

κ2i = λmax(Pi) + dMτλmax(Qi) + dMλmax(R2i) + d2Mλmax(Z1i) + d2mλmax(Z2i), Tmax
∆
= max

∀l∈N
T(kl+1−kl).

Proof: Denote ηl = xl+1 − xl and choosing the following Lyapunov-Krasovskii function as V̄i(k) = V̄1i(k) + V̄2i(k) + V̄3i(k) + V̄4i(k) , ∀k ∈ [kl, kl + T(kl+1,kl))

Ṽi(k) = Ṽ1i(k) + Ṽ2i(k) + Ṽ3i(k) + Ṽ4i(k), ∀k ∈ [kl + T(kl+1,kl), kl+1)
(11)

where, V̄1i(k) = Ṽ1i(k) = x̃Tk Pix̃k,

V̄2i(k) =
k−1∑

l=k−dk

β̄k−l−1xTl Qixl +

k−dm∑
j=k−dM+1

k−1∑
l=j

β̄k−l−1xTl Qixl,
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V̄3i(k) =

k−1∑
l=k−dm

β̄k−l−1xTl R1ixl +

k−1∑
l=k−dM

β̄k−l−1xTl R2ixl,

V̄4i(k) =
k−1∑

j=k−dM

k−1∑
l=j

β̄k−l−1ηTl Z1iηl +
k−1∑

j=k−dm

k−1∑
l=j

β̄k−l−1ηTl Z2iηl

Ṽ2i(k) =

k−1∑
l=k−dk

α̃k−l−1xTl Qixl +

k−dm∑
j=k−dM+1

k−1∑
l=j

α̃k−l−1xTl Qixl,

Ṽ3i(k) =

k−1∑
l=k−dm

α̃k−l−1xTl R1ixl +

k−1∑
l=k−dM

α̃k−l−1xTl R2ixl,

Ṽ4i(k) =
k−1∑

j=k−dM

k−1∑
l=j

α̃k−l−1ηTl Z1iηl +
k−1∑

j=k−dm

k−1∑
l=j

α̃k−l−1ηTl Z2iηl,

When k ∈ (kl + T(kl+1,kl), kl+1) , denote ∆Ṽi(k) = Ṽi(k + 1)− Ṽi(k) , we can get

E
{
∆Ṽ1i(k) + αṼ1i(k)

}
= E

{
x̃Tk+1Pix̃k+1 − α̃x̃Tk Pix̃k

}
. (12)

Note that

E


k∑

l=k+1−dk+1

α̃k−lxTl Qixl

 ≤ E


k∑

l=k+1−dk

α̃k−lxTl Qixl +

k−dm∑
l=k+1−dM

α̃k−lxTl Qixl

 ,

Thus, we can get

E
{
∆Ṽ2i(k) + αṼ2i(k)

}
≤ E

{
τxTkQixk − α̃dkxTk−dk

Qixk−dk +
k−dm∑

l=k+1−dM

α̃k−lxTl Qixl

−
k−dm∑

l=k+1−dM

α̃k−lxTl Qixl

}
= E

{
τxTkQixk − α̃dMxTk−dk

Qixk−dk

}
.

(13)

Similarly, we can obtain

E
{
∆Ṽ3i(k) + αṼ3i(k)

}
= E

{
xTk (R1i +R2i)xk − α̃dmxTk−dmR1ixk−dm −α̃dMxTk−dM

R2ixk−dM

}
. (14)

E
{
∆Ṽ4i(k) + αṼ4i(k)

}
= E

{
dMη

T
k Z1iηk + dmη

T
k Z2iηk −

k−1∑
l=k−dM

α̃k−lηTl Z1iηl

−
k−1∑

l=k−dm

α̃k−lηTl Z2iηl

}
.

(15)

On the other hand, by means of the Newton-Leibniz formula, it gives rise to

xk − xk−dM −
k−1∑

l=k−dM

ηl = 0, xk − xk−dm −
k−1∑

l=k−dm

ηl = 0.
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Then, we have

2ξTkMi

xk − xk−dM −
k−1∑

l=k−dM

ηl

 = 0, 2ξTk Ni

xk − xk−dm −
k−1∑

l=k−dm

ηl

 = 0, (16)

where ξk =
[
x̃Tk xTk−dk

ωT
k xTk−dm

xTk−dM

]T
, Mi =

[
MT

1i MT
2i MT

3i 0 0
]T
,

Ni =
[
NT

1i NT
2i NT

3i 0 0
]T
.

