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SUMMARY 

 

1. There is a reversible decline in the force production by muscles when contracting at or 

near their maximum capacity. The task dependent nature of fatigue means that the 

mechanisms of fatigue may differ between different types of contractions. This 

symposium presentation examined how fatigue manifests during whole-body, 

intermittent-sprint exercise, and discussed the potential muscular and neural 

mechanisms that underpin this fatigue.  

2. For the purpose of this symposium, fatigue is defined as a reversible, exercise-induced 

reduction in maximal power output (i.e., during cycling exercise) or speed (i.e., during 

running exercise), even though the task can be continued. 

3. The small changes in surface EMG, along with a lack of change in voluntary muscle 

activation (estimated from both percutaneous motor nerve stimulations and trans-

cranial magnetic stimulation), indicate that there is little change in neural drive to the 

muscles following intermittent-sprint exercise. This, along with the observation that 

the decrease in EMG is much less than that which would be predicted from the 

decrease in power output, suggests that peripheral mechanisms are the predominant 

cause of fatigue during intermittent-sprint exercise.  

4. At the muscle level, limitations in energy supply, which include phosphocreatine 

hydrolysis and the degree of reliance on anaerobic glycolysis and oxidative 

metabolism, and the intramuscular accumulation of metabolic by-products, such as 

hydrogen ions, emerge as key factors responsible for fatigue. 

 
 

 

Keywords: Multiple sprint work, Neuromuscular fatigue, Energy supply, Metabolite 

accumulation, Muscle activation. 
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1. INTRODUCTION 

There is a reversible decline in force production by muscles when contracting at or near their 

maximum capacity. This has been classically demonstrated in isolated muscle cells stimulated 

to give maximal isometric tetani.1 Such experiments have provided valuable insights 

regarding potential determinants of fatigue. 2 Nonetheless, such conditions are obviously 

artificial and the application of such findings to dynamic exercise has been questioned. While 

a similar pattern for the decline in muscle performance is observed when athletes are asked to 

perform intermittent-sprint exercise (Figure 1), 3 the task-dependent nature of fatigue means 

that the mechanisms of fatigue may differ. In particular, there may be a role for neural/brain 

factors on the fatigue process during intermittent-sprint exercise (factors obviously omitted 

from isolated-muscle preparations). This symposium presentation examines how fatigue 

manifests during whole-body, intermittent-sprint exercise, and discusses the potential 

muscular and neural mechanisms that underpin this fatigue.  

 
 
 

INSERT FIGURE 1 ABOUT HERE 

 

2. DEFINITIONS 

Intermittent-sprint exercise 

There are many disciplines in which athletes are required to repeatedly produce maximal or 

near maximal efforts (i.e., sprints), interspersed with brief recovery intervals (consisting of 

complete rest or low- to moderate-intensity activity), over an extended period (1 to 4 hours). 

While some authors have used the word “sprint” to describe exercise lasting 30 s or more,  for 

the purposes of this symposium, “sprint” activities will be constrained to brief exercise, in 

general ≤ 10 s. 6 Longer-duration, maximal-intensity exercise, in which there is a 

considerable decrease in performance, will be referred to as “all-out” exercise, but will not be 

discussed in this symposium. 

 

Fatigue  

For the purpose of this symposium, fatigue is defined as a reversible, exercise-induced, 

reduction in maximal power output (i.e., during cycling exercise) or speed (i.e., during 

running exercise), even though the task can be continued. Fatigue during intermittent-sprint 

exercise typically develops rapidly after the first sprint (figure 1). 7 It is now accepted that 

exercise-induced fatigue can be caused by a variety of factors, ranging from the generation of 
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an inadequate motor command in the motor cortex (i.e., neural factors) to factors related to 

metabolite accumulation or energy supply (i.e., muscular factors). The aim of this symposium 

is to discuss evidence for the contribution of these mechansims to fatigue during intermittent-

sprint exercise.  

