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Abstract 

Team sports are increasingly popular, with millions of participants worldwide. Athletes engaged 

in these sports are required to repeatedly produce skilful actions, and maximal or near maximal 

efforts (e.g. accelerations, changes in pace and direction, sprints, jumps and kicks), interspersed 

with brief recovery intervals (consisting of rest or low- to moderate-intensity activity), over an 

extended period of time (1 to 2 hours). While performance in most team sports is dominated by 

technical and tactical proficiencies, successful team-sport athletes must also have highly-

developed, specific, physical capacities. Much effort goes into designing training programs to 

improve these physical capacities, with expected benefits for team-sport performance. Recently, 

some team sports have introduced altitude training in the belief that it can further enhance team-

sport physical performance. To date however, there is little published evidence showing 

improved team-sport performance following altitude training, despite the often considerable 

expense involved. In the absence of such studies, this review will identify important 

determinants of team-sport physical performance that may be improved by altitude training, with 

potential benefits for team-sport performance. These determinants can be broadly described as 

factors that enhance either sprint performance, or the ability to recover from maximal or near-

maximal efforts. There is some evidence that some of these physical capacities may be enhanced 

by altitude training, but further research is required to verify that these adaptations occur, that 

they are greater than what could be achieved by appropriate sea-level training, and that these 

adaptations translate to improved team-sport performance. 
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What are the new findings? 

 This review summarises the physiological determinants of team-sport physical 

performance that could potentially be improved by altitude training 

 While the theoretical rationale is quite strong, there are very few published studies 

that have investigated changes in team-sport physical performance, or its 

determinants, in response to altitude training 

 There are many conflicting findings in the literature, which indicates the need to 

better control for diet, training, and the altitude dose. 

 

How might it impact on clinical practice in the near future? 

 This review highlights that there is theoretical support for the use of altitude training 

by team-sport athletes. However, it also highlights the need for further research to 

verify that altitude training can promote greater physiological adaptations than 

appropriate sea-level training, and that these greater physiological adaptations 

translate to improved team-sport physical performance.  
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Introduction 

Team sports are increasingly popular, with millions of participants worldwide. Athletes engaged 

in these sports are required to repeatedly produce skilful actions, and maximal or near maximal 

efforts (e.g. accelerations, changes in pace and direction, sprints, jumps and kicks), in a semi-

stochastic fashion, interspersed with brief recovery intervals (consisting of rest or low- to 

moderate-intensity activity), with and without the ball/puck, over an extended period of time (1 

to 2 h). The physical demands are therefore complex, requiring athletes to have highly-developed 

speed, agility, muscular strength and power, and endurance. Athletes also require the ability to 

repeatedly execute complex motor skills (e.g. passing, defending and tackling) under pressure 

and while fatigued [1 2].  

 

During competitive, field-based, team sports, elite athletes may cover 8 to 14 km at an average 

intensity of ~ 85-90% of their maximal heart rate (HRmax) or 75-80% of their maximal oxygen 

uptake (VO2max), with marked differences related to playing standard and position [3-9]. This 

suggests that a well-developed aerobic energy system is an important physiological determinant 

of team-sport physical performance. The observation that more than 150 different, brief, intense 

actions may be performed in a team-sport match, and that athletes may record moderately-large 

blood (2-14 mM) and muscle lactate values (~ 15 mmol·kg
-1

 d.w.) after intense periods of play, 

indicates that the rate of anaerobic energy turnover is also high during periods of a match [7 10].  

Much effort goes into designing training programs to improve these physiological capacities, 

with expected benefits for team-sport performance.  
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Recently, some team sports have introduced altitude training
1
 (AT) in the belief that it can 

enhance their sea-level, match-related, physical performance. To date, however, there is scant 

published evidence showing improved team-sport performance following AT, despite the often 

considerable expense involved [11]. In the absence of such studies, this review will identify 

important physiological determinants of team-sport physical performance, and briefly discuss the 

evidence that these may be improved by simulated or natural AT. It is beyond the scope of this 

review to identify technical and tactical abilities that may influence team-sport performance and 

which might be affected by AT. It is also beyond the scope of this review to discuss how 

reductions in air density experienced during hypobaric hypoxia may affect factors such as ball 

flight (air density reduces by about 10% for every 1000 m increase in altitude and will affect 

flight characteristics) [12]. 

