
Knowledge-based SOA Framework for

Improved Supply Chain Integration and

Delivery

By

Paul Moynihan

Submitted to Victoria University in Fulfilment of the Degree of:

Master of Business

in the School of Information Systems

Faculty of Business and Law

November 2013

ii

Abstract

Supply chains are everywhere that people do business, from a single market stall by

the side of a road to a multinational corporation. Wherever there are goods and

services that need to be used in a scheduled way to create a product that will be sold.

The problem that this thesis addresses is to manage a subset of supply chains; those

that the participants of can be connected to electronically via the Internet, and to

automatically optimize the flows between multiple supply chains. The methods used

are a collection of heuristic rules for routing supply chain flow, a software engine to

work through these rules and send messages to web services that encapsulate supply

chain entities and a web based interface to view and measure the overall supply chain

efficiencies.

The preliminary results show that some supply chains can be managed electronically,

and it is possible to squeeze savings in time and money, by managing supply chain

flow automatically, and that heuristic rules could work as well as the Simplex method

in optimizing multiple supply chains.

iii

Student Declaration

“I, Paul Moynihan declare that the Master by Research thesis entitled

“Knowledge-based SOA Framework for Improved Supply Chain Integration

and Delivery” is no more than 60,000 words in length including quotes and

exclusive of tables, figures, appendices, bibliography, references and footnotes.

This thesis contains no material that has been submitted previously, in whole or

in part, for the award of any other academic degree or diploma. Except where

otherwise indicated, this thesis is my own work”.

Signature: Date: 8 November 2013

iv

Acknowledgements

A work such as this doesn’t happen in a vacuum. Many people besides the author

made this work possible. First thanks to my principle supervisor Dr. Wei Dai for

providing guidance at the right time, and enough financial support to keep my nostrils

above the water line, and for standing in my corner when the powers that be were

getting restless at the many delays.

Next thanks to my Mum for putting up with her son with his night-owl life style. You

gave me a quiet place to work and think, and an Internet connection to gather

knowledge. Plus thanks for being a great Mum.

To Catherine Lou who proposed the original problem, that I thought would only take

two weeks to solve, but instead took three years. Thanks.

To Professor G. Michael McGrath my secondary supervisor thanks for kindly reading

drafts of this work and making insightful comments and helping me to become a

better writer.

To Professor Denise Emerson of the University of Florida USA a referee to one of my

first papers, even though you don’t know me, thanks for telling me through

voluminous criticism how to write a scientific paper. Also for taking the time when

you probably thought it should have been binned.

To the administrators at Victoria University thank you for putting up with me for the

many delays. I arrogantly thought I was going to finish ahead of time; instead, I

finished way over time, how typical of me.

v

List of Publications

Refereed International Journal and International Conference Papers.

Dai, W., Moynihan, P., Gou, J., Zou, P., Yang, X., Chen, T. and Wan, X. (2007)

‘Services oriented knowledge-based supply chain application’, Proceedings of the

2007 IEEE International Conference on Services Computing, IEEE Computer

Society, Los Alamitos, CA, USA, pp.660–667, available at

http://www.conferences.computer.org/scc/2007/ (3rd place award contest team).

Moynihan, P. and Dai, W. (2010) ‘Knowledge-based service system for supply chain

management’, Proceedings of the 7th IEEE International Conference on Service

Systems and Service Management, June, pp.591–596, IEEE Press, Tokyo, Japan.

Moynihan, P. and Dai, W. (2012) ‘HetNet framework for supply chain management’,

15th International conference on Network-based Information Systems, 26-28th

September 2012, City Campus, La Trobe University.

Moynihan, P. and Dai, W. (2013), ‘Experience in Developing Concurrent Inferences

on a De-regulated Supply Chain Network’, in AINA-2013 27th IEEE International

Conference on Advanced Information Networking and Applications Workshops. In

print.

Moynihan, P. and Dai, W. (2013), ‘"A Rule based Service Framework for Supply

Chain Management".’, in International Journal of High Performance Computing and

Networking. In print.

vi

Table of Contents

Abstract .. ii

Student Declaration ... iii

Acknowledgements ... iv

List of Publications .. v

Table of Contents .. vi

Table of Figures... viii

1. CHAPTER ONE – INTRODUCTION ... 10

1.1 Overview .. 10

1.2 Background ... 10

1.3 Contribution ... 14

1.3.1 Practical Contribution .. 14

1.3.2 Summary of previous research and gap identified .. 15

1.4 Research Design .. 16

1.4.1 Methodology ... 17

1.4.2 How Research will be conducted in detail ... 19

1.4.3 How the results will be compared to traditional optimization 20

1.4.4 How the data will be obtained for the optimization study 22

1.4.5 Implementation ... 22

1.5 Thesis Structure .. 23

2. CHAPTER TWO – Literature Review ... 25

2.1 Introduction ... 25

2.2 Supply Chain Research .. 25

2.3 Background of production rules .. 30

3. CHAPTER THREE – The System ... 36

3.1 Overview .. 36

3.2 System Architecture.. 36

vii

3.2.1 Overview ... 36

3.2.2 Conceptual Model .. 39

3.2.3 User Interface .. 48

3.3 Technical Design ... 54

3.3.1 Hardware Configuration ... 54

3.3.2 Communication Interface ... 73

4. CHAPTER FOUR - System Evaluation .. 74

4.1 Overview .. 74

4.2 Testing Framework ... 74

4.2.1 Alternative Optimization Method ... 74

4.3 Collection of Data ... 79

4.3.1 Collection Procedure .. 79

4.4 Technique of Analysis ... 80

4.4.1 Exploratory Data Analysis ... 80

4.5 Analysis of Results .. 89

4.5.1 Outcomes .. 90

5. CHAPTER FIVE – Discussion and Conclusion ... 100

5.1 Overview .. 100

5.2 Recapitulation and Discussion ... 100

5.3 Study Limitations .. 101

5.4 Directions for Future Research .. 101

REFERENCES... 103

APPENDIX A ... 106

APPENDIX B ... 117

APPENDIX C ... 120

APPENDIX D ... 123

APPENDIX E ... 132

viii

Table of Figures

Figure 1 Conceptual Framework ... 17

Figure 2 Research Design Overview ... 18

Figure 3 Detailed view of the implementation ... 23

Figure 4 Generic Expert System design .. 32

Figure 5 LHS data view ... 34

Figure 6 RHS data view ... 34

Figure 7 design view of supply chain network control and optimization 38

Figure 8 design overview of service entities .. 38

Figure 9 Inference engine system services... 40

Figure 10 Generalized Simplex tableau ... 43

Figure 11 describes a list of the access details of business services 45

Figure 12 Single isolated supply chains ... 46

Figure 13 multiple interconnected supply chains ... 46

Figure 14 Interactions of system services with business services 48

Figure 15 randomly generated scenarios. .. 49

Figure 16 User Guide .. 50

Figure 17 Traditional costs derived from scenario ... 51

Figure 18 Optimized supply chain delivery .. 51

Figure 19 SOA activity log ... 52

Figure 20 Output of animation tab .. 53

Figure 21 Option to enter data manually .. 53

Figure 22 Concurrency Architecture .. 56

Figure 23 Log of interactions behind the scenes .. 61

Figure 24 Continuation of log of interactions .. 61

Figure 25 New working memory table “ddp3” being accessed. .. 62

Figure 26 Source code for constructor of new Inference Engine. 62

Figure 27 Source code for connection thread create working memory table. 63

Figure 28 Source code for connection thread destroy working memory table. 64

Figure 29 Network flow transportation model of Manufacturer to Distributor 78

Figure 30 Network flow transportation model of Distributor to Retailer 78

Figure 31 Network flow optimization model ... 79

Figure 32 Example of Data file format ... 80

Figure 33 Example of a random process. ... 84

Figure 34 Example of a non random process. .. 85

Figure 35 Supply chain 1 Heuristic 4-plot... 91

Figure 36 Supply chain 2 Heuristic 4-plot... 92

Figure 37 Supply chain 3 Heuristic 4-plot... 93

Figure 38 Supply chain 1 Linear Programming 4-plot ... 94

Figure 39 supply chain 2 Linear Programming 4-plot ... 95

Figure 40 Supply chain 3 Linear Programming 4-plot ... 96

Figure 41 Supply chain 1 Bi-Histogram .. 97

ix

Figure 42 Supply chain 2 Bi-Histogram .. 98

Figure 43 Supply chain 3 Bi-Histogram .. 98

Figure 44 Data structures ... 123

Figure 45 Sort retail time objects by time .. 124

Figure 46 Optimized retail order times by equation... 124

Figure 47 Optimized order, transport and storage costs .. 124

Figure 48 Fill supply chain artifacts with randomized data ... 125

Figure 49 Generate data and write to file .. 126

Figure 50 Create data file name .. 126

Figure 51 Variables for data flow and control .. 127

Figure 52 Data from Heuristic optimization model ready for writing to file 127

Figure 53 Data from Simplex module written to file .. 127

Figure 54 Method writeToFile() .. 128

Figure 55 Simplex Solver driver initialize variables .. 128

Figure 56 Simplex Solver driver add data from model to solver 129

Figure 57 Simplex Solver driver run model and return results .. 129

Figure 58 Simplex Solver itself .. 130

Figure 59 Simplex Solver build model ... 130

Figure 60 Simplex Solver finishes building model .. 131

Figure 61 Simplex Solver solve model and return results to driver 131

10

1. CHAPTER ONE – INTRODUCTION

1.1 Overview

This chapter is really an overview of the proposed research and covers the following

topics. The background to the research, what is being attempted and why there is the

need for this research. The contribution to human knowledge this research will make.

Also as this research has a strong practical component this chapter elucidates the

practical contribution to human methodology in a particular field of endeavour.

This chapter also includes a summary of previous research and a gap in knowledge

that this current research attempts to fill. The last half of the chapter is the research

design. This has the following subsections. The research methodology which includes

top level design diagrams. How the research will be conducted in more detail and how

the results will be compared to the alternative approach and how the data will be

gathered for the optimization study. A final topic of the research design will be an

overview of the implementation of the system. The chapter concludes with a

description of the thesis structure.

1.2 Background

A perennial problem with running modern e-business systems is to manage supply

chains cost-effectively. To get the maximum efficiency, a higher degree of automation

is required. This research investigates steps and processes towards automated supply

chain integration and improved coordination of delivery channels in a services

oriented e-business. It will show under such an approach potential cost and time

11

savings, as well as an intelligent coordination strategy utilizing existing resources that

could be delivered in a real-time fashion.