 
3. FACTORS INFLUENCING FATIGUE DURING INTERMITTENT-SPRINT EXERCISE 

    

Influence of initial sprint performance 

An important factor influencing fatigue during intermittent-sprint exercise is the initial (i.e., 

first sprint) mechanical score, which has been reported to be correlated with the decrement in 

performance over subsequent sprints. 7-9 This is probably because subjects with a greater 

initial sprint performance will produce greater changes in muscle metabolites, arising 

secondary to a higher anaerobic contribution, which have been related to larger performance 

decrements. 10 In support of this, individuals with lower anaerobic power reserves, implying 

less reliance on anaerobic metabolism, show a higher fatigue resistance during intermittent-

sprint exercise.7 This suggests that the metabolic pathways supporting force production, and 

not the absolute force generated per se, might explain power decrements during intermittent-

sprint exercise. Therefore, initial sprint mechanical output per se cannot solely account for 

performance decrements during intermittent-sprint exercise. Indeed, previous fatiguing 

muscle contractions (i.e., a prior set of intermittent sprints) exacerbate the rate of fatigue 

during subsequent sprints, despite being matched for initial sprint power.11 Similarly, there is 

greater fatigability (i.e., larger work decrement) across five 6-s cycling sprints repeated every 

30 s in low versus moderately aerobically-trained females matched for single-sprint 

performance. 12  

 

Task-dependency 

The mechanisms of fatigue vary with intensity, duration and type of contraction. This task-

dependent nature of fatigue is also apparent with different types of intermittent-sprint 

exercise. For example, the exercise mode (e.g., cycling versus running) has been reported to 

affect the development of fatigue; 13 decrement scores during intermittent-sprint cycling 

protocols (10-25%) are generally greater than those for running protocols (5-15%). The type 

of resistive load (e.g., mechanically-, wind- or electromagnetically-resisted ) also appears to 

affect fatigue development during intermittent-sprint exercise. Moreover, fatigue resistance 

during intermittent-sprint exercise depends on the distribution (e.g., number of repetitions) 

and duration of the work periods,16 and the recovery pattern; i.e., the nature 17-19, 
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duration20-23, and intensity 24 of the recovery between sprints. While there is some conflict 

within the literature, 25 performing active versus passive recovery is generally associated 

with a higher degree of fatigue development.  Compared with a passive recovery, low- and 

moderate-intensity active recoveries (20 and 35% maximal oxygen uptake (VO2max), 

respectively) have similar effects on intermittent-sprint exercise performance and muscle 

metabolism.24  

 

4. DETERMINANTS OF FATIGUE DURING INTERMITTENT-SPRINT EXERCISE 

As described above, there is a reversible decline in power output when athletes are asked to 

repeat short-duration sprints (< 10 s), interspersed with brief recoveries. 3 This is typically 

accompanied by a decrease in maximal, isometric contraction (MVC) force. 26 While a 

concern with most studies is the time taken to transfer from the cycle ergometer to the 

isometric ergometer (to perform the MVC), using a specially-constructed cycle ergometer that 

allows a MVC to be performed directly on the cycle ergometer, we have shown that there is 

little influence of the short time that it takes to transfer from one ergometer to the other. This 

decrease in the ability of muscle to produce force has typically been attributed to the 

generation of an inadequate motor command in the motor cortex (i.e., neural factors) and/or 

factors related to metabolite accumulation or energy supply (i.e., muscular factors). 

 

Neural factors (“central fatigue”) 

As maximal sprint exercise demands high levels of neural drive, 27 failure to fully activate 

the contracting musculature should decrease force production and reduce intermittent-sprint 

performance. Potential changes in muscle activation during, and following, intermittent-sprint 

exercise have traditionally been assessed by surface electromyogram (EMG), percutaneous 

motor nerve (MN) stimulations, and, more recently, trans-cranial magnetic stimulation 

(TMS). 