From (12)-(16), we can get the following matrix inequality

E
{
∆Ṽi(k) + αṼi(k) + z̃Tk z̃k − γ2ωT

k ωk

}
= E

{
∆Ṽi(k) + αṼi(k) + z̃Tk z̃k − γ2ωT

k ωk + 2ξkMi

[
xk − xk−dM −

k−1∑
l=k−dM

ηl

]

+ 2ξkNi

[
xk − xk−dm −

k−1∑
l=k−dm

ηl

]}
≤ E

{
ξTk (Φi + τ11MiZ

−1
1i M

T
i + τ12NiZ

−1
2i N

T
i )ξk + z̃Tk z̃k + xTk+1Pix̃k+1 + ηTk Z3iηk

−
k−1∑

l=k−dM

[
ξTkMi + α̃k−lηTl Z1i

]
α̃l−kZ−1

1i

[
MT

i ξk + α̃k−lZ1iηl
]

−
k−1∑

l=k−dm

[
ξTk Ni + α̃k−lηTl Z2i

]
α̃l−kZ−1

2i

[
NT

i ξk + α̃k−lZ2iηl
]}

,

(17)

where

Φi =



ψ1 − α̃Pi HTMT
2i +HTNT

2i HTMT
3i +HTNT

3i −N1i −M1i

∗ −α̃dMQi 0 −N2i −M2i

∗ ∗ −γ2I −N3i −M3i

∗ ∗ ∗ −α̃dmR1i 0

∗ ∗ ∗ ∗ −α̃dMR2i


.

Since Z1i > 0 and Z2i > 0 , the last two terms are all non-positive definite. By Schur complement,

we have

E
{
∆Ṽi(k) + αṼi(k)

}
≤ 0 . (18)

E
{
∆Ṽi(k) + αṼi(k) + z̃Tk z̃k − γ2ωT

k ωk

}
≤ 0 . (19)

if the following inequality holds,

ψ1 − α̃Pi HTMT
2i +HTNT

2i HTMT
3i +HTNT

3i Ξ̃11 Θ̃1

∗ −α̃dMQi 0 Ξ̃12 Θ̃2

∗ ∗ −γ2I Ξ̃13 Θ̃3

∗ ∗ ∗ Ξ̃4 0

∗ ∗ ∗ ∗ Θ̃4


< 0, (20)
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where, Θ̃1 =
[
C̃T
1i qC̃T

2i ÃT
1i qÃT

2i HT (AT
i − I)Z3i

]
, Θ̃3 =

[
D̃T

i 0 B̃T
i 0 BT

i Z3i

]
,

Θ̃2 =
[
C̃T
1di qC̃T

2di ÃT
1di qÃT

2di AT
diZ3i

]
, Θ̃4 = diag

{
−I −I −P−1

i −P−1
i −Z3i

}
.

From the fact (Pi − Ωi)P
−1
i (Pi − Ωi)

T > 0 , we have the following inequalities: −ΩiP
−1
i ΩT

i < Pi −

Ωi − ΩT
i . Then pre- and post-multiplying (20) by diag

{
I I I I I I I I I Ωi Ωi I

}
and diag

{
I I I I I I I I I ΩT

i ΩT
i I

}
respectively, then we can get (8). This means

that if (8) holds, (20) is true.

When k ∈ (kl, kl + T(kl+1,kl)), following the similar proof line, from (9), we obtain

E
{
∆V̄i(k)− βV̄i(k)

}
≤ 0 . (21)

E
{
∆V̄i(k)− βV̄i(k) + z̃Tk z̃k − γ2ωT

k ωk

}
≤ 0 . (22)

From (11), we can get

Ṽσkl
(kl + T(kl+1,kl)) ≤ p1V̄σkl

(kl + T(kl+1,kl)). (23)

V̄σkl
(kl) ≤ p2Ṽσkl−1

(kl). (24)

