
Robust H∞ synchronization of a hyper-chaotic 
system with disturbance input

This is the Accepted version of the following publication

Wang, Bo, Shi, Peng, Karimi, Hamid Reza, Song, Yongduan and Wang, Jun 
(2013) Robust H∞ synchronization of a hyper-chaotic system with disturbance 
input. Nonlinear Analysis: Real World Applications, 14 (3). pp. 1487-1495. 
ISSN 1468-1218 (print) 1878-5719 (online)  

The publisher’s official version can be found at 
http://www.sciencedirect.com/science/article/pii/S1468121812002295
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/23699/ 



1 

 

Robust H∞ Synchronization of a hyper-chaotic system 

with disturbance input 
Bo Wang a,b, Peng Shi c,d *

a School of Electrical and Information Engineering, Xihua University, Chengdu, 610096, China 
b School of Applied Mathematics, University Electronic Science and Technology of China, Chengdu 610054, China 

c School of Engineering and Science, Victoria University, Melbourne, Vic 8001, Australia 
d School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia 

e Department of Engineering, Faculty of Engineering and Science, University of Agder, N-4898, Grimstad, Norway 
f School of Automation, Chongqing University, Chongqing, 400044, China 

 
 
 

Abstract 

, Hamid Reza Karimi e, Yongduan Song f, Jun Wang a  

This paper concerns the robust control problems on the synchronization of a hyper-chaotic system 
with disturbance input. Using an appropriate Lyapunov function, we design the multi-dimensional 
and the single-dimensional robust H∞ synchronization controllers in terms of linear matrix 
inequalities for the application in practical engineering. Corresponding theoretical derivations are 
given subsequently. Finally, some numerical simulations are provided to demonstrate the 
effectiveness of the proposed techniques.  
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1. Introduction 

Chaos synchronization has powerful application in chemical reactions, power converters, 

biological systems, information processing, secure communications, etc. During the last decade, 

many techniques for handling chaos synchronization have been studied [1-11]. In [4], through 

separation between linear and nonlinear terms of the chaotic system, an adaptive synchronous 

controller for a general class of non-autonomous chaotic systems is proposed. In [5], based on 

delayed feedback control and intermittent linear state delayed feedback control, the 

synchronization problem on non-autonomous chaotic systems is discussed. In [6], an adaptive 

controller with parameter update laws is designed to realize the projective synchronization of 

two different chaotic systems. In [7], based on the time-domain approach, the tracking 

synchronization control method is proposed for the uncertain Genesio-Tesi chaotic systems with 

dead zone nonlinearity. In [8], the projective synchronization problem for different fractional 

order chaotic systems is investigated. In [9], some adaptive control schemes are developed to 

anti-synchronize two chaotic complex systems. However, in practical control systems, 
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disturbance inputs exist widely, which make the real control problem much more complicated. 

H∞ theory is an efficient approach to handle such problem and has received increasing attentions 

in recent years, corresponding research outcomes can be seen in [12-31] and references therein. 

In this paper, an H∞ method will be introduced to solve the robust synchronization control 

problem for a hyper-chaotic system with disturbance input. 

Hyper-chaotic systems, characterized as a chaotic attractor with more than one positive 

Lyapunov exponents, can generate much more complicated dynamics. Therefore, the relative 

research, especially for new one, is an interesting and challenging issue. In [32], a new 

hyper-chaotic system is introduced, and the dynamical equation is described by 
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with 
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1 1
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( )

2
a b z z

g z bz
− + − −

= +  

where ,  1, 2, ,5iz i =   is the system state variable, and 0,  1, 2, ,5ir i> =   is the system 
parameter. 

Such chaotic system has two positive Lyapunov exponents when 1.27, 0.68,a b= − = −  

1 2 3 4 510, 14, 0.2, 20, 0.03r r r r r= = = = = , and will produce the complicated dynamics. Unfortunately, 

to our knowledge, such system is not paid much attention and corresponding investigations are 

seldom found so far. This motivates our research. 

In this paper, we will study the robust synchronization control problem on the hyper-chaotic 

system (1) with disturbance input, corresponding theoretical derivations will be presented to 

support the results obtained. Finally some simulation examples will be included to validate the 

effectiveness of our synchronization methods. 