 

a) Changes in EMG 

In conjunction with the decrease in maximum force/power production, a concurrent decline in 

the amplitude of EMG signals (integrated EMG values and root mean square; RMS) has been 

reported in several, although not all,  studies. While further research is required, the changes 

in EMG appear to depend on the magnitude of fatigue reported. With mild fatigue (power 

decrement score < 10%), a steady level of neural activation during intermittent-sprint exercise 

has usually been reported.  However, when there is greater fatigue (> 10%), a concurrent 
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decline in mechanical performance and the amplitude of the EMG signals has consistently 

been reported across sprint repetitions.  These changes in surface EMG activity suggest a 

suboptimal motor unit activity (i.e., a decrease in recruitment, firing rate, or both). 

 

Although many studies have used changes in EMG as a proxy for changes in neural drive,  

difficulties in interpreting EMG data need to be acknowledged (e.g., amplitude cancellation 

phenomena, excessive sweat, changes in fibre membrane and motor unit properties) 34. 

Another confounding factor when interpreting changes in EMG during intermittent-sprint 

exercise is the concurrent reduction in power output which makes it difficult to determine if 

the decrease in EMG activity is the consequence, or the cause, of the reduced power output. In 

an effort to resolve this issue, we recently used the EMG collected during three warm-up 

sprints to establish the power-EMG relationship and to determine whether the subsequent 

decrease in EMG previously observed during intermittent-sprint exercise was consistent with 

the decrease in power output (Girard, Racinais and Bishop; unpublished findings). 

Interestingly, there was only a 5.5% decrease in EMG, which was significantly less than that 

estimated from the power-EMG relationship established during the warm up (-23%) (Figure 

2). These changes suggest the predominant cause of fatigue during intermittent-sprint exercise 

is not a decrease in neural drive (as inferred from changes in surface EMG). 

 

 

INSERT FIGURE 2 ABOUT HERE 

 

b) Change in voluntary activation (estimated from percutaneous motor nerve 

stimulations) 

 

Traditionally, MN stimulations applied mainly during isometric contractions (i.e., the twitch 

interpolation method) have been used to measure how much of the muscle’s possible force is 

produced by a voluntary contraction.  Using this approach, we and others have established 

that there is only a small decrease in voluntary activation from the pre- to post-exercise MVC 

. This suggests that under conditions of considerable fatigue, failure to fully activate the 

contracting musculature may only make a small contribution to fatigue during intermittent-

sprint exercise.  This is consistent with the small changes in muscle activation inferred from 

changes in surface EMG activity.  
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c) Changes in voluntary activation (estimated from trans-cranial magnetic stimulation)  

A decrease in voluntary activation can theoretically arise from changes at the spinal level 

and/or supra-spinal factors.  Potential supra-spinal factors include disturbances in brain 

electrical activity, cortical excitability and/or brain neurotransmitter (e.g., serotonin, 

dopamine, and acetylcholine) concentration.  By applying TMS stimulations (together with 

conventional MN stimulation) during MVCs pre and post intermittent-sprint exercise it is 

possible to assess the completeness of cortically- and peripherally-derived estimates of 

voluntary activation. Using this method, we have recently reported that there is no change in 

voluntary activation (as estimated from TMS) following intermittent-sprint exercise.  

 

d) Summary 

The small changes in surface EMG, along with the lack of change in voluntary muscle 

activation (estimated from both percutaneous motor nerve stimulations and trans-cranial 

magnetic stimulation), indicate that there is little change in neural drive to the muscles 

following intermittent-sprint exercise. This, along with the observation that the decrease in 

EMG is much less than that which would be predicted from the decrease in power output, 

suggests that peripheral mechanisms are the predominant cause of fatigue during intermittent-

sprint exercise.  