Combining with (18), (21) and (23)-(24) we have

E
{
Ṽσk

(xk)
}
≤ E

{
α̃(k−kl−T(k−kl)

)Ṽσkl
(xkl+T(k,kl)

)
}

≤ E
{
α̃(k−kl−T(k−kl)

)p1V̄σkl
(xkl+T(k,kl)

)
}
≤ E

{
α̃(k−kl)θT(k−kl)p1V̄σkl

(xkl)
}

≤ E
{
α̃(k−kl)θT(k−kl)p1p2Ṽσkl−1

(xkl)
}
≤ E

{
α̃(k−kl−1)θ

T(k−kl−1)(p1p2)
2Ṽσkl−2

(xkl−1
)
}

≤ · · · ≤ E
{
α̃(k−k0)θ(Nσ(k,k0)+1)Tmax(p1p2)

Nσ(k,k0)p1V̄σk0
(xk0)

}
≤ E

{
p1θ

Tmax(α̃θTmax/τa(p1p2)
1/τa)

k−k0
V̄σk0

(xk0)
}
.

(25)

Then, we can obtain

min
i∈I

κ3iE
{
∥ xk∥2

}
≤ E {Vi(k)} ≤ max

i∈I
κ1ip1θ

Tmax(α̃θTmax/τa(p1p2)
1/τa)k−k0E

{
∥ xk0∥2

}
. (26)

From (10), we can obtain α̃θTmax/τa(p1p2)
1/τa < 1 . Therefore, according to Definition 2, the filtering

error system (7) is exponentially mean-square stable.

Next, we will analysis the H∞ performance of the filtering error system (7).

We denote Γs = z̃Ts z̃s − γ2ωT
s ωs , and consider (19), (22)-(24), we can get

E{Ṽσkl
(xk)} ≤ E

{
p1α̃

k−kl−Tk−kl Ṽσkl
(xkl+T(kl,k)

)−
k−1∑

s=kl+T(k,kl)
α̃k−s−1Γs

}

≤ E

{
α̃k−klθT(k−kl)p1p2Ṽσkl−1

(xkl)−
kl+T(k,kl)−1∑

s=kl

α̃k−s−1θkl+T(k−kl)
−s−1p1Γs −

k−1∑
s=kl+T(k,kl)

α̃k−s−1Γs

}
.

9



Then, we can get

E{Ṽσkl
(xk)} ≤ E

{
α̃k−k0θT(k−k0)(p1p2)

N(k,k0)p1Vσk0
(xk0)

−
k0+T(k1,k0)−1∑

s=k0

α̃k−s−1θk0+T(k−k0)
−s−1(p1p2)

N(k,k0)p1Γs −
k1−1∑

s=k0+T(k1,k0)
α̃k−s−1θT(k−k1)(p1p2)

N(k,k0)Γs

− · · · −
kl−1+T(kl,kl−1)

−1∑
s=kl−1

α̃k−s−1θ
kl−1+T(k−kl−1)

−s−1
p21p2Γs −

kl−1∑
s=kl−1+T(kl,kl−1)

α̃k−s−1θT(k−kl)p1p2Γs

−
kl+T(k,kl)−1∑

s=kl

α̃k−s−1θkl+T(k−kl)
−s−1p1Γs −

k−1∑
s=kl+T(k,kl)

α̃k−s−1Γs

}
Under zero initial condition x(k0) = 0, we know that

E

{
k0+T(k1,k0)−1∑

s=k0

α̃k−s−1θk0+T(k−k0)
−s−1(p1p2)

N(k,k0)p1z
T
s zs +

k1−1∑
s=k0+T(k1,k0)

α̃k−s−1θT(k−k1)(p1p2)
N(k,k0)

×zTs zs + · · ·+
kl−1+T(kl,kl−1)

−1∑
s=kl−1

α̃k−s−1θ
kl−1+T(k−kl−1)

−s−1
p21p2z

T
s zs +

kl−1∑
s=kl−1+T(kl,kl−1)

α̃k−s−1θT(k−kl)p1p2

× zTs zs +
kl+T(k,kl)−1∑

s=kl

α̃k−s−1θkl+T(k−kl)
−s−1p1z

T
s zs −

k−1∑
s=kl+T(k,kl)