 

2. Physiological factors determining team-sport physical performance 

A better understanding of the physiological factors associated with team-sport physical 

performance is arguably the first step in order to assess whether AT may play a role in enhancing 

team-sport performance. As most team sports require athletes to regularly repeat short, high-

intensity efforts, interspersed with longer intervals of sub-maximal exercise, these physiological 

factors can be broadly described as factors that affect either sprint performance, or the ability to 

recover from maximal or near-maximal efforts (Figure 1). It should be noted, however, that 

many of these factors may also influence other aspects of team-sport physical performance (e.g., 

explosive power may also influence jump performance). 

 

                                                           
1
 For the purpose of this review, altitude training refers to living and/or training at a natural or simulated altitude 

(e.g., live high – train low, live high – train high). It does not include intermittent hypoxic training, which has been 
the subject of recent reviews. 
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INSERT FIGURE 1 ABOUT HERE 

 

2.1. Sprint performance 

Sprinting, defined as a running velocity above a lower limit ranging from 19 to 25 km·h
-1

, 

amounts to 5-10% of the total distance covered during a match and corresponds to 1-3% of 

match time in rugby league and soccer (football) [13 14]. The importance of sprint performance 

for team-sport athletes is highlighted by the observation that straight sprinting is the most 

frequent action preceding a goal in football (soccer)[15]. It has also been estimated that an ~0.8% 

impairment in sprint speed would have a substantial detrimental effect on the likelihood of a 

player losing possession of the ball against an opponent, when both players sprint for the ball 

[16]. In addition, mean sprint speed during a repeated-sprint ability (RSA test) (which is strongly 

correlated with peak speed [17-20]) has been correlated with total sprint distance during a 

professional football match [21]. While further research is required, there is emerging evidence 

that sprint performance is an important determinant of team-sport performance. 

 

Despite its importance, and possibly due to an emphasis on the effects of AT on endurance 

performance [11], there has been scant research into the effects of AT on sprint performance. In 

the two published studies that we are aware of, AT was reported to result in a greater 

improvement in both 150-m [22] and 400-m [23] sea-level, running performance compared to 

sea-level training. However, as the physiological and metabolic demands of these running 

distances will differ from the types of sprints typically performed by team-sport athletes (<6 s), 

further research is clearly required to investigate the effects of AT on sprint performance and its 

determinants. 
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Determinants of sprint performance 

In simple terms, sprint performance is determined by stride length and stride frequency (Figure 

1). To improve speed, an increase in one or both of these parameters must occur within the 

context of sound technique. Improvements in stride length, and hence speed, are intimately 

linked to improvements in power – which is directly related to strength, elastic strength and 

dynamic flexibility (the ability to move the appropriate joints through a large range of motion at 

high speeds) [24]. Power has also been related to the ability to supply ATP at a fast rate, and to 

the percentage of fast-twitch fibres [25]. Sprint performance is also determined by stride 

frequency, which is related to factors such as intra-muscular coordination. Below we summarise 

the research investigating the effects of AT on these determinants of sprint performance. 

 

ATP supply 

Maximal sprint efforts rely on a fast and constant turnover of ATP, powered by phosphocreatine 

(PCr) breakdown and anaerobic glycolysis [26]. As such, team-sport athletes may be able to 

improve their sprint performance if they are able to enhance their ability to deplete large amounts 

of high-energy phosphates at a fast rate (i.e., their anaerobic capacity)[27]. Anaerobic 

performance, lasting 30 s or less, on either a cycle ergometer (Wingate test: [28-30]) or a non-

motorized treadmill [31 32], is generally not adversely affected at altitude due to enhanced 

anaerobic energy release (i.e., higher oxygen deficit or muscular lactate concentration; [28 30] to 

compensate for the reduced aerobic ATP production. A high rate of anaerobic energy release 

during exercise has been proposed to be an important stimulus to increase anaerobic capacity 

