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Abstract 

It is commonly reported that transcranial magnetic stimulation (TMS) of the motor cortex 

during action observation and motor imagery results in increases in the amplitude of motor 

evoked potentials (MEPs) in muscles specific to the observed or imagined action. This study 

aimed to determine whether MEP amplitude was related to the motor imagery ability of 

participants. Participants were 15 healthy, right-handed adults (5 male), with a mean age of 

29.7 years. Motor imagery ability was measured using the Vividness of Movement Imagery 

Questionnaire-2 (VMIQ-2) and a hand rotation task. TMS was delivered during observation 

and imagery of a finger-thumb opposition sequence and MEPs were measured in the abductor 

pollicis brevis. Significant increases in MEP amplitude, from baseline, were recorded during 

observation and imagery conditions. The change in amplitude to both observation and 

imagery was expressed as a percentage of baseline amplitude. There was a significant 

correlation between MEP change for the imagery condition and imagery ability, with greater 

change linked to more vivid images and faster response times. The relationship between MEP 

change for the observation condition and imagery ability was less salient. This is the first 

study to show that the strength of corticospinal activation during imagery, which may be a 

determinant of the effectiveness of imagery training, is related to imagery ability in the 

general population, and has implications for clinical programs. 
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1. Introduction 

 Action observation and motor imagery have been flagged as potentially useful tools in 

rehabilitation from stroke and other brain injuries [1, 2]. Improved methods to measure brain 

activity, including functional magnetic resonance imagining (fMRI) and transcranial 

magnetic stimulation (TMS), have shown that motor imagery and observation of actions, can, 

when used effectively, activate the neural motor system in a way that overlaps significantly 

with that activated during actual movement [3-7]. When physical movement is impossible, or 

perhaps very difficult, in the early stages following a brain injury, observation of relevant 

movements and task-specific motor imagery offer potential avenues to activate the neural 

motor system without physical movement needing to occur and is, therefore, not reliant on 

there being some level of residual function [1]. This early activation, specifically in areas of 

localised damage, may ensure that neuronal function is not lost as a result of inactivity that 

may otherwise result from the lack of proprioception from significantly reduced physical 

movement. Although theoretically exciting, the imagery interventions are not always 

successful [e.g. 8], and at this stage, the factors that may affect the success of such 

interventions have not been clearly defined.  

 One potentially influential factor may be the ability of the affected individual to form 

vivid motor images. This ability varies as a result of a number of factors, including motor 

experience, age and gender [9]. It seems intuitive that the extent of the vividness of a motor 

image would be associated with the pattern and/or level of neural activation in motor and 

related areas but, somewhat surprisingly, this relationship has received little attention from 

researchers. Studies in sport psychology suggest that athletes who utilise motor imagery 

regularly and report higher levels of imagery vividness for their sport specific tasks 

demonstrate different patterns of neural activation to novice or non-athlete groups who use 

motor imagery less [10, 11]. Skilled performers also demonstrate significantly higher levels 



of corticospinal activation following TMS during imagery of movements related to their 

particular sport, when compared to novice performers [12]. However, these differences 

dissipate when assessing imagery of more general motor skills, unrelated to their sport [10, 

12]. It has been demonstrated that intensive physical practice and subsequent improvement in 

the performance of a motor skill also alters the pattern of neural activation during motor 

imagery [13], and taken with our knowledge of the imagery ability of elite athletes, this 

indicates that task experience can influence imagery ability and accompanying neural 

activation. However, it is unclear whether the differences in activation in athletes compared 

to novice performers are related to the vividness of the motor images per se or that the 

changes in neural activation have occurred as a result of motor learning.  

 In their study, Fourkas et al. [12] required  both expert and novice tennis players to 

complete the Movement Imagery Questionnaire - revised [MIQ-R; 14]. The amplitude of the 

motor evoked potential (MEP) resulting from TMS during imagined tennis movements was 

significantly correlated with the visual and kinaesthetic imagery scores from the MIQ-R in 

the sample as a whole (r = .52 and .68 respectively), with more vivid imagery scores resulting 

in greater MEP amplitude. The observed relationship was stronger in the expert group than 

the novice group, highlighting the need for studies using observation and imagery of less 

specialised skills. 

 To the best of our knowledge, only one study has been conducted that specifically 

addresses the issue of neural activation and motor imagery ability in the general population. 

