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ABSTRACT: This article is the second of a series of two articles. In the first article, two models were developed with
National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and
HadCM3 outputs, for statistically downscaling these outputs to monthly precipitation at a site in north-western Victoria,
Australia. In that study, it was seen that the downscaling model developed with NCEP/NCAR reanalysis outputs performs
much better than the model developed with HadCM3 outputs. Furthermore, it was found that there is large bias in
HadCM3 outputs which needs to be corrected. In this article, the downscaling model developed with NCEP/NCAR
reanalysis outputs was used to downscale HadCM3 20th century climate experiment outputs to monthly precipitation over
the period 1950–1999. In all four seasons, the precipitation downscaled with HadCM3 20th century outputs, displayed a
large scatter and the majority of precipitation was overestimated. The precipitation downscaled with HadCM3 outputs was
bias-corrected against the observed precipitation pertaining to the period 1950–1999, using three techniques: (1) equidistant
quantile mapping (EDQM), (2) monthly bias-correction (MBC) and (3) nested bias-correction (NBC). Although all these
bias-correction techniques were able to adequately correct the statistics of downscaled precipitation, the magnitude of the
scatter of precipitation remained almost the same. Considering the performances and its ability to correct the cumulative
distribution of precipitation, EDQM was selected for the bias-correction of future precipitation projections. HadCM3 outputs
for the A2 and B1 greenhouse gas scenarios were introduced to the downscaling model and the downscaled precipitation
for the period 2000–2099 was bias-corrected with the EDQM technique. Both A2 and B1 scenarios indicated a rise in the
average of future precipitation in winter and a drop in it in summer and spring. These scenarios showed an increase in the
maximum monthly precipitation in all seasons and an increase in percentage of months with zero precipitation in summer,
autumn and spring.
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1. Introduction

Over the 800 000-year period prior to the industrial revo-
lution (1750–1850), the concentration of the atmospheric
carbon dioxide [dominant greenhouse gas (GHG)] fluctu-
ated approximately between 180 and 280 parts per million
(ppm) (Tripati et al., 2009). Since the industrial revolu-
tion, owing to the consumption of fossil fuels, the con-
centration of the global mean atmospheric carbon dioxide
level rose from 280 to 397 ppm by April 2013 (Earth
System Research Laboratory, 2013). The rising concen-
trations of GHGs (mainly carbon dioxide) have increased
the greenhouse effect leading to human-induced climate
change, which is no longer a hypothetical phenomenon
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(Hughes, 2003). As stated by Dessai et al. (2005), the
global climate is expected to change throughout the 21st
century. Climate change has shed its impacts, on humans
as well as flora and fauna in many different ways. Impacts
of climate change on health of humans (Thomas et al.,
2012), agricultural food production (Ziska et al., 2012),
floods (Prudhomme et al., 2013) and water resources
(Arnell and Gosling, 2013) are only some of the mul-
titude of themes discussed in the literature.

General circulation models (GCMs) are the prime tools
used in the projection of climate into the future (Fu
et al., 2012). GCMs are based on the theories of atmo-
spheric physics. They are forced with plausible realiza-
tions on future GHG concentrations, in order to produce
projections on global climate into future. The coarse
resolution of GCM outputs hinders their direct use in
catchment scale studies (Iizumi et al., 2011). Downscal-
ing techniques are used to link the coarse resolution
GCM outputs with the catchment scale climatic variables.
All downscaling techniques are based on the assumption
that large-scale climate represented in GCM outputs is
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influential on the catchment scale hydroclimatology
(Maraun et al., 2010). There are two broad classes of
downscaling techniques, namely; dynamic downscaling
and statistical downscaling. In order to obtain local-scale
climatic information, dynamic downscaling approaches
employ regional climate models (RCMs) nested in GCMs
(Murphy, 1998). Dynamic downscaling techniques are
associated with high computational costs (Sun and Chen,
2012) due to the complex physics-based structure of
the RCMs. However, owing to the use of physics-based
equations to relate the predictors (GCM outputs which
are used as input to downscaling models) with predic-
tands (outputs of downscaling models – e.g. precipita-
tion), dynamic downscaling techniques are capable in
producing more reliable climatic information at local
scale. This is because it is reasonable to assume that the
same physics which was valid for the climate in the past is
also valid for the climate in the future. On the other hand,
statistical downscaling techniques are dependent on the
empirical relationships developed between the GCM out-
puts and local-scale hydroclimatic variables. Statistical
downscaling methods are computationally more efficient,
due to the simplicity in their structure. In statistical down-
scaling techniques, it is assumed that the relationships
derived between the predictors and predictands for the
past observed climate are also applicable for the possible
future climate (Iizumi et al., 2011). However, the valid-
ity of this assumption cannot be tested at present as the
future climate has not yet occurred (Chu et al., 2010).

Statistical downscaling techniques are grouped under
three classes; regression methods, weather typing (clas-
sification) and weather generators (Wilby et al., 2004).
In regression-based downscaling methods either linear
or nonlinear relationships between the predictors and
the predictand of interest are developed. By far, the
regression-based methods are regarded as the most widely
used statistical downscaling techniques (Nasseri et al.,
2013). Meenu et al. (2013) used the multi-linear regres-
sion (MLR) technique for downscaling GCM outputs to
daily precipitation and then the downscaled precipitation
was used in a hydrologic model to simulate stream-
flows. Samadi et al. (2013) used the MLR technique
and artificial neural networks (ANN; nonlinear regres-
sion method) for downscaling GCM outputs to daily
precipitation and temperature. They commented that the
MLR-based downscaling technique was more capable
than the ANN-based downscaling method in reproducing
the observations of precipitation and temperature. Ghosh
and Katkar (2012) employed MLR, ANN and support
vector machine (SVM; nonlinear regression method) for
downscaling GCM outputs to monthly precipitation. In
that study, it was found that though the three regression-
based downscaling models displayed similar overall per-
formances in the calibration phase, the ANN-based model
was able to better capture the relatively low and medium
precipitation values and the SVM-based model was better
at simulating relatively high values of precipitation.

In weather classification methods, patterns of large-
scale weather characterized by a global or a regional

model are linked to a local-scale weather variable.
Method of meteorological analogues is a widely used
weather classification technique (Timbal et al., 2009;
Shao and Li, 2013). Also recursive partitioning is another
classification type downscaling method (Schnur and Let-
tenmaier, 1998). Charles et al. (2013) used the method of
meteorological analogues for downscaling GCM outputs
to precipitation. It was found that this method was able
to correct the bias in statistics of seasonal precipitation
and also the number of wet days simulated by the GCM.
In weather generation techniques, weather data for future
are produced by scaling the parameters of the weather
generator either up or down according to the changes in
the GCM outputs pertaining to future. As an example the
simplest weather generator for daily precipitation could
have two parameters: (1) the probability of occurrence
of a wet day and (2) the precipitation amount. In such
case, the percentage changes in the parameters charac-
terized by the GCM for the future climate with respect
to those in the baseline period are determined. Then the
values of the parameters pertaining to observed precipi-
tation of the baseline period are scaled corresponding to
the above determined changes. The new scaled parame-
ters are used to generate time series of occurrence of wet
days and precipitation amounts at the station of interest
that reflects the large-scale changes in the precipitation
simulated by the GCM. Applications of weather genera-
tion techniques are detailed in the studies of Chen et al.
(2012) and Fatichi et al. (2011).

The classification of statistical downscaling techniques
detailed by Maraun et al. (2010) separates the statistical
downscaling techniques into three different categories:
(1) perfect prognosis, (2) model output statistics (MOS)
and (3) weather generators. Perfect prognosis methods
involve establishing statistical relationships between the
large-scale atmospheric variables and the catchment scale
hydroclimatic variables, using regression techniques or
weather classification approaches. In MOS methods,
statistical relationships between the outputs of a RCM
or a weather model and catchment scale observations of
a predictand are used to improve the model outputs.

Although GCMs are regarded as the best tools avail-
able for projection of climate into the future, there are
biases in GCM outputs. GCM bias is simply explained
as the deviation of GCM outputs from the observa-
tions (Salvi et al., 2011). However, in more elaborated
terms, incorrect reproduction of extreme temperatures,
prediction of excess number of wet days with low-
intensity rainfalls, under or over-prediction of climatic
variables, incorrect seasonal variations and so on are
some of the forms of biases prevailing in GCM out-
puts (Teutschbein and Seibert, 2012). Chen et al. (2011)
defined GCM bias as a time-independent component of
the error in GCM outputs. According to Ojha et al.
(2012), GCMs often incorrectly estimate the occurrences
and intensities of precipitation. The limited understand-
ing of the atmosphere and the simplified representation of
the atmospheric processes in GCMs are regarded as the
main causes of GCM bias (Li et al., 2010). In general,
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prognostic variables of a GCM contain relatively less bias
than the diagnostic variables that are derived from the
prognostic variables. Since prognostic variables do not
always show good relationships with the predictands of
interest, diagnostic variables are also used in developing
the downscaling models despite their larger bias. The cor-
rection of bias is performed in two distinct ways: (1) the
correction of bias in GCM outputs and (2) the correction
of bias in the predictands (e.g. precipitation) which were
downscaled from GCM outputs. However, neither of the
above approaches is capable of correcting the inherent
physics and thermodynamics of the GCM simulations, as
bias-correction has no direct connection with the inter-
nal functions of the GCM. There are number of different
bias-correction techniques in use, which are applicable
to GCM outputs and also to the predictands downscaled
from GCM outputs.

Ojha et al. (2012) reported that the bias seen in the
GCM outputs should be corrected before their subsequent
use. Johnson and Sharma (2012) used the nested bias-
correction (NBC) for correcting the bias in monthly
precipitation outputs of GCMs, over Australia. NBC
corrects the bias in means, standard deviations and lag 1
autocorrelations of GCM outputs, simultaneously at both
monthly and annual time scales. They commented that
the NBC is successful when the bias in GCM outputs is
not very large. Ojha et al. (2012) applied both NBC and
monthly bias-correction (MBC) for removing the bias in
precipitation outputs of number of GCMs, over India.
Unlike the NBC described earlier, in the monthly bias-
correction, only the means and standard deviations of the
monthly GCM outputs are corrected with respect to those
of the observations. In both nested and monthly bias-
corrections, the statistics of the observed climatic data
and the corresponding statistics of the past GCM outputs
are used in the correction of the GCM outputs pertaining
to future. These two methods assume that the biases in
the model outputs for the past climate will remain same
for the future climate (Johnson and Sharma, 2012).

Wood et al. (2004) employed the quantile mapping
technique for bias-correcting the monthly precipitation
and temperature outputs of a GCM. The quantile map-
ping (Panofsky and Brier, 1968) is a technique which can
match all statistical moments of GCM outputs with those
of observations, as in this technique cumulative distribu-
tion functions (CDFs) of GCM outputs for the past are
mapped onto the CDF of the past observations. For the
correction of bias in the GCM outputs pertaining to the
future climate, first, corresponding to the values of the
climatic variable for the future projections, the CDF val-
ues are obtained from the CDF which was derived from
the past GCM simulations. Then pertaining to these CDF
values, the bias-corrected values of the climatic variable
for the future climate are extracted from the CDF of
the observations of the past. Piani et al. (2010) used a
gamma distribution-based quantile mapping technique for
the bias-correction of daily precipitation downscaled by
the RCM over Europe. It was concluded that this bias-
correction is capable of correcting the average and the

other statistical moments of precipitation and also the
statistical properties such as precipitation intensity. Lafon
et al. (2013) applied four bias-correction techniques (lin-
ear scaling, nonlinear scaling, gamma distribution-based
quantile mapping and empirical distribution-based quan-
tile mapping) to reduce the bias in daily precipitation
simulated by the RCM over the UK. They commented
that all bias-correction techniques were able to correct
the average and the standard deviation of daily precip-
itation with a good degree of accuracy. However, the
accuracy of higher-order moments such as skewness and
kurtosis of daily precipitation were sensitive to the bias-
correction method and also to the period selected for the
calibration of the bias-correction. Out of the four bias-
correction techniques, the empirical distribution-based
quantile mapping was identified as the best perform-
ing bias-correction. Gudmundsson et al. (2012) compared
the performances of three variants of quantile map-
ping: distribution-derived, parametric and nonparametric
(empirical distribution based quantile mapping) in cor-
recting the bias in daily precipitation simulated by the
RCM over Norway. They also concluded that nonpara-
metric (empirical) quantile mapping is more effective in
reducing the bias in precipitation. Themeßl et al. (2011)
applied several bias-correction approaches to daily pre-
cipitation of the RCM over the Alps region in Europe. It
was concluded that the empirical distribution-based quan-
tile mapping technique displayed better performance than
the other methods, particularly in correcting the extremes
of precipitation.

Li et al. (2010) introduced a modified version of the
quantile mapping technique called equidistant quantile
mapping (EDQM). In equidistant quantile mapping, the
difference between the CDF of the GCM output (to
be corrected) and the CDF of the reference dataset
(which can be field observations, reanalysis outputs,
etc.), of the past climate, was subtracted from the CDF
of the GCM output for future climate, for the bias-
correction of future GCM outputs. In quantile mapping
and equidistant quantile mapping, the CDFs of GCM
outputs are corrected against the CDF of observations,
therefore all statistical moments are explicitly corrected.
On the other hand, NBC explicitly attempts to remove
bias in the average, the standard deviation and the lag
1 autocorrelation of GCM outputs, and monthly bias-
corrections reduces the bias in the average and the
standard deviation only.

Ines and Hansen (2006) used the quantile mapping
technique and the multiplicative shift method for bias-
correction of daily mean precipitation output of a GCM.
The multiplicative shift method involved the multipli-
cation of daily precipitation output of the GCM by the
ratio between the long-term observed and monthly pre-
cipitation output of the GCM. It was found that although
this technique corrects the long-term observed monthly
mean precipitation, it cannot correct any systematic error
in the precipitation distribution. A regression-based bias-
correction was employed by Kharin and Zwiers (2002)
for the removal of bias from precipitation outputs of a
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GCM. There a regression equation was built between
the mean of the precipitation outputs of the GCM and
observed precipitation, to correct the bias.

Above stated bias-correction techniques can be applied
not only to GCM outputs, but also to the outputs of
downscaling models, irrespective of whether the down-
scaling approach is dynamic or statistical. Ghosh and
Mujumdar (2008) used the quantile mapping technique
for the removal of bias in streamflows, which were statis-
tically downscaled from GCM outputs. Teutschbein and
Seibert (2012) used multiple bias-correction techniques
(linear scaling, local intensity scaling, power transfor-
mation, variance scaling, quantile mapping and delta-
change approach) on dynamically downscaled precipita-
tion and temperature. The major advantage of applying
the bias-correction techniques on the downscaled (either
statistically or dynamically) hydroclimatic outputs is that,
this process is computationally much cheaper than bias-
correcting each GCM output individually, prior to down-
scaling. The advantage of applying a bias-correction to
each GCM output separately (before introducing to the
downscaling model) is that the bias in each variable is
individually corrected. However, this procedure is useful
only if the bias-correction was capable in adequately cor-
recting the time series of each GCM output, rather than
just their statistics.

The first article of this series of two articles which was
entitled ‘Statistical Downscaling of General Circulation
Model Outputs to Precipitation. Part 1: Calibration and
Validation’ presented the calibration and validation of two
statistical downscaling models, based on the MLR tech-
nique. In that study, the first model was developed with
National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) reanal-
ysis outputs and the second model was with Hadley
Centre Coupled Model version 3 GCM (HadCM3) out-
puts. In both cases these outputs were used as the inputs
to the downscaling models. According to the results of
that study, it was seen that the model calibrated and val-
idated with NCEP/NCAR reanalysis outputs was more
capable in reproducing the observed precipitation, than
its counterpart model which was built with HadCM3 20th
century climate experiment outputs. Furthermore, a com-
parison of exceedance probability curves for the observed
precipitation, precipitation reproduced by the downscal-
ing models with NCEP/NCAR and HadCM3 outputs, and
the raw precipitation output of HadCM3 model for 20th
century climate experiment, over the period 1950–1999,
revealed that there is large bias in the raw precipitation
output of HadCM3 model. Therefore the need of a bias-
correction was understood.

This article which is the second of the series of
two articles, discusses the bias-correction and future
precipitation projections of the statistical downscaling
model developed in the first article, with NCEP/NCAR
reanalysis outputs. This downscaling model was used in
this study because of its better performances seen in the
first article. The same MLR equations (with the same
coefficients and constants) derived during the calibration

phase of this downscaling model were used in this study.
Here onwards in this article, this model is referred to
as the ‘downscaling model’. Initially, the downscaling
model was used to downscale the 20th century climate
experiment outputs of HadCM3, to monthly precipita-
tion. Then these downscaled precipitation data were bias-
corrected against the observed precipitation (reference
dataset for the bias-correction). For this purpose, three
bias-correction techniques, namely (1) EDQM, (2) MBC
and (3) NBC were employed. As a demonstration, the
above procedure was applied to a precipitation station
in the Grampians water supply system in north-western
Victoria, Australia. The same station was also used in
the first article. A performance comparison of the above
three bias-corrections, derived from the above demon-
stration, is presented in this article. Considering the per-
formances of each of these three bias-corrections, only
the EDQM technique was used for the bias-correction
of monthly precipitation projections produced into future
by the downscaling model with HadCM3 outputs per-
taining to the future climate. In downscaling GCM out-
puts to monthly precipitation, characteristics of precipi-
tation such as occurrences of wet and dry days, extreme
precipitation events, precipitation intensity are not cap-
tured. Though such characteristics are important in cer-
tain hydrological exercises, monthly precipitation is more
useful in water resources management operations such as
determining the optimum water allocation to crops, recre-
ational facilities, domestic and industrial needs and to the
environment particularly in the planning stage of a water
resources project.

Section 2 of this article provides a brief description of
the study area and the data used in the study. Section
3 describes the generic methodology, and its application
with the results is detailed in Section 4. In Section 5,
a summary of this work is provided along with the
conclusions derived from this study.

2. Study area and data

The precipitation station located at the Halls Gap post
office (Lat. −37.14◦, Lon. 142.52◦, elevation from the
mean sea level about 236 m) in the Grampians water
supply system of north-western Victoria, Australia was
used as the case study station. The Grampians system
is a multi-reservoir system owned by the Grampians
Wimmera Mallee Water Cooperation (www.gwmwater.
org.au).

Observed daily precipitation data from 1950 to 1999
were obtained from the SILO database (http://www.
longpaddock.qld.gov.au/silo/) of Queensland Climate
Change Centre of Excellence and these data were added
to monthly precipitation totals. These monthly observa-
tions were used for the evaluation of the downscaling
model when it was run with HadCM3 20th century
climate experiment outputs and NCEP/NCAR reanalysis
outputs. Also the observed precipitation was used as the
reference dataset for the bias-correction. Monthly outputs
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produced by HadCM3 GCM for the 20th century climate
experiment were obtained from the Programme for Cli-
mate Model Diagnosis and Inter-comparison (PCMDI)
(https://esgcet.llnl.gov:8443/index.jsp) for the period
1950–1999, and for the same period NCEP/NCAR
reanalysis outputs were obtained from http://www.esrl.
noaa.gov/psd/, for providing the inputs to the downscal-
ing model in reproducing the observed precipitation.

The HadCM3 outputs corresponding to the COM-
MIT GHG emission scenario were extracted from the
PCMDI website (https://esgcet.llnl.gov:8443/index.jsp)
for the period 2000–2099, to validate the performances
of the bias-correction. The COMMIT GHG emission sce-
nario assumed that the GHG concentrations at year 2000
are constant throughout the period 2000–2099. There-
fore, it was assumed that the statistics of future pre-
cipitation (2000–2099) downscaled from the outputs of
HadCM3 pertaining to COMMIT scenario will closely
reflect the statistics of the past precipitation (1950–1999)
simulated by HadCM3. For the future projections of pre-
cipitation at the station selected, monthly outputs of the
HadCM3 GCM under the A2 and B1 scenarios (IPCC,
2000), defined in the Special Report on Emission Sce-
narios (SRES) of the Intergovernmental Panel on Cli-
mate Change (IPCC) were obtained from the PCMDI
website (https://esgcet.llnl.gov:8443/index.jsp) for the
period 2000–2099. A2 and B1 GHG emission scenar-
ios described a world with rapid economic growth and
a world with greater focus on environmental protection,
respectively.

3. Generic methodology

The reproduction of observed precipitation at the sta-
tion of interest using the downscaling model with the
20th century climate experiment outputs of the GCM is
explained, in subsection 3.1. Also this subsection details
the procedure followed in downscaling the future pre-
cipitation using the downscaling model. Subsection 3.2
describes the bias-correction of the past and future down-
scaled precipitation, against the observed precipitation.

3.1. Reproduction of past precipitation and projection
of precipitation into future with GCM outputs

For each calendar month, GCM outputs of the 20th
century climate experiment were standardized with the
corresponding means and standard deviations of reanal-
ysis outputs (used for the model development) relevant
to the calibration period of the downscaling model. In
the calibration of the downscaling model, the reanal-
ysis outputs were standardized with their means and
standard deviations pertaining to the calibration period.
Hence, these means and standard deviations became
fixed parts of the model. These standardized GCM out-
puts of the 20th century climate experiment were intro-
duced to the downscaling model, for reproducing the past
observed precipitation. In the same way, the standardized
reanalysis outputs were introduced to the downscaling

model for the reproduction of the past observed precipi-
tation. The use of both GCM outputs of the 20th century
climate experiment and reanalysis outputs enabled finding
the capabilities of this model in reproducing past obser-
vations with these two sets of inputs obtained from two
different sources. This was important as the downscaling
model was developed with reanalysis outputs (refer to the
first article of this series of articles) and it is used with
GCM outputs in producing the projections into future.

The future GCM outputs for different GHG emission
scenarios were standardized with the means and the
standard deviations of reanalysis outputs (corresponding
to calibration period of the downscaling model) for each
calendar month and introduced to the downscaling model,
for the projection of precipitation at the station of interest.

3.2. Bias-correction

The precipitation downscaled by the above model with
GCM outputs was bias-corrected against the observed
precipitation pertaining to the station of interest. The
bias-correction was applied to the precipitation down-
scaled with GCM outputs as it was computationally effi-
cient than bias-correcting each GCM output individually.
Since the bias-correction techniques can be a source of
uncertainty in statistical downscaling, Chen et al. (2011)
investigated the use of several bias-correction techniques.
Therefore, in this study the bias-correction was performed
with three techniques: (1) EDQM, (2) MBC and (3) NBC.
All these bias-correction techniques were applied sepa-
rately on each calendar month and then for each technique
the bias-corrected precipitation of each month was com-
bined to produce the individual series. Bias-correction
was performed for each calendar month in order to pre-
serve the statistical attributes of precipitation in each
calendar month. Considering the performances of these
three bias-correction techniques, the best technique was
identified. Thereafter the performances of the best bias-
correction technique were validated. This was performed
by comparing the statistics of the past observed precip-
itation with those of bias-corrected precipitation down-
scaled for a future GHG emission scenario (in this study
the COMMIT scenario) which assumed that the GHG
emission levels at the end of the 20th century remained
constant throughout the 21st century. Owing to the above
assumption it was assumed that this scenario which is
pertaining to future could represent the statistics of the
past climate simulated by the GCM closely. Following
the validation, this bias-correction method was applied
for the future precipitation projections produced by the
downscaling model with GCM outputs.

3.2.1. Equidistant quantile mapping

EDQM (Li et al., 2010) is a variant of the quantile
mapping technique (Panofsky and Brier, 1968). In the
EDQM technique, initially, the empirical CDFs were
derived for the observed precipitation and precipitation
downscaled with GCM outputs, for the past climate. Then
the empirical CDF was developed for the precipitation
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downscaled with GCM outputs, for the future climate
under a GHG emission scenario. The periods which
represented the past climate and the future climate were
designated as period 1 and period 2, respectively.

The EDQM technique was applied in accordance with
the following three steps (Salvi et al., 2011). These
three steps are graphically illustrated in Figure 1. In
this figure, CDF1 and CDF2 correspond to the observed
precipitation and precipitation reproduced by the down-
scaling model with GCM outputs respectively, for the
past climate. CDF3 denotes the precipitation projected
by the downscaling model with GCM outputs for a
certain future GHG emission scenario. It should be
noted that although this bias-correction technique cor-
rects the CDF of the hydroclimatic variable, it does not
explicitly correct the time series of the hydroclimatic
variable.

3.2.1.1. Step 1: For a given precipitation value a1, the
value c1 was found from CDF2 (see Step 1 in Figure 1).
From CDF1, the precipitation value a2 that corresponded
to c1 was determined (see Step 1 in Figure 1). a2 is
the corrected precipitation value of a1. This corrective
procedure was repeated for all precipitation values repre-
sented by CDF2. In other words, CDF2 was mapped onto
CDF1. Once this mapping was performed, all the sta-
tistical properties of precipitation represented by CDF2
were automatically matched with those of CDF1. Hence,
this step yielded the corrected CDF2 which exactly over-
lapped CDF1.

3.2.1.2. Step 2: Corresponding to a precipitation value
b1, value c2 was found from CDF3 (see Step 2 in
Figure 1). Pertaining to that CDF value c2, the difference
of precipitation (d ) between CDF3 (future climate) and
CDF2 (past climate) was computed (the sign of d was
also considered), as shown in Step 2 in Figure 2.

3.2.1.3. Step 3: The difference d (considering its sign)
calculated in Step 2 pertaining to CDF value c2 was
added to the corrected version of CDF2 (or CDF1)
yielded in Step 1. This produced the bias-corrected
precipitation value b2 corresponding to its original value
of b1. Steps 2 and 3 were repeated until all the future
precipitation values represented in CDF3 were corrected.
The negative precipitation values yielded in the corrected
CDF3 were set to zero. In order to obtain the same result
described in Steps 2 and 3, alternatively, the difference
between CDF2 and CDF1 could be subtracted from
CDF3, in order to bias-correct CDF3 (Li et al., 2010).

3.2.2. Monthly bias-correction

MBC is a relatively simple bias-correction method used
by Johnson and Sharma (2012). In that study, it was used
to correct the mean and the standard deviation of the
precipitation output of a GCM with those of the observed
precipitation. In this study, it was employed to correct
the mean and the standard deviation of the precipitation

downscaled with GCM outputs against those of observed
precipitation.

Let monthly time series of precipitation downscaled
with GCM outputs for a calendar month i be Yi, for the
past climate. As a first step, Yi was standardized with its
monthly mean (μGCM,i ) and standard deviation (σ GCM,i )
according to Equation (1). This yielded the standardized
time series Y i

′ for each calendar month as follows:

Yi
′ = Yi − μGCM,i

σGCM,i
(1)

Then this standardized precipitation time series for
each calendar month i (Y i

′) was transformed back with
Equation (2), using the monthly mean (μObs,i ) and stan-
dard deviation (σ Obs,i ) of observed precipitation pertain-
ing to the past climate. Equation (2) provided the monthly
bias-corrected time series of precipitation downscaled
with GCM outputs (Z i ). This bias-corrected time series
of downscaled precipitation has the monthly mean and
standard deviation of the observed precipitation.

Zi = Yi
′.σObs,i + μObs,i (2)

For the correction of bias in future precipitation,
the precipitation downscaled with GCM outputs for
future were standardized with their means and standard
deviations corresponding to the past climate following
Equation (1), and transformed back with those of past
observed precipitation according to Equation (2). In
MBC, it is assumed that the bias in the mean and
the standard deviation of the precipitation downscaled
with GCM outputs for past climate (with respect to
past observations) remains the same in the future. This
assumption is also valid for the NBC detailed in the
next subsection. In MBC, though the mean and the
standard deviation of the precipitation downscaled with
GCM outputs were explicitly corrected, the CDF of
the precipitation was not corrected. Therefore, the CDF
of precipitation downscaled with GCM outputs for the
past, was different from that of observed precipitation.
This fact was also valid for the NBC, explained in the
following section.

3.2.3. Nested bias-correction

NBC, proposed by Johnson and Sharma (2012), is a
more complex bias-correction technique than the monthly
bias-correction. While the MBC corrects the mean and
the standard deviation in each calendar month, NBC
corrects the mean, the standard deviation and the lag
1 autocorrelations, simultaneously at both monthly and
annual time scales.

Like in MBC, in NBC, first the time series of precip-
itation downscaled with GCM outputs (for past climate)
for each calendar month (Yi) was standardized according
to Equation (1). Then the lag 1 auto correlations (�GCM,i )
in the above standardized precipitation time series were
replaced with the corresponding lag 1 auto correlations

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 34: 3282–3303 (2014)
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Figure 2. Time series plot for downscaling model run with NCEP/NCAR outputs as inputs (1950–1999).

in the observed precipitation (�Obs,i ) to produce Y i
′′ as

shown in Equation (3). Lag 1 auto correlation for month
i was calculated as the correlation between the monthly
precipitation time series of month i and month i − 1.

Yi
′′ =�Obs,i .Yi−1

′′+
√

1 − �2
Obs,i .

⎛
⎜⎝Yi

′ − �GCM,i Yi−1
′

√
1 − �2

GCM,i

⎞
⎟⎠

(3)

Then Y ′′
i was transformed back with the mean (μObs,i )

and the standard deviation (σ Obs,i ) of observed precipita-
tion for each calendar month, as shown in Equation (4).

Y ′′′
i = Y ′′

i .σObs,i + μObs,i (4)

The bias-corrected monthly time series of downscaled
precipitation yielded in Equation (4) has the monthly lag

1 auto correlations, the mean and the standard deviation
of the observed precipitation.

Next, these rescaled monthly precipitation time series
(Y ′′′

i ) in Equation (4) were summed to produce annual
precipitation (Z j ) for each year j . This annual time
series of precipitation was standardized with annual
mean (μGCM) and standard deviation (σ GCM) of the
precipitation downscaled with GCM outputs, following
Equation (5).

Zj
′ = Zj − μGCM

σGCM
(5)

Thereafter, the annual lag 1 autocorrelations in Z ′
j

were replaced with those in the observed precipitation
(�Obs) to produce Z ′′

j as shown in Equation (6). The
annual lag 1 autocorrelations were computed as the
correlation between precipitation in a certain year and
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the following year.

Zj
′′ = �Obs.Zj−1

′′ +
√

1 − �2
Obs.

⎛
⎜⎝Zj

′ − �GCM.Zj−1
′

√
1 − �2

GCM

⎞
⎟⎠

(6)

The annual time series modified in Equation (6) was
rescaled with the annual mean (μObs) and the annual
standard deviation (σ Obs) of observed precipitation time
series, as given in Equation (7).

Zj
′′′ = Zj

′′.σObs + μObs (7)

The bias-corrected annual time series of downscaled
precipitation yielded in Equation (7) has the annual lag
1 auto correlations, the mean and the standard deviation
of the observed precipitation.

Finally, the monthly time series of precipitation
downscaled with GCM outputs were corrected using
Equation (8).

Yi ,j = Z ′′′
j

Zj
.Y ′′′

i ,j (8)

The future precipitation projections downscaled with
GCM outputs were nested bias-corrected with the statis-
tics of observed precipitation and precipitation down-
scaled with GCM outputs for the past climate, following
the procedure described in Equations (3) to (8).

3.2.4. Potential of bias-correcting GCM outputs
against reanalysis outputs

In this study, the precipitation downscaled with GCM
outputs were bias-corrected against the observed precipi-
tation. However, the bias-correction of each GCM output
prior to its use on the downscaling model may seem to be
a better option, as it removes the bias in each input vari-
able of the downscaling model, individually. Although
this method is computationally more expensive than the
correction of bias in the precipitation downscaled from
GCM outputs, it was important to verify whether the
individual bias-correction of each GCM output is ben-
eficial than its counterpart technique. In the absence of
any readily available observations corresponding to the
GCM outputs, the reanalysis outputs can be used as the
reference for the bias-correction.

Instead of bias-correcting each GCM output against
the corresponding reanalysis output, in this study, the
benefit of this approach (if any) was deduced indirectly.
For this purpose, the scatter of the precipitation output of
the GCM, was plotted against the precipitation output of
reanalysis data, for all four seasons. It is noteworthy to
state here that the precipitation output of the GCM was
identified as the most dominant potential predictor on the
monthly observed precipitation, in the first article of this
series. It was assumed that, the magnitudes of the scatter
of the other GCM outputs used in the downscaling model
were similar to that of the precipitation output of GCM.

Therefore, only the precipitation output of the GCM
was considered in this analysis. Meanwhile, the scatter
plots were also prepared for the precipitation downscaled
with GCM outputs (before bias-correction) against the
observed precipitation, for all seasons. Then the scatter
of the precipitation downscaled with the outputs of
the GCM (plotted against observed precipitation) was
compared both visually and numerically with that of
raw precipitation output of the GCM (plotted against
reanalysis outputs). The numerical comparison of the
magnitudes of the above described two scatter was
performed considering the coefficient of determination
(R2).

Johnson and Sharma (2012) stated that, if the magni-
tude of the scatter of the variable to be bias-corrected is
large (if large bias is present), then the bias-correction
will not be effective. Therefore, it was understood that
when the scatter of the raw outputs produced by the GCM
is large, then the bias-correction of these GCM outputs
prior to downscaling will not bring any additional advan-
tage over the bias-correction of precipitation downscaled
with the same GCM outputs.

4. Application

The generic methodology described in Section 3 was
applied to the precipitation station at the Halls Gap post
office in the operational area of GWMWater.

4.1. Reproduction of past precipitation and projection
of precipitation into future with HadCM3 outputs

In this article, the downscaling model was run with
both NCEP/NCAR reanalysis and HadCM3 20th cen-
tury climate experiment data, for the reproduction of
observed precipitation at the station of interest. The
HadCM3 outputs were available at the spatial resolution
of 2.75◦ latitude by 3.75◦ longitude. Owing to the mis-
match of spatial resolutions between the NCEP/NCAR
reanalysis outputs (2.5◦ latitude by 2.5◦ longitude) and
HadCM3, the HadCM3 outputs were interpolated to the
NCEP/NCAR grid (refer to Figure 1 in the first article of
this series of articles) using the inverse distance weighted
method (Ghosh and Mujumdar, 2008). The HadCM3
20th century climate experiment outputs for the period
1950–1999 were standardized with the means and the
standard deviations of the corresponding NCEP/NCAR
reanalysis outputs pertaining to the period 1950–1989
(calibration phase of this downscaling model) for each
calendar month, before their application to the downscal-
ing model. The means and the standard deviations of the
NCEP/NCAR reanalysis output pertaining to the period
1950–1989 (calibration phase of the downscaling model)
were treated as stationary components of the downscal-
ing model. Figures 2 and 3 show the time series plots for
the precipitation output of the downscaling model, with
NCEP/NCAR and HadCM3 outputs respectively, over
the period 1950–1999. The future precipitation projec-
tions were produced by introducing the HadCM3 outputs
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corresponding to possible future climate, as inputs to the
downscaling model, as described later in this article.

According to Figures 2 and 3, it was seen that, when
the downscaling model developed with NCEP/NCAR
outputs was run with HadCM3 outputs as inputs, it tended
to overestimate the majority of precipitation compared
to both observations and precipitation downscaled with
NCEP/NCAR reanalysis outputs. This reflected the bias
inherent in HadCM3 outputs with respect to that of
NCEP/NCAR reanalysis outputs. The same finding was
more clearly seen in scatter plot (b) of Figure 4. In
scatter plot (a) of Figure 4, a good agreement between
the precipitation downscaled with NCEP/NCAR outputs
and the observations was seen (for more details refer to
the first article). When the downscaling model was run
with NCEP/NCAR outputs it displayed a Nash–Sutcliffe
efficiency (NSE) (Nash and Sutcliffe, 1970) of 0.67 and
a coefficient of determination (R2) of 0.75. However,
when the downscaling model was run with HadCM3
outputs those two statistics dropped to −0.62 and 0.12,
respectively.

Table 1 shows the performances of the downscaling
model when run with NCEP/NCAR and HadCM3 outputs
as inputs, in reproducing the observed monthly precip-
itation over the period 1950–1999. It also shows the
statistics of the raw precipitation output of HadCM3 at
grid point {4,4} of the atmospheric domain. It is note-
worthy to state that the NCEP/NCAR reanalysis outputs
are quality controlled and corrected against observations
(Kalnay et al., 1996). Since this downscaling model was
calibrated and validated with NCEP/NCAR outputs, it
inherently had an advantage in reproducing the observed
precipitation better with NCEP/NCAR outputs, than that
with HadCM3 outputs. The model was able to repro-
duce the average, the standard deviation and the coef-
ficient of variation of observed precipitation with good
accuracy in the period 1950–1999, when it was run
with NCEP/NCAR reanalysis outputs. Also it displayed
a Seasonally Adjusted Nash–Sutcliffe efficiency (SANS)
(Wang, 2006; Sachindra et al., 2013) of 0.79, resembling
its good capabilities in reproducing observed precipi-
tation. When the same model was run with HadCM3
outputs, it largely overpredicted the average of the pre-
cipitation. The standard deviation in the observations was
properly captured by the model, when it was run with
HadCM3 outputs. However, the performances of this
model were limited according to the NSE, SANS and
R2 as shown in Table 1.

In Table 1, it was seen that raw precipitation output
of HadCM3 severely underestimated the average and
the standard deviation of the observed precipitation over
the period 1950–1999. Also the SANS and the R2 of
the raw precipitation output of HadCM3 were quite low
in comparison to those of precipitation reproduced by
the downscaling with the outputs of HadCM3. Hence
it was realized that the precipitation reproduced by the
downscaling model with the outputs of HadCM3 are in
better agreement with observations with respect to that
of raw precipitation simulated by HadCM3.

4.2. Bias-correction

In this section, the application of the three bias-correction
techniques to the precipitation downscaled with HadCM3
20th century climate experiment outputs is detailed. The
precipitation downscaled with HadCM3 outputs was bias-
corrected against the observed precipitation. The potential
of bias-correcting raw outputs of HadCM3 against the
corresponding NCEP/NCAR outputs are discussed at the
end of this section.

4.2.1. Bias-correction of precipitation downscaled with
HadCM3 outputs

EDQM, MBC and NBC (described in Section 3.2) were
applied to the precipitation downscaled with the HadCM3
outputs. All bias corrections were performed over the
50-year period from 1950 to 1999, against the observed
precipitation (considered as the reference precipitation for
bias-correction) at the station of interest. Table 2(a) and b
shows the season-based statistics of the observed precipi-
tation and that reproduced by the downscaling model with
NCEP/NCAR and HadCM3 outputs, before and after
the application of the three bias-correction techniques.
Table 2(a) refers to summer (December–February) and
autumn (March–May), while Table 2(b) refers to win-
ter (June–August) and spring (September–November).
According to Table 2(a) and (b), it was seen that all three
bias-correction techniques were capable in correcting the
average of the precipitation downscaled with HadCM3
outputs adequately, in all four seasons. EDQM and MBC
near-perfectly corrected the standard deviation in the pre-
cipitation reproduced with HadCM3 outputs, in all sea-
sons. The NBC properly corrected the standard deviation
of precipitation in summer and autumn, but an over esti-
mation of it was seen in winter and spring. In NBC,
initially the monthly lag 1 autocorrelations, the means and
the standard deviations were corrected. This was followed
by the correction of the annual lag 1 autocorrelations,
the means and the standard deviations. Owing to this
monthly to annual nesting procedure employed in NBC,
slight distortions of monthly mean and standard devia-
tion of precipitation could occur in some seasons. The
coefficient of variations in the precipitation downscaled
with HadCM3 were corrected by all three bias-correction
techniques successfully, despite the slight over-estimation
seen in winter and spring by NBC, which was due to the
over-estimation of standard deviation described earlier.
Overall, all three bias-correction techniques adequately
corrected the average, the standard deviation and the
coefficient of variation in all four seasons. Skewness of
precipitation was well corrected in all four seasons by the
EDQM technique. This is because, in EDQM, the CDF
to be corrected is mapped onto the reference CDF, allow-
ing all statistical moments to be matched. As described
in subsections 3.2.2 and 3.2.3, in MBC and NBC, no
explicit measure was taken to correct the skewness in
precipitation. All bias-correction techniques were capa-
ble in improving the NSE of the precipitation reproduced
with HadCM3 outputs in summer, autumn and winter.
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Figure 3. Time series plot for downscaling model run with HadCM3 outputs as inputs (1950–1999).
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Figure 4. Scatter plots for downscaling model runs with (a) NCEP/NCAR and (b) HadCM3 outputs as inputs (1950–1999).

On the other hand, there was hardly any improvement to
R2 values of precipitation, after the bias-correction.

Figure 5 shows the seasonal scatter of the precip-
itation reproduced with HadCM3 outputs against the
observed precipitation, before and after the application
of three bias-correction methods. Before the application
of the bias-corrections, during all four seasons, there
was large scatter in precipitation, which mainly resem-
bled an over-predicting trend. After each bias-correction,
this large over-predicting trend reduced and it became
a more balanced over and under-predicted scatter. In all
four seasons, the scatter of precipitation after each bias-
correction was visually similar to each other. However,
the scatter which was seen prior to the bias-corrections
did not shrink significantly after the application of any
of the bias-correction techniques, in any of the four
seasons. This is an indication that, these three bias-
correction techniques hardly enhanced the accuracy of
the time series of precipitation. Hence, it can be stated
that when the scatter is very large as seen in Figure 5, the
correction of the time series becomes difficult. However,
all three bias-correction techniques were able to correct

the statistics of precipitation downscaled with HadCM3
outputs. Therefore, it was argued that the bias-corrected
precipitation should be interpreted as a probabilistic pre-
diction/projection, rather than from the point of view
of a time series. For this purpose, EDQM was identi-
fied as the most suitable bias-correction technique as it
preserves all statistical moments of the reference precip-
itation (in this study the observed precipitation for the
period 1950–1999) for the past climate. Therefore, in
this study, the EDQM was used for the bias-correction
of future precipitation downscaled with HadCM3 outputs.

4.2.2. Validation of performances of EDQM technique

It is important to validate the performance of the EDQM
technique prior to its use in the bias-correction of future
precipitation projections. For this purpose, the statistics of
the observed precipitation for the period 1950–1999 were
compared with those of bias-corrected future precipitation
downscaled with HadCM3 COMMIT emission scenario
outputs for the period 2000–2099. The COMMIT is an
idealized GHG emission scenario which assumes the
GHG concentrations in the atmosphere at year 2000

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 34: 3282–3303 (2014)
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Table 1. Performances of downscaling model with NCEP/NCAR and HadCM3 outputs.

Statistic Period (1950–1999)

Observations With NCEP/
NCAR outputs

With HadCM3
outputs

Raw HadCM3 Precipitation
at grid point {4,4}

Avg 81.8 83.1 117.4 46.2
SD 62.2 53.8 61.8 28.4
Cv 0.76 0.65 0.52 0.61
NSE 0.67 −0.62 −0.27
SANS 0.79 0.26 −0.71
R2 0.75 0.12 0.08

Avg = average of monthly precipitation in mm; SD = standard deviation of monthly precipitation in mm; Cv = coefficient of variation;
SANS = seasonally adjusted Nash Sutcliffe efficiency; NSE = Nash−Sutcliffe efficiency; R2 = coefficient of determination. Bold values refer
to statistics of observed precipitation.

(CO2 concentration in the atmosphere ≈ 370 ppm) to
be the same throughout the 21st century (Ojha et al.,
2010). Owing to the above attribute of the COMMIT
emission scenario, it was assumed that it can closely
characterize the climate simulated by HadCM3 in the
latter half of the 20th century (1950–1999) during which
the rise in the concentrations of GHGs was limited. In
other words, a good agreement between the outputs of
HadCM3 relevant to the 20th century climate experiment
and for the COMMIT emission scenario was assumed.
Furthermore, according to a study by Ojha et al. (2010),
there is a close relation between the past observed
precipitation and that statistically downscaled from the
GCM outputs corresponding to the COMMIT scenario.
Hence, in this study it was argued that if the statistics of
the bias-corrected future precipitation downscaled from
the HadCM3 COMMIT outputs were in close agreement
with those of past observations, the EDQM technique has
proven capabilities in bias-correcting future precipitation
with adequate accuracy.

As a proof of the agreement between HadCM3 out-
puts of the 20th century climate experiment and those of
COMMIT emission scenario, a comparison of the statis-
tics of several potential predictors used in this study
was performed. For this purpose, the HadCM3 simulated
1000 hPa specific humidity, 850 hPa relative humidity,
850 hPa zonal wind speed and precipitation correspond-
ing to the 20th century climate experiment and the COM-
MIT emission scenario were interpolated to grid point
{4,4} (refer to Figure 1 of the first article of this series
of articles) using the inverse distance weighted method.
Then the statistics of the above variables were computed
for the 20th century climate experiment for the period
1950–1999 and also for the COMMIT emission sce-
nario for the period 2000–2099. The comparison of these
statistics of the potential predictors is shown in Table 3.
In Table 3, it was seen that there is a very good agreement
between the average, the standard deviation and the coef-
ficient of variation of the potential variables simulated by
HadCM3 under the 20th century climate experiment and
the COMMIT emission scenario. It was assumed that,
this is valid for all potential predictors used in this study.

For the validation of the performances of the EDQM
technique, first the HadCM3 monthly outputs for the

COMMIT emission scenario pertaining to the period
2000–2099 were standardized with the monthly means
and the standard deviations of the corresponding
NCEP/NCAR reanalysis outputs, relevant to the period
1950–1989 (model calibration period). Then these stan-
dardized HadCM3 outputs for the COMMIT scenario
were introduced to the downscaling model for projecting
the monthly precipitation at the station of interest. For
bias-correcting, observed precipitation for the period
1950–1999 was considered as the reference set of data,
which is denoted by CDF1 in Figure 1. The CDF2 in the
same figure refers to the precipitation downscaled with
HadCM3 20th century climate experiment outputs for the
same period. The future precipitation downscaled with
HadCM3 COMMIT outputs for the period 2000–2099
was depicted by CDF3 in Figure 1. Following the
EDQM procedure detailed in subsection 3.2.1, the future
precipitation downscaled with HadCM3 outputs for the
COMMIT scenario was bias-corrected. The statistics of
the monthly precipitation downscaled with HadCM3 out-
puts for the COMMIT emission scenario before and after
the bias-correction, for the future period 2000–2099,
were compared with those of observed precipitation per-
taining to the period 1950–1999, in Table 4(a) and (b).
Table 4(a) refers to summer (December–February) and
autumn (March–May), while Table 4(b) refers to winter
(June–August) and spring (September–November). In
Table 4(a) and (b), COMMIT (Before) and COMMIT
(After) refer to the precipitation downscaled with
HadCM3 COMMIT outputs, before and after the
bias-correction, respectively.

As shown in Table 4(a) and (b), prior to the bias-
correction, it was seen that the averages of the precipita-
tion downscaled from HadCM3 COMMIT outputs were
quite larger than those of observed precipitation, for all
seasons. After the bias-correction, it was seen that the pre-
cipitation downscaled from HadCM3 COMMIT outputs,
were able to reproduce the average of observed precipi-
tation with good accuracy, in winter and spring. Despite
some over-estimation, following the bias-correction, the
averages of precipitation downscaled from COMMIT out-
puts for summer and autumn adequately agreed with
those of observations. Before the bias-correction, except
in autumn, the standard deviation of the precipitation
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Figure 5. Seasonal scatter plots for precipitation downscaled with HadCM3 outputs, before and after bias-correction (1950–1999).

downscaled with HadCM3 COMMIT outputs displayed
an over-predicting trend. Even after the bias-correction
this trend was evident in all seasons.

In this study, empirical distribution functions of the
observed precipitation and precipitation downscaled from
HadCM3 outputs were used in applying the EDQM tech-
nique. This raised the need of frequent interpolation
and extrapolation of the CDFs of observed precipita-
tion and that downscaled with HadCM3 20th century
climate experiment outputs. This procedure increases the
severity of low and high extreme precipitation. The over-
prediction of the maximum monthly precipitation was
due to the extrapolation of the above CDFs and it can be
minimized by fitting suitable theoretical distribution func-
tions to the observed and downscaled precipitation time
series, prior to the application of the EDQM technique

(Li et al., 2010). However, it should be noted that when
a theoretical distribution function is fitted to a dataset,
inevitably, there will be fitting errors as no theoretical
distribution function can perfectly describe any precipi-
tation dataset.

Before the bias-correction, the 10th, 25th, 50th, 75th
and 90th percentiles of the downscaled precipitation for
COMMIT scenario were largely over-estimated, in all
seasons. After the bias-correction, in all seasons, the over-
estimating characteristic of the above percentiles of pre-
cipitation downscaled with HadCM3 COMMIT outputs
reduced. In all four seasons, the percentages of months
with zero precipitation were over-estimated. However,
this trend was minimal in summer. After the bias-
correction, the percentages of months with above average
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Table 3. Comparison of statistics of potential predictors between the 20th century climate experiment and the COMMIT scenario.

Statistic Precipitation
(mm)

1000 hPa Specific humidity
(grams kg−1)

850 hPa Relative
humidity (%)

850 hPa Zonal
wind speed (m s−1)

20C3M COMMIT 20C3M COMMIT 20C3M COMMIT 20C3M COMMIT
1950–1999 2000–2099 1950–1999 2000–2099 1950–1999 2000–2099 1950–1999 2000–2099

Avg 47.9 45.2 7.2 7.7 63.7 63.8 4.2 4.2
SD 30.4 27.5 1.0 1.1 9.6 9.4 3.2 3.3
Cv 0.63 0.61 0.14 0.14 0.15 0.15 0.75 0.79

Avg = average; SD = standard deviation; Cv = coefficient of variation; 20C3M = 20th century climate experiment; COMMIT = COMMIT
emission scenario.

precipitation under the COMMIT scenario matched with
those of observations, in all seasons acceptably.

4.2.3. Potential of bias-correcting HadCM3 outputs
against NCEP/NCAR outputs

Although the bias was prevalent in the HadCM3 out-
puts (as shown in the first article of this series of arti-
cles), in this study, the bias-correction was performed
on the precipitation downscaled with the HadCM3 out-
puts. This method was employed as it was computation-
ally much cheaper than bias-correcting each output of
HadCM3 individually, prior to their use in downscaling.
However, theoretically, the bias-correction of each GCM
output individually, before introducing to a downscaling
model seems to be a more effective approach than the
correction of bias in the precipitation downscaled with
raw GCM outputs. In the absence of any readily avail-
able observations corresponding to the GCM outputs used
in the downscaling model, the bias-correction of these
GCM outputs can be performed against the pertaining
NCEP/NCAR or any other reanalysis outputs (e.g. Salvi
et al., 2011).

According to Figure 5, it was seen that if the scatter
of the variable to be bias-corrected (e.g. precipitation
downscaled with GCM outputs) was large, none of the
bias-correction techniques used in this study was capable
in adequately reducing this scatter. If the scatter was not
adequately reduced, the time series of the variable is
also not properly corrected. Based on this argument, it
was decided to visualize the raw precipitation output of
HadCM3 against that of NCEP/NCAR in scatter plots,
pertaining to grid point {4,4} (refer to Figure 1 in the
first article, for the location of this grid point), for each
season. The grid point {4,4} referred to the point which
was located closest to the precipitation station considered
in this study. In the first article, precipitation output of
HadCM3 at grid point {4,4} was identified as the most
influential potential variable on the observed monthly
precipitation.

Figure 6 shows the scatter plots of raw precipitation
output of HadCM3 against that of NCEP/NCAR for the
period 1950–1999, corresponding to grid point {4,4}. As
shown in Figure 6, it is realized that there is large scatter
in the raw precipitation outputs of HadCM3 in all four
seasons. The very low R2 values in all seasons numeri-
cally verified the presence of large scatter in precipitation

outputs of HadCM3. It is also reasonable to assume that,
such large scatter is prevalent in the other outputs of
HadCM3 which were used in the downscaling model,
since all these outputs were produced by the same GCM.
Therefore, it was deduced that if the HadCM3 outputs
were bias-corrected against the NCEP/NCAR reanalysis
outputs with any of the bias-correction techniques used
in this study, the improvement to their time series will be
minimal. Without considerable improvement to the time
series of HadCM3 outputs, it was difficult to expect any
improvement to the precipitation downscaled with these
individually bias-corrected HadCM3 outputs. Hence, the
bias-correction of outputs of HadCM3, prior to down-
scaling, was identified as a procedure which brings no
additional advantage.

4.3. Future precipitation projections

4.3.1. Greenhouse gas emission scenarios

For this study, two GHG emission scenarios namely;
A2 and B1 were selected. A2 is a relatively high
GHG emission scenario due to its economic focus.
On the other hand, the B1 GHG emission scenario
described a world with high level of concern on the
environment and sustainable development. Therefore, it
refers to relatively low level of GHG emissions. The
A2 and B1 GHG emission scenarios referred to carbon
dioxide concentrations of about 850 ppm and 550 ppm,
respectively, by the end of the 21st century (IPCC,
2000). The downscaling model was used to project
the future precipitation at the station of interest, up to
year 2099. HadCM3 outputs for the A2 and B1 GHG
emission scenarios of the IPCC were obtained from the
PCMDI website (https://esgcet.llnl.gov:8443/index.jsp),
for the period 2000–2099, and used as the inputs to the
downscaling model used in this study.

4.3.2. Bias-corrected future precipitation projections

HadCM3 outputs for the A2 and B1 IPCC SRES GHG
emission scenarios for the period 2000–2099 were stan-
dardized with the means and the standard deviations of
the corresponding NCEP/NCAR reanalysis outputs, per-
taining to the model calibration period which spanned
over 1950–1989. Thereafter, these standardized HadCM3
outputs were introduced to the downscaling model.
This allowed the monthly precipitation projections at the

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 34: 3282–3303 (2014)
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Table 4. Seasonal statistics of observed and COMMIT precipitation for (a) summer and autumn and (b) winter and spring.

(a) Summer Autumn

Statistic 1950–1999 2000–2099 1950–1999 2000–2099

Obs COMMIT
(Before)

COMMIT
(After)

Obs COMMIT
(Before)

COMMIT
(After)

Avg 41.4 87.6 55.6 70.4 124.9 78.7
SD 36.6 57.4 51.1 56.8 51.0 65
Cv 0.88 0.65 0.92 0.81 0.41 0.83
Minimum precipitation 0.0 14.2 0.0 2.8 10.1 0.0
Maximum precipitation 192.3 347.0 301 345.4 271.0 385
10th Percentile 4.2 34.6 5.3 11.4 55.1 13.6
25th Percentile 16.4 46.7 18.0 30.1 82.7 29.0
50th Percentile 30.7 68.7 45.1 49.1 130.5 61.4
75th Percentile 54.9 112.6 82.3 108.6 161.1 122.9
90th Percentile 90.7 159.3 114.9 148.7 187.4 168.1
Percentage of months

with zero precipitation
4 0 6 0 0 6

Percentage of months
with above average
precipitation

39 38 37 39 53 41

(b) Winter Spring

Statistic 1950–1999 2000–2099 1950–1999 2000–2099

Obs COMMIT
(Before)

COMMIT
(After)

Obs COMMIT
(Before)

COMMIT
(After)

Avg 127.3 161.1 124.3 88.1 116.7 91.5
SD 64.8 72.9 71.5 53.7 67.3 71.6
Cv 0.51 0.45 0.58 0.61 0.58 0.78
Minimum precipitation 12.2 2.0 0.0 7.6 23.1 0.0
Maximum precipitation 345.2 387.5 424.1 272.4 321.6 346.5
10th Percentile 47.8 63.1 41.4 31.4 48.4 17.4
25th Percentile 77.4 109.0 73.2 48.7 63.2 41.5
50th Percentile 119.3 163.1 118.2 73 95.7 67.9
75th Percentile 167.6 208.5 170.8 118.8 156.8 125.0
90th Percentile 207.7 254.9 202.5 156.1 218.2 198.6
Percentage of months

with zero precipitation
0 0 5 0 0 3

Percentage of months
with above average
precipitation

47 51 47 43 40 41

Avg = average of monthly precipitation in mm; SD = standard deviation of monthly precipitation in mm; Cv = coefficient of variation;
COMMIT (Before) = Precipitation downscaled for COMMIT scenario before bias-correction (italicized values); COMMIT (After) = Precipitation
downscaled for COMMIT scenario after bias-correction. Bold values refer to statistics of observations.

station of interest up to year 2099. The precipitation
projections under A2 and B1 emission scenarios by the
downscaling model were bias-corrected using the EDQM
technique, as detailed in subsection 3.2.1.

In Table 5, the statistics of the future precipitation
projections for the period 2000–2099 are shown against
those of observed precipitation for the period 1950–1999.
The percentage changes in the statistics of the future
precipitation projections with respect to the statistics of
observed precipitation of the period 1950–1999 are also
provided within parentheses in Table 5. According to
Table 5, at the station of interest, in summer and spring,
the average of monthly precipitation for the period
2000–2099 showed a decline under both A2 and B1
emission scenarios. On the other hand, in winter, both

A2 and B1 emission scenarios indicated a rise in the
average of monthly precipitation. During autumn, only
A2 emission scenario showed a rise in the average of
the monthly precipitation. The standard deviation of the
precipitation under both A2 and B1 scenarios increased
in all seasons in comparison to that of observations
corresponding to the period 1950–1999. The two sample
t-test revealed that the changes in the average of future
precipitation in autumn and winter under both A2 and B1
scenarios are not significant at the 95% confidence level.
However, it was found that the decrease in the average of
precipitation projected into future in spring was signifi-
cant at the 95% confidence level for both GHG emission
scenarios. Furthermore, the two sample F -test revealed
that the rise in the standard deviation of the precipitation
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Figure 6. Seasonal scatter plots for raw precipitation output of HadCM3 at point {4,4} (1950–1999).

projected into future compared to that of observed
precipitation of period 1950–1999 was statistically
significant at the 95% confidence level for both A2 and
B1 emission scenarios in all seasons except in winter.

In summer and winter, the precipitation in Victo-
ria is influenced by the strength and the location of
the sub-tropical ridge (http://www.climatekelpie.com.
au/understand-climate/weather-and-climate-drivers/victo-
ria#SubtropicalRidge). In summer, the sub-tropical ridge
mainly lies over the southern part of the Australian con-
tinent (latitude 40◦S – Timbal and Drosdowsky 2013). In
winter, it is located over the north central region of Aus-
tralia (latitude 29◦S – Timbal and Drosdowsky 2013).
The increase in the GHG emissions causes the atmo-
spheric temperature to rise and this leads to strengthening
(rise in pressure) and the southward movement of the
sub-tropical ridge (Commonwealth Scientific and Indus-
trial Research Organisation, 2010). This phenomenon can
cause a decrease in precipitation in summer and winter
as the pressure in the sub-tropical ridge is high. The

relatively larger rise in the GHG emissions characterized
by A2 scenario can intensify the sub-tropical ridge
and cause relatively larger drop in the average of the
precipitation in comparison to the same caused by
B1 scenario which is associated with relatively low
emissions in summer and winter, as shown in Table 5.

In all four seasons, both A2 and B1 scenarios depicted
an increase in the maximum monthly precipitation, in
comparison with that of past observations. This rise was
particularly higher under A2 emission scenario which
was associated with relatively higher levels of GHG
emissions. This indicated that in future, with the rising
GHG levels in the atmosphere, there will be months
with large precipitation totals, at the station of interest.
However, it should be noted that high monthly precipita-
tions are prone to extrapolation errors of CDFs, as stated
previously in the validation of the performances of the
EDQM technique. The MLR technique used in develop-
ing the downscaling model employed in this study can
only determine the linear component of the relationships
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between the predictors and the precipitation. High values
of precipitation usually display nonlinear relationships
with predictors. Therefore the downscaling technique
used in this study can be regarded as another source
of uncertainty in the simulations of high precipitation
values.

In all four seasons, the A2 scenario projected a
rise in the percentage of months with zero precipita-
tions, indicating that there will be greater number of
dryer months in future, with increasing GHG emissions.
A similar trend was seen in the projected precipitation
pertaining to the B1 scenario, except in winter, when no
months with zero precipitation was seen. It is notewor-
thy to state that the rise in the percentage of months with
zero precipitation was highest in summer, for both A2
and B1 emission scenarios. In winter, the rise in the per-
centage of zero precipitation months was relatively low,
in comparison with that of rest of the seasons, for the A2
emission scenario. In summer and spring both A2 and
B1 emission scenarios indicated a slight decrease in the
percentage of months with above average precipitation.
In autumn and winter the changes in the percentage of
months with above average precipitation was negligible
for both emission scenarios.

A comparison conducted between the statistics of
the raw precipitation outputs of HadCM3 correspond-
ing to A2 and B1 GHG emission scenarios of the
period 2000–2099, revealed that the differences between
the averages and the standard deviations of precipita-
tion at point {4,4} of the atmospheric domain were
quite negligible in all seasons. However, the maximum
of monthly precipitation simulated by HadCM3 under
A2 scenario was clearly higher than that under B1
scenario in all seasons. This indicated that the rela-
tive changes in the GHG concentrations characterized
by the A2 and B1 scenarios do not cause a signifi-
cant difference in the long-term average and the stan-
dard deviation of precipitation simulated by HadCM3
over the study area, but the high emissions associated
with A2 scenario causes HadCM3 to simulate peak
precipitation values higher than those simulated with
B1 scenario in all seasons. Similar characteristics are
seen in the statistics of precipitation in Table 5 down-
scaled using the HadCM3 outputs pertaining to A2 and
B1 scenarios. When the atmospheric GHG concentra-
tion rises, it causes an imbalance in radiative energy
which increases the heat energy stored in the sea leading
to an elevation in the sea surface temperatures (Tren-
berth et al., 2007). The rise in the sea surface tempera-
ture increases the rate of evaporation, hence the water
vapour content in the atmosphere. These phenomena
lead to intensification of the hydrologic cycle causing
a rise in the magnitude of the maximum precipitation
(Kunkel et al., 2013). Since the GHG emissions associ-
ated with the A2 scenario are higher in comparison to
those of B1, the rise in the magnitude of the maximum
precipitation is higher for A2 in all seasons as shown in
Table 5.

Figure 7 depicts the exceedance curves for future
A2 and B1 bias-corrected monthly precipitation for the
period 2000–2099, along with the exceedance curves
for the observed monthly precipitation pertaining to
the period 1950–1999. According to Figure 7, it is
evident that the precipitation in autumn and winter will
increase with respect to the observations of the period
1950–1999, for the majority of exceedance probabilities.
However, in spring there will be a drop in precipitation
pertaining to the majority exceedance probabilities, and
in summer a relatively small decrease in precipitation
was indicated for most of the exceedance probabilities.
These findings are also consistent with the numerical
assessments provided in Table 5.

Smith and Chandler (2009) stated that, over the Mur-
ray Darling basin (MDB) in south east Australia, the raw
precipitation output of HadCM3 under the A1B emission
scenario (mid-level scenario which refers to an atmo-
spheric CO2 concentration of about 720 ppm at the end
of the 21st century) shows a decrease in precipitation
of about 15% for the period 2071–2099, with respect
to the observed precipitation in the period 1971–2000.
According to the findings of this study, at the Halls Gap
post office which is located close to the southern bound-
ary of the MDB (within it), the precipitation downscaled
with HadCM3 outputs pertaining to A2 and B1 scenar-
ios for the period 2071–2099, showed decrease of about
12% and 3.4%, respectively, with respect to the observed
precipitation in the period 1971–2000. The Victorian
Government Department of Sustainability and Environ-
ment (2008) stated that the median estimates obtained
from the raw precipitation outputs of number of GCMs
under B1 (low emissions), and A1F1 (high emissions)
emission scenarios have indicated a drop in the average
of precipitation in all four seasons by the year 2070 over
the Wimmera region, which included the Halls Gap post
office. Furthermore, it was stated that the greatest reduc-
tion in precipitation is likely to occur in spring, which is
consistent with the findings of this study. Also it was
stated that the intensity of extreme daily precipitation
is likely to increase in the Wimmera region. However,
it should be noted that there were no evidence in the
literature of previous attempts on statistical downscal-
ing of GCM outputs to precipitation at Halls Gap or its
surrounding area. Future climate information for water
resource planning purposes in the study area is currently
based on the regional estimates derived from the raw
outputs of GCMs (e.g. Commonwealth Scientific and
Industrial Research Organisation, 2007) and does not pro-
vide the spatial resolution of detail that will be needed at
the catchment scale.

The long-term statistics of monthly precipitation
such as average, variance, extremes, and so on,
extracted from the bias-corrected time series of monthly
precipitation are useful for water resource planning pur-
poses. The average of the future precipitation enables the
understanding of the future water availability in a
catchment, in meeting the future demand. The variance
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Figure 7. Seasonal exceedance curves for future bias-corrected precipitation under A2 and B1 emission scenarios (2000–2099). (a) Summer,
(b) autumn, (c) winter and (d) spring.

of precipitation describes the amount of change in pre-
cipitation with respect to its average. A larger variance in
future precipitation at the catchment scale shows unique
challenges in managing water resources to withstand the
larger fluctuations in precipitation. Greater variation in
future precipitation will need to be considered in the
planning and operation of water resources infrastructure,
and will impact on the reliability of supply to customers.
Modelling extreme low and high precipitation values are
important in the management of droughts and floods,
respectively.

Owing to the downscaling of GCM outputs followed
by the bias-correction of downscaled precipitation, this
research provides useful, area-specific information to the
water resource planners (in the study area), than the cur-
rently available future climatic information derived from
raw GCM outputs. In future, the methodology described
in this article will be applied to a number of sites in
the operational area of GWMWater (refer to Figure 1
of the first article) for producing the future precipitation
projections with the outputs of multiple GCMs.

4.3.3. Caveats and uncertainties involved in the study

Statistical downscaling is a useful tool for the determina-
tion of catchment scale hydroclimatology using the GCM

outputs. However, the projections produced using statis-
tical downscaling techniques are subject to uncertainties
arising from many sources such as GHG emission sce-
narios, GCMs, observations of predictands against which
the downscaling models are calibrated and also from the
downscaling techniques used (Hashmi et al., 2009). The
largest uncertainty in a downscaling study often arises
from the GHG emission scenarios. This is because the
actual levels of GHG emissions pertaining to the future
climate are not known at the time the climate projections
are produced. In this study, A2 which is a high emis-
sion scenario and B1 which is a low emission scenario
were used for the projection of precipitation into future.
Therefore, the statistics of precipitation derived from the
outputs of the downscaling model refer to two plausi-
ble climate states conditioned by high and low GHG
emission levels. Hence the precipitation projections pro-
duced in this study should not be treated as definite but as
plausible.

Mainly owing to the different assumptions and approx-
imations employed in the structure, different GCMs may
tend to produce different projections of the future climate
(Yu et al., 2002) even under the same GHG emission sce-
nario. This causes the downscaling models fed with the
outputs of different GCMs to simulate future climate over
the same study area differently. The above effect due to
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the use of different GCMs is particularly evident when
the predictors used as inputs to the downscaling mod-
els have a low degree of convergence among different
GCMs. Johnson and Sharma (2009) found that GCMs
show relatively high convergence for pressure and sur-
face air temperature and comparably low convergence for
precipitation, over Australia under both A2 and B1 GHG
emission scenarios. This indicated that if the precipitation
outputs of different GCMs are used as inputs to a down-
scaling model, it will probably tend to produce different
projections of precipitation at the catchment scale. In this
study, precipitation simulated by HadCM3 was used as
an input to 11 of the 12 calendar month-based downscal-
ing models, for the projection of precipitation into future.
Therefore, the downscaling model used in this study will
tend to produce a range of catchment scale projections
of precipitation when run with the outputs of different
GCMs. It should be noted that the statistics of the pre-
cipitation projected into future in this study correspond
to the future climate simulated by HadCM3. By using
the outputs of different GCMs and hence obtaining the
ensemble average projection for precipitation can reduce
the dependence on one specific GCM.

The uncertainties rising from the observations of
precipitation also can cause the downscaling model to
be less robust. In this study, the daily precipitation data
were used to derive the monthly precipitation needed
for the model calibration and validation and also for the
correction of bias in the precipitation simulated by the
downscaling model. The daily observed precipitation
record at the Halls Gap post office contained 31%
missing data over the period 1950–2010. These missing
data have been filled by the Queensland Climate Change
Centre of Excellence in the SILO database, using the
spatial interpolation method described by Jeffrey et al.
(2001). Since about one third of the daily precipitation
observations were estimated, the record of observations
at the Halls Gap post office may have introduced
uncertainties to the downscaling model and also to the
bias-correction.

Another possible source of uncertainty in a down-
scaling exercise is the downscaling technique used for
deriving the relationship between the predictors and the
predictand. In this study, MLR which is a linear regres-
sion technique was employed for the above purpose.
Though MLR is a simple and convenient technique for
developing a downscaling model, it cannot capture the
nonlinear component of the relationships between the pre-
dictors and precipitation. Theoretically a complex non-
linear regression technique such as SVM or ANN could
be able to better capture the relationships between the
predictors and precipitation. However, the improvement
to the simulations produced by such downscaling model
built using a complex nonlinear regression technique over
a downscaling model developed with a relatively simpler
linear regression method may depend upon the degree of
nonlinearity in the relationships between the predictors
and the predictand.

5. Summary and conclusions

In the first article of this series of two articles, two mod-
els were developed using the MLR technique for down-
scaling NCEP/NCAR and HadCM3 outputs to monthly
precipitation. In that study, it was realized that the model
built with NCEP/NCAR outputs performed better than
the model that was developed with HadCM3 outputs. The
large mismatch seen between the raw precipitation output
of HadCM3 and the observed precipitation in the first arti-
cle, showed the need of a bias-correction. In this study the
model built with NCEP/NCAR outputs (which is referred
to as ‘the downscaling model’ throughout this article) was
used for the future projections of monthly precipitation
at the Halls Gap post office located in north western Vic-
toria, Australia, with HadCM3 outputs corresponding to
possible future climate as inputs. Also a bias-correction
to the precipitation downscaled with HadCM3 outputs
was performed.

The HadCM3 outputs for the 20th century cli-
mate experiment for the period 1950–1999 were stan-
dardized with the means and standard deviations of
NCEP/NCAR reanalysis outputs corresponding to the
period 1950–1989 (this was the calibration period of the
downscaling model). Then these standardized HadCM3
outputs were introduced to the downscaling model for
reproducing the observed monthly precipitation from
1950 to 1999, for the precipitation station at the Halls Gap
post office. The precipitation downscaled with HadCM3
20th century climate experiment outputs were bias-
corrected against the observed precipitation relevant to
the period 1950–1999. The bias-correction of precipi-
tation was performed using three different techniques:
(1) EDQM, (2) MBC and (3) NBC. Each of these tech-
niques were applied separately on the monthly precip-
itation downscaled with HadCM3 outputs on each cal-
endar month. Based on the performances, the EDQM
technique was identified as the most suitable method
for correcting the bias in precipitation downscaled with
HadCM3 outputs. The performances of the EDQM tech-
nique was validated by comparing the statistics of the
precipitation downscaled with HadCM3 outputs pertain-
ing to the COMMIT emission scenario for the period
2000–2099, with those of observed precipitation for the
period 1950–1999.

HadCM3 outputs for the future climate were obtained
under the A2 and B1 greenhouse emission scenarios for
the projection of monthly precipitation into future. The
A2 and B1 HadCM3 outputs for the period 2000–2099
were standardized with the means and standard devia-
tions of NCEP/NCAR reanalysis outputs pertaining to
the period 1950–1989. These standardized outputs of
HadCM3 for the A2 and B1 emission scenarios were
applied on the downscaling model for producing the
future precipitation at the Halls Gap post office. The
future precipitation downscaled from HadCM3 outputs
corresponding to A2 and B1 emission scenarios were
bias-corrected against the observed precipitation, using
the EDQM technique.
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The conclusions drawn from this study are:

1. When the downscaling model developed with
NCEP/NCAR reanalysis data was run with HadCM3
20th century climate experiment outputs for the
period 1950–1999, the model largely over-estimated
the majority of monthly precipitation. There was large
scatter in precipitation reproduced with HadCM3
outputs, during all four seasons.

2. After the application of EDQM, monthly bias-
correction and NBC techniques for the period
1950–1999, the large over-predicting trend of pre-
cipitation reduced and turned into a more balanced
over and under-predicted scatter. However, none of
the bias-correction techniques could satisfactorily
reduce the scatter of monthly precipitation.

3. Considering the scatter that was present in precipi-
tation after the bias-correction, it was seen that all
three bias-correction techniques hardly enhanced the
accuracy of the time series of monthly precipitation.

4. In all seasons, during the period 1950–1999, EDQM,
MBC and NBC techniques adequately corrected the
average, the standard deviation and the coefficient of
variation of monthly precipitation.

5. Following (3) and (4), it was argued that the bias-
corrected precipitation should produce probability
distributions of the projections more accurately than
the time series.

6. For the bias-correction of monthly precipitation,
EDQM was identified as the most suitable technique,
employed in this study, as this method was the best
in correcting the cumulative distribution (and hence
the probability distribution) of the precipitation down-
scaled with GCM outputs. EDQM has a sound theory
to model the CDF accurately.

7. If the scatter of the raw GCM outputs against
NCEP/NCAR outputs was large, it was understood
that the bias-correction of raw outputs of a GCM
against NCEP/NCAR outputs prior to downscaling
is not advantageous, than the bias-correction of the
predictand (e.g. precipitation) downscaled from the
same set of raw GCM outputs.

8. For the period 2000–2099, in spring, the precipitation
downscaled using HadCM3 outputs pertaining to both
A2 (relatively high emissions) and B1 (relatively low
emissions) scenarios showed a statistically significant
(at 95% confidence level) decrease in the average of
monthly precipitation with respect to the average of
observed precipitation of the period 1950–1999.

Acknowledgements

The authors acknowledge the financial assistance
provided by the Australian Research Council Linkage
Grant scheme and the Grampians Wimmera Mallee
Water Corporation for this project. The authors also wish
to thank the editor and the two anonymous reviewers for
their useful comments, which have improved the quality
of this article.

References

Arnell NW, Gosling SN. 2013. The impacts of climate change on river
flow regimes at the global scale. J. Hydrol. 486: 351–364, DOI:
10.1016/j.jhydrol.2013.02.010.

Charles A, Timbal B, Fernandez E, Hendon H. 2013. Analog downscal-
ing of seasonal rainfall forecasts in the Murray darling basin. Mon.
Weather Rev. 141: 1099–1117, DOI: 10.1175/MWR-D-12-00098.1.

Chen C, Haerter JO, Hagemann S, Piani C. 2011. On the con-
tribution of statistical bias correction to the uncertainty in the
projected hydrological cycle. Geophys. Res. Lett. 38: 1–6, DOI:
10.1029/2011GL049318.

Chen J, Brissette FP, Leconte R. 2012. Downscaling of weather
generator parameters to quantify hydrological impacts of climate
change. Clim. Res. 51: 185–200, DOI: 10.3354/cr01062.

Chu JT, Xia J, Xu CY, Singh VP. 2010. Statistical downscaling of daily
mean temperature, pan evaporation and precipitation for climate
change scenarios in Haihe River, China. Theor. Appl. Climatol. 99:
149–161, DOI: 10.1007/s00704-009-0129-6.

Commonwealth Scientific and Industrial Research Organisation.
2007. Wimmera Region Fact Sheet: Murray-Darling Basin Sus-
tainable Yields Project . Retrieved October 28, 2012. http://www.
csiro.au/Outcomes/Water/Water-for-the-environment/Wimmera-
region-fact-sheet-Murray-Darling-Basin-Sustainable-Yields-
Project.aspx

Commonwealth Scientific and Industrial Research Organisation.
2010. Climate Variability and Change in South-Eastern Aus-
tralia: A Synthesis of Findings from Phase 1 of the South
Eastern Australian Climate Initiative (SEACI). Retrieved July
17, 2013. http://www.seaci.org/publications/documents/SEACI-
1%20Reports/Phase1_SynthesisReport.pdf

Dessai S, Lu X, Hulme M. 2005. Limited sensitivity analysis of
regional climate change probabilities for the 21st century. J. Geo-
phys. Res. D: Atmos. 110: 1–17, DOI: 10.1029/2005JD005919.

Earth System Research Laboratory. 2013. Trends in Atmo-
spheric Carbon Dioxide. Retrieved June 20, 2013.
http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html

Fatichi S, Ivanov VY, Caporali E. 2011. Simulation of future climate
scenarios with a weather generator. Adv. Water Resour. 34: 448–467,
DOI: 10.1016/j.advwatres.2010.12.013.

Fu G, Charles SP, Kirshner S. 2012. Daily rainfall projections from
general circulation models with a downscaling nonhomogeneous
hidden Markov model (NHMM) for south-eastern Australia. Hydrol.
Process. 27: 3663–3673, DOI: 10.1002/hyp.9483.

Ghosh S, Katkar S. 2012. Modeling uncertainty resulting from mul-
tiple downscaling methods in assessing hydrological impacts of
climate change. Water Resour. Manage. 26: 3559–3579, DOI:
10.1007/s11269-012-0090-5.

Ghosh S, Mujumdar PP. 2008. Statistical downscaling of GCM
simulations to streamflow using relevance vector machine. Adv.
Water Resour. 31: 132–146, DOI: 10.1016/j.advwatres.2007.07.

Gudmundsson L, Bremnes JB, Haugen JE, Skaugen TE. 2012. Techni-
cal note: downscaling RCM precipitation to the station scale using
quantile mapping – a comparison of methods. Hydrol. Earth Syst.
Sci. Discuss. 9: 6185–6201, DOI: 10.5194/hessd-9-6185-2012.

Hashmi MZ, Shamseldin AY, Melville BW. 2009. Statistical down-
scaling of precipitation: state-of-the-art and application of bayesian
multi-model approach for uncertainty assessment. Hydrol. Earth Syst.
Sci. 6: 6535–6579, DOI: 10.5194/hessd-6-6535-2009.

Hughes L. 2003. Climate change and Australia: trends, projec-
tions and impacts. Aust. Ecol. 28: 423–443, DOI: 10.1046/j.1442-
9993.2003.01300.x.

Iizumi T, Nishimori M, Dairaku K, Adachi SA, Yokozawa M. 2011.
Evaluation and intercomparison of downscaled daily precipitation
indices over Japan in present-day climate: strengths and weak-
nesses of dynamical and bias correction-type statistical down-
scaling methods. J. Geophys. Res. D: Atmos 116: 1–21, DOI:
10.1029/2010JD014513.

Ines AVM, Hansen JW. 2006. Bias correction of daily GCM rainfall
for crop simulation studies. Agr. Forest. Meteorol. 138: 44–53, DOI:
10.1016/j.agrformet.2006.03.009.

IPCC. 2000. IPCC Special Report on Emissions Scenarios – Summary
for Policymakers . http://www.ipcc.ch/pdf/special-reports/spm/
sres-en.pdf.

Jeffrey SJ, Carter JO, Moodie KB, Beswick AR. 2001. Using spa-
tial interpolation to construct a comprehensive archive of Aus-
tralian climate data. Environ. Model. Softw. 16: 309–330, DOI:
10.1016/S1364-8152(01)00008-1.

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 34: 3282–3303 (2014)
on behalf of the Royal Meteorological Society.



DOWNSCALING OF GCM OUTPUTS TO PRECIPITATION FUTURE PROJECTIONS 3303

Johnson F, Sharma A. 2009. Measurement of GCM skill in predicting
variables relevant for hydroclimatological assessments. J. Clim. 22:
4373–4382, DOI: 10.1175/2009JCLI2681.1.

Johnson F, Sharma A. 2012. A nesting model for bias correc-
tion of variability at multiple time scales in general circulation
model precipitation simulations. Water Resour. Res. 48: 1–16, DOI:
10.1029/2011WR010464.

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L,
Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki
W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J,
Leetmaa A, Reynolds R, Jenne R, Joseph D. 1996. The NCEP/NCAR
reanalysis project. Bull. Am. Meteorol. Soc. 77: 437–471, DOI:
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Kharin VV, Zwiers FW. 2002. Climate predictions with multi-
model ensembles. J. Clim. 15: 793–799, DOI: 10.1175/1520-
0442(2002)015<0793:CPWME>2.0.CO;2.

Kunkel KE, Karl TR, Easterling DR, Redmond K, Young J,
Yin X, Hennon P. 2013. Probable maximum precipitation and
climate change. Geophys. Res. Lett. 40: 1402–1408, DOI:
10.1002/grl.50334.

Lafon T, Dadson S, Buys G, Prudhomme C. 2013. Bias correction
of daily precipitation simulated by a regional climate model: a
comparison of methods. Int. J. Climatol. 33: 1367–1381, DOI:
10.1002/joc.3518.

Li H, Sheffield J, Wood EF. 2010. Bias correction of monthly
precipitation and temperature fields from Intergovernmental Panel on
Climate Change AR4 models using equidistant quantile matching. J.
Geophys. Res D: Atmos 115: 1–20, DOI: 10.1029/2009JD012882.

Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ,
Widmann M, Brienen S, Rust HW, Sauter T, Themel M, Venema
VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-
Eich I. 2010. Precipitation downscaling under climate change: recent
developments to bridge the gap between dynamical models and the
end user. Rev. Geophys. 48, DOI: 10.1029/2009RG000314.

Meenu R, Rehana S, Mujumdar PP. 2013. Assessment of hydrologic
impacts of climate change in Tunga-Bhadra river basin, India with
HEC-HMS and SDSM. Hydrol. Process. 27: 1572–1589, DOI:
10.1002/hyp.9220.

Murphy J. 1998. An evaluation of statistical and dynamical techniques
for downscaling local climate. J. Clim. 12: 2256–2284, DOI:
10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2.

Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual
models, part 1 – a discussion of principles. J. Hydrol. 10: 282–290,
DOI: 10.1016/0022-1694(70)90255-6.

Nasseri M, Tavakol-Davani H, Zahraie B. 2013. Performance
assessment of different data mining methods in statistical
downscaling of daily precipitation. J. Hydrol. 492: 1–14, DOI:
10.1016/j.jhydrol.2013.04.017.

Ojha CSP, Goyal MK, Adeloye AJ. 2010. Downscaling of precipitation
for lake catchment in arid region in India using linear multiple
regression and neural networks. Open Hydrol. J. 4: 122–136, DOI:
10.2174/1874378101004010122.

Ojha R, Kumar DN, Sharma A, Mehrotra R. 2012. Assessing severe
drought and wet events over India in a future climate using a
nested bias correction approach. J. Hydrol. Eng. 18: 760–772, DOI:
10.1061/(ASCE)HE.1943-5584.0000585.

Panofsky HA, Brier GW. 1968. Some Applications of Statistics to
Meteorology . PennState University: University Park, PA.

Piani C, Haerter JO, Coppola E. 2010. Statistical bias correction for
daily precipitation in regional climate models over Europe. Theor.
Appl. Climatol. 99: 187–192, DOI: 10.1007/s00704-009-0134-9.

Prudhomme C, Crooks S, Kay AL, Reynard N. 2013. Climate change
and river flooding: Part 1 classifying the sensitivity of British catch-
ments. Clim. Change. 119: 933–948, DOI: 10.1007/s10584-013-
0748-x.

Sachindra DA, Huang F, Barton AF, Perera BJC. 2013. Least square
support vector and multi-linear regression for statistically downscal-
ing general circulation model outputs to catchment streamflows. Int.
J. Climatol. 33: 1087–1106, DOI: 10.1002/joc.3493.

Salvi K, Kannan S, Ghosh S. 2011. Statistical downscaling and
bias-correction for projections of Indian rainfall and temperature
in climate change studies. In 4th International Conference on

Environmental and Computer Science, 16–18 September 2011,
Singapore, 7–11.

Samadi S, Wilson CAME, Moradkhani H. 2013. Uncertainty analysis
of statistical downscaling models using Hadley Centre Coupled
Model. Theor. Appl. Climatol. 114: 673–690, DOI: 10.1007/s00704-
013-0844-x.

Schnur R, Lettenmaier DP. 1998. A case study of statistical downscal-
ing in Australia using weather classification by recursive partitioning.
J. Hydrol. 213: 362–379, DOI: 10.1016/S0022-1694(98)00217-0.

Shao Q, Li M. 2013. An improved statistical analogue downscaling
procedure for seasonal precipitation forecast. Stochast. Environ. Res.
Risk Assess. 27: 819–830, DOI: 10.1007/s00477-012-0610-0.

Smith I, Chandler E. 2009. Refining rainfall projections for the Murray
Darling basin of south-east Australia-the effect of sampling model
results based on performance. J. Clim. Change 102: 377–393, DOI:
10.1007/s10584-009-9757-1.

Sun J, Chen H. 2012. A statistical downscaling scheme to improve
global precipitation forecasting. Meteorol. Atmos. Phys. 117:
87–102, DOI: 10.1007/s00703-012-0195-7.

Teutschbein C, Seibert J. 2012. Bias correction of regional climate
model simulations for hydrological climate-change impact studies:
review and evaluation of different methods. J. Hydrol. 456–457:
12–29, DOI: 10.1016/j.jhydrol.2012.05.052.

Themeßl MJ, Gobiet A, Leuprecht A. 2011. Empirical-statistical
downscaling and error correction of daily precipitation from
regional climate models. Int. J. Climatol. 31: 1530–1544, DOI:
10.1002/joc.2168.

Thomas P, Swaminathan A, Lucas RM. 2012. Climate change and
health with an emphasis on interactions with ultraviolet radiation:
a review. Glob. Chang. Biol. 18: 2392–2405, DOI: 10.1111/j.1365-
2486.2012.02706.x.

Timbal B, Drosdowsky W. 2013. The relationship between the
decline of Southeastern Australian rainfall and the strengthening
of the subtropical ridge. Int. J. Climatol. 33: 1021–1034, DOI:
10.1002/joc.3492.

Timbal B, Fernandez E, Li Z. 2009. Generalization of a statisti-
cal downscaling model to provide local climate change projec-
tions for Australia. Environ. Model. Software 24: 341–358, DOI:
10.1016/j.envsoft.2008.07.007.

Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank
AK, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden
B, Zhai P. 2007. Observations: surface and atmospheric climate
change. In Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change, Solomon S, Qin
D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller
HL (eds). Cambridge University Press: Cambridge, UK.

Tripati AK, Roberts CD, Eagle RA. 2009. Coupling of CO2 and ice
sheet stability over major climate transitions of the last 20 million
years. Science 326: 1394–1397, DOI: 10.1126/science.1178296.

Victorian Government Department of Sustainability and Environment.
2008. Climate change in the Wimmera . Retrieved October 28, 2012.
http://www.climatechange.vic.gov.au/regional-projections/wimmera.

Wang W. 2006. Stochasticity, Nonlinearity and Forecasting of Stream-
flow Processes . Deft University Press: Amsterdam, the Netherlands.

Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns
LO. 2004. Guidelines for use of climate scenarios developed from
statistical downscaling methods, supporting material to the IPCC.
http://www.ipcc-data.org/.

Wood AW, Leung LR, Sridhar V, Lettenmaier DP. 2004. Hydro-
logic implications of dynamical and statistical approaches to down-
scaling climate model outputs. Clim. Change 62: 189–216, DOI:
10.1023/B:CLIM.0000013685.99609.9e.

Yu PS, Yang TC, Wu CK. 2002. Impact of climate change on
water resources in southern Taiwan. J. Hydrol. 260: 161–175, DOI:
10.1016/S0022-1694(01)00614-X.

Ziska LH, Bunce JA, Shimono H, Gealy DR, Baker JT, Newton
PC, Reynolds MP, Jagadish KS, Zhu C, Howden M, Wilson LT.
2012. Food security and climate change: on the potential to adapt
global crop production by active selection to rising atmospheric
carbon dioxide. Proc. R. Soc. Biol. Sci. 279: 4097–4105, DOI:
10.1098/rspb.2012.1005.

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 34: 3282–3303 (2014)
on behalf of the Royal Meteorological Society.