 

Muscular factors (peripheral fatigue) 

a)  Muscle excitability 

Following intense dynamic contractions, there are marked ionic disturbances at the skeletal 

muscle level, arising secondary to decreases in Na
+
-K

+
-ATPase activity.  In such cases, the 

Na
+
-K

+
 pump is not able to readily re-accumulate the potassium (K

+
) efflux from the muscles 

cells, resulting in at least a doubling of the muscle extra-cellular K
+
. 39 While these 

modifications impair cell membrane excitability and depress force development, probably by 

slow inactivation of Na+ channels, 40 unpublished observations have shown that plasma [K
+
, 

when corrected for changes in plasma volume, does not change following intermittent-sprint 

exercise. However, further research is required since i) interstitial K
+
 is considerably higher 

than venous plasma K
+
 at similar work intensities and ii) venous K

+
 values may not reflect 

the concentration in the interstitium (i.e., the site where K
+
 may have its effects).39  

 

An indirect measure of muscle excitability can be obtained by applying an electrical stimulus 

to peripheral nerves. Decreased muscle compound action potential (M-wave) amplitude, but 
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not duration, has been reported after an intermittent-sprint running protocol, suggesting that 

action potential synaptic transmission, rather than propagation (i.e., impulse conduction 

velocity along the sarcolemma), may be impaired during such exercise. 31 However, a 

potentiation of the M-wave response has also been reported following intermittent-sprint 

exercise. 26 Thus, further research is therefore needed to determine if impairments in muscle 

excitability contribute to muscle fatigue induced by intermittent sprints. 

 

b)  Limitations in energy supply 

Phosphocreatine (PCr) availability 

 

Total intramuscular PCr stores are approximately 80 mmol∙kg dm
-1

. As maximal rates of PCr 

breakdown can approach 9 mmol∙kg dm
-1

∙s
-1

,41 maximal sprinting therefore results in a 

severe reduction in intramuscular PCr content. For example, PCr concentration after a 6-s 

sprint has been reported to be approximately 35–55 % of resting values. 42-45 As recovery 

times during intermittent-sprint exercise generally do not exceed 60 s, the ATP/PCr stores are 

likely to be only partially restored at the onset of each subsequent sprint.  Coupled with the 

fact that the resynthesis of PCr and the recovery of power output follow similar time courses, 

it has been proposed that performance during intermittent-sprint exercise may become 

increasingly limited by PCr availability.  Consistent with this hypothesis, significant 

correlations have been reported between the resynthesis of PCr and the recovery of power 

output in the first 10 s of a second 30-s sprint (r = 0.84; P < 0.05)5 and the partial restoration 

of intermittent-sprint performance (i.e., total work done) (r = 0.67, P < 0.05) (Unpublished 

observations). Furthermore, most research indicates that short-term creatine supplementation 

can improve intermittent-sprint performance.49 These results collectively suggest that PCr 

availability is an important determinant of intermittent-sprint performance.  

 

Anaerobic glycolysis 

Anaerobic glycolysis supplies approximately 40% of the total energy to a single 6-s sprint, 

with a progressive decrease in glycolysis as sprints are repeated.  As a consequence, there is 

an 8-fold decrease in the absolute ATP production from glycolysis from the first to the last 

sprint of 10 x 6-s maximal sprints interspersed with 30 s of recovery. 10 While the reduction 

in the rate of ATP production by anaerobic processes is greater than the decrements in power 

output, these results nonetheless suggest that  reduction in anaerobic glycolysis contributes to 

fatigue during intermittent-sprint exercise. 
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Oxidative metabolism 

There is a perception that the capacity for oxidative metabolism is not an important 

determinant of intermittent-sprint performance as the contribution of oxidative 

phosphorylation to total energy expenditure during a single short sprint is quite small (< 

10%). However, as sprints are repeated, the contribution of aerobic metabolism progressively 

increases such that aerobic metabolism may contribute as much as 40% of the total energy 

supply during the final sprints of an intermittent-sprint exercise. 51 Surprisingly, subjects may 

even reach their VO2max during the latter sprints.  This suggests that the contribution of 

aerobic metabolism during intermittent-sprint exercise may be limited by VO2max and that 

increasing VO2max may allow for a greater aerobic contribution during the latter sprints, 

potentially minimising fatigue. This hypothesis is supported by the observation that subjects 

with a greater VO2max are better able to maintain power output/sprint times during 

intermittent-sprint exercise, and is supported by significant correlations (r = -0.45 to -0.75) 

between VO2max and fatigue indices . However, it should be noted that not all studies have 

reported significant correlations between VO2max and fatigue indices during intermittent-sprint 

exercise (r = -0.20 to 0.30).   The absence of stronger correlations between VO2max and 

intermittent-sprint performance may be related to the belief that the primary factor limiting 