Additionally, an empirical study using the research prototype to be delivered from this

research will be undertaken to show the difference between combinatorial and

heuristically guided rules in optimization of supply chains. The prototype will use

Service Oriented Architecture (SOA)
1
 techniques to initialize, coordinate and monitor

supply chains.

Previous research relating to the proposed research target was done from various

aspects: empirical study of the benefits of SOA for integration of electronic supply

chains Kumar et al. (2007). An electronic hub (e-hub) approach as a coordination

mechanism to monitor through the use linear programming models to optimize

multiple supply chains was proposed in Fayazbakhsh et al. (2008). A knowledge-

based approach using software agents to manage dynamic configuration of multiple

supply chains was carried out in Emerson et al. (2004). In answering the proposed

research targets, none of the previous work is sufficient as a solution alone.

The main research question to be addressed is an investigation of any differences

between combinatorial and heuristically guided rules to improve supply chains

coordination. To my knowledge the literature doesn’t have any studies dealing with

this issue. Most researchers just assume that standard global optimization techniques

will be used. But heuristically guided optimization may perform better at least in

some circumstances, and may also be quicker, and may make real time optimization a

reality. Additionally, to investigate this question a framework is needed, using SOA,

to investigate automated supply chain integration and improve supply chains delivery.

1
 Service Oriented Architecture (SOA) is a software architectural approach where the basic element of

design and development is a service. In SOA, applications communicate with each other in such
architectures through services.

12

Typically in the past optimization has been done using mathematical techniques to set

up the basic optimization strategy, which then requires human heuristic “tweaking” to

achieve optimum efficiency.

The mathematical techniques are limited to relatively small numbers of variables due

to the exponential increase in time for a solution; this may not be suitable for a real

time response to changes in supply chain events.

The industry benefits of this research are twofold: that heuristic optimization rules

could be faster and more useful than standard optimization techniques for real time

management of multiple supply chains and SOA technology is really beneficial for

remote management of electronic supply chains.

The practical benefits this research could show are that more automation than has

hitherto been utilized to maintain and run at peak efficiency multiple supply chains.

Recent developments in e-business and e-commerce applications and faster

communication over the internet in general can allow the dynamic re-configuration of

supply chains over time to take advantage of better configurations. In such

configurations, each business entity in the supply chain can be seen as an agent who

makes independent decisions based on information gathered from the next level

upstream.

Automated supply chain reconfiguration is beneficial when there are changes in the

cost of products or services, resource availability, and customer demands. This

assumes that for a given order there are several feasible supply chain configurations

that can deliver the order. The number of such feasible configurations increases with

the number of stages, products, suppliers, etc. It could be impractical to manually

evaluate every feasible configuration in the context of a modern high-speed web-

based order processing system (for example amazon.com). The aim of this research is

13

to investigate real time optimisation and dynamic configuration of multiple supply

chains. This will lead to more efficiency in production flow and savings in cost,

benefiting both lean and agile supply chain strategies by providing the infrastructure

to quickly alter the configuration of multiple supply chains leading to quicker set up

times for new product lines and avoidance of waste for stable product lines. The

research aims to address the following key issue:

 A knowledge-based control of conventional resources (such as existing

optimisation techniques) within SOA (Service Oriented Architecture) for

improved supply chain configuration.

There are many existing works on optimisation techniques using different approaches,

particularly for manufacturing. The proposed research will provide an alternative

approach at a meta-level that offers an effective and user friendly application of

existing techniques for the problem at hand.

A number of associated features include agility (i.e., adaptive for various supply chain

models), and timely response (real-time or just-in-time) to arising business demands.

Agile supply chain management

Both lean and agile supply chain models can benefit from this research. Lean is

running a supply chain as optimised as possible, i.e., for a supply chain that doesn’t

change often. Agile is running a supply chain that changes frequently without being

much optimised. The response can be up to the second or on demand. Some managers

like to have some breathing space before they have to make a decision, others like to

know what’s happening at all times, so that a quick response can avert a possible

disaster.

14

1.3 Contribution

The academic contribution of this research is twofold: first to answer the question

could heuristic optimization rules be faster and more useful than standard

optimization techniques for real time management of multiple supply chains, and

second is SOA technology really beneficial for remote management of electronic

supply chains.

Electronic supply chain management is becoming essential for any modern enterprise

business model. I have identified two areas where I believe there is a need for more

research. First: an alternative to standard supply chain optimization methods and two:

more research into the usefulness of SOA for remote management of supply chains.

With more research in these two areas it may enable real time optimization and

configuring of multiple supply chains. This will lead to greater efficiency in

production flow and savings in cost, benefiting “lean” supply chain strategies. It will

also benefit “agile” supply chain strategies by providing the infrastructure to quickly

alter the configuration of multiple supply chains leading to quicker setup time for new

product lines.

1.3.1 Practical Contribution

The practical benefits that could come from this research is that more automation than

has previous been utilized to maintain and run at peak efficiency multiple supply

chains. This will benefit industry initially, through saving companies money and

enabling a wider diversification of products, thus enabling greater competitiveness.

This will generate greater wealth for society as a whole.

It is anticipated that the proposed research will show that heuristic optimization rules

will be quicker than standard optimization techniques in optimizing multiple supply

chains but probably not as optimal as the standard techniques. This may enable real

15

time optimization. I also anticipate that SOA will be an enabling technology helping

to coordinate information about supply chain entities in real time.

The research aims to address the following key issues:

 A knowledge-based control of conventional resources (such as existing

optimization techniques) within SOA for improved supply chain coordination.

 A number of associated features include agility (adaptive for various supply

chain models), timely (real-time or just-in-time) response to business

demands.

 Flexible engagement with participating business entities.

Flexible engagement with participating business entities.

Some supply chain stake holders may be reluctant to want to participate, out of fear

that they may be optimized out of the supply chain flow, due to their unpalatable

pricing. The proposed research will argue that buyers pick and choose anyway, and

unless you’re locked in to a long term contract, people will always look to the

cheapest supplier regardless whether it is done with paper or electronically. That said

the proposed solution would also be useful to enterprises that have recently acquired

new supply chain assets and wish to better integrate and optimize the flow along the

new assets and the old assets.

1.3.2 Summary of previous research and gap identified

Electronic management of supply chains has been maturing for the last 20 years. The

pervasiveness of the Internet has made supply chain accessibility cheap and easy. It is

time now for more automation to be part of the business landscape. The literature

reveals various attempts along this route. Multiple supply chains are a fact of life

these days, with competition between similar enterprises being decided on supply

16

chain efficiencies. The gap in knowledge the author has identified is: that there has

been little research into faster and more flexible supply chain optimization strategies,

across multiple supply chains. To support this research there is a need for a model to

investigate the cost time benefits of different supply chain optimization strategies. In

addition a more thorough use of SOA to provide the glue for tighter integration of

multiple heterogeneous supply chains is required.

1.4 Research Design

This proposed research draws on the resources from three different areas: Services

Oriented Architecture (Kumar et al. 2007; Lim et al. 2003; Papazoglou et al. 2003),

Knowledge Management (Emerson et al. 2004; Fayaz et al. 2005) and Resource

Optimization (Bowersox et al. 1999; Mason et al. 2000; Fayaz et al. 2005). The author

envisages a potential synergy between these three areas of knowledge that will enable

an implemented framework that will demonstrate automated supply chain

management and optimization. A conceptual diagram for the proposed research is

shown in Figure 1 where the resources are in the ovals and the research challenges

and questions are in the rectangles.

17

Figure 1 Conceptual Framework

1.4.1 Methodology

The methodology for this research is first to create a framework that will be able to

answer two questions: Is it possible to efficiently manage multiple supply chains

electronically? Will heuristically guided optimization rules perform better than

standard global optimization algorithms in optimizing supply chain flows?

The top level design is shown in figure 2 it shows the research approach and

methodology. This diagram says that to create a framework to answer the above

questions, certain domains of knowledge are required to plan and create the

components of the framework. The knowledge domains are optimization theory,

services computing, supply chain and knowledge management. These are used to

create the following components of the framework. A rule based reasoner, web

services infrastructure, supply chain web service entities and standard resource

optimization techniques. The framework once built has two execution pathways, a set

of heuristic rules in the rule database and a simplex execution module. These

Electronic
Hubs

(eHubs)

Heuristic
rules

Standard
Optimization
Techniques

Supply Chain
Management

SOA
Services

Computing

Resources
Optimization

Knowledge
Management

18

execution pathways generate two sets of data which are collated into a database table.

This table comprises the raw data for analysis.

Figure 2 Research Design Overview

To answer the second question a small empirical study will be done using the new

framework. Using the new framework we will compare the savings in cost and time of

fulfilling some randomly generated retail orders from three different retailers who are

members of three separate supply chains under a common trust umbrella. Each supply

chain has a retailer, distributor, manufacturer and three suppliers. Real world supply

chain data is hard to come by. However, I have managed to locate manufacturer-to-

retail supply chain data from both the literature and industry sources that has enabled

me to construct ‘typical’, generic supply chains that approximate real-world situations

(Shi 2007, Yaxin 2007). The data sources are such that I should be able to argue that

my results will have fairly wide external validity.

Literature Review

Optimization theory
Supply chain management

Knowledge management
SOA Services computing

Rule based reasoner

Web services infrastructure

Supply chain entities
Standard resource optimization

Framework
Prototype

Heuristic rules

add to reasoner database
Simplex execution Module

create alternative pathway

Generate two sets of data

Database for
Analysis

Do analysis print conclusions

19

The null hypothesis for this study is that there is no difference between the results

returned by the heuristic optimization rules and the industry standard Simplex method

as regards cost and time savings for fulfilling a number of random orders. The model

will be allowed to generate enough orders such that differences if any between the

two methods (heuristic versus Simplex) will have a 1% probability of being due to

chance alone. I will use some of the tools from the open source statistics package

“Dataplot” to help me calculate sample sizes to give a 99% confidence interval and to

help me analyze the returned data. I will test data for normality and if confident a

normal distribution will apply parametric tests “t test” for similarity between means

and “F test” for similarity between standard deviations.

Under each run of the model the supply chain entities from each supply chain will be

queried via Web services and their collective response will be optimized using custom

hand created optimization rules and also optimized using the industry standard

Simplex method. The comparison between these two methods will be returned via a

web page.

1.4.2 How Research will be conducted in detail

I will now describe in more detail how the research will be conducted. The

Framework as stated above will try to answer two questions: the first question is it

possible to manage supply chains electronically? To answer this question I will create

a model of some supply chains. The supply chains will be represented by collections

of web services. Each web service will be able to be queried as to its current status

and be able to return on request a random number within a certain range (price in

dollars, or time in days) appropriate to the supply chain artifact that the web service

models. Though the web services are hosted locally for convenience, they would

20

operate the same if distributed across the internet, only the URL for each service

would be different. There are six services (retailer, distributor, manufacturer and three

suppliers) for each of three supply chains, eighteen services in all. The full framework

is 100% complete and preliminary results (Moynihan and Dai, 2010) show that it

would be possible to monitor and communicate with various supply chain entities and

thus manage multiple remote supply chains electronically.