Guillot et al. [15] used a comprehensive battery of motor imagery tasks to classify typical 

adults into two groups – skilled and unskilled imagers. Participants were then required to 

undergo an fMRI scan, during which they had to imagine executing a pre-learned finger 

movement sequence. Both groups showed activation in motor related regions and the inferior 

and superior parietal lobes. However, when the activation patterns of the groups were 



contrasted, the skilled imagers recorded greater activation in parietal and premotor areas, both 

of which play crucial roles in motor imagery [16, 17]. In comparison, the poor imagers 

recorded greater activation in posterior cingulate and orbito-frontal cortices (memory-related 

rather than imagery-related areas) and also in areas of the cerebellum. This is the first paper 

to demonstrate that, in the general population, motor imagery ability impacts upon neural 

activation during motor imagery. 

 The current study aimed to determine whether there was a significant relationship 

between motor imagery ability and MEP amplitude following TMS during motor imagery. It 

has commonly been demonstrated that MEP amplitude in muscles specific to the imagined 

movement increases during motor imagery (and movement observation) when compared to 

rest conditions [e.g. 6, 18, 19]. Though lower in amplitude than during actual movement, the 

increased MEPs during imagery and observation, relative to baseline, provide evidence that 

both techniques activate the corticospinal pathways in a similar way to actual movement. 

Recent studies have begun to explore factors that might affect the amplitude of MEPs 

observed, including task complexity and mode of imagery [20, 21], but none have yet 

considered motor imagery ability. Therefore, in this study, we first measured motor imagery 

ability using two commonly used techniques – a self-report questionnaire; the Vividness of 

Movement Imagery Questionnaire-2 [22] and the hand rotation task [23]. We confirmed that 

MEP amplitude recorded from the abductor pollicis brevis (APB) muscle was greater during 

action observation and motor imagery than the baseline condition, and correlated change in 

MEP amplitude from baseline with measures of imagery ability. 

 In line with Clark et al. [6], we hypothesized that the MEP amplitude during action 

observation and motor imagery would not differ, but that MEP amplitude during both 

conditions would be significantly greater than that obtained during baseline. Physical 

movement was hypothesized to produce the greatest MEP amplitude and result in 



significantly reduced MEP latency periods than all other conditions. Recent findings have 

revealed greater MEP amplitude during kinaesthetic motor imagery compared to visual motor 

imagery [7, 20]. Therefore we expected to find a significant inverse correlation between 

change in MEP amplitude and kinaesthetic imagery scores from the VMIQ-2, but not for the 

visual imagery scores. We also expected to find a significant inverse correlation between the 

change in MEP amplitude and hand rotation performance.  

 

2. Method 

2.1. Participants 

Fifteen healthy young adults, with a mean age of 29.67 years (SD = 5.29; 5 males) were 

recruited through the University setting to participate in this study. All participants were 

right-handed, as determined using the Edinburgh Inventory [24], and were screened to ensure 

that they did not have any current or past neurological conditions, were not pregnant, and did 

not have any implants (e.g., pacemakers, cochlear implants) that may be affected by TMS. 

No participants were excluded on this basis. No participants were competing in elite level 

sports, and their motor abilities are described briefly in Section 3. 

 

2.2. Measures 

2.2.1. McCarron Assessment of Neuromuscular Development [MAND; 25]. 

 The MAND is a standardised motor assessment battery used here to describe the motor 

skill level of participants. With normative data for both children and adults, the MAND 

consists of 10 motor tasks (5 fine motor, 5 gross motor), scores for which are standardised 

and summed to determine the overall Neuromuscular Development Index (M = 100; SD = 

15). 

 



2.2.2. Vividness of Movement Imagery Questionnaire-2 [VMIQ-2; 22]. 

 The VMIQ-2 requires participants to imagine performing 12 movements using (1) 

external visual imagery (watching yourself perform from an external viewpoint), (2) internal 

visual imagery (imaging as if you were looking out through your own eyes as you move) and 

(3) kinaesthetic imagery (where the focus is on feeling yourself perform the movement). 

Participants rated the vividness of each image using a 5-point Likert scale, with scores from 

each item summed to provide a vividness score for each component of between 12 and 60 

(with lower scores indicating more vivid images).  The factorial, concurrent and construct 

validity of the VMIQ-2 has previously been demonstrated [22]. 