Notations used in this paper are fairly standard. Let nR  be the n-dimensional Euclidean space, 
n mR ×  denotes the set of n m×  real matrix, the symbol * represents the symmetric part in a 

matrix, I represents an identity matrix with appropriate dimensions, the superscript T stands for 

matrix transposition, and diag{...} represents a block diagonal matrix. 
2
⋅  refers to the 

Euclidean vector norm or the induced matrix 2-norm. By 0A >  we mean that A is a real 

symmetric positive definitive matrix.  
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2. System description and preliminaries 
 
First, based on the hyper-chaotic system (1), we construct the following master-slave systems  
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and 
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where 1 2 3 4 5( ) ( ( ), ( ), ( ), ( ), ( ))Tx t x t x t x t x t x t= and 1 2 3 4 5( ) ( ( ), ( ), ( ), ( ), ( ))Ty t y t y t y t y t y t=  are the state 

vectors of the master and slave systems, respectively, 1 2 3 4 5( ) ( ( ), ( ), ( ), ( ), ( ))Tu t u t u t u t u t u t= is the 

multiple-dimensional synchronization controller, 1 2 3 4 5( ) ( ( ), ( ), ( ), ( ), ( ))TW t w t w t w t w t w t=  is the 

disturbance input. 
 
Define the synchronization error vector of the master-slave systems (2) and (3) as 

    ( ) ( ) ( )E t y t x t= −                                                      (4)  

where 1 2 3 4 5( ) ( ( ), ( ), ( ), ( ), ( ))TE t e t e t e t e t e t= . 

 
Then the error dynamics can be expressed by 
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where ( )a M t b≤ ≤ . 

In this paper, the following lemmas and definition are concerned 

Lemma 1 [33].  If 2( )f t L L∞∈ ∩  and ( )f t L∞∈ , we have 

    lim ( ) 0
t

f t
→+∞

=                                                          (6) 
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Lemma 2 [34]. Given any real vectors D and E with appropriate dimensions, and any positive 

scalar 0k > , the following inequality holds 

1T T T TDE E D kDD E E
k

+ ≤ +                                             (7)  

Definition 1: Under the assumption of zero initial condition, the systems (3) can synchronize to 

system (2) with an H∞  norm bound γ , if there exists a scalar 0γ >  such that 

2 2
( ) ( )E t w tγ≤                                                      (8)  

for any nonzero 2 0( ) [ , ]w t L t∈ ∞  

3. Main Results 

In this section, based on Lyapunov method and LMI technique, the following theoretical results 

are proposed. 

Theorem 1. If there exist scalars 0γ > , 0, 1, 2, ,5iK i> =  , we design an H∞  synchronization 

law with the following control regulation 

( ) ( )Tu t K E t= −                                                        (9) 

with 

1 2 3 4 5{ , , , , }K diag k k k k k=  
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                                                (10) 

2 0
*

I K I
Iγ

− 
< − 

                                                     (11) 

then, system (3) with any initial conditions can synchronize to system (2) with H∞  norm 

bound γ . 

Proof.  Choose the following Lyapunov function candidate 

    2 2 2 2 2
1 2 3 4 5

1( ) ( ( ) ( ) ( ) ( ) ( ))
2

V t e t e t e t e t e t= + + + +                                   (12) 
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The time derivative of ( )V t  along trajectories of error model (5) is 
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From the conditions (10), we have 
 
     ( ) ( )  ( ) ( ) ( )T TV t E t KE t W t E t= − +                                         (14)  
  
Consider the following H∞  performance index 
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For 0( ) 0V t =  and ( ) 0TV t ≥ , we have 
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
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where  

( ) [ ( ), ( )]T T Tt E t W tη =  

2*
I K I

Iγ
− 

Ω =  − 
 

Consider LMI (11), we have 0J ≤  for any nonzero 2 0( ) [ , ]W t L t∈ ∞ . According to Definition 1, 

the proof of Theorem 1 is thus completed.   � 
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Next, we design a single-dimension H∞  synchronization controller. Constructing the following 

master-slave systems 

    

1 1 2 1 1

2 1 2 3

3 2 2 4

4 3 3 5

5 4 4 5 5

( ) ( ( ) ( ) ( ( )))
( ) ( ) ( ) ( )
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
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and 
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









                                  (18)                                           

where ( )ix t  and ( ),  1,2, ,5iy t i =   are the state variables of the master and slave systems, 
respectively, u(t) is the single-dimension synchronization controller, and w(t) is the disturbance 
input. 

Then we can get the following error dynamical system model 

1 1 2 1 1

2 1 2 3

3 2 2 4

4 3 3 5

5 4 4 5 5
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









                                  (19)  

where ( )a M t b≤ ≤ . 

Based on Lyapunov method and LMI technique, the following theoretical result can be 

concluded. 

Theorem 2. If there exist scalars 0γ > , 0n > , and 0ε > , we design an H∞  synchronization 

law with the following control regulation 

1( ) ( )u t L e t= − ⋅                                                         (20) 

with 

1
1( 1 )L r a
n

ε= + − −                                                     (21) 
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                                             (22) 

then, system (18) with any initial conditions can synchronize to system (17) with H∞  norm 

bound γ . 