Concerning the second question, will heuristically guided optimization rules perform

better than standard global optimization algorithms in optimizing supply chain flows?

I have added a heuristically guided optimization module to the Framework and it

optimizes supply chain flows and produces time and cost savings for each retail

request, for each of the supply chains, compared with non-optimized flows.

I have also added the traditional simplex optimization module to the framework. It

also produces time and cost savings for each retail request compared with non-

optimized flows. It operates differently from the heuristic rule engine and uses

constraint equations to guide its iteration to a globally optimized state.

The Framework integrates two very different techniques - Heuristic and Simplex - and

JShop planning techniques will be added later. These can be applied and controlled by

the rule based inference engine. My technology makes extensive use of and relies on

functionality exposed as services. This allows integration, monitoring and control to

be easier.

1.4.3 How the results will be compared to traditional optimization

In comparing the two different systems, a bit of thought is needed, as the two systems

operate differently. Though the same cost function is used to evaluate the cost and

time of fulfilling the randomly generated retail orders, the heuristic method uses the

21

values of supplier costs, production rate, and distributor stock quantity returned from

the supply chain web services to decide which rules will fire from a small database of

production rules. A sample heuristic equation is the following:

If a large retail order, low distributor stock, and low production rate (this produces a

large time to fulfill order.)

Then choose a supply chain with the smallest retail time, and after completing its

current order, to transfer its production stream to the supply chain with the largest

retail time.

PqMax = Production rate for chain with largest retail time.

RtMax = Retail time for chain with largest retail time.

PqMin = Production rate for chain with smallest retail time.

RtMin = Retail time for chain with smallest retail time.

The action parts of the applicable rules will direct the flows between the different

supply chains. As well as directing the supply chain flow the rules will alter the values

of the variables in the cost function, which will generate improved costs and times,

which are then compared to the non-optimized costs and times.

The simplex method will use the same data but the data will be inserted as coefficients

into the decision variables, the constraint equations will model the thresholds for the

routing interactions between the different supply chains (similar to the heuristic rules).

The constraint equations are then converted into a standard form using additional

slack variables (to convert inequalities to equalities) suitable for adding to a two

22

dimensional array called a tableau (see figure 10) certain matrix operations are

performed iteratively to the tableau, which creates an adjustment to the variables of

the cost function, to create an optimal minimum cost function. See Reveliotis, (2003).

The output of the new cost function is compared to the non-optimized cost and times.

1.4.4 How the data will be obtained for the optimization study

It is anticipated that the artificial data will be used through a data generator. After

study of a domain of choice, parameters from the data generator could be adjusted or

tailored to match the real-world situation. The framework will have extra code added

to enable it to run in a loop a certain number of times, each time calling the web

services and generating random supply chain data, then calculating the non-optimized

then calculating the optimized costs and times (both traditional and heuristic) then

comparing them to the non-optimized costs and times and storing the type (both

traditional and heuristic) and the difference into an array. This array of data can be

analyzed using “Dataplot” or even Excel or “R” to determine if the null hypothesis

(that there is no difference between the two optimization methods) can be rejected at

the 99% confidence level.

1.4.5 Implementation

Figure 3 shows a more detailed view of the implementation, the application is written

in Enterprise level Java. It consists of a Servlet hosted in the Tomcat Servlet container

to act as the interface to the Internet.

The Optimization and Control module talks to a rule-based Inference engine and to a

web services interface. The web services interface talks to the external web services

of the various supply chain entities. The rule engine has rules to control how the

23

optimization and control module should behave based on the data returned from the

supply chain entities. Figure 9 shows the inference engine and support classes in more

detail.

The Optimization and Control module also sends instructions to the supply chain

entities directing them to route supply chain flow to specific individual entities. The

heuristically guided rules derive their power from optimizing across the multiple

supply chains rather than optimizing within a single chain see Figures 12 and 13.

Figure 3 Detailed view of the implementation

1.5 Thesis Structure

This thesis consists of six chapters and five appendices. The first chapter gives the

background, the contribution to knowledge and the research design. The second

chapter is a literature review and discusses the previous work in this field relevant to

my research. The third chapter details the system, how it is built and how it works.

The fourth chapter is about the evaluation of the system, how it compares with an

alternative optimization approach, including data generation and analysis. The fifth

Optimization

Web Service

Inference Engine

Web Service

Web Form

Tomcat Server

Control

Servlet

WebService

Interface

Knowledge rules

Database

SupplyChain

entities

Web Service

SupplyChain

Entities

Web Service

SupplyChain

Entities

Web Service

24

chapter is a discussion of and conclusion to the research, including limitations and

future research and improvements. There are five appendices: appendix A is a

synopsis of my development progress, including highlights and detours. Appendix B

is the data from the experiments. Appendix C includes the mathematical derivation of

the formulae used in the system. Appendix D is a more detailed discussion of the

implementation of parts of the system and the data generation for the experimental

results, including screenshots of code snippets. Appendix E is the experimental output

from the data analysis package, including parametric tests and confidence intervals.

25

2. CHAPTER TWO – Literature Review

2.1 Introduction

This chapter is a literature review and discusses the previous work in this field

relevant to my research. It has the following topics. Supply chain research which

discusses previous attempts to automate supply chain management (supply chain

management is mostly manual) and their limitations. The final topic of this chapter is

the background to expert systems and production rules (the central decision making

and control functionality of my contribution to automating supply chain

management).

2.2 Supply Chain Research

A debate concerning supply chain strategy in recent years is the relative merits of

Lean and agile philosophies (Christopher et al., 2006). A Lean supply chain strategy

focuses on continuous improvement by elimination of all non-value-adding processes

and waste across the supply chain. This is appropriate under a steady and stable

market and supply process (Mason et al., 2000). The competitiveness of the Lean

supply chain is based upon cost leadership and efficiency.

An agile supply chain strategy focuses upon flexibility and a quick response to

identify new requirements, and thrives on unpredictable changes, in order to satisfy a

customer’s needs and try to capture a wider share of the market, and which is

appropriate under unstable market conditions or under evolving supply processes

(Mason et al., 2000). The competitiveness of the agile supply chain is based on the

26

ability to quickly capture and respond to new opportunities and sell products

unmatched by competitors.

Business with agility can rapidly configure itself in response to market opportunities.

The agility has to be supported by appropriate processes and structures, and needs the

integration of technology, organization and people into a coordinated whole

(Zsiflovits and Engelhardt-Nowitzki, 2004). Therefore, human resources and IT

infrastructure are needed to support agile systems. The existing work such as those

from Hetherington and Ismail (2006), Strohmaier and Rollett (2005), Weizi et al.

(2008), and Wu et al. (2006), mainly focused on the descriptive aspects of agile

systems. Most of them are lacking the implementation details.

The work presented in this dissertation takes it a step further by using a knowledge-

based services-oriented approach in developing an agile system to assist SCM, and

ultimately deliver agile on-demand services to participating business entities.

Fayazbakhsh and Razzazi (2008) proposed an electronic hub (e-hub) as a

coordination mechanism to monitor (and through the use of linear programming

models) to optimize multiple supply chains. They identified that previous study on

supply chains were based on simplified models that do not represent real world

supply chains with multiple commodities and partners. Their proposal was to model

supply chains as a flow network. Ahuja et al. (1993) and Goldberg et al. (1990)

provide comprehensive surveys of algorithms for network-flow problems. Their

supply chain e-hub was a central coordination mechanism to monitor the current

status of all the partners and flows between them. It informs members of the supply

chain of optimal decisions about orders after computation. The goal is to minimize

operational costs of the whole supply chain while satisfying customer demand. The

limitations of the above approach are that its e-hub communication infrastructure is

27

assumed to be a black box and the optimization is to be solved by linear programming

techniques (e.g., Karmarkar’s algorithm), which for large supply chains could

preclude a real time response.

A services-oriented paradigm is the industry trend towards dynamic and agile

integrated e-business solutions (Lim and Wen, 2003). Service-oriented architecture

(SOA) is a software architectural approach where the basic element of design and

development is a service (Papazoglou and Georgakopoulos, 2003). Applications

communicate with each other in such architectures through services. Services are self-

describing components, which can be recognized by client applications through look

up from a registry: universal description, discovery and integration (UDDI). The

client application and the service provider communicate via standard protocols (e.g.,

SOAP, HTTP) and exchange information using standard data formats like XML. The

real advantage of SOA lies in its ability to provide seamless integration across

business units, customers and partners (Lim and Wen, 2003). By exposing the

business services that are available in an organization to external customers, web

services and SOA bring additional maintenance costs, since they involve customizing

existing legacy interfaces to support the web services application programming

interface (API). In Kumar et al. (2007), an empirical study on the benefits of the

adoption of SOA was carried out on the performance of the electronic supply chains

of a wide cross section of US-based firms. The findings indicated empirical support

for a positive relationship between SOA adoption and performance of electronic

supply chains. The research results showed that SOA adoption also improved the

customer-side effectiveness of electronic supply chains. The real advantage of SOA

lies in its ability to provide seamless integration across business units, customers and

partners. The limitations for Kumar et al. (2007) are that though they demonstrated

28

supply chain strategy can influence SCI (Supply Chain Integration), they are lacking

implementation details. In Lim and Wen (2003), case studies were made where SOA

adoption led to potential cost savings and increased business efficiency. The study has

found that many large corporations have had successful implementations of web

services in their e-commerce and e-supply chain channels (supply chain partners that

communicate and do business electronically). However, details are lacking on how

SOA may be systematically and effectively applied to e-business, particularly on SCI

problems. The limitation of the above work is that the study was limited by the

available measures in the data. The data was collected through a survey and their

measures are perceived measures rather than actual measures. There were no multiple

responses from the same firm, so they were unable to make these perceived measures

more robust. Further, they have conducted their analysis at the firm level, while it can

be argued that a business unit level or even a process level analysis could give better

insights into the organizational impact of SOA adoption. Emerson and Piramuthu

(2004) used software agents supported by a knowledge base to manage dynamic

configuration of multiple supply chains. Although information plays a major role in

effective functioning of supply chains, there is a paucity of studies that deal

specifically with the dynamics of supply chains and how data collected in these

systems can be used to improve their performance. The research as presented in

Emerson and Piramuthu (2004) modeled each business entity in the supply chain as

an agent who makes independent decisions based on information gathered from the

next level upstream. Using examples, they show performance improvements of the

proposed adaptive supply chain configuration framework over static configurations.