 

2.2.3. Hand rotation task.   

Single hand stimuli (9 cm by 8 cm) were presented on a laptop computer using E-

Prime software (Psychology Software Tools, Pittsburgh, PA, USA). Participants were 

required to decide whether each presented stimulus was a left or a right hand as quickly and 

accurately as possible. The hands were high-resolution images presented in both the palm and 

back view (see Figure 1), centred in the middle of the screen. Hands were presented 

randomly in 45  increments between 0-360 , and remained on screen until a response was 

recorded by pressing a designated key on the computer keyboard or 10s had passed. 

Responses were recorded to the nearest 1ms. Participants completed five practice trials 

followed by 80 test trials, providing five trials in each view at each angle. 

  

2.3. Procedure 

 The project protocol was approved by the Human Research Ethics Committee at Victoria 

University, Melbourne. After providing informed consent, participants completed two 

assessment sessions on different days. The first session involved a one-on-one movement 



imagery assessment, where the participants completed the hand rotation task and the VMIQ-

2. In the second session, participants completed the TMS protocol. This protocol involved the 

identification of each participant’s optimal scalp position (OSP) and resting motor threshold, 

followed by 10 randomly timed, single TMS pulses during each of the following conditions: 

1) baseline (static hand); 2) movement observation; 3) movement imagery and; 4) actual 

movement. 

 Participants were required to sit in a relaxed position in front of a 15.4 inch computer 

screen, positioned .5 m away. During the baseline condition, participants watched video 

footage of a static hand resting on a table-top. During movement observation, participants 

watched video footage of the same hand performing a continuous finger-thumb opposition 

task. Movements were paced so that one cycle (from index to little finger) took four seconds. 

Participants were then asked to keep their eyes open and imagine themselves performing the 

same task that they had just observed, with an emphasis on feeling the movement (movement 

imagery condition). In the final condition, participants actually performed the task (actual 

movement condition). Each condition lasted approximately one minute.  

Electromyographic (EMG) readings were collected from the abductor pollicis brevis 

(APB) muscle of the right hand using surface electrodes. TMS was performed using a 

MagStim 200
2
 magnetic stimulator (Magstim Co., Whitland, Dyfed, UK) and a hand-held 70 

mm figure of eight coil. Participants wore a cap that was pre-marked in 1 cm increments in 

both lateral and anterior-posterior directions, positioned in reference to the nasion-inion and 

interaurel lines.  The coil was held over the left motor cortex, in an anterior-posterior 

orientation tangential to the skull, over the OSP for stimulating the APB muscle. The OSP 

was identified for each participant by exploring sites near the estimated centre of the hand 

area (beginning 6 cm lateral to the vertex) using a stimulus intensity of 60%. OSP was 

considered to be the site at which the largest MEP could be obtained consistently. Resting 



motor threshold (RMT) was determined by stimulating the OSP while the participant rested 

their hand on their lap. Stimulations began at 30% and were increased in 5% increments until 

a subject recorded at least 5 of 10 MEP peak-to-peak amplitudes greater than 50µV. For test 

conditions, intensity was set at 10% of stimulator output above the RMT for each subject. 

EMG activity was amplified (x1000) and digitised for 500ms following each stimulus. 

Stimulations were delivered manually at six second intervals. Waveforms were stored offline 

for further analysis. 

 

2.4. Data analysis 

2.4.1. Motor imagery data.   

 For each participant, item scores within each component of the VMIQ-2 were summed to 

provide vividness ratings for ‘internal’ and ‘external’ visual and kinaesthetic imagery. A 

repeated measures ANOVA was conducted to determine whether participant’s ability to 

produce vivid images depended upon the mode of imagery used. 

 Mean RT and accuracy for each hand at each angle of rotation was calculated for each 

participant. No anticipatory (less than 250 ms) or significantly delayed (2.5 times greater than 

the mean for that angle) responses were identified. Initially, mean RTs to hand stimuli rotated 

medially (for left hands, this included hands at angular rotations of 45°, 90° and 135°, and for 

right hands, 315°, 270° and 225°) were compared to hand stimuli rotated laterally (left hands 

at 315°, 270° and 225° and right hands at 45°, 90° and 135°) to determine whether responses 

of the sample conformed to the biomechanical constraints of real movements, thereby 

supporting the use of movement imagery. A paired-sample t-test was conducted to determine 

if RT to medial and laterally rotated hands differed significantly. Secondly, to allow 

correlations with the TMS data, each individual’s mean RT and accuracy across all angles 

was calculated. 