α̃k−s−1zTs zs

}

≤
k0+T(k1,k0)−1∑

s=k0

α̃k−s−1θk0+T(k−k0)
−s−1(p1p2)

N(k,k0)p1γ
2ωT

s ωs +
k1−1∑

s=k0+T(k1,k0)
α̃k−s−1θT(k−k1)(p1p2)

N(k,k0)

×γ2ωT
s ωs + · · ·+

kl−1+T(kl,kl−1)
−1∑

s=kl−1

α̃k−s−1θ
kl−1+T(k−kl−1)

−s−1
p21p2γ

2ωT
s ωs +

kl−1∑
s=kl−1+T(kl,kl−1)

α̃k−s−1p1p2

×θT(k−kl)γ2ωT
s ωs +

kl+T(k,kl)−1∑
s=kl

α̃k−s−1θkl+T(k−kl)
−s−1p1γ

2ωT
s ωs −

k−1∑
s=kl+T(k,kl)

α̃k−s−1γ2ωT
s ωs

Therefore, we can obtain that

E

{
k−1∑
s=k0

ᾱk−s−1(p1p2)
N(k,s)z̃Ts z̃s

}
= E

{
k1−1∑
s=k0

ᾱk−s−1(p1p2)
N(k,s)z̃Ts z̃s + · · ·+

k−1∑
s=kl

ᾱk−s−1z̃Ts z̃s

}

≤ E

{
k0+T(k1,k0)−1∑

s=k0

α̃k−s−1θk0+T(k−k0)
−s−1(p1p2)

N(k,k0)p1z
T
s zs +

k1−1∑
s=k0+T(k1,k0)

α̃k−s−1θT(k−k1)(p1p2)
N(k,k0)

×zTs zs + · · ·+
kl−1+T(kl,kl−1)

−1∑
s=kl−1

α̃k−s−1θ
kl−1+T(k−kl−1)

−s−1
p21p2z

T
s zs +

kl−1∑
s=kl−1+T(kl,kl−1)

α̃k−s−1θT(k−kl)p1p2

×zTs zs +
kl+T(k,kl)−1∑

s=kl

α̃k−s−1θkl+T(k−kl)
−s−1p1z

T
s zs +

k−1∑
s=kl+T(k,kl)

α̃k−s−1zTs zs

}

≤
k0+T(k1,k0)−1∑

s=k0

α̃k−s−1θk0+T(k−k0)
−s−1(p1p2)

N(k,k0)p1γ
2ωT

s ωs +
k1−1∑

s=k0+T(k1,k0)
α̃k−s−1θT(k−k1)(p1p2)

N(k,k0)

×γ2ωT
s ωs + · · ·+

kl−1+T(kl,kl−1)
−1∑

s=kl−1

α̃k−s−1θ
kl−1+T(k−kl−1)

−s−1
p21p2γ

2ωT
s ωs +

kl−1∑
s=kl−1+T(kl,kl−1)

α̃k−s−1p1p2

×θT(k−kl)γ2ωT
s ωs +

kl+T(k,kl)−1∑
s=kl

α̃k−s−1θkl+T(k−kl)
−s−1p1γ

2ωT
s ωs −

k−1∑
s=kl+T(k,kl)

α̃k−s−1γ2ωT
s ωs

≤
k−1∑
s=k0

α̃k−s−1θ(N(k,s)+1)Tmax(p1p2)
N(k,s)p1γ

2ωT
s ωs
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Multiplying both sides by p
−k/τα
2 yields

E

{
k−1∑
s=k0

α̃k−s−1p
k−s/τa
1 p

−s/τa
2 z̃Ts z̃s

}
≤

k−1∑
s=k0

α̃k−s−1θ(k−s)Tmax/τa+Tmaxp
k−s/τa
1 p

−s/τa
2 p1γ

2ωT
s ωs

≤
k−1∑
s=k0

α̃k−s−1θ(k−s)Tmax/τa+Tmaxp
k−s/τa
1 p1γ

2ωT
s ωs.