[33].  It could therefore be hypothesised that this lower rate of oxygen delivery to muscles when 

training at altitude would increase the flux through the anaerobic energy systems and lead to 
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greater improvements in anaerobic capacity. In support of this assumption, increases in maximal 

accumulated oxygen deficit have been reported either after 15 days spent at 2650 m and training 

at 610 m (10%; [34]) or after 14 nights spent at 2100 m and training at 2700 m (29%; [35]). As 

training has not been reported to increase PCr breakdown during high-intensity exercise [36-38], 

these increases in maximal accumulated oxygen deficit (an indirect measure of anaerobic 

capacity; [39]) can most likely be attributed to increases in the rate of anaerobic glycolysis. 

 

There are conflicting results concerning the effects of AT on glycolytic adaptations. For 

example, greater increases in PFK activity have been reported when sprint interval training is 

performed in normobaric hypoxia (~3200 m), compared to normoxia [40]. In contrast, research 

involving endurance athletes has reported a decrease in phosphofructokinase (PFK) activity after 

either a “live high-train low” intervention (2 x 8 h/wk for 3 wk; hypoxic dose < 50 h) [41] or 

training in a hypobaric chamber (4–5 sessions/wk for 3–4 weeks at ~2300 m) [42]. These 

negative findings can probably be attributed to the study design whereby endurance athletes 

performed training at altitude that consisted primarily of aerobic workouts. In addition, the low 

level of hypoxia used in some these studies (< 2500 m) may not have been sufficient to elicit an 

additional activation of anaerobic pathways beyond that observed in normoxia [43]. While 

further research is required, it appears that team-sport athletes may be able achieve greater 

increases in anaerobic capacity, and possibly sprint performance, by performing sprint training at 

altitude.  
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Strength 

Maximal muscle strength can be defined as the maximal force a muscle or muscle group can 

generate at a specific velocity [44]. It appears that hypoxia alone is insufficient to induce muscle 

hypertrophy, increase muscle strength (1RM), or improve sea-level (repeated) sprint 

performance [45]. However, it has been hypothesized that resistance training combined with 

systemic hypoxia may lead to greater improvements in muscle strength [45 46]. Resistance 

training with systemic hypoxia causes a reduction in the concentration of oxygen in the blood 

and tissue, inducing greater accumulation of metabolites (blood lactate) and anabolic hormones 

(e.g., growth hormone) [47]. Training under these circumstances would also result in an 

accelerated recruitment of type II motor units, potentially increasing the stress on these units and 

subsequently producing adaptation in the form of hypertrophy of these motor units [48 49]. 

 

To date, only a few studies have investigated whether resistance training performed in hypoxia is 

more efficient at improving maximal strength, and eventually single-sprint performance, than 

similar training in normoxia. In one study, low-resistance exercise (6 sets of 25 repetitions at 

30% 1RM, 3 times per week for 4 weeks) combined with hypoxia (FiO2 = 0.12, ~ 4000 m) had 

no additional effect on maximal strength compared to identical exercise completed under 

normoxic conditions [50]. In contrast, another research group has reported larger increases in 

strength following resistance training performed in hypoxia versus normoxia [46 51]. In the one 

available study involving a team-sport population (i.e., female netball athletes;), resistance 

training under hypoxic conditions 5 weeks of training of the knee flexor and extensor muscles in 

which low-load resistance exercise (20% of one repetition maximum) was combined with 

hypoxic air to generate blood oxy-haemoglobin levels of approximately 80% not only improved 
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muscle strength (15%) and muscle hypertrophy (6%), but also induced faster (4%) 5- and 10-m 

sprint times [51]. Thus, while further research is required, especially incorporating resistance-

training protocols more specific to those used by team-sport athletes, there is emerging evidence 

that resistance training at altitude may lead to greater improvements in muscle strength. Future 

studies should also determine which form of resistance training (maximal versus explosive 

muscle strength), and which hypoxic, dose is best for maximizing improvements in muscle 

strength. As the orientation of the total force applied to the supporting ground during a sprint 

acceleration is more important to performance than its amount [52], future AT studies should 

also determine whether any enhancements in maximal strength translate into a better force 

application technique, and better sprint performance.  