Proof.  Choose the following Lyapunov function candidate 

    2 2 2 2 2
1 2 3 4 5

1 2 3 4

1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2

V t e t e t e t e t e t
r r r r

= + + + +                         (23)  

The time derivative of ( )V t  along trajectories of error model (19) is given by 
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r r
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e t e t e t
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    

4 3 5
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1 2 1 2 5 5 1
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1 1
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         ( )[ ( ) ( )]

1      ( )[1 ( ) ] ( ) 2 ( ) ( ) ( ) ( ) ( )

1 1      ( )[1 ( ) ] (1 ) ( ) ( ) ( ) ( )

e t e t e t

e t e t r e t

Le t M t e t e t e t r e t w t e t
r r

Le t M t n e t r e t w t e t
r n r

− +

+ −

= − + + − + − +

≤ − + + − − − − +

                (24) 

Consider condition (21), we have 

    1
1

1( ) ( )  ( ) ( ) ( )TV t E t KE t w t e t
r

≤ − +                                             (25) 

where  

5{ ,1 , } 0K diag n rε= − ≥  

1 2 5[ ( ), ( ), ( )]TE e t e t e t=  

Consider the following H∞  performance index 
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For 0( ) 0V t =  and ( ) 0TV t ≥ , we have 

0

0
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T

t T

t

t T

t

J e t w t w t V t dt

t t dt
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η η

≤ − +

= Ω

∫

∫



                                         (27) 

where  

( ) [ ( ), ( )]T T Tt E t w tη =  

1

5

2

1

11 0 0
2

0 1 0 0
0 0 0
1 0 0

2

r
n

r

r

ε

γ

 − 
 

− + 
Ω =  − 

 
− 

 

 

Consider LMI (22), we have 0J ≤  for any nonzero 2 0( ) [ , ]W t L t∈ ∞ . According to Definition 1, 

the proof of theorem 2 is thus completed.   � 

Remark 1. , 1, 2, ,5ir i =   are the system parameters of the hyper-chaotic system. From the 

proof of Theorem 2 we can see, through constructing Lyapunov function (23) with ir  based on 

the characteristic of the hyper-chaotic system, chaos synchronization is achieved via a 

single-dimensional controller 1( ) ( )u t L e t= − ⋅ , which is only suitable for this system. 

4. Example and simulation 

In this section, we include some examples to validate the effectiveness of our chaotic 

synchronization method. The numerical simulation is with step size 0.001 second and the 

following initial parameters 

    0 [0.7557 0.0957 -0.2801 0.0164 0.1498]Tx =  

    0 [1.1306 -0.0411 -0.1034 -0.0354 -0.4042]Ty =   

    0.2γ =  

    2cos(2 ) sin( )      t 20 s( ) 1
0                                else

t

i

etw t t


≥= +

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First, we consider the multi-dimension synchronization law in (9). Based on Theorem 1, we get 

{ }diag 8.7028,12.5653,16.5653,17.9053,25.9053K = . The numerical simulation result can be seen 

in Fig 3.  

Next, we consider the single-dimension synchronization law in (20). Based on Theorem 2, we 

get 14.7076L = . The numerical simulation result can be seen in Fig. 4. 

Remark 2. Fig. 1 depicts the time response of system disturbance input. Fig. 2 depicts the 

attractor of the hyper-chaotic system. It can be seen the hyper-chaotic system (1) possesses 

complicated dynamics. Figs. 3 and 4 depict the time response of synchronization error variables 

of master-slave systems based on our H∝ synchronization laws. At the first stage there is no 

disturbance input, we can see the slave system achieves following the master system during 10 

seconds. Later the disturbance is added at the 20th second, we can see the synchronization error 

variables jitter in a small range, which satisfy the given H∞ performance index. Compared to 

multi-dimensional H∞ synchronization controller, the single-dimensional H∞ synchronization 

controller has the simpler structure due to the requirement only for one system state variable. In 

numerical simulation, we notice that the multi-dimensional H∞ synchronization controller has 

the better control performance at the cost of complicated structure with much more system state 

information, which may cause the generating of the new disturbances and will make a 

difference to the synchronization control. Therefore, both synchronization methods are 

meaningful and can be utilized in accordance with the practical requirements.  

5. Conclusion 

In this paper, we have studied the robust control problems for the synchronization of 

hyper-chaotic systems with disturbance input. Based on Lyapunov method, we have designed 

the multi-dimensional and the single-dimensional H∞ robust synchronization controllers in 

terms of linear matrix inequalities for the application in practical engineering. Corresponding 

theoretical derivations were also presented. Finally, some numerical simulations were carried 

out to illustrate the effectiveness of the proposed techniques.  
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Fig. 1 Time response of system disturbance input 
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Fig. 2 Attractor of the hyper-chaotic system (1) 
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Fig. 3 Time response of synchronization error variables with multi-dimensional H∝ controller 
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Fig. 4 Time response of synchronization error variables with single-dimensional H∝ controller 
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