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ABSTRACT 

 

The steel tube walls of a biaxially loaded thin-walled rectangular concrete-filled steel tubular 

(CFST) slender beam-column may be subjected to compressive stress gradients. Local 

buckling of the steel tube walls under stress gradients, which significantly reduces the 

stiffness and strength of a CFST beam-column, needs to be considered in the inelastic 

analysis of the slender beam-column. Existing numerical models that do not consider local 

buckling effects may overestimate the ultimate strengths of thin-walled CFST slender beam-

columns under biaxial loads. This paper presents a new multiscale numerical model for 

simulating the structural performance of biaxially loaded high-strength rectangular CFST 

slender beam-columns accounting for progressive local buckling, initial geometric 

imperfections, high strength materials and second order effects. The inelastic behavior of 

column cross-sections is modeled at the mesoscale level using the accurate fiber element 

method. Macroscale models are developed to simulate the load-deflection responses and 

strength envelopes of thin-walled CFST slender beam-columns. New computational 
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algorithms based on the Müller’s method are developed to iteratively adjust the depth and 

orientation of the neutral axis and the curvature at the columns ends to obtain nonlinear 

solutions. Steel and concrete contribution ratios and strength reduction factor are proposed for 

evaluating the performance of CFST slender beam-columns. Computational algorithms 

developed are shown to be an accurate and efficient computer simulation and design tool for 

biaxially loaded high-strength thin-walled CFST slender beam-columns. The verification of 

the multiscale numerical model and parametric study are presented in a companion paper. 

 

Keywords: Biaxial bending; Concrete-filled steel tubes; High strength materials; Local and 

post-local buckling; Nonlinear analysis; Slender beam-columns. 

 

1. Introduction  

 

High strength thin-walled rectangular concrete-filled steel tubular (CFST) slender beam-

columns in composite frames may be subjected to axial load and biaxial bending. Biaxially 

loaded thin-walled CFST slender beam-columns with large depth-to-thickness ratios are 

vulnerable to local and global buckling. No numerical models have been developed for the 

multiscale inelastic stability analysis of biaxially loaded high strength thin-walled CFST 

slender beam-columns accounting for the effects of progressive local buckling of the steel 

tube walls under stress gradients. The difficulty is caused by the interaction between local and 

global buckling and biaxial bending. However, it is important to accurately predict the 

ultimate strength of a thin-walled CFST slender beam-column under biaxial loads because 

this strength is needed in the practical design. This paper addresses the important issue of 

multiscale simulation of high strength thin-walled rectangular CFST slender beam-columns 

under combined axial load and biaxial bending. 
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Extensive experimental investigations have been undertaken to determine the ultimate 

strengths of short and slender CFST columns under axial load or combined axial load and 

uniaxial bending [1-9]. Test results indicated that the confinement provided by the rectangular 

steel tube had little effect on the compressive strength of the concrete core but considerably 

improved its ductility. In addition, local buckling of the steel tubes was found to remarkably 

reduce the ultimate strength and stiffness of thin-walled CFST short columns as reported by 

Ge and Usami [10], Bridge and O’Shea [11], Uy [12] and Han [13]. As a result, the ultimate 

strengths of rectangular CFST short columns can be determined by summation of the 

capacities of the steel tube and concrete core, providing that local buckling effects are taken 

into account as shown by Liang et al. [14]. Moreover, experimental results demonstrated that 

the confinement effect significantly increased the compressive strength and ductility of the 

concrete core in circular CFST short columns. However, this confinement effect was found to 

reduce with increasing the column slenderness as illustrated by Knowles and Park [2] and 

Liang [15]. In comparisons with researches on CFST columns under axial load and uniaxial 

bending, experimental investigations on biaxially loaded rectangular thin-walled CFST 

slender beam-columns have received little attention [16-18]. 