VO2max is the ability of the cardio-respiratory system to deliver O2 to the contracting muscles, 

whereas intermittent-sprint performance may be primarily limited by peripheral muscle 

factors. 66 This is supported by the observation that fatigue during intermittent-sprint exercise 

has been reported to be correlated with maximal ADP-stimulated mitochondrial respiration 

measured directly in muscle fibres.67 Thus, while perhaps not the most important factor, 

oxidative capacity does appear to be a determinant of fatigue during intermittent-sprint 

exercise. 

 

c) Metabolite accumulation 

Acidosis 

There are a number of findings that suggest the considerable increases in muscle  and blood  

hydrogen ion (H
+
) accumulation that occur during intermittent-sprint exercise may affect 

sprinting performance. For example, correlations have been observed between the level of 

fatigue during intermittent-sprint exercise and both muscle buffer capacity (ßm) and changes 

in blood pH.  Furthermore, the content of skeletal muscle monocarboxylate transporters (i.e., 
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MCT1), which facilitate the intramuscular lactate and H
+
 removal process, has been inversely 

correlated with fatigue during intermittent-sprint exercise. 71 While the mechanisms remain 

controversial, it is possible that H
+
 accumulation affects intermittent-sprint performance via 

adverse effects on the contractile machinery and/or through the inhibition of ATP derived 

from glycolysis, possibly via negative effects on phosphofructokinase and glycogen 

phosphorylase. 72 

 

In contrast to the above hypothesis, acidification as a direct cause of muscle fatigue has been 

challenged on at least three accounts: i) the time course of the recovery of force/power is 

much faster than that of pH; ii) high power outputs have been obtained under acidic 

conditions; iii) the ingestion of sodium bicarbonate (known to increase extra-cellular 

buffering capacity) has, in some cases, been reported not to affect intermittent-sprint 

performance.  Furthermore, researchers have failed to observe a relationship between the 

recovery of muscle pH and the recovery of either 30-s “all out” performance 47 or 

intermittent-sprint performance (Unpublished observation). Further research is therefore 

needed to clarify whether H
+
 accumulation is an important determinant of fatigue during 

intermittent-sprint exercise.  

 

 

5. INFLUENCE OF OTHER FACTORS 

Other factors, such as age, 74 training status, 59 and sex 28 have also been reported to 

influence intermittent-sprint performance. In general, being young, female, or aerobically-

trained has typically been associated with a smaller fatigue score. However, further research is 

required to establish whether these differences can be attributed to differences in fatigability 

or can largely be explained by differences in initial sprint performance. 

 

6. CONCLUSION 

During intermittent-sprint exercise, the inability to reproduce performance in subsequent 

sprints (fatigue) is manifested by a decline in sprint speed (running) or peak/mean power 

output (cycling). Although not extensively studied, failure to fully activate the contracting 

muscle does not appear to be a major determinant of fatigue during intermittent-sprint 

exercise. To date, the principal factors proposed to be responsible for fatigue include 

limitations in energy supply (e.g., PCr content and oxygen consumption) and the 

accumulation of by-products of metabolism (e.g., H
+
).  
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FIGURE LEGENDS 

 

Figure 1. Typical mechanical-work profile during intermittent-sprint exercise (“all-out” 

sprints interspersed with brief recovery periods) performed on a cycle ergometer. 

 

Figure 2. Changes in real and predicted (estimated from the pre-exercise power-EMG 

relationship) surface EMG recordings during an intermittent-sprint test (10 x 6-s “all-out” 

sprints on a cycle ergometer interspersed with 30 s of passive recovery). RMS = root mean 

square of the EMG signal. 
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