 

2.4.2. TMS / EMG data.  

 The MEP peak-to-peak amplitude (µV) and TMS latency (ms) was extracted manually 

for each of the 10 trials in each condition for all participants. Mean amplitude and latency for 

each of the four conditions was then calculated. In line with Clark et al. [6], amplitude data 

was transformed using a natural logarithm to normalise data. Repeated measures ANOVAs 

were then conducted on log-amplitude and latency data, with four within-subject variables: 1) 

baseline (static hand); 2) movement observation; 3) movement imagery and; 4) actual 

movement. A significant effect for condition was followed by multiple pairwise comparisons 

of estimated marginal means with bonferroni adjustments.  

 To determine the change in amplitude during the observation and imagery conditions 

from baseline, we calculated the difference in amplitude between the two conditions and 

expressed this as a percentage of the baseline amplitude [see also 26]. These values were then 

submitted to a bivariate correlation analysis with each component score from the VMIQ-2 

and mean RT and accuracy from the hand rotation task. Correlations were interpreted using 

Cohen’s [27] guidelines, where r of < .3 is small, .3 - .5 is medium and > .5 is large. All 

statistical analyses were conducted using SPSS PASW Statistics 18. 

 

3. Results   

 The results of the MAND indicated that all participants had motor skills that were within 

age expected levels. The mean score for the Neuromuscular Development Index was 96.90 

(SD = 10.56), with scores ranging from 74 – 116. Descriptive results for the motor imagery 

tasks are presented in Table 1. There was no significant difference in vividness scores among 

the three modalities of imagery, F(2,26) = .77, p = .48, ηP
2
 = .06. Responses to hands rotated 

medially were significantly faster than responses to hands rotated laterally, t(14) = 3.88, p = 



.002, indicating responses were constrained by the biomechanical limitations of real 

movements. 

 An example of a participants MEP amplitude trace for each of the conditions is shown in 

Figure 2, and sample mean amplitude and latency data for each condition can be seen in 

Figure 3. There was a significant effect of condition on movement amplitude, F(3,42) = 

65.38, p < .001, ηP
2
 = .82. Post-hoc tests indicated that MEP amplitude during the baseline 

condition was significantly lower than during the observation, imagery and actual movement 

conditions (p = .012, .005 and < .001 respectively). MEP amplitude did not differ between 

the observation and imagery conditions (p = 1.00), but was significantly greater during actual 

movement (p < .001). There was a significant effect of condition on MEP latency, F(3,42) = 

35.58, p < .001, ηP
2
 = .72. MEP latency was significantly reduced in the movement condition 

compared to the other three conditions (all p < .001). There were no other significant 

differences. 

 For the observation condition, MEP amplitude increased, on average, by 73.72% (SD = 

82.88) from the baseline condition; for the imagery condition, this increase was 127.03% (SD 

= 135.21) of the baseline condition. One participant was a substantial outlier, with an increase 

from baseline to imagery of 630%. This participant was excluded from the correlation 

analysis. The correlations between the motor imagery measures and the change in MEP 

amplitude during observation and imagery are shown in Table 2 and scatterplots for 

correlations between kinaesthetic imagery scores / mean hand task RT and % change in MEP 

amplitude during imagery / observation can be seen in Figure 4. Change in MEP amplitude 

during the imagery condition demonstrated a large and significant inverse correlation with the 

kinaesthetic component of the VMIQ-2 and average RT for the hand task. Change in MEP 

amplitude during the observation condition was not as strongly correlated with the motor 

imagery measures, demonstrating only medium, non-significant correlations. 



4. Discussion 

 The major aim of this study was to determine whether MEP amplitude following TMS 

during motor imagery was correlated with motor imagery ability. The results showed a strong 

and significant correlation between selected measures of motor imagery and the change in 

MEP amplitude from baseline to imagery. The relationship between motor imagery measures 

and the change in MEP amplitude from baseline to observation was less salient. These 

findings have implications for clinical interventions, which will be discussed later. Next, we 

review the behavioural and MEP findings. 

 

4.1. Behavioural findings 

 The VMIQ-2, a popular measure in sport psychology, provides a rating of imagery 

vividness from external and internal perspectives for visual and kinaesthetic imagery. 

Vividness ratings across the three components of the VMIQ-2 did not differ significantly, 

though it is interesting to note that kinaesthetic imagery was rated as the most vivid.  