This is equal to the following inequality

E


∞∑

s=k0

∞∑
k=s

α̃k−s−1p
k−s/τa
1 p

−s/τa
2 z̃Ts z̃s

 ≤
∞∑

s=k0

∞∑
k=s

α̃k−s−1θ(k−s)Tmax/τap
k−s/τa
1 θTmaxp1γ

2ωT
s ωs. (27)

Then, from (10), we can get that α̃θTmax/τap
1/τa
1 < 1 . Then

E


∞∑

s=k0

p
−s/τa
2

(1− α̃p
1/τa
1 )α̃

z̃Ts z̃s

 ≤
∞∑

s=k0

1

1− α̃θTmax/τap
1/τa
1

p1θ
Tmax

α̃
γ2ωT

s ωs.

Finally, we can get
∞∑

s=k0

p
−s/τa
2 E

{
z̃Ts z̃s

}
≤ p1θ

Tmax(1− α̃p
1/τa
1 )

1− α̃p
1/τa
1 θTmax/τa

γ2
∞∑

s=k0

ωT
s ωs. (28)

Therefore, according to Definition 2, the filtering error system has a weighted l2-gain

γs = γ

√
p1θTmax(1− α̃p

1/τa
1 )

/
(1− α̃θTmax/τap

1/τa
1 ).

This completes the proof.

Remark 1: Note that the switched systems activate in the intervals constituting of matched inter-

vals and unmatched intervals. And the system maybe unstable in the unmatched intervals, in other

words, the Lyapunov function maybe increased. However, the possible increment will be compensated

by the more specific decrement (by limiting the lower bound of ADT), therefore, the system ener-

gy is decreasing from a whole perspective. Thus, we can get the filter error system is exponential

mean-square stability with a weighted l2−gain γs.

Remark 2: The proof of disturbance attenuation level is different from [20], in which the result is

got under zero conditon Vi(xkl) = 0. In our paper, we provided a better result about weighted l2-gain

under zero initial conditon Vi(xk0) = 0; besides the result is suitable for any positive number Tmax,

which has no the limit of Tmax > 1 in [20]. On the other hand, we can get the result of [13] under the

condition without considering the missing measurement and asynchronous switching.

3.2 H∞ filter design

Now, based on the conditions on exponential mean-square stability with a weighted l2-gain in Theo-

rem 1, sufficient conditions for the existence of filter (6) are presented in the following theorem. Then,

the admissible H∞ filter parameters can be given.
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Theorem 2: Given scalars 0 < α < 1 and β > 0 , an H∞ filter (6) can be designed such that the

filter error system (7) is exponentially mean-square stable with a weighted l2-gain γs under an average

dwell time switching satisfying (10), if there exist symmetric and positive-definite matrices Pi, Qi,

Rbi, Zci and matrices Mci, Nci, Xi, Yi, Zi, Ai, Bi, Ci and Di satisfying the following inequalities

ψ1 − α̃Pi HTMT
2i +HTNT

2i HTMT
3i +HTNT

3i Ξ̃11 Σ̃1

∗ −α̃dMQi 0 Ξ̃12 Σ̃2

∗ ∗ −γ2I Ξ̃13 Σ̃3

∗ ∗ ∗ Ξ̃4 0

∗ ∗ ∗ ∗ Ξ̃5


< 0, (29)



ψ1 − β̄Pi HTMT
2i +HTNT

2i HTMT
3i +HTNT

3i Ξ̄11 Σ̄1

∗ −β̄dmQi 0 Ξ̄12 Σ̄2

∗ ∗ −γ2I Ξ̄13 Σ̄3

∗ ∗ ∗ Ξ̄4 0

∗ ∗ ∗ ∗ Ξ̄5


< 0, (30)