 

Although the performance of CFST columns could be determined by experiments, they are 

highly expensive and time consuming. To overcome this limitation, nonlinear analysis 

techniques have been developed by researchers for composite columns under axial load or 

combined axial load and uniaxial bending [19-23]. However, only a few numerical models 

have been developed to predict the nonlinear inelastic behavior of slender composite columns 

under biaxial bending. El-Tawil et al [24] and Ei-Tawil and Deierlein [25] proposed a fiber 

element model for determining the inelastic moment-curvature responses and strength 

envelopes of concrete-encased composite columns under biaxial bending. The fiber model, 
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which accounted for concrete conferment effects and initial stresses caused by preloads, was 

used to investigate the strength and ductility of concrete-encased composite columns. A fiber 

element model was also developed by Muñoz and Hsu [26] that was capable of simulating the 

behavior of biaxially loaded concrete-encased slender composite columns. The relationship 

between the curvature and deflection was established by using the finite different method. The 

incremental deflection approach was employed to capture the post-peak behavior of slender 

concrete-encased composite columns.  

 

Lakshmi and Shanmugam [27] presented a semi-analytical model for predicting the ultimate 

strengths of CFST slender beam-columns under biaxial bending. An incremental-iterative 

numerical scheme based on the generalized displacement control method was employed in the 

model to solve nonlinear equilibrium equations. Extensive comparisons of computer solutions 

with test results were made to examine the accuracy of the semi-analytical model. However, 

the effects of local buckling and concrete tensile strength were not taken into account in the 

semi-analytical model that may overestimate the ultimate strengths of thin-walled rectangular 

CFST columns with large depth-to-thickness ratios. Recently, Liang [28,29] developed a 

numerical model based on the fiber element method for simulating the inelastic load-strain 

and moment-curvature responses and strength envelopes of thin-walled CFST short beam-

columns under axial load and biaxial bending. The effects of local buckling were taken into 

account in the numerical model by using effective width formulas proposed by Liang et al. 

[14]. Secant method algorithms were developed to obtain nonlinear solutions. Liang [29] 

reported that the numerical model was shown to be an accurate and efficient computer 

simulation tool for biaxially loaded thin-walled normal and high strength CFST short columns 

with large depth-to-thickness ratios. 
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This paper extends the numerical models developed by Liang [21, 28] and Patel et al. [22, 23] 

to biaxially loaded high-strength rectangular CFST slender beam-columns with large depth-to 

-thickness ratios. The mesoscale model is described that determines the inelastic behavior of 

column cross-sections incorporating progressive local buckling. Macroscale models are 

established for simulating the load-deflection responses and strength envelopes of slender 

beam-columns under biaxial bending. New computational algorithms based on the Müller’s 

method are developed to obtain nonlinear solutions. Steel and concrete contribution ratios and 

strength reduction factor are proposed for CFST slender beam-columns. The verification of 

the numerical model developed and its applications are given in a companion paper [30]. 

  

2. Mesoscale simulation 

 

2.1 Fiber element model 

 

The mesoscale model is developed by utilizing the accurate fiber element method [28] to 

simulate the inelastic behavior of composite cross-sections under combined axial load and 

biaxial bending. The rectangular CFST beam-column section is discretized into fine fiber 

elements as depicted in Fig. 1. Each fiber element can be assigned either steel or concrete 

material properties. Fiber stresses are calculated from fiber strains using the material uniaxial 

stress-strain relationships.  

 

2.2 Fiber strains in biaxial bending 

 

It is assumed that plane section remains plane under deformation. This results in a linear 

strain distribution throughout the depth of the section. In the numerical model, the 
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compressive strain is taken as positive while the tensile strain is taken as negative. Fiber 

strains in biaxial bending depend on the depth ( )nd  and orientation ( )θ of the neutral axis of 

the section as illustrated in Fig. 1. For oo 900 <≤θ , concrete and steel fiber strains can be 

calculated by the following equations proposed by Laing [28]: 
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in which B  and D are the width and depth of the rectangular column section respectively, ix   

and iy  are the coordinates of fiber i  and iε  is the strain at the thi  fiber element and iny ,  is 

the distance from the centroid of each fiber to the neutral axis.  

 

When o90=θ , the beam-column is subjected to uniaxial bending and fiber strains can be 

calculated by the following equations given by Liang [28]: 
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where inx ,  is the distance from the centroid of each fiber element to the neutral axis. 

 

2.3 Stresses in concrete fibers 
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Stresses in concrete fibers are calculated from the uniaxial stress-strain relationship of 

concrete. A general stress-strain curve for concrete in rectangular CFST columns is shown in 

Fig. 2. The stress-strain curve accounts for the effect of confinement provided by the steel 

tube, which improves the ductility of the concrete core in a rectangular CFST column. The 

concrete stress from O to A in the stress-strain curve is calculated based on the equations 

given by Mander et al. [31] as:  
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in which cσ  stands for the compressive concrete stress, '
ccf  represents the effective 

compressive strength of concrete, cε  denotes the compressive concrete strain, '
ccε  is the strain 

at '
ccf  and is between 0.002 and 0.003 depending on the effective compressive strength of 

concrete [28].  The Young’s modulus of concrete cE  was given by ACI [32]. The effective 

compressive strength of concrete '
ccf  is taken as '

cc fγ , where cγ is the strength reduction factor 

proposed by Liang [28] to account for the column size effect and is expressed by 

 

( )0.185.0               85.1 135.0 ≤≤= −
ccc D γγ                                                                                 (7) 
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where cD  is taken as the larger of ( )tB 2−  and ( )tD 2−  for a rectangular cross-section, and t  

is the thickness of the steel tube wall as shown in Fig. 1.   

 

The parts AB, BC and CD of the stress-strain curve for concrete shown in Fig. 2 are defined 

by the following equations proposed by Liang [28]:  
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where cβ  was proposed by Liang [28] based on experimental results provided by Tommi and 

Sakino [33] to account for confinement effects on the post-peak behavior and is given by  
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where sB  is taken as the larger of B  and D  for a rectangular cross-section.  

 

The stress-strain curve for concrete in tension is shown in Fig. 2.  The constitutive model 

assumes that the concrete tensile stress increases linearly with the tensile strain up to concrete 

cracking. After concrete cracking, the tensile stress of concrete decreases linearly to zero as 

the concrete softens. The concrete tensile stress is considered to be zero at the ultimate tensile 
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strain which is taken as 10 times of the strain at concrete cracking.  The tensile strength of 

concrete is taken as '6.0 ccf .   

     

2.4 Stresses in steel fibers 

 

Stresses in steel fibers are calculated from uniaxial stress-strain relationship of steel material. 

Steel tubes used in CFST cross-sections are normally made from three types of structural 

steels such as high strength structural steels, cold-formed steels and mild structural steels, 

which are considered in the numerical model.  Fig. 3 shows the stress-strain relationship for 

three types of steels. The steel material generally follows the same stress-strain relationship 

under the compression and tension. The rounded part of the stress-strain curve can be defined 

by the equation proposed by Liang [28]. The hardening strain stε is assumed to be 0.005 for 

high strength and cold-formed steels and syε10 for mild structure steels in the numerical 

model. The ultimate strain suε is taken as 0.2 for steels.  
    

 
    

2.5 Initial local buckling 

 

Local buckling significantly reduces the strength and stiffness of thin-walled CFST beam-

columns with large depth-to-thickness ratios. Therefore, it is important to account for local 

buckling effects in the inelastic analysis of high strength CFST slender beam-columns. 

However, most of existing numerical models for thin-walled CFST beam-columns have not 

considered local buckling effects. This may be attributed to the complexity of the local 

instability problem as addressed by Liang et al. [14]. The steel tube walls of a CFST column 

under axial load and biaxial bending may be subjected to compressive stress gradients as 

depicted in Fig. 4. Due to the presence of initial geometric imperfections, no bifurcation point 
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can be observed on the load-deflection curves for real thin steel plates. The classical elastic 

local buckling theory [34] cannot be used to determine the initial local buckling stress of real 

steel plates with imperfections. Liang et al. [14] proposed formulas for estimating the initial 

local buckling stresses of thin steel plates under stress gradients by considering the effects of 

geometric imperfections and residual stresses. Their formulas are incorporated in the 

numerical model to account for initial local buckling of biaxially loaded CFST beam-columns 

with large depth-to-thickness ratios.  

 

2.6. Post-local buckling 

 

The effective width concept is commonly used to describe the post-local buckling behavior of 

a thin steel plate as illustrated in Fig. 4. Liang et al. [14] proposed effective width and strength 

formulas for determining the post-local buckling strengths of the steel tube walls of thin-

walled CFST beam-columns under axial load and biaxial bending. Their formulas are 

incorporated in the numerical model to account for the post-local buckling effects of the steel 

tube walls under compressive stress gradients. The effective widths 1eb  and 2eb  of a steel plate 

under stress gradients as shown in Fig. 4 are given by Liang et al. [14] as 
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in which b  is the clear width of a steel flange or web of a CFST column section, and the 

stress gradient coefficient 12 σσα =s , where 2σ  is the minimum edge stress acting on the 

plate and 1σ  is the maximum edge stress acting on the plate.  

 

Liang et al. [14] suggested that the effective width of a steel plate in the nonlinear analysis 

can be calculated based on the maximum stress level within the steel plate using the linear 

interpolation method. The effective width concept implies that a steel plate attains its ultimate 

strength when the maximum edge stress acting on the plate reaches its yield strength. Stresses 

in steel fiber elements within the ineffective areas as shown in Fig. 4 are taken as zero after 

the maximum edge stress 1σ  reaches the initial local buckling stress c1σ  for a steel plate with 

a tb  ratio greater than 30.  If the total effective width of a plate ( )21 ee bb +  is greater than its 

width ( )b , the effective strength formulas proposed by Liang et al. [14] are employed in the 

numerical model to determine the ultimate strength of the tube walls.  

 

2.7 Stress resultants 

 

The internal axial force and bending moments acting on a CFST beam-column section under 

axial load and biaxial bending are determined as stress resultants in the section as follows: 
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in which P  stands for the axial force,  xM  and yM are the bending moments about the x and 

y axes, is ,σ  denotes the stress of steel fiber i , isA ,  represents the area of steel fiber i , jc,σ  is 

the stress of concrete fiber j , jcA ,  is the area of concrete fiber j , ix  and iy  are the 

coordinates of steel element i , jx  and jy  stand for the coordinates of concrete element j , ns  

is the total number of steel fiber elements and nc  is the total number of concrete fiber 

elements.  

 

2.8 Inelastic moment-curvature responses 

 

The inelastic moment-curvature responses of a CFST beam-column section can be obtained  

by incrementally increasing the curvature and solving for the corresponding moment value for 

a given axial load )( nP applied at a fixed load angle )(α . For each curvature increment, the 

depth of the neutral axis is iteratively adjusted for an initial orientation of the neutral axis )(θ

until the force equilibrium condition is satisfied. The moments of xM and yM are then 

computed and the equilibrium condition of xy MM /tan =α is checked. If this condition is not 

satisfied, the orientation of the neutral axis is adjusted and the above process is repeated until 

both equilibrium conditions are met. The effects of local buckling are taken into account in 

the calculation of the stress resultants. The depth and orientation of the neutral axis of the 

section can be adjusted by using the secant method algorithms developed by Liang [28] or the 

Müller’s method [35] algorithms which are discussed in Section 4. A detailed computational 

procedure for predicting the inelastic moment-curvature responses of composite sections was 

given by Liang [28].  

 

3. Macroscale simulation 
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3.1 Macroscale model for simulating load-deflection responses 

 

The pin-ended beam-column model is schematically depicted in Fig. 5. It is assumed that the 

deflected shape of the slender beam-column is part of a sine wave. The lateral deflection of 

the beam-column can be described by the following displacement function: 

 







=

L
zuu m
πsin                                                                                                                        (15) 

 

where L  stands for the effective length of the beam-column and mu  is the lateral deflection at 

the mid-height of the beam-columns. 

 

The curvature at the mid-height of the beam-column can be obtained as  

 

mm u
L

2







=
πφ                                                                                                                           (16) 

 

For a beam-column subjected to an axial load at an eccentricity of e as depicted in Fig. 5 and 

an initial geometric imperfection ou at the mid-height of the beam-column, the external 

moment at the mid-height of the beam-column can be calculated by  

 

( )ouuePM mme ++=           (17) 

 

To capture the complete load-deflection curve for a CFST slender beam-column under biaxial 

loads, the deflection control method is used in the numerical model. In the analysis, the 
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deflection at the mid-height mu of the slender beam-column is gradually increased. The 

curvature mφ  at the mid-height of the beam-column can be calculated from the deflection mu . 

For this curvature, the neutral axis depth and orientation are adjusted to achieve the moment 

equilibrium at the mid-height of the beam-column. The equilibrium state for biaxial bending 

requires that the following equations must be satisfied: 

 

( ) 0o =−++ mim MuueP                                                                                                         (18) 

0tan =−
x

y

M
M

α                                                                                                                       (19) 

 

in which miM is the resultant internal moment which is calculated as 22
yxmi MMM += . 

 

The macroscale model incorporating the mesoscale model is implemented by a computational 

procedure. A computer flowchart is shown in Fig. 6 to implicitly demonstrate the 

computational procedure for load-deflection responses. The main steps of the computational 

procedure are described as follows: 

 

(1) Input data. 

(2) Discretize the composite section into fine fiber elements. 

(3) Initialize the mid-height deflection of the beam-column mm uu ∆= . 

(4) Calculate the curvature mφ  at the mid-height of the beam-column. 

(5) Adjust the depth of the neutral axis ( )nd  using the Müller’s method.  

(6) Compute stress resultants P  and miM  considering local buckling. 

(7) Compute the residual moment mime
a

m MMr −= . 
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(8)  Repeat steps (5)-(7) until k
a

mr ε< .  

(9) Compute bending moments xM  and yM . 

(10) Adjust the orientation of the neutral axis ( )θ  using the Müller’s method. 

(11) Calculate the residual moment 
x

yb
m M

M
r −= αtan  .  

(12)  Repeat steps (5)-(11) until k
b

mr ε< .  

(13) Increase the deflection at the mid-height of the beam-column by mmm uuu ∆+= .  

(14) Repeat steps (4)-(13) until the ultimate axial load nP  is obtained or the deflection 

limit is reached.  

(15) Plot the load-deflection curve. 

 

In the above procedure, kε is the convergence tolerance and taken as 410− in the numerical 

analysis.  

 

3.2 Macroscale model for simulating strength envelopes 

 

In design practice, it is required to check for the design capacities of CFST slender beam-

columns under design actions such as the design axial force and bending moments, which 

have been determined from structural analysis. For this design purpose, the axial load-

moment strength interaction curves (strength envelopes) need to be developed for the beam-

columns. For a given axial load applied )( nP at a fixed load angle )(α , the ultimate bending 

strength of a slender beam-column is determined as the maximum moment that can be applied 

to the column ends. The moment equilibrium is maintained at the mid-height of the beam-

column. The external moment at the mid-height of the slender beam-column is given by 
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( )ouuPMM mneme ++=          (20) 

 

in which eM is the moment at the column ends. The deflection at the mid-height of the 

slender beam-column can be calculated from the curvature as 

 

mm
Lu φ
π

2







=            (21) 

 

To generate the strength envelope, the curvature )( mφ at the mid-height of the beam-column is 

gradually increased. For each curvature increment, the corresponding internal moment 

capacity )( miM is computed by the inelastic moment-curvature responses discussed in Section 

2.8. The curvature at the column ends )( eφ is adjusted and the corresponding moment at the 

column ends is calculated until the maximum moment at the column ends is obtained. The 

axial load is increased and the strength envelope can be generated by repeating the above 

process. For a CFST slender beam-column under combined axial load and bending, the 

following equilibrium equations must be satisfied: 

 

0=− PPn                                                                                                                                (22) 

0tan =−
x

y

M
M

α                                                                                                                        (23) 

0)( o =−++ mimne MuuPM                                                                                                    (24) 

 

Fig. 7 shows a computer flowchart that implicitly illustrates the computational procedure for 

developing the strength envelope. The main steps of the computational procedure are 

described as follows: 
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(1) Input data.  

(2) Discretize the composite section into fine fiber elements.  

(3) The load-deflection analysis procedure is used to compute the ultimate axial load oaP  

of the axially loaded slender beam-column with local buckling effects. 

(4) Initialize the applied axial load 0=nP .  

(5) Initialize the curvature at the mid-height of the beam-column mm φφ ∆= . 

(6) Compute the mid-height deflection mu from the curvature mφ .  

(7) Adjust the depth of the neutral axis ( )nd  using the Müller’s method.  

(8) Calculate resultant force P  considering local buckling. 

(9) Compute the residual force PPr n
c

m −= . 

(10) Repeat steps (7)-(9) until k
c

mr ε< .  

(11) Compute bending moment xM  and yM . 

(12) Adjust the orientation of the neutral axis ( )θ  using the Müller’s method. 

(13) Calculate the residual moment 
x

yb
m M

M
r −= αtan . 

(14) Repeat steps (7)-(13) until k
b

mr ε< . 

(15) Compute the internal resultant moment miM . 

(16) Adjust the curvature at the column end eφ  using the Müller’s method. 

(17) Compute the moment eM  at the column ends accounting for local buckling effects. 

(18) Compute mime
a

m MMr −= . 

(19) Repeat steps (16)-(18) until k
a

mr ε< .  

(20) Increase the curvature at the mid-height of the beam-column by mmm φφφ ∆+= .  
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(21) Repeat steps (6)-(20) until the ultimate bending strength  ( )maxen MM =  at the column 

ends is obtained.  

(22) Increase the axial load by nnn PPP ∆+= , where 10oaPPn =∆ .  

(23) Repeat steps (5)-(22) until the maximum load increment is reached.  

(24) Plot the axial load-moment interaction diagram.  

 

4. Numerical solution scheme 

 

4.1 General  

 

As discussed in the preceding sections, the depth and orientation of the neutral axis and the 

curvature at the column ends need to be iteratively adjusted to satisfy the force and moment 

equilibrium conditions in the inelastic analysis of a slender beam-column. For this purpose, 

computational algorithms based on the secant method have been developed by Liang [21, 28]. 

Although the secant method algorithms are shown to be efficient and reliable for obtaining 

converged solutions, computational algorithms based on the Müller’s method [35], which is a 

generalization of the secant method, are developed in the present study to determine the true 

depth and orientation of the neutral axis and the curvature at the column ends.   

 

4.2 The M�̈�ller’s method 

 

In general, the depth )( nd and orientation )(θ of the neutral axis and the curvature )( eφ at the  

column ends of a slender beam-column are design variables which are denoted herein byω . 

The Müller’s method requires three starting values of the design variables 1ω , 2ω , and 3ω . 

The corresponding force or moment functions 1,mr , 2,mr  and 3,mr are calculated based on the 
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three initial design variables. The new design variable 4ω that approaches the true value is 

determined by the following equations: 

 

mmmm

m

cabb
c

4
2
234
−±

−
+= ωω                                                                                                  (25) 

( )( ) ( )( )
( )( )( )323121

3,2,313,1,32

ωωωωωω
ωωωω
−−−

−−−−−
= mmmm

m

rrrr
a                                                                      (26) 

( ) ( ) ( ) ( )
( )( )( )323121

3,1,
2

323,2,
2

31

ωωωωωω
ωωωω
−−−

−−−−−
= mmmm

m

rrrr
b                                                                  (27) 

3,mm rc =                                                                                                                                   (28)    

 

When adjusting the neutral axis depth and orientation, the sign of the square root term in the 

denominator of Eq. (25) is taken to be the same as that of mb . However, this sign is taken as 

positive when adjusting the curvature at the column ends. In order to obtain converged 

solutions, the values of 1ω , 2ω and 3ω  and corresponding residual forces or moments 1,mr , 2,mr  

and 3,mr need to be exchanged as discussed by Patel et al. [22]. Eq. (25) and the exchange of 

design variables and force or moment functions are executed iteratively until the convergence 

criterion of kmr ε< is satisfied.  

 

In the numerical model, three initial values of the neutral axis depth 1,nd , 3,nd  and 2,nd  are 

taken as  4D , D  and ( ) 23,1, nn dd +  respectively; the orientations of the neutral axis 1θ , 3θ  

and 2θ  are initialized to 4α ,α  and ( ) 231 θθ +  respectively; and the curvature at the column 

ends 1,eφ , 3,eφ  and 2,eφ  are initialized to 1010− , 610−  and ( ) 23,1, ee φφ + respectively.  
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5. Performance indices for CFST slender beam-columns 

 

Performance indices are used to evaluate the contributions of the concrete and steel 

components to the ultimate strengths of CFST slender beam-columns and to quantify the 

strength reduction caused by the section and column slenderness, loading eccentricity and 

initial geometric imperfections. These performance indices can be used to investigate the cost 

effective designs of CFST slender beam-columns under biaxial loads. 

 

5.1 Steel contribution ratio ( )sξ  

 

The steel contribution ratio is used to determine the contribution of the hollow steel tubular 

beam-column to the ultimate strength of the CFST slender beam-column under axial load and 

biaxial bending, which is given by 

 

n

s
s P

P
=ξ                                                                                                                                    (29) 

 

where nP is the ultimate axial strength of the CFST slender beam-column and sP is the ultimate 

axial strength of the hollow steel tubular beam-column, which is calculated by setting the 

concrete compressive strength '
cf to zero in the numerical analysis while other conditions of 

the hollow steel tubular beam-column remain the same as those of the CFST beam-column. 

The effects of local buckling are taken into account in the determination of both nP and sP . 

 

5.2 Concrete contribution ratio ( )cξ  
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The concrete contribution ratio quantifies the contribution of the concrete component to the 

ultimate axial strength of a CFST slender beam-column. The slender concrete core beam-

column without reinforcement carries very low loading and does not represents the concrete 

core in a CFST slender beam-column. Portolés et al. [9] used the capacity of the hollow steel 

tubular beam-column to define the concrete contribution ratio (CCR), which is given by 

 

s

n

P
P

=CCR                                                                                                                             (30) 

 

Eq. (30) is an inverse of the steel contribution ratio and may not accurately quantify the 

concrete contribution. To evaluate the contribution of the concrete component to the ultimate 

axial strength of a CFST slender beam-column, a new concrete contribution ratio is proposed 

as 

 

n

sn
c P

PP −
=ξ                                                                                                                             (31) 

 

It can be seen from Eq. (31) that the concrete contribution to the ultimate axial strength of a 

CFST slender beam-column is the difference between the ultimate axial strength of the CFST  

column and that of the hollow steel column.  

 

5.3 Strength reduction factor ( )cα  

 

The ultimate axial strength of a CFST short column under axial loading is reduced by 

increasing the section and column slenderness, loading eccentricity, and initial geometric 

imperfections. To reflect on these effects, the strength reduction factor is defined as  
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oP
Pn

c =α                                                                                                                                   (32) 

 

where oP  is the ultimate axial strength of the column cross-section under axial compression. 

The ultimate axial strengths of nP  and oP are determined by considering the effects of local 

buckling of the steel tubes. 

 

6. Conclusions 

 

This paper has presented a new multiscale numerical model for the nonlinear inelastic 

analysis of high strength thin-walled rectangular CFST slender beam-columns under 

combined axial load and biaxial bending. At the mesoscale level, the inelastic axial load-strain 

and moment-curvature responses of column cross-sections subjected to biaxial loads are 

modeled using the accurate fiber element method, which accounts for the effects of 

progressive local buckling of the steel tube walls under stress gradients. Macroscale models 

together with computational procedures have been described that simulate the axial load-

deflection responses and strength envelopes of CFST slender beam-columns under biaxial 

bending. Initial geometric imperfections and second order effects between axial load and 

deformations are taken into account in the macroscale models. New solution algorithms based 

on the Müller’s method have been developed and implemented in the numerical model to 

obtain converged solutions.  

 

The computer program that implements the multiscale numerical model developed is an 

efficient and powerful computer simulation and design tool that can be used to determine the 

structural performance of biaxially loaded high strength rectangular CFST slender beam-
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columns made of compact, non-compact or slender steel sections. This overcomes the 

limitations of experiments which are extremely expensive and time consuming. Moreover, the 

multiscale numerical model can be implemented in frame analysis programs for the nonlinear 

analysis of composite frames. Steel and concrete contribution ratios and strength reduction 

factor proposed can be used to study the optimal designs of high strength CFST beam-

columns. The verification of the numerical model and parametric study are given in a 

companion paper [30]. 
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Figures 

 

Fig. 1. Fiber element discretization and strain distribution of CFST beam-column section. 

 

 

 

Fig. 2. Stress-strain curve for confined concrete in rectangular CFST columns.  
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Fig. 3. Stress-strain curves for structural steels.  

 

 

 

 

 

 
Fig. 4. Effective and ineffective areas of steel tubular cross-section under axial load and 

biaxial bending. 
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Fig. 5. Pin-ended beam-column model. 
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Fig. 6. Computer flowchart for predicting the axial load-deflection responses of thin-walled 
CFST slender beam-columns under biaxial loads 
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Fig. 7. Computer flowchart for simulating the strength envelops of thin-walled CFST slender 
beam-columns under biaxial loads 
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