 Although the hand rotation task does not provide explicit imagery instructions, 

participants usually report imagining their own hands in the position of the hand on the 

screen to make the required laterality decision [28]. Supporting the use of motor imagery to 

perform this task, neuroimaging studies confirm that this task activates the motor areas of the 

brain [e.g. 29, 30], while others have shown that responses to medially rotated stimuli are 

faster than those to laterally rotated stimuli, reflecting the biomechanical constraints of real 

movement [31, 32]. In the current sample, response times to medially rotated stimuli were 

significantly faster than responses to laterally rotated stimuli and as such, we are confident 

that motor imagery was being performed.  

 

4.2. MEP findings 



 As predicted, and in line with Clark et al. [6] who used a similar study design, we found 

a significant increase in the amplitude of MEPs during the motor imagery and observation 

conditions compared with baseline, with  a further significant increase during actual 

movement. In regard to MEP latency, only actual movement produced a significant 

reduction, which also follows the findings of Clark et al. [6]. These results add to the growing 

body of evidence demonstrating increases in corticospinal excitability during motor imagery 

and movement observation [e.g. 18, 19-21], supporting the theoretical potential for imagery 

and observation intervention programs to facilitate recovery from conditions such as stroke 

and traumatic brain injury. As noted in the introduction, the conditions under which patients 

may benefit from imagery or observational training programs is not yet clearly understood. 

 

4.3. Correlations between imagery ability and MEP amplitude 

 Change in MEP amplitude from baseline to imagery showed a strong, inverse correlation 

with the scores on the kinaesthetic component of the VMIQ-2 and hand task RT. This 

indicates that greater MEP amplitude was associated with more vivid kinaesthetic images and 

faster responses to hand stimuli and supports our hypothesis that activation of the motor 

system during motor imagery is likely to be influenced by motor imagery ability. This 

provides further evidence of disparity in neural activation between good and poor imagers, as 

shown during fMRI by Guillot et al. [15] and suggests that motor imagery ability may be a 

potential factor influencing the success of motor imagery training programs. This has 

implications for the use of imagery interventions in stroke patients, and may explain why the 

outcomes of such interventions are somewhat mixed [see 1 for a review].  

 The correlations between the change in MEP amplitude during imagery and the 

remaining imagery variables were less strong. There was a moderate correlation with internal 

visual imagery and no correlation with external visual imagery. This likely reflects the 



imagery mode and perspective utilised by participants in the study. When the TMS pulses 

were delivered, participants were seated with their hand on the table in front of them or in 

their lap, and were able to look at their hand during the task. As such, the utilisation of an 

external perspective would have been unlikely. This explains the poor correlation between 

MEP amplitude and external visual imagery scores.  The correlation between visual internal 

imagery and MEP amplitude suggests that participants perhaps utilised a combination of 

internal visual and kinaesthetic imagery when imagining the finger-tapping movements. 

Hand task accuracy showed only a low-moderate correlation with MEP amplitude during 

imagery. This may be due to the ceiling effect on accuracy in this task (average accuracy was 

90.5%), which reduces the amount of variability observed.  

 Correlations between the motor imagery variables and change in MEP amplitude from 

baseline to the movement observation condition were not as strong as those using the imagery 

condition. There were only moderate, non-significant correlations between MEP amplitude 

change and kinaesthetic imagery, hand task RT and accuracy. This suggests that although 

both motor imagery and movement observation appear to facilitate activation of the 

corticospinal pathways to a similar extent, the activation during movement observation is less 

reliant on motor imagery ability. If future research demonstrates that the effectiveness of 

motor imagery training is mediated by initial motor imagery ability, movement observation 

training programs may provide a viable alternative that is less dependent on imagery ability. 

The benefits of movement observation training (where participants watch footage of motor 

tasks being performed) over motor imagery were recently reviewed by Holmes and Calmels 

[33]. These include better control of the image and the mode, perspective and agency 

employed. Observation also removes the need for complex imagery scripts and the possibility 

that the script is not completely followed.  