where, Σ̃1 =
[
C̃T
1i qC̃T

2i φ̃1 qφ̃4 HT (AT
i − I)Z3i

]
, Σ̃2 =

[
C̃T
1di qC̃T

2di φ̃2 qφ̃5 AT
diZ3i

]
,

Σ̃3 =
[
D̃T

i 0 φ̃3 0 BT
i Z3i

]
, Σ̄1 =

[
C̄T
1i qC̄T

2i φ̄1 qφ̄4 HT (AT
i − I)Z3i

]
,

Σ̄2 =
[
C̄T
1di qC̄T

2di φ̄2 qφ̄5 AT
diZ3i

]
, Σ̄3 =

[
D̄T

i 0 φ̄3 0 BT
i Z3i

]
,

φ̃T
1 =

 XiAi + pBiC2i Ai

ZiAi + pBiC2i Ai

 , φ̃T
2 =

 XiAdi + pBiC2di

ZiAdi + pBiC2di

 , φ̃T
3 =

 XiBi + BiD2i

ZiBi + BiD2i

 ,
φ̄T
1 =

 XjAi + pBjC2i Aj

ZjAi + pBjC2i Aj

 , φ̄T
2 =

 XjAdi + pBjC2di

ZjAdi + pBjC2di

 , φ̄T
3 =

 XjBi + BjD2i

ZjBi + BjD2i

 ,
φ̃T
4 =

 BiC2i 0

BiC2i 0

 , φ̃T
5 =

 BiC2di

BiC2di

 , φ̄T
4 =

 BjC2i 0

BjC2i 0

 , φ̄T
5 =

 BjC2di

BjC2di

 .
Moreover, if feasible solutions exist, the parameters of an admissible filter of (6) are constructed as

Aci = Y −1
i Ai, Bci = Y −1

i Bi, Cci = Ci, Dci = Di. (31)

Proof: We denote matrices Ωi =

 Xi Yi

Zi Yi

, ∀i ∈ I, then can obtain (29). By the similar proof

line, we can also get (30). In addition, the admissible filter parameter matrices are given by (31), the

proof is completed.
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4 Numerical example

In this section, we give an example to demonstrate the effectiveness of the proposed method.

Example: Considering system (1) with two subsystems, and the parameters of each subsystem are

given as follows:

A1=

 0.33 −0.12

0.36 −0.37

 , A2 =

 0.25 0.28

−0.14 −0.19

 , Ad1 =

 0.07 −0.02

0.02 0.06

 , Ad2 =

 0.08 −0.03

0 0.1

 ,

B1 =

 −0.09

0.01

 , B2 =

 0

−0.01

 , C1 =
[
0.64 −0.79

]
, C2 =

[
−0.16 −0.02

]
, D1 = 0.19,

D2 = −0.55, D21 = 0.04, D22 = −0.55, Cd1 =
[
0.2 0.04

]
, Cd2 =

[
−0.39 0.04

]
,

C21 =
[
0.93 0.14

]
, C22 =

[
0.23 0.74

]
, C2d1 =

[
0.58 0.49

]
, C2d2 =

[
−1.11 0.18

]
.

Let dm = 1, dM = 2, α = 0.5, β = 0.01 and Tmax = 2, we consider the asynchronous switching in the

design phase and turn to Theorem 2, by utilizing LMI Toolbox, we can get τ∗α = 7.5258 , γ = 1.9874

and γs = 11.0333, and the filter parameters are obtained as follow:

Ac1 =

 0.1126 0.00237

0.0371 −0.1404

 , Ac2 =

 0.0899 0.0276

0.0380 −0.0947

 , Bc1 =

 −0.0745

−0.0881

 , Bc2 =

 0.0954

0.0310

 ,
Cc1 =

[
0.0286 0.2278

]
, Cc2 =

[
0.1283 0.2259

]
, Dc1 = 0.9347, Dc2 = 0.8880.

Using the filter in (31) and given switching sequences with τα = 10.0, the state responses of the

resulting system are given in Fig.1.(a)-(d). Fig.1.(a)-(d) show the switching signals of system and

filter, the output error of H∞ filter system, the state and estimation of x(1) and x(2),respectively. It

can be seen that the designed filter in (31) under the admissible switching signals is effective despite

asynchronous switching.

5 Conclusion

In this paper, the H∞ filtering problem for a class of discrete-time asynchronous switched systems

with time-delay and missing measurement has been investigated. By the aid of Lyapunov-Krasovskii

and average dwell time method, the H∞ filter has been designed such that the filter error system is

exponential mean-square stable with a weighted l2-gain. By allowing the system to be unstable within

the unmatched intervals, the more general conditions for H∞ filter has been derived and formulated

in terms of LMIs, then the corresponding filter is obtained.
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Fig.1. (a) switching signal; (b) output error ; (c) state and its estimation; (d) state and its estimation
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