 

Elastic strength  

Elastic strength, or reactive strength, is dependent on the stretch-shortening cycle and is the 

ability to exert maximal force during a high-speed movement [53]; elastic strength has been 

shown to be an important determinant of sprint performance [54]. To our knowledge, however, 

there is no published research that has directly investigated the effects of AT on elastic strength. 

Future AT studies, incorporating team-sport-specific speed, strength and power training, 

performed in hypoxia, should consider including measures of elastic strength to address this 

knowledge gap. 

 

Neural drive / coordination 

Improved intra-muscular coordination, leading to increases in stride frequency, should 

theoretically improve sprint performance [24]. The question of whether training at altitude can 
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lead to greater improvements in stride frequency during sprinting has not been specifically 

addressed. However, the scientific literature [55], mathematical models [56 57] and performance 

results (1968 Olympic Games in Mexico) all suggest that sprint performance is enhanced during 

acute exposure to natural altitude, which has been attributed to the lower air density at altitude 

[12]. This raises the intriguing possibility of developing over-speed routines when training at 

natural altitude to improve intra-muscular coordination and stride frequency. In support of this, 

two weeks of strength and speed training at a natural altitude of 1860 m significantly improved 

150-m sprint performance in five-national level sprinters, compared to a control group that 

trained simultaneously according to a similar programme at sea level [22]. However, as this 

study did not specifically measure changes in stride frequency, or recruit team-sport athletes, 

more research is required. 

 

Another important consideration for team-sport athletes is that the ability to repeat sprint 

performance has been associated with the ability to maintain faster stride frequencies, through 

retaining higher vertical stiffness [58 59]. Mounting evidence, gathered from laboratory-based 

studies, suggests that biomechanical manifestations of fatigue are likely to be driven, at least 

partially, by hypoxia severity-dependent reductions in neural drive to the active musculature [60 

61]; this is presumably the result of hypoxia-induced increased levels of intramuscular 

metabolites known to stimulate group III-IV muscle afferents (i.e. accelerated development of 

peripheral fatigue) at moderate to high hypoxic levels (simulated altitudes < 4000 m) [62].  At 

higher altitudes, the exaggerated development of central fatigue is primarily determined by a 

stronger reflex inhibition due to brain hypoxia [63]. These heights, however, are clearly not 

relevant for team-sport altitude training purposes; i.e. if too severe, hypoxia compromises 
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training quality and hence counteracts the possible benefits to be derived from the greater stimuli 

to adapt. Although chronic altitude exposure (a 14-day exposure at 5260 m) has the potential to 

attenuate the development of central fatigue during continuous, whole-body exercise [64], 

whether comparable response of the central nervous system occur during high-intensity 

intermittent exercises after training at heights similar to those commonly used by team-sport 

players (1500-3600 m) is currently unknown. Although scientific support is currently lacking, it 

could also be that an hypoxia-induced improvement in central motor drive resulting from AT 

may improve musculo-skeletal stiffness regulation (i.e., less energy wasted on braking forces and 

minimal vertical oscillation of the center of mass), leading to a faster stride frequency and 

thereby improved sea-level repeated-sprint performance. 

  

2.2. Recovery between efforts 

VO2max  

Given the total distance travelled in a match, the relatively high average match intensity, and the 

necessity to recover from brief, high-intensity activities, it is generally believed that a high 

aerobic fitness is important for team-sport success. The most widely-accepted measure of aerobic 

fitness is the VO2max, which represents the maximum rate at which aerobic metabolism can 

supply energy [65]. In support of the importance of VO2max, studies have reported a correlation 

between VO2max and distance covered during team sports [66-68]. It has also been reported that 

participants with a greater VO2max are better able to maintain power outputs/sprint times during 

repeated-sprint exercise, and that there are moderate correlations (r = -0.20 to -0.75), not always 

significant, between VO2max and performance drop-off indices [69-77]. While some studies have 
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reported increases in VO2max following AT [78-80], this is not a universal finding - especially in 

well-trained athletes [34 81]. 