 While there has been speculation that motor imagery ability would mediate the 

effectiveness of motor imagery interventions, this study is only the second to show that 

neural activation during motor imagery is indeed influenced by motor imagery ability. This 

finding may be one of the reasons that reviews of the effectiveness of motor imagery training 

find mixed results [1, 34] and indicates that all clinical trials including a motor imagery 

intervention should include an evaluation of each participant’s ability to form accurate and 

vivid movement images. The next step is to determine whether these findings can be 

replicated in a sample of older adults, more likely to suffer from stroke, and to determine the 

impact of these findings on motor imagery intervention outcomes. That is, does the reduced 

level of facilitation in the corticospinal pathway of people with lower imagery ability 

represent less effective motor imagery interventions? Along with this, it is crucial to 

determine if motor imagery interventions that improve imagery ability lead to increases in 

corticospinal facilitation, and whether patients whose imagery skills are impaired as a result 

of brain injury [e.g. those with parietal lesions; see, for example, 17] can regain those skills 

through imagery training. Furthermore, including a movement observation training program 

in studies aimed at answering these questions would provide significant advances to our 

current knowledge. 

 Although our findings regarding the relationship between MEP amplitude change from 

baseline to imagery and kinaesthetic imagery were quite strong, they were perhaps limited by 

our choice of measure and our lack of a clear imagery script for participants to follow during 

the finger tapping task. For example, had we asked participants to rate the vividness of their 

imagery during the tapping task, the correlation with MEP facilitation change may have been 

stronger – instead, we are making the assumption that their ability to produce vivid images as 

described by the VMIQ-2 reflected their ability to produce a vivid reproduction of the finger 

tapping task. Recent research has suggested that poor imagers may use different techniques to 



solve a visual, non-biological, imagery task to that used by good imagers [35] and as such, it 

would be recommended that imagery content be carefully monitored in future studies.  Also, 

we could have provided clearer imagery scripts that asked participants to imagine the finger 

tapping task using both visual (internal and external) and kinaesthetic separately, and then 

examined the relationship between MEP amplitude during each reproduction with the 

individual components of the VMIQ-2. 

 

5. Conclusions  

 Our findings lend support to those of Guillot et al. [15], suggesting that patterns of neural 

activation during motor imagery are related to the ability of the individual to produce vivid 

motor images. These are the first studies to identify these trends in average populations, with 

previous work focused on athletes imagining sport-specific skills. The results have important 

clinical applications given the increasing interest in the use of motor imagery as a tool for 

motor rehabilitation and raise a number of questions regarding the efficacy of these 

interventions for patients with poor imagery ability. Importantly, our data suggests that neural 

activation during movement observation is less related to imagery ability. Although this 

needs further exploration, it indicates that movement observation training programs may be a 

better alternative to imagery programs, particularly for those with a reduced ability to form 

vivid images. Finally, as a result of this research, we recommend that all studies examining 

the efficacy of motor imagery interventions include a measure of motor imagery ability in 

their test battery so that intervention results may be better understood. 
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Table 1. 

Motor imagery performance measures 

Measure Component Mean (SD) 

VMIQ-2 External Visual Imagery 27.47 (12.95) 

 Internal Visual Imagery 24.93 (10.66) 

 Kinaesthetic Imagery 23.00 (10.10) 

Hand Rotation Response Time (all angles) 1581.96 (466.28) 

 Response Time (medial rotations) 1370.39 (446.15) 

 Response Time (lateral rotations) 1629.77 (560.79) 

 Response Accuracy (all angles) 90.50% (5.80) 

Note: Response Time is in ms; Accuracy is percentage of correct responses. 

 

 

 



Table 2. 

Correlations among imagery measures and the change in MEP amplitude 

 Imagery variable 

MEP Change 

External Visual 

Imagery 

Internal Visual 

Imagery 

Kinaesthetic 

Imagery 

Hand Task RT 

(total) 

Hand Task 

Accuracy 

Baseline to Imagery  .04 -.44 -.65* -.56* .31 

Baseline to Observation -.11 -.16 -.35 -.46 .33 

Note: * p < .05 



Figure Captions 

 

Figure 1. Hand rotation task stimuli. Left hand in palm view at 135° and right hand in back 

view at 315°. 

 

 

Figure 2. Sample MEP amplitude traces from an individual participant during baseline (A), 

observation (B), imagery (C) and movement (D) conditions. 

Note: Y axis = amplitude (mV), X axis = latency (ms) 

 

 

 



Figure 3. MEP amplitude (a) and latency (b) during the four conditions.  

Note:  * p < .05; ** p < .001. 

 

 

 

 

 



Figure 4. Scatterplots demonstrating correlations between imagery ability measures and MEP 

change during imagery and observation conditions. 

 