However, this research did not consider other possible cheaper e-commerce

communication infrastructures: rather it assumed all was based on electronic data

29

interchange (EDI). Moreover, global optimization was calculated to be the sum of the

individual optimizations performed at each node by the agents managing each pair of

nodes using machined learned rules, restricting potential global optimization value-

adding, by a central optimization unit.

A preliminary study of integrating a knowledge-based approach to support SCI was

conducted through a prototype system delivered by IEEE Services Computing

Contest Team (Dai et al., 2007). The work provided much of the insights on

integration gaps and potential of improved supply chain delivery under the SOA.

In Fayaz et al. (2005), the researched approach was to augment supply chain

simulation by developing a generic ontology that will be used as a centralized,

knowledge capturing mechanism. Ontology is a description of the concepts,

relationships, set of terms, and languages of a specific domain. Ontology models all

the entities and relationships in a domain. It captures the attributes of an entity and

inheritance relationships as in object-oriented programming, and it also captures

associations such as cardinality as in relational databases (Fayaz et al. 2005). They

anticipate that the ontology will enable the user to capture the necessary knowledge to

build and generate simulation models. The limitation of this approach was that the

ontology they had laboriously developed was too complex to be easily used in

generating simulation models.

In Yi-nan and Zhao-fang (2009), an empirical study of the difference between lean

and agile supply chain strategies was done with both internal and external integration.

Internal integration refers to the extent to which a firm can structure its organizational

behaviors, practices, procedures, and strategies into collaborative and manageable

processes to establish close relationship between functions and to fulfill its customers’

requirements.

30

While external integration describes the degree to which a firm can establish a close

relationship with its key supply chain partners (including customers and suppliers) to

structure their inter-organizational behaviors, practices, procedures, and strategies

into collaborative and manageable processes to fulfill its customers’ requirements

(Yi-nan and Zhao-fang, 2009). Their research using regression analyses of the survey

data from 604 manufacturing companies in China showed that both lean and agile

approaches have significant positive effects on SCI.

In today’s competitive environment, it is supply chains rather than companies that

compete (Christopher and Towill, 2001). SCM has been a major source of

competitive advantage in the USA and, increasingly, in the global economy

(Stonebraker and Liao, 2006). The integration of logistics functions, processes and

companies, within a firm and across firms, is suggested as a better way to achieve

supply chain success, and SCI has been advocated as the key to creating value in

SCM. SCI is defined as the extent to which all activities within an organization, and

the activities of its suppliers, customers, and other supply chain members, are

integrated together (Bowersox et al., 1999). Having an integrated supply chain

provides significant competitive advantage including the ability to outperform rivals

on both price and delivery (Lee and Bianchi, 1995).

2.3 Background of production rules

Modern production rules are considered these days to be a subset of Event Condition

Action rules (ECA) this is a short-cut for referring to the structure of active rules in

event driven architecture and active database systems. Event-condition-action (ECA)

rules are a natural candidate for the support of reactive functionality on XML

repositories (Bailey et. al. 2002).

31

Such a rule traditionally consisted of three parts:

 The event part specifies the signal that triggers the invocation of the rule.

 The condition part is a logical test that, if satisfied or evaluates to true, causes

the action to be carried out.

 The action part consists of updates or invocations on the local data.

This structure was used by the early research in active databases which started to use

the term ECA. Current state of the art ECA rule engines use many variations on rule

structure (Bailey et. al. 2002). The condition part of ECA which was more

emphasized in traditional production rules is:

“If condition A is satisfied then do B. The ‘A’ portion of the rule is called the

antecedent or left hand side (LHS) of the rule. The ‘B’ portion of the rule is called the

consequent or right hand side (RHS) of the rule. If A is true (i.e., all of its conditions

are satisfied by data and facts in the fact base) and whatever actions specified in B are

accomplished then the rule is said to have been ‘fired’.”

“The condition ‘A’ may be a conjunction of conditions A1, A2, ... A(n), which must

all be satisfied in order to trigger any actions stipulated by B. Any component of this

conjunction may involve a negative.”

32

Figure 4 Generic Expert System design

“Likewise ‘B’ may be a sequence of actions B1, B2 ... B(k), all of which will be taken

if the conditional part of the rule is satisfied and the rule is fired.” “The relationship

between the rule base and the fact base is quite straightforward. If there is a fact in the

fact base like ‘Var1 = n’ and there is a rule in the rule base that states that ‘If Var1 = n

then B’ then this rule is considered for execution (or firing). There may be several

rules that are candidates for firing based on the status of the fact base. It is up to the

inference mechanism to resolve any conflicts and determine the appropriate firing

sequence.” “The inference engine (mechanism) is that part of the expert system kernel

which supports reasoning about the environment by proper manipulation of its rule

and fact bases. It establishes the current state of the environment from its fact base

and uses that state information to identify the set of rules whose conditional parts are

satisfied by the environment’s state. It determines which rules in the rule base are

possible candidates for firing based on the circumstance that the conditional part of

33

the rules are satisfied by facts in the fact base. These facts provide an up to date

picture of the environment for the expert system.” [Pomykalski et al, (1999), pp.13].

There are two major services, goal driven and event driven these correspond to

backward chaining and forward chaining reasoning. Forward chaining or event-driven

reasoning is especially important for monitoring functions. Forward chaining works

from LHS to RHS of rules. Backward chaining or goal-driven reasoning is especially

important for diagnostic activities. Backward chaining works from RHS to the LHS

of rules:

The procedure for backward chaining or goal-driven reasoning is:

 Select goal to be achieved.

 Identify rules in the rule base whose RHSs reflect the goal.

 Examine the LHS of selected rules.

 Identify the facts and data in the fact base needed to evaluate the LHSs to true.

 Using the identified facts as new goals and going through the previous process

continue this backward reasoning process until a goal is proven true.

The procedure for forward chaining or event-driven reasoning is:

 Identify new facts and data in the fact base.

 Identify the rules whose LHSs are satisfied by the selected data and facts.

 If more than one rule is identified resolve conflict and select one rule or

sequence of rules according to some priority.

 Fire the rule or sequence of rules.

 The activation of the RHS of the selected rule(s) will result in new facts and

data being instantiated in the fact base. These new data and facts can again be

used to identify rules whose LHS are satisfied and the forward chaining

process can proceed.

34

To implement this functionality, all the LHSs of the production rules are stored in a

database table called ‘lhs’ (see Figure 5). All the RHSs of the production rules are

stored in a database table called ‘rhs’ (see Figure 6). This enables efficient searching

of LHSs and RHSs. There is a database table called ‘action’ which holds a list of the

URL’s of the services that are tied to the action parts of the production rules.

Figure 5 is a screen shot of the database table of the LHS of the production rules.

Figure 5 LHS data view

Figure 6 is a screen shot of the database table of the RHS of the production rules.

Figure 6 RHS data view

 It is anticipated that knowledge based approaches have an advantage over traditional

approaches in supply chain management and optimization through the following

properties:

35

 Very large expertise in supply chain management is possible to be added to

the system databases.

 Continual rule evaluation (forward chain reasoning) emulates highly parallel

event driven systems monitoring.

 Goal driven rule evaluation (backward chain reasoning) enables intelligent

optimization and feedback control (both forward and backward reasoning).

 Complex monitoring and decision logic kept in one place; easy to move and

update.

36

3. CHAPTER THREE – The System

3.1 Overview

This chapter presents the system solution. The first topic gives the system architecture

overview and conceptual model. The next topic describes the system and business

services. Then the next topic describes the web based user interface. Then there

follows a technical description of the system, including the necessity of the system

being thread-safe. This is followed by a description of the alternative traditional

optimization approach the Simplex method, including history, maths and walkthrough

of an example to illustrate the procedure. Then there follows the hardware

configuration and finally the communication protocol for the prototype.

3.2 System Architecture

3.2.1 Overview

The proposed research utilizes a knowledge-based method as an alternative approach

to standard global optimization algorithms in optimizing supply chain flows. The

methodology for this research is first to create a framework that will be able to answer

the following two questions:

 Is it possible to efficiently manage multiple supply chains electronically?

 Will knowledge-based heuristically guided optimization rules perform better

than standard global optimization algorithms in optimizing supply chain

flows?

To answer the first question, a service system paradigm is adopted to assist dynamic

SCM, where the system services and business services are distinguished. To answer

37

the second question, a small empirical study will be done using the new framework.

Using the new framework we will compare the savings in cost and time of fulfilling

some randomly generated retail orders from a selection of three different retailers

who are members of three separate supply chains under a common trust umbrella.

Each supply chain has a retailer, distributor, manufacturer and three suppliers.

Under each run of the model the supply chain entities from each supply chain will be

queried via web services and their collective response will be optimized using custom

hand created optimization rules and also optimized using the industry standard

Simplex method. The comparison between these two methods will be returned via a

web-based client.

Services in this research are classified into two categories:

 System services

 Business services.

System services have a similar role to the services that are offered from an operating

system, which in this case are for managing the framework and network-based

resources. Business services are those associated with business processes for

performing various business tasks and functions. The solution approach is to develop

system services from the proposed framework, coupled with business services to

provide complete solutions for business users.

The top-level design is shown in Figure 7 It shows an optimization and control

module (e-hub) that communicates with supply chain entities from each of the supply

chains via web services.

38

Figure 7 design view of supply chain network control and optimization

The optimisation and control module communicates to a rule-based inference engine

through a web services interface. The web services interface interacts with the

external web services of the various supply chain entities. The inference engine has

rules to control how the optimization and control module should behave based on the

data returned from the supply chain entities (see Figure 9).

Figure 8 design overview of service entities

39

The optimization web service extracts certain key data items like quantity in units of

the various retail orders, quantity in units of stock held in the distributor’s

warehouses, current production rate in units per day of the various manufacturers and

prices of the raw materials for all the suppliers. Certain of these numbers are used to

provide an estimate of the time in days to fulfil the retailers order.

There are many variations of this equation used in the prototype, for illustrative and

readability purposes only this equation is shown.

After these numbers are obtained the optimization service will invoke the inference

engine web service and add these numbers to its working memory (which is

implemented as a database table called ‘ddt’ in SQLServer 2000). If any rules are

fired the inference engine will update its working memory, and call any web services

that are associated (via the ‘action’ database table) to the fired rules. The conclusions

from the updated working memory are returned via the web service interface to the

optimisation web service. This module will parse the returned xml formatted data and

call the appropriate optimization function that will calculate an improved order time

and price.

3.2.2 Conceptual Model

System services

The system services are implemented as web services, consisting of inference engine

and a list of data management and knowledge management services as shown in

Figure 9. The inference engine is supported under two main strategies, event driven

and goal driven (as shown in Figure 9), which are implemented as services. For

example, the URL for externally connecting to the inference engine is:

40

 URL = http://turquoise.vu.edu.au:8080/axis/services/INDEXService?wsdl

 method to invoke = ‘invokeGetGDIResult’

 argument to method = ‘optimise’

 login username = ‘index’

 password = ‘**********’.

Figure 9 Inference engine system services

Operations of the inference engine

The inference engine operates as a web service and consists of a core set of sub-

services with some support services. The core services consist of inference logic (both

forward and backward reasoning), and abstractions of rules and working memory.

The support services consist of a service execution manager to enable connection to

external web services, and a repository manager to communicate with an external

database that acts as a repository for the rule base and working memory.

To support our framework, the inference engine has the ability to automatically

connect to other computers over a network and execute web services. This enables the

41

system to collect data from other knowledge sources over the WWW and use custom

applications to solve complex problems. This ability to connect to and use external

resource knowledge greatly enhances the knowledge base and its processing power.

The heuristic method uses the values of supplier costs, production rate, and distributor

stock quantity returned from the supply chain web services to decide which rules will

fire from a small database of production rules. See Figure 5 for some sample rules.

An example rule from Figure 5 say rule 1, reads:

 If retail order quantity from supply chain 0 is greater than current stock in

supply chain 0’s warehouse then call optimises retail order waiting time for

retail order 0 (refer to Figure 6).

The optimisation heuristic for this scenario is to choose the supply chain with the

smallest retail order waiting time, and after its order has been fulfilled, to transfer its

production stream to the supply chain with the largest retail order waiting time. Or

more formally:

 If a large retail order, low distributor warehouse stock, and low manufacturer

production rate (this means a large time to fulfil the order).

 Then choose a supply chain with the smallest time to fulfil an order, and after

completing its current order, to transfer its production stream to the supply

chain with the largest time to fulfil an order.

The math to calculate the new retail order waiting time is:

 PqMax production rate for chain with largest retail time

 RtMax retail time for chain with largest retail time

 PqMin production rate for chain with smallest retail time

42

 RtMin retail time for chain with smallest retail time.

See Appendix C for background to equation.

 Another heuristic that was used in this framework is that retail orders that will

be fulfilled in under a day have their supply chain components (production

stream and warehouse stock) available for the use of other supply chains. This

can be used to increase the production stream and supplement the warehouse

stock of other supply chains, therefore reducing the waiting times to deliver

orders to all the retailers of other supply chains.

 Another heuristic that was used is to choose the cheapest supplier for each part

needed to manufacture an item, even if the supplier traditionally only deals

with a particular supply chain.

These are common sense rules to minimise waste in time and cost. They can

additionally be used to automatically guide the generation of the constraint equations

for the Simplex resource optimisation method. This is possible because SOA makes

available the requisite knowledge by monitoring the status of the other supply chains.

The action parts of the applicable rules will direct the flows between the different

supply chains. As well as directing the supply chain flows the rules will alter the

values of the variables in the cost function, which will generate improved costs and

times, which are then compared to the non-optimised costs and times.

43

Figure 10 Generalized Simplex tableau

The simplex method will use the same data, but the data will be mapped to the

simplex methodology, in this case inserted as coefficients into the decision variables,

the constraint equations in the simplex methodology will model the thresholds for the

routing constraints between the different supply chains (similar to the heuristic rules).

To solve using the simplex methodology the constraint equations are then converted

into a standard form using additional slack variables (to convert inequalities to

equalities) suitable for adding to a two dimensional array called a tableau (see Figure

10). Certain matrix operations are performed iteratively to the tableau; this adjusts the

variables of the cost function, to create an optimal minimum cost function (see

Reveliotis, 2003). The output of the new cost function is compared to the non-

optimised cost and times. The use of an inference engine for dynamic optimisation

and management of multiple supply chains gives great flexibility and easy

maintenance of many heuristic rules. The greater processing power enables the use of

a more finely grained heuristic modelling. To my knowledge this is unique in the

literature.

There are other services that collaborate with the inference engine in the SOA

context. For example, a service manager to assist the inference engine to behave as a

44

web service, and expose goal-driven and event-driven inference services. The

execution manager invokes external web services for the inference engine when

required. These services are invoked when the action parts of the production rules are

fired. The invoked services could retrieve data which is added to the fact base table in

order to continue the inference process. Consequently, these services could trigger

events remotely. The repository manager service manages external database

connectivity. This enables multi-knowledge rule bases to be loaded according to the

context of the task.

The system services fulfil the roles of service discovery, domain task management,

and knowledge maintenance and knowledge execution within SOA where external

business services are invoked through services invocation on demand.

Business Services

The supply chains are modeled as collections of web services. Each web service is

queried as to its current status, and returns on request a random number within a

certain range (price in dollars, or time in days) appropriate to the supply chain artifact

that the web service models. Though the web services are hosted locally for

convenience, they would operate the same if distributed across the internet, only the

URL for each service may be different. There are six services (retailer, distributor,

manufacturer and three suppliers) for each of three supply chains, 18 services in all.

The full framework is 100% complete and preliminary results (Moynihan and Dai,

2010) show that it would be possible to monitor and communicate with various

supply chain entities and thus manage multiple remote supply chains electronically.

45

Figure 11 describes a list of the access details of business services

The manufacturer web service called ‘ProducerService’ emulates a factory which

makes the items that are eventually sold to the customer. When queried it returns two

random numbers. The production rate which is 1 to 100 items per day and the cost

which is $1 to $20 per item. The distributor web service called ‘DistributorService’

emulates a warehouse which stores the items that are produced by the factory for

distribution to retailers who sell to the customer. When queried it returns two random

numbers. The current stock level which is 1 to 1,000 items and the storage cost which

is $1 to $50 per item. The retailer web service called ‘RetailerService’ emulates a

shop which stores a small number of items that are sold to customers. When queried it

returns two random numbers. The number of items needed to replenish the stock level

which is 1 to 1000 items and the estimated time before stock levels will be zero which

is from 1 to 22 days.

46

The supplier web service called ‘SupplierService’ emulates a supplier of raw

materials to the factory which manufactures the items which are eventually sold to the

customer. When queried it returns a random number which is the cost of $1 to $4 per

shipment to the factory.

The heuristically guided rules derive their power from optimising across the multiple

supply chains rather than optimising within a single chain (see Figure 12 and Figure

13).

Figure 12 Single isolated supply chains

Figure 13 multiple interconnected supply chains

47

 The retailers are part of separate supply chains within larger organizations or have

strategic alliances for mutual advantage. See User guide page Figure 16.

The design of the framework distinguishes system services and business services.

System services represent the core assets of the framework. Business services are

services that interact with external business entities. System services operate in the

following categories:

 Knowledge services: directing and coordinating the information flow and task

allocation, and problem solving processes.

 Data services: coping with the framework internal and external data retrieval

and storage requests.

 Component integrator services: software packaging glue, facilitating systems

integration and systems interoperability.

 Communication management services: responsible for all the external

communication needs of the framework, such as the facilities for internet

communications.

 Business logic modules (BLMs): relational databases, XML data stores.

 Goal driven inferencing (GDI) and event driven inferencing (EDI): services

performing goal directed and event driven inferences.

The interactions of system services with business services are described in Figure 14.

48

Figure 14 Interactions of system services with business services

3.2.3 User Interface

A prototype of a web-based SCM tool implemented from this research is used. This

tool allows the user to see scenarios of various randomly generated supply chain

configurations and also see these same configurations after some optimizations have

been performed. It is envisaged that in the future, real time data from participating

supply chain entities will replace the random data returned by the web services. The

online demonstration is available at the URL:

http://turquoise.vu.edu.au:8080/soaDemoNew/UserGuide.html:

See Figure 16, this tabbed page displays some instructions to operate the SCM tool.

JavaScript commands control the appearance and functionality of the SCM tool. The

web form sends commands via the http protocol to a Servlet hosted in Tomcat called

‘MainServlet’ this Servlet’s job is to first, send reset commands via the web service

49

interface to the web services that model the various supply chain entities. After that

task is completed it then sends commands to each of the web services to initialise

them with random data within a certain range of values, appropriate to each of the

supply chain components, and to return the data to the ‘MainServlet’. This is then

formatted and inserted into a web page, which is returned to the tabbed page on the

users web form. This emulates getting a snap shot of the current state of the users and

partners supply chains (see Figure 15).

Figure 15 randomly generated scenarios.

Figure 15 shows a scenario, randomly generated, of three supply chains. It shows the

current status of the components of three separate supply chains. The user then may

wish to see what sort of savings, in terms of time and overall cost that might be

achieved, by having the optimization module determine what routing of goods

between the various supply chains, that could create the savings. To do this the user

will click the ‘Optimize’ tab. This sends an execution command to the

50

‘OptimiseServlet’. The OptimiseServlet first sends commands to each of the supply

chain entities as web services to send back the previously generated data displayed by

the MainServlet. This data is used to populate some java objects that encapsulate the

various supply chain states. These hierarchical sets of objects act as repositories for

the multiple supply chains state. These objects are then passed to the optimisation

class web service. Figure 16 shows the user guide page to prompt the user. Figure 17

shows the costs in time and money of the static supply chain channels based on the

generated scenario. Figure 18 shows the dynamically optimised supply chain costs

based on the generated scenario.

Figure 16 User Guide

51

Figure 17 Traditional costs derived from scenario

Figure 18 Optimized supply chain delivery

52

The application has a facility to view a log of operations for the interaction between

the system web services and the application web services (see Figure 19).

Figure 19 SOA activity log

Figure 20 is a visual display of the supply chain routing needed to achieve the

optimization results.

53

Figure 20 Output of animation tab

Figure 21 Option to enter data manually

54

3.3 Technical Design

3.3.1 Hardware Configuration

The hardware configuration for this prototype is relatively modest, as even cheap

computers these days are so powerful. The prototype runs on a modest server called

“turquoise” (twin Intel Xeon processors 32bit data path 3.0GHz clock speed 4GB

ram) 1MB/sec Internet connection. The system software is: operating system

Microsoft Windows Server 2003SP2, Tomcat 6.0.29 Web server, Apache Axis 1.4

SOAP engine and Microsoft SQLServer 2000SP4 relational database.

3.3.1.1 THREAD SAFE INFERENCING

Need for Thread Safe Inferencing

Thread safe inferencing is necessary to allow multiple web clients to run the same set

of rules with different input data simultaneously and receive different conclusions

based on their input data.

To achieve this goal a series of sub goals has to be met:

 Hopefully be backward compatible with existing client code, in other words

the same INDEX (name of inference engine) public API be maintained.

 To support multiple differing conclusions a separate working memory table

for each client service request is maintained by each thread.

 To support server robustness a thread pool is used so as to degrade gracefully

under a large workload.

 Tomcat web server configuration altered to allow for large numbers of

simultaneous web clients.

 INDEX base code made thread safe.

55

 INDEX retrofitted with a thread creation and maintenance module.

Goals achieved:

 INDEX public API compatibility has been maintained except for a small

change.

 Separate working memory table for each client service request is maintained

by each thread, and when the http connection thread dies, the table is deleted

so the database is not left with artifacts. In SQLServer (INDEX’s database)

the maximum number of unique tables for each database is 2
15

 or 32,768

tables. So there can be many instances each with their own working memory

table.

 A thread pool has been used from “java .concurrent”. The pool size has been

set at 500 threads by default, but pool size is read at start up from a

configuration file. Though this worked, it added an extra layer of complexity

and for scalability was removed. Tomcats internal thread pool was leveraged

instead.

 Tomcat web server configuration has been altered. A native version of tomcat

is used and the server configuration file has been changed to allow for 2000

threads but theoretically could go to 8000 threads.

 INDEX code base has been made thread safe (removed unnecessary code,

some non-database methods “synchronized” and reused “Vector” data

structure as this is already thread safe. Many internal bugs removed that

effected scalability.

 INDEX retrofitted with a thread creation and maintenance module. As the

final version of INDEX is only 100K many copies can run concurrently in a

typical Server memory space.

56

The following diagram Figure 22 gives an over view of the concurrency architecture

Figure 22 Concurrency Architecture

The multitasking version of INDEX has the following components:

 A thread creation module located in java package

“com.index.servicemanager.InferenceEngine” this thread creation module

creates a new thread for every web service invocation by external entities.

 The thread creation module also uses a module that creates and manages a

database table called “ddp.threadName” which is the working memory for

each new instance of INDEX.

 Various synchronized methods located throughout the INDEX system.

 A logging subsystem based on Log4j-1.2.16 with logging statements in every

class of INDEX recording current module in focus and current thread name.

Tomcat

Index1

Index3

Create
Thread

for each
Request

ddp1

ddp2

ddp3

Index2

57

Limitations of Thread-based systems

Concurrency is the notion of multiple things happening at the same time. With the

proliferation of multicore CPUs and the realization that the number of cores in each

processor will only increase, software developers need new ways to take advantage of

them. Although modern operating systems are capable of running multiple programs

in parallel, most of those programs run in the background and perform tasks that

require little continuous processor time. It is the current foreground application that

both captures the user’s attention and keeps the computer busy. If an application has a

lot of work to do but keeps only a fraction of the available cores occupied, those extra

processing resources are wasted (Concurrency and Application Design 2013).

Historically, adding concurrency to an application required the creation of one or

more additional threads. Writing threaded code can be challenging. Threads are a low-

level tool that must be managed manually. Given that the optimal number of threads

for an application can change dynamically based on the current system load and the

underlying hardware, implementing a correct threading solution becomes difficult. In

addition, the synchronization mechanisms typically used with threads add complexity

and risk to software designs without any guarantees of improved performance

(Concurrency and Application Design 2013).

For threaded code, locks are one of the traditional ways to synchronize access to

resources that are shared between threads. However, the use of locks comes at a cost.

Even in the non-contested case, there is always a performance penalty associated with

taking a lock. And in the contested case, there is the potential for one or more threads

to block for an indeterminate amount of time while waiting for the lock to be released

(Concurrency and Application Design 2013).

58

The biggest problem is that threaded code does not scale very well to arbitrary

numbers of cores. The developer cannot create as many threads as there are cores and

expect a program to run well. What the developer would need to know is the number

of cores that can be used efficiently, which is a challenging thing for an application to

compute on its own (Concurrency and Application Design 2013).

Also due to the internal data structures of modern operating systems there is a limit to

the maximum number of threads that can be run. For example, for a typical “Linux”

server running the latest “pthreads” threading library, the limit is about 100,000

threads. This is why multiple virtual servers are run in a federation of servers to

handle large numbers of users for cloud computing applications.

Although threads have been around for many years and continue to have their uses,

they do not solve the general problem of executing multiple tasks in a scalable way.

With threads, the burden of creating a scalable solution rests squarely on the shoulders

the developer. The application developer has to decide how many threads to create

and adjust that number dynamically as system conditions change. Another problem is

that the application assumes most of the costs associated with creating and

maintaining any threads it uses (Concurrency and Application Design 2013).

Instead of relying on threads, some modern operating systems like OS X and iOS

(Apple’s desktop and mobile operating systems) take an asynchronous design

approach to solving the concurrency problem. Asynchronous functions have been

present in operating systems for many years and are often used to initiate tasks that

might take a long time, such as reading data from the disk. When called, an

asynchronous function does some work behind the scenes to start a task running but

returns before that task might actually be complete. Typically, this work involves

59

acquiring a background thread, starting the desired task on that thread, and then

sending a notification to the caller (usually through a call-back function) when the

task is done. In the past, if an asynchronous function did not exist for what you want

to do, the developer would have to write their own asynchronous function and create

their own threads. But now, OS X and iOS provide technologies to allow the

developer to perform any task asynchronously without having to manage the threads

themselves (Concurrency and Application Design 2013).

There are various scales of concurrency:

 The term thread is used to refer to a separate path of execution for code.

 The term process is used to refer to a running executable, which can

encompass multiple threads.

 The term task is used to refer to the abstract concept of work that needs to be

performed, which can encompass multiple processes.

In my system the scale of concurrency is the process level. Within the application

Inference Engine there was too much that had to be performed serially (changing the

order of execution of the subsystems changed the result) for threads to be helpful.

Other than each process should be able to share resources (web server and database)

the only threading needed was to create a separate process for each user request. Most

of the thread management was done by the web server and the database.

Steps to Implementation

The thread creation and maintenance module was finished. It was harder than first

thought. Concurrent systems are hard to debug and test. It wasn’t until testing that the

logic flaws in the module became apparent.

60

The backwards compatibility with the INDEX API was broke slightly. This was

because previously facts had been loaded into the working memory table (ddp)

directly by applications, using SQL calls to SQLServer, instead of going through

INDEX. What this meant was that the facts added to working memory go into the

database table ddp instead of database table ddp(threadNumber).

The code to add facts to working memory was moved into INDEX so that INDEX

will be able to manage working memory on a per thread basis. This means that to add

facts to working memory an application will call a method in INDEX and pass the

facts to that method rather than calling SQLServer directly. This is only a small

change to the public API.

The following are some screenshots of the new INDEX being used with the

“SOADemo” application.

The next two screenshots Figure 23 and Figure 24 shows the log of interactions

behind the scenes, it shows the new logging framework for INDEX. It has been set up

to log current thread, log-level, method, line number and comment. It also shows a

new working memory table being created. See half way down the following

screenshot at “Thread-92”.

61

Figure 23 Log of interactions behind the scenes

Figure 24 Continuation of log of interactions

The next screenshot Figure 25 shows working memory table “ddp3” after being

created for “Tomcat” thread “http-8080-3” being accessed by a core service

“DDP.java” line 85, looking for fact “retailQuant0”. See the first two lines.

62

Figure 25 New working memory table “ddp3” being accessed.

The following screenshot Figure 26 shows some source code for the constructor for

the new inference engine.

Figure 26 Source code for constructor of new Inference Engine.

The following screenshot Figure 27 shows some source code for each connection

thread creating a working memory table.

63

Figure 27 Source code for connection thread create working memory table.

The following screenshot Figure 28 shows some source code for each connection

thread to destroy the working memory table after thread is destroyed.

64

Figure 28 Source code for connection thread destroy working memory table.

See APPENDIX A for a more in depth discussion drawn heavily from my development

diary. It shows the complex issues that can arise from creating innovative software.

SIMPLEX METHOD

History of Simplex Optimization

Introduction

Optimization as a technique answers the questions what is the best result that can be

achieved; what do I have to adjust to attain the highest profits; or what do I do to

achieve the lowest cost, or waste. These problems involve making the most efficient

use of your resources. Optimization problems are often classified as linear or

nonlinear, depending on whether the relationships in the problem are linear with

respect to the variables.

65

Operations Research

Operations research is a discipline that deals with the application of analytical

methods to help make better decisions (Operations Research 2012). The terms

management science and decision science are synonyms. Using techniques from

modeling, statistical analysis, and optimization, operations research attempts to create

optimal or near-optimal solutions to complex decision-making problems. As a formal

discipline, operations research originated in the efforts of military planners during

World War II. After the war it began to be applied to similar problems in industry

(Operations Research 2012).

Linear Programming

The most fundamental and pervasive type of optimization problem is a linear program

 (LP) of the form:

 ()

 ()

 ()

 ()

66

and () are the decision variables (unknowns) for which optimal values

are sought. The expression being optimized is called the objective function and

() are the objective coefficients.

The relationships whose senses are expressed with () are the constraints;

() are the coefficients; and is the right-hand side value for the

 constraint. represent lower and upper bounds for the decision

variable and can be finite or infinite.

The problem of solving a system of linear inequalities dates back at least as far as

Fourier, after whom the method of Fourier-Motzkin elimination is named. The

earliest linear programming was first developed in Russia by Leonid Kantorovich in

1939 (Linear Programming 2012). It was used during the Second World War for

planning to reduce costs to the army. The three founding figures of the subject are

Leonid Kantorovich, who developed the earliest linear programming problems,

George Dantzig, who published the simplex method in 1947, and John von Neumann,

who developed the theory of the duality in the same year. The method was kept secret

until 1947 when George B. Dantzig published the simplex method and John von

Neumann developed the theory of duality (Given any linear program called the

primal, there is another related linear program called the dual. The dual is the

negative transpose of the primal program [Vanderbei 2007].)

 ∑

 ∑

 ()

 ()

67

Dual is negative transpose of primal.

 ∑

 ∑

 ()

 ()

and applied it in the field of game theory (Linear Programming 2012).

The linear-programming problem was first shown to be solvable in polynomial time

by Leonid Khachiyan in 1979, but a larger theoretical and practical breakthrough in

the field came in 1984 when Narendra Karmarkar introduced a new interior-point

method for solving linear-programming problems (Linear Programming 2012).

To give an example of the usefulness of linear programming, say you want to find the

best assignment of 70 people to 70 jobs (Dantzig’s original example). The number of

possible configurations exceeds the number of particles in the known universe. Yet, it

takes only a relatively short time to find the optimum solution by posing the problem

as a linear program and applying the Simplex algorithm. This is because the

algorithm drastically reduces the number of possible solutions that must be checked

(Linear Programming 2012).

Linear programming is an important part of the field of optimization for several

reasons. Many practical problems in operations research can be expressed as linear

programming problems. Network flow problems and multicommodity flow problems

are special cases of linear programming. A number of algorithms for other types of

optimization problems work by solving LP problems as sub-problems. Linear

programming is very heavily used in microeconomics and company management,

68

such as planning, production, transportation, and other issues. Most companies would

like to maximize profits or minimize costs with limited resources (Linear

Programming 2012).

Algorithm

In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a

popular algorithm for linear programming. The journal “Computing in Science and

Engineering” listed it as one of the top 10 algorithms of the twentieth century.

The simplex method starts at the origin and follows a path along the edges of a

polytope (a multi-dimensional graphic model of the solution space) to a vertex of the

polytope where the maximum occurs. There are some limitations of the simplex

method that can occur in supply chain management. One is that it is not suitable

where some (MIP or Mixed Integer Programming) or all (ILP or Integer Linear

Programming) of the constraints are integer variables. These have to be solved with

another optimization method (“branch and bound” as used in the open source linear

programming solver “LPSolve) Some Integer programing problems theoretically are

not solvable in “Polynomial time”.

There are many descriptions in the literature of the simplex algorithm. One of the

simplest descriptions I have read is from a linear algebra book called “Linear Algebra

with Applications” by W. Keith Nicholson, 3rd Edition PWS Publishing Boston. The

procedure is:

 From the problem derive a model that you wish a solution for.

 Convert to standard form.

 Apply the first part of the simplex method to determine if the model is

feasible.

69

 If it is feasible use the simplex method to find which of the basic feasible

points is the maximum.

I will now describe the algorithm in more detail. Assume that we are trying to

maximize the objective function and there are n variables and m constraints. Let p

equal the objective function.

 Prepare the initial Tableau. From the model introduce slack variables and

convert any inequalities to equations, including the objective function. Prepare

the initial tableau (an augmented (non-square) matrix of coefficients and

constants). The augmented matrix has (m+1) rows. The coefficients of p are

made the last row.

 Test for optimality. For a given tableau the corresponding basic feasible

solution is optimal, if there is no entry in the last row (except the last entry in

that row) that is negative. If this is the case then stop, the maximum value of

the objective function is the last entry in the last row of the tableau. Otherwise

continue.

 Choose the pivot column. This is any column (except the last column) whose

last row entry (this is the row containing the coefficients of the objective

function) is the most negative. If there is a tie, choose either one.

 Test for unbounded objective function. This occurs if no entry in the pivot

column is positive. If this is the case then stop, the objective function has no

maximum. Otherwise continue.

 Choose the pivot entry in the pivot row. For each positive entry in the pivot

column divide that entry into the last entry in that entries row. Choose the

entry with the lowest ratio from the divisions. If two ratios are equal then

choose either. This may lead to an infinite loop (called cycling), generally this

70

is rare, as floating point round off error usually prevents it, there are

algorithms that can deal with this case.

 Make the pivot column basic. Use elementary row operations to make the

pivot entry 1 and every other entry in the pivot column (including the last)

zero.

 Loop back to the step testing for optimality.

I will illustrate the algorithm with a small example.

The first step in the procedure is to convert the constraints from inequalities to

equalities. This is achieved by introducing new variables and (called slack

variables), one for each constraint. Also write the objective function as a fourth

equation. The new problem is to:

71

The objective function p is considered as yet another variable, the augmented matrix

or initial matrix for this system of equations is:

In the last row there are two negative entries so this tableau is not optimal. So to

continue with the simplex algorithm we must determine the pivot column, this is the

column associated with the most negative entry in the last row which in this case is

the second column, the one with minus three in the last row. The next step is to test

for an unbounded objective function; in this case there are two entries that are

positive in the pivot column so the objective function is bounded and has a maximum

value yet to be determined.

The next step is to choose the pivot entry in the pivot column. For each positive entry

in the pivot column, in this case 2 in row 1 and 3 in row 3, divide into the last entry of

each entries row in this case that is 6 / 2 = 3 and 20 / 3 = 6.7 and choose the lowest

ratio, in this case 3 which corresponds to 2 in row 1, this is the pivot entry.

The next step is to make the pivot column basic. Use elementary row operations to

make the pivot entry 1 and every other entry in the pivot column (including the last)

zero. In this case the result is the following tableau:

72

We test for optimality, in this case there is still a negative entry in the last row (-1/2),

so the tableau is still not optimal, we iterate once more. We choose another pivot

column; in this case it is column 1 as it contains the only negative entry. The next step

is to choose a pivot entry. There are three positive entries to test so first row 3 / ½ = 6

second row 12 / 7/2 = 24/7 third row 11 / ½ = 22. The lowest ratio is 24/7 which

corresponds to column 1 row 2 which is 7/2 this is the new pivot entry. The next step

is to use elementary row operations to make the pivot entry 1 and every other entry in

the pivot column (including the last) zero. In this case the result is the following

tableau:

We test for optimality again, as there are no more negative entries in the last row this

tableau is now optimal.

73

The objective function maximum is

 when the decision variables are:

,

 , .

3.3.2 Communication Interface

The communication interface to my prototype is a TCP/IP back bone supporting

HTTP packets which wraps SOAP xml packets. In other words the Internet with web

service software enabled for each computer for each supply chain entity.

74

4. CHAPTER FOUR - System Evaluation

4.1 Overview

This chapter describes the evaluation of the system with respect to the comparison of

the two methods for optimization of supply chain flows. To do this a testing

framework had to be created to generate the experimental results, and the results had

to be analyzed. The Testing Framework topic covers the creation of the testing

framework which includes sub topics of discussing the alternative optimization

method which includes applying the simplex method to supply chains by modelling

them as network flow transportation models.

Another topic is the generation and collection of the data which includes the

collection procedure. The data analysis section includes a background to data analysis

focusing on exploratory data analysis. The following section called analysis of results

takes the background on exploratory data analysis and applies it to the experimental

results and the final section called outcomes describes the result of the data analysis.

4.2 Testing Framework

4.2.1 Alternative Optimization Method

The alternative optimization method chosen to compare with the heuristic method to

optimize multiple supply chains was a network flow transportation model. A network

flow transhipment model was tried but was infeasible, because manufacturer flow rate

was always metered by the day while the distributor to retailer arc of the network

flow was always a lot larger and intermittent and the distributor transhipment nodes

net throughput (flow in minus flow out) was never zero (the transhipment model

75

theory states that transhipment nodes have to have zero net throughput for the model

to be applicable). The model chosen was two network flow transportation models

back to back see Figure 31. The distributors to retail arcs were optimized first see

Figure 30 this gave the quantities that were left in the distributor’s warehouses. Then

the manufacturers to distributor arcs then were optimized using the new distributor

warehouse quantities. See Figure 29. Network flow transportation models can be

solved with linear programming techniques. For the automated system the open

source linear programming solver “LPSolve” was used as the solver.

The objective function and constraints for the distributor to retailer nodes are:

Objective function

min: -210 C1 +110 C2 +210 C3 +210 C4 +530 C5 +630 C6 +370 C7 +690 C8 +790

C9;

Constraints

+C1 +C2 +C3 <= 360;

+C4 +C5 +C6 <= 780;

+C7 +C8 +C9 <= 940;

+C1 +C4 +C7 = 570;

+C2 +C5 +C8 = 250;

+C3 +C6 +C9 = 150;

The routings from the solution of the distributor to retailer transportation model is:

Objective function: = 195500

Constraint Variable [0] = 0 Distributor1 to Retailer1

Constraint Variable [1] = 210 Distributor1 to Retailer2

Constraint Variable [2] = 150 Distributor1 to Retailer3

Constraint Variable [3] = 570 Distributor2 to Retailer1

76

Constraint Variable [4] = 40 Distributor2 to Retailer2

Constraint Variable [5] = 0 Distributor2 to Retailer3

Constraint Variable [6] = 0 Distributor3 to Retailer1

Constraint Variable [7] = 0 Distributor3 to Retailer2

Constraint Variable [8] = 0 Distributor3 to Retailer3

Dummy variables

Constraint Variable [9] = 0 Distributor4 to Retailer1

Constraint Variable [10] = 0 Distributor4 to Retailer2

Constraint Variable [11] = 0 Distributor4 to Retailer3

The objective function and constraints for the manufacturer to distributor nodes are:

Objective function

min: -180 C1 +30 C2 +30 C3 -200 C4 +10 C5 +10 C6 -190 C7 +20 C8 +20 C9;

Constraints

+C1 +C2 +C3 <= 30;

+C4 +C5 +C6 <= 10;

+C7 +C8 +C9 <= 20;

+C10 +C11 +C12 <= 150;

+C1 +C4 +C7 +C10 = 210;

+C2 +C5 +C8 +C11 = 0;

+C3 +C6 +C9 +C12 = 0;

The routings from the solution of the manufacturer to distributor transportation model

are:

77

Optimized Objective value = -11200

Optimized Constraints Routings [0] = 30 Manufacturer1 to Distributor1

Optimized Constraints Routings [1] = 0 Manufacturer1 to Distributor2

Optimized Constraints Routings [2] = 0 Manufacturer1 to Distributor3

Optimized Constraints Routings [3] = 10 Manufacturer2 to Distributor1

Optimized Constraints Routings [4] = 0 Manufacturer2 to Distributor2

Optimized Constraints Routings [5] = 0 Manufacturer2 to Distributor3

Optimized Constraints Routings [6] = 20 Manufacturer3 to Distributor1

Optimized Constraints Routings [7] = 0 Manufacturer3 to Distributor2

Optimized Constraints Routings [8] = 0 Manufacturer3 to Distributor3

Dummy variables

Optimized Constraints Routings [9] = 150 Manufacturer4 to Distributor1

Optimized Constraints Routings [10] = 0 Manufacturer4 to Distributor2

Optimized Constraints Routings [11] = 0 Manufacturer4 to Distributor3

78

Figure 29 Network flow transportation model of Manufacturer to Distributor

Figure 30 Network flow transportation model of Distributor to Retailer

30

20

30 20

30

20

Distributor 1

210

Distributor 3
0

Manufacturer 2
10 10

10

10

Distributor 2
0

Manufacturer 1

30

Manufacturer 3
20

530

110

630

210

690
210

370

Retailer 1
570

Retailer 2
250

-210

790
Retailer 3

150

Distributor 1
360

Distributor 2
780

Distributor 3
940

79

Figure 31 Network flow optimization model

4.3 Collection of Data

4.3.1 Collection Procedure

Data generation begins by clearing the data file and calling the data generation

method 100 times to create 100 data points for each supply chain. Each call will

generate a random scenario for the supply chain entities and pass it to the heuristic

supply chain optimization module, which optimizes it, and calculates a percentage

improvement in cost to fulfill a retail order, then adds it to a data structure. At the

same time a copy of the same random scenario is sent to the linear programming

solver, which optimizes it in its own way and calculates a percentage improvement in

cost to fulfill the same retail order, and then adds it to a separate data structure. Both

data structures are returned to a module that formats and writes them to an external

file. See APPENDIX D.

530

110

630

210

690
210

370

Retailer 1

570

Retailer 2
250

-210

790
Retailer 3

150

Distributor 1

360

Distributor 2
780

Distributor 3
940

30

20

30 20

30

20

Distributor 1

210

Distributor 3
0

Manufacturer 2
10 10

10

10

Distributor 2
0

Manufacturer 1

30

Manufacturer 3
20

80

Examples of the file format see Figure 32 the numbers are percentage improvement in

cost to fulfill an order compared to non-optimized costs. See APPENDIX B for all the

data.

Figure 32 Example of Data file format

The data was analyzed with a free data analysis package from National Institute of

Standards and Technology (NIST) called “Dataplot” it is written in FORTRAN and

has been constantly improved over the last 30 years. They also have a data analysis

manual see reference (NIST e-Handbook of Statistical Methods 2012).

4.4 Technique of Analysis

4.4.1 Exploratory Data Analysis

Exploratory Data Analysis (EDA) is an approach for data analysis that employs a

variety of techniques (mostly graphical) to:

 Maximize insight into a data set;

 Uncover underlying structure;

 Extract important variables;

 Detect outliers and anomalies;

 Test underlying assumptions;

81

 Develop parsimonious models; and

 Determine optimal factor settings.

The EDA approach is an attitude about how a data analysis should be carried out.

EDA is an approach to data analysis that postpones the usual assumptions about what

kind of model the data follows with the more direct approach of allowing the data

itself to reveal its underlying structure and model (NIST e-Handbook of Statistical

Methods 2012 chapter 1).

The seminal work in EDA is Exploratory Data Analysis, Tukey, (1977). Over the

years it has benefitted from other publications such as Data Analysis and Regression,

Mosteller and Tukey (1977), Interactive Data Analysis, Hoaglin (1977), The ABC's

of EDA, Velleman and Hoaglin (1981). Most EDA techniques are graphical in nature

with a few quantitative techniques. The reason for the reliance on graphics is that the

main role of EDA is to open-mindedly explore, and graphics draws upon the natural

pattern-recognition capabilities that we all possess. (NIST e-Handbook of Statistical

Methods 2012 chapter 1).

The particular graphical techniques employed in EDA are often quite simple,

consisting of various techniques of:

 Plotting the raw data (such as data traces, histograms, bihistograms,

probability plots, lag plots, block plots, and Youden plots.

 Plotting simple statistics such as mean plots, standard deviation plots, box

plots, and main effects plots of the raw data.

 Positioning such plots so as to maximize our natural pattern-recognition

abilities, such as using multiple plots per page.

Every measurement process, however complicated, has certain underlying

assumptions. This section deals with what those assumptions are.

82

Underlying Assumptions

There are four assumptions that underlie all measurement processes; namely, that the

data from the process behaves like:

 Random drawings;

 From a fixed distribution;

 With the distribution having a fixed location;

 The distribution having a fixed variation.

The "fixed location" differs for different problem types. The simplest problem type is

univariate; that is, a single variable. For the univariate problem, the general model:

Response = deterministic component + random component, becomes

Response = constant + error (NIST e-Handbook of Statistical Methods 2012 chapter

1).

For this case, the "fixed location" is simply the unknown constant. The process is

considered to be operating under constant conditions that produce a single column of

data with the properties that:

 Data are uncorrelated with each other;

 Random component has a fixed distribution;

 Deterministic component consists of only a constant;

 Random component has a fixed variation.

The importance of the univariate model is that it can be extended to where the

deterministic component is not just a constant, but a function of many variables, and

the objective is to characterize and model the function. The point is that if the

engineer succeeds in choosing a good model, then the differences (residuals) between

the raw response data and the predicted values from the fitted model should

83

themselves behave like a univariate process. The residuals from this univariate

process fit will behave like:

 Random drawings;

 From a fixed distribution;

 With fixed location;

 Fixed variation.

Thus if the residuals from the fitted model behaves like the ideal, then the testing of

the underlying assumptions becomes a tool for the validation and quality of fit of the

chosen model. If the four underlying assumptions hold, then we have achieved

probabilistic predictability--Moreover, if the four assumptions are valid, then the

process is amenable to the generation of valid scientific and engineering conclusions

(NIST e-Handbook of Statistical Methods 2012 chapter 1).

Techniques for Testing Assumptions

Because the validity of the final scientific/engineering conclusions is linked to the

validity of the underlying univariate assumptions, it follows that there is a necessity

that each one of the above four assumptions be routinely tested.

The following EDA techniques are simple, efficient, and powerful for the routine

testing of underlying assumptions:

 Run sequence plot (Yi versus i)

 Lag plot (Yi versus Yi-k)

 Histogram (counts versus subgroups of Y)

 Normal probability plot (ordered Y versus theoretical ordered Y)

The four EDA plots can be juxtaposed for a quick look at the characteristics of the

data. The example plots below are ordered as follows:

84

 Run sequence plot - upper left

 Lag plot - upper right

 Histogram - lower left

 Normal probability plot - lower right

Figure 33 Example of a random process.

This 4-plot reveals a process that has fixed location, fixed variation, is random,

apparently has a fixed approximately normal distribution, and has no outliers. If one

or more of the four underlying assumptions do not hold, then it will show up in the

various plots as demonstrated in the following example.

85

Figure 34 Example of a non-random process.

This 4-plot reveals a process that has fixed location, fixed variation, is non-random

(oscillatory), has a non-normal, U-shaped distribution, and has several outliers. The

four EDA plots discussed on the previous page are used to test the underlying

assumptions:

 Fixed Location: If the fixed location assumption holds, then the run sequence

plot will be flat and non-drifting.

 Fixed Variation: If the fixed variation assumption holds, then the vertical

spread in the run sequence plot will be the approximately the same over the

entire horizontal axis.

 Randomness: If the randomness assumption holds, then the lag plot will be

structure less and random.

 Fixed Distribution: If the fixed distribution assumption holds, in particular if

the fixed normal distribution holds, then the histogram will be bell-shaped,

and the normal probability plot will be linear.

86

If all four of the assumptions hold, then the process is said by definition to be "in

statistical control" (NIST e-Handbook of Statistical Methods 2012 chapter 1).

Consequences of Non-Randomness

The randomness assumption is the most critical but the least tested. If the randomness

assumption does not hold, then:

 All of the usual statistical tests are invalid.

 The calculated uncertainties for commonly used statistics become

meaningless.

 The calculated minimal sample size required for a pre-specified tolerance

becomes meaningless.

 The simple model: y = constant + error becomes invalid.

 The parameter estimates become non-supportable.

One common type of non-randomness is autocorrelation. Autocorrelation is the

correlation between Yt and Yt-k, where k is an integer that defines the lag for the

autocorrelation. Autocorrelation is a time dependent non-randomness. This means

that the value of the current point is highly dependent on the previous point if k = 1

(or k points ago if k is not 1). Autocorrelation is detected via an autocorrelation plot

or a lag plot.

If the data are not random due to autocorrelation, then:

 Adjacent data values may be related.

 There may not be n independent snapshots of the phenomenon under study.

 There may be undetected "junk"-outliers.

 There may be undetected "information-rich"-outliers.

87

Consequences of Non-Fixed Location Parameter

The usual estimate of location is the mean

 ̅

 ∑

For N measurements ()

If the run sequence plot does not support the assumption of fixed location, then

 The location may be drifting.

 The single location estimate may be meaningless (if the process is drifting).

 The choice of location estimator (e.g., the sample mean) may not be optimal.

 The usual formula for the uncertainty of the mean:

May be invalid and the numerical value may be too small.

 The location estimate may be poor.

 The location estimate may be biased.

Consequences of Non-Fixed Variation Parameter

The usual estimate of variation is the standard deviation

 (̅)

√()
√∑(̅)

 For N measurements ()

If the run sequence plot does not support the assumption of fixed variation, then

 The variation may be drifting. The single variation estimate may be

meaningless (if the process variation is drifting).

 The variation estimate may be poor.

 The variation estimate may be biased.

88

Consequences Related to Distributional Assumptions

Scientists and engineers routinely use the mean (average) to estimate the "middle" of

a distribution. It is not so well known that the variability and the noisiness of the

mean as a location estimator are intrinsically linked with the underlying distribution.

For certain distributions, the mean is a poor choice. For any given distribution, there

exists an optimal choice-- that is, the estimator with minimum variability/noisiness.

This optimal choice may be, for example, the median, the midrange, the mid mean,

the mean, or something else. The implication is to "estimate" the distribution first, and

then--based on the distribution--choose the optimal estimator. The resulting parameter

estimators will have less variability if this approach is followed (NIST e-Handbook of

Statistical Methods 2012 chapter 1).

Other consequences that flow from problems with distributional assumptions are:

Distribution

 The distribution may be changing.

 The single distribution estimate may be meaningless (if the process

distribution is changing).

 The distribution may be markedly non-normal.

 The distribution may be unknown.

 The true probability distribution for the error may remain unknown.

Model

 The model may be changing.

 The single model estimate may be meaningless.

 The default model Y = constant + error may be invalid.

 If the default model is insufficient, information about a better model may

remain undetected.

89

 A poor deterministic model may be fit.

 Information about an improved model may go undetected.

Process

 The process may be out-of-control.

 The process may be unpredictable.

 The process may be un-modelable.

(NIST e-Handbook of Statistical Methods 2012 chapter 1)

4.5 Analysis of Results

Based on the above discussion my analysis went like this: Dataplot was the data

analysis package that I used to analyse and graph my data. Dataplot is a free data

analysis package from the NIST statistical engineering division. It is written in

FORTRAN and has been continually improved over the last 30 years, and comes with

its own easy to understand scripting language. After reading the data file into

Dataplot a 4-plot of each column of data (each column is a variable which is a supply

chain optimized by either the heuristic method or linear programming method) was

done to see if the variables percentage of improvement could be adequately modelled

as an independent random sample drawn from a normal distribution. If the

assumptions hold, then use parametric tests for each pair of variables (each supply

chain optimized by heuristic and linear programming methods) to test if there is any

difference between the two methods. The parametric tests to be used in this case are

Student’s t-test for equality between the means and the Fisher F-test for equality of

variance. The null hypothesis is that the means and standard deviations are equal

which