 

As indicated by the Fick equation, VO2max is determined by both central and peripheral factors. 

To date, however, there has been limited research investigating the relationship between the 

central and peripheral determinants of VO2max and team-sport physical performance. In one of 

the few studies, McMahon [82] reported a weak correlation between cardiac output and the 

maintenance of power output during intermittent sprint exercise. While further research is 

required, it seems unlikely that increases in cardiac output will contribute to improvements in 

team-sport physical performance following AT.  

 

The dominant factors explaining the association between VO2max and team-sport physical 

performance appear to be peripherally located [82]. In particular, the importance of the 

peripheral component of VO2max is highlighted by the similar relationship between both the 

arteriovenous oxygen difference (a-VO2 diff) and VO2max, and the ability to maintain power 

output during brief, intermittent sprints [82]. This suggests that adaptations at the tissue level 

(e.g., muscle oxidative capacity, capillarisation, haemoglobin mass) may be important 

determinants of the ability to frequently perform high-intensity activities during a team sport 

[83]. In support of this, it has been reported that the fatigue index during repeated-sprint exercise 

was inversely correlated with maximal ADP-stimulated mitochondrial respiration measured 

directly on muscle fibres [84], that capillary density was significantly related to recovery 

following a bout of maximal knee extensions [85], and that giving erythropoietin (EPO) resulted 

in a reduced accumulation of anaerobic metabolites in the blood following an intermittent sprint 



14 
 

task [86]. Further research is required however, to establish the relationship between these 

peripheral factors and actual team-sport physical performance.  

 

Despite the need for further team-sport-specific research, there is evidence that some of these 

peripheral factors can be improved by AT. Compared to sea-level training, “live high-train low” 

AT has been reported to increase the a-VO2 diff [78]. In contrast, research suggests that short-

duration (< 4 wk), “live high-train low” AT protocols do not increase capillarisation [87-89]. 

However, training under normobaric hypoxic compared to normoxic conditions has been 

reported to result in greater increases in capillary density in one study [90], but not another [91]. 

The effects of AT on mitochondrial adaptations remain unresolved. Mitochondrial respiration 

has been reported to diminish following 28 days of exposure to ~3500 m [92], to remain 

unchanged following 9-11 days of exposure to ~4500 m [93], or to increase following 19 days of 

exposure to ~3200 m (Bishop et al. unpublished research). It is now established that long-term (> 

4 wk), but not short-term (< 4 wk) [94], exposure to extreme (> 5500 m) environmental hypoxia 

decreases the mitochondrial content of muscle fibres [95]. However, compared to normoxic 

training, training under hypoxic conditions (~2000 to 4000 m) has been reported to result in 

greater increases in citrate synthase activity [91 96] (citrate synthase  is an enzyme that is 

exclusively located in the mitochondria [97] and is strongly correlated with mitochondrial 

content [98]).  

 

While there is some controversy [99 100], increases in haemoglobin mass  (Hbmass) are often 

reported following different types of AT, assuming an appropriate “hypoxic dose” (300 h) [78 

79 101]. Also, as the magnitude of haemoglobin (Hb) increase has been suggested to be related 
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to baseline Hbmass [102], team-sport athletes may be more likely to present increased 

haemoglobin mass in response to altitude training than elite cyclists. Even though increases in 

Hbmass do not necessarily lead to improvements in VO2max [99], there may be benefits for 

aerobic metabolism via the compensatory decrease in blood flow which may slow mean blood 

transit time and improve the exchange of gases, substrates and metabolites [103]. Thus, while 

there is emerging evidence that many of the peripheral determinants of VO2max can be improved 

by either living and/or training under hypoxic conditions, further research is required to optimise 

the hypoxic stimulus and to investigate the effects of these changes on subsequent team-sport-

related physical performance. 

