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Abstract: A finite-difference time-domain approach was used to investigate the excitation of surface 
plasmons of the circular sub-wavelength apertures on an optical fiber endface. This phenomenon 
provided the basis of a sensitive liquid refractive index sensor. The proposed sensor is compact and 
has the potential to be used in biomedical applications, having a sensitivity of (373 ± 16) nm per 
refractive index unit (RIU) as found through the variation of a reflection minimum with the 
wavelength. 
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1. Introduction 

A surface plasmon resonance (SPR) is an 

electromagnetic phenomenon which occurs when 

light is reflected off a thin metal film (e.g. Ag, Au) 

deposited on a substrate (e.g. glass, quartz, prism) 

when the angle of incidence is greater than the angle 

of total internal reflection (TIR). A fraction of this 

light energy interacts with the collective oscillation 

of free electrons in the metal film therefore reducing 

the reflected light intensity [1]. SPR has been widely 

demonstrated to be an effective optical technique for 

many types of interface studies [2]. The unique 

physical properties of SPR have attracted a lot of 

attention in recent years in optical biosensing 

research communities. For instance, if analyte 

molecules are to bind the immobilized target, the 

local refractive index (RI) changes, leading to a 

change in the SPR angle [3]. This change can be 

monitored in real time by detecting changes in the 

intensity of the reflected light. Even though sensors 

currently based on the prism configuration can be 

relatively small, there has been an attempt to realize 

SPR in an optical fiber to produce a more compact 

sensor with remote sensing capabilities. 

Light propagating in the fiber core and cladding 

in the form of modes experiences TIR at the 

cladding-core and cladding-exterior medium 

interfaces at different angles. Thus, SPR excitation 

in a fiber is similar to a prism arrangement via TIR 

for bulk optics. Over the past few years, many 

fiber-based SPR sensors have been reported, 

including SPR sensor configurations with 

multimode, single mode, and polarization 
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maintaining fibers coated with a thin metallic layer 

[4–7]. More recently, there have been many 

successful attempts to realize SPR sensors in optical 

fibers [8–11]. 

The interaction of light with surface plasmons 
(SPs) in metallic sub-wavelength apertures has 
resulted in demonstrations of enhanced optical 

transmission [12]. The demonstration indicated that 
transmitted light through sub-wavelength aperture 
arrays at certain wavelengths had a much higher 

intensity than that estimated by the classical theory 
[13]. Recently, due to the impressive progress in the 
nano-fabrication technology [14, 15], many 

researchers have pursued this idea in a quest to 
create sensitive sensors by fabricating an array of 
nanostructures at the end face of an optical fiber, for 
instance nanorods [16], nanoholes [17], and 

nanoparticles [18]. However, these early proposals 
offer preliminary designs with little theoretical or 
experimental evidence to show that the performance 

of optical fiber sensors would be enhanced by a 
metallic nanostructure. 

This paper describes the modeling of a pattern of 

gold sub-wavelength aperture arrays directly 
fabricated on the end face of an optical fiber and its 
application as an optical refractive index sensor 

based on the surface plasmon resonance. The 
computational reflection data for sub-wavelength 
apertures as a function of the surrounding refractive 

index and geometrical parameters will be presented. 

2. Methodology and technique 

The experimental setup to be modeled is shown 
in Fig. 1. A sensing fiber is connected to one side of 

a 2×1 optical fiber coupler. A light source and an 
optical spectrum analyzer (OSA) are connected to 
the other two coupler ends. Light is coupled via the 

coupler into the fiber device, where it interacts with 
the array of circular apertures. The reflected 
spectrum, modified by the array, is detected by the 

OSA. To investigate the effect of changing the 
refractive index of the medium surrounding the fiber 
end face, a range of liquid refractive indices 

(between 1.33 and 1.47) are used. 
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Fig. 1 Experimental arrangement assumed for modeling. 

To simulate the optical properties of the circular 

apertures array assumed to be deposited on the fiber 

endface, electromagnetic simulations using 

commercial finite difference time domain (FDTD) 

software (Lumerical Solution Inc., Canada) [19] 

were carried out. The incident light was a plane 

wave propagating along the z-direction. Periodic 

boundary conditions were implemented on the sides, 

and perfectly matched layers were used to eliminate 

reflections at the upper and lower surfaces. Figure 2 

illustrates an array of 15×15 circular apertures with 

the following parameters: P = 500 nm, D = 300 nm, 

and T = 140 nm. A unit circular aperture simulated 

structure and the electric field around the circular 

aperture are shown in Figs. 3(a) and 3(b). The 

reflected power was determined by integrating the 

z-component of the Poynting vector over the lower 

surface. Values were normalized to the incident 

power. Optical constants for gold were taken from 

[20]. 

Initially, the refractive indices for the regions of 

the optical fiber and the sample were taken as 1.5 

and 1 (air). Subsequently, the RI of the sample 

varied corresponding to a set of liquids or solutions. 

This enabled the sensitivity of the proposed optical 

fiber sensor to be explored. 

 
Fig. 2 A 15×15 gold array of sub-wavelength circular 

apertures. 
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Fig. 3 Details of a unit cell showing: (a) the circular aperture 

simulated in FDTD and (b) the intensity of the electric field 

around the circular aperture (the circular aperture is centered at 

the origin, and the film boundaries are outlined in dashed lines). 