 

Phosphocreatine resynthesis rate 

We are unaware of studies directly investigating the influence of PCr resynthesis rate on team-

sport physical performance. Nonetheless, there is good evidence that PCr resynthesis is an 

important determinant of the ability to recover both single and repeated-sprint performance [104-

108]. This is supported by the observation that occlusion of the circulation to one leg prevents 

PCr resynthesis and reduces total work in subsequent sprints [109]. The importance of PCr 

resynthesis for intermittent sprint performance is further supported by research demonstrating 

that creatine supplementation (which increases PCr resynthesis rate [110]) improves multiple-

sprint performance, especially when the recovery between sprints ranges from 50 – 120 s [111-

114], and also improves some 20-m sprints and agility tasks during an exercise protocol designed 

to simulate match play in female football (soccer) players [115]. 
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The importance of PCr resynthesis rate for the ability to recover from high-intensity exercise 

suggests that future studies should investigate the influence on AT on the rate of PCr resynthesis 

in team-sport athletes. It has been reported that the PCr resynthesis rate is positively correlated 

with citrate synthase activity [116] and is reduced in patients with mitochondrial myopathies 

[117]. Therefore, changes in PCr resynthesis rate following AT are likely to closely reflect 

mitochondrial adaptations (which have been equivocal to date and also require further research). 

 

Buffer capacity 

In contrast to the good evidence that both VO2max and PCr resynthesis rate are important 

determinants of team-sport physical performance, the importance of hydrogen ion (H
+
) buffering 

is more controversial. A number of studies [118-123], but not all [124 125], have reported that 

increasing blood buffer capacity is likely to improve both repeated and intermittent sprint 

performance. However, the importance of muscle buffer capacity (βm) is less convincing. 

Despite a persistent low muscle pH, sprint power output has been reported to partially recover 

six minutes after a repeated-sprint test [104]. Moreover, no significant correlations were noted 

between the recovery of pH and the recovery of power output during single or repeated sprints 

[104]. Similarly, previous studies have shown that sprinting abilities were restored faster than 

muscle pH [106 126], and that the decline in sprint performance during a football (soccer) match 

was not correlated with muscle pH [10]. There has been one study that has reported a moderate 

correlation between muscle buffer capacity and RSA [71], but no studies to our knowledge that 

have correlated βm with team-sport physical performance. 
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Another way to assess the importance of muscle buffer capacity is to assess team-sport-related 

physical performance before and after β-alanine supplementation. β-alanine is an important 

precursor of carnosine (β-alanyl-L-histidine) [127], an important muscle buffer that has been 

estimated to account for ~ 10% of the total buffering capacity in the human vastus lateralis 

muscle [128]. β-alanine supplementation has been reported to improve yo-yo test performance 

[129] (a test that correlates well with match physical performance in soccer players [130 131]), 

but not intermittent sprint performance [132]. Thus, while there is some evidence that βm may 

influence team-sport performance, more research is required. 

 

To date, five studies have investigated changes in βm in response to various forms of AT (with 

an average increase of ~ 7%; range = 0-18%) [35 41 87 133-135]. However, the response is quite 

variable with both the smallest and the largest changes in βm reported following very similar 

altitude-training protocols by the same research group [133 134]. Nonetheless, while this 

research suggests a possible benefit of AT on βm, and therefore potentially team-sport physical 

performance, greater gains in βm have typically been reported in response to interval training 

[136 137]. It is therefore difficult, based on current evidence, to justify the expenses associated 

with AT if the goal is to maximize improvements in βm. 

 

 

3.0 Conclusions and future directions 

 

There are many physiological qualities, important for team-sport performance, that could 

theoretically be improved by AT. However, much of this information is derived from studies 

conducted with endurance (individual) athletes and further research is required to verify that 

these adaptations occur in team-sport athletes after AT, and that these adaptations translate to 
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improved team-sport physical performance. It will also be important to determine whether these 

adaptations are greater than what can be achieved by regular, sea-level training. Given the many 

ways in which AT may be performed (e.g., “live high-train low”, “live high-train high”, “live 

low-train high”), and the different levels or conditions of hypoxic exposure possible, more 

research is required to optimise the AT stimulus to improve both match-related physical 

performance and the different physiological determinants of team-sport physical performance 

identified in this review.  
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Figure 1: A summary of the main physiological factors that affect team-sport physical 

performance; these can be broadly described as factors that affect either sprint performance, or 

the ability to recover from maximal or near-maximal efforts.   
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