3. Results and discussion 

Figure 4(a) shows the reflection as a function of  

 1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

R
ef

le
ct

an
ce

 

600 700 800 900 1000
Wavelength (nm) 

T=140 nm 
T=160 nm 
T=180 nm 
T=200 nm 
T=220 nm 

 

  (a) 

 1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

R
ef

le
ct

an
ce

 

600 700 800 900 1000
Wavelength (nm) 

D=220 nm 
D=240 nm 
D=280 nm 
D=300 nm 
D=320 nm 

 

  (b) 

Fig. 4 FDTD calculations of the reflectance intensity through 

a circular aperture array with (a) the gold film thickness, T, 

varying from 140 nm to 220 nm while P and D remain at    

500  nm and 300 nm, respectively and (b) the circular aperture 

diameter, D, varying from 220 nm to 320 nm while P and T 

remain at 500 nm and 140 nm, respectively. 

the wavelength for circular apertures of a fixed 

periodicity of 500 nm and a diameter of 300 nm. It 

can be seen that an increase in the thickness of the 

metal film leads to a narrower resonant dip and a 

near-uniform increase in the reflection intensity at 

longer wavelengths. 

Figure 4(b) shows the reflection as a function of 

the wavelength for circular apertures of a fixed 

thickness of 140 nm and a periodicity of 500 nm. It 

indicates that an increase in the diameter of the 

circular apertures from 220 nm to 320 nm leads to a 

wider resonant dip wavelength and a non-uniform 

decrease in the reflection intensity at longer 

wavelengths. 

Figure 5 shows that by increasing the periodicity 

of the circular apertures from 440 nm to 520 nm, a 

red-shift in the resonant dip wavelength is 

observable from 760 nm to 880 nm. This wavelength 

shift represents a contrast to the cases shown in Figs. 

4(a) and 4(b). 
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Fig. 5 FDTD calculations of the reflectance intensity through 

a circular apertures array with the periodicity, P, varying from 

440 nm to 520 nm while D and T remain at 300 nm and 140 nm, 

respectively. 

These findings suggest that through a suitable 

choice of parameters (thickness, diameter, and 

periodicity) a reasonably sharp dip can be obtained 

for use as a sensing device for tracking the 

wavelength with the RI. Thus, an array of circular 

apertures with the following parameters T = 140 nm, 

P = 500 nm, and D = 300 nm were selected to 

explore the sensing capability. As shown in Fig. 6, 
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the simulated resonances (reflectance minimum) 

underwent a red-shift as the index surrounding them 

increased. 

When the minimum dip wavelength for each 
liquid was plotted against the RI, as shown in Fig. 7, 
a straight line could be fitted to the calculation 

points. This linear relationship between the shift of 
minimum in the reflection spectrum λmin and the 
change in the RI (from 1.33 to 1.47) of the 

surrounding medium provided a sensitivity of   
(373 ± 16) nm/RIU (nm/refractive index unit). 
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Fig. 6 FDTD calculations of the reflected power spectra for 

the fiber sensor (circular apertures) in various liquids with the 

gold film thickness T = 140 nm, periodicity P = 500 nm, and 

hole diameter D = 300 nm (the vertical dashed line at 1000 nm 

indicates the reflectance values used to obtain Fig. 8). 
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Fig. 7 Dependence of the SPR dip wavelength on the RI of 

various liquids, showing the linear fit (the circular parameters:  

T = 140 nm, P = 500 nm, and D =300 nm). 

An alternative form of the RI sensor, which does 

not involve an OSA, could be realized from the 

results shown in Fig. 6 by the application of a 

band-pass filter at around 1000 nm, with the 

resultant intensities measured using a suitable 

detector. This is analogous to the conversion of 

optical fiber Bragg grating [21] wavelengths to 

intensities through the use of an edge filter [22]. The 

extracted variation of reflectance with the RI is 

shown in Fig. 8 and is described well by a linear fit 

of slope (– 2.73 ± 0.07) normalized reflectance per 

RIU which is approximately 100 times more 

sensitive than what would be obtained by simply 

relying on the Fresnel reflection at the fiber end. In 

such an arrangement, the filter could be a fiber 

Bragg grating operating in reflection. Furthermore, 

as the range over which the reflectance exhibits a 

considerable variation is greater than 50 nm, such a 

setup could involve the multiplexing of many 

sensors [23]. 
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Fig. 8 Dependence of SPR normalized reflectance at a 

wavelength of 1000 nm, extracted from Fig. 6, on the RI of 

various liquids, showing the linear fit (the circular parameters: T 

= 140 nm, P = 500 nm, and D =300 nm). 

4. Conclusions 

A study was undertaken to investigate a periodic 

array of gold nanostructures assumed to be 

deposited on the endface of an optical fiber. The 

analysis showed the shifts in dips associated with 

the optical reflection spectrum of light from circular 

apertures and found the usefulness of this device as 

a compact and sensitive liquid refractive index 

sensor. Compared to similar techniques such as 

nanorods[16] and nanoparticles [18] which have 
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sensitivities of about 180 nm/RIU and 196 nm/RIU, 

respectively, the proposed sensor showed a much 

better result of (373 ± 16) nm/RIU. More details of 

the focused ion beam fabrication and experimental 

processes are available elsewhere [24]. This 

investigation will assist in designing structures that 

maximize the sensitivity of a device to small 

changes in the refractive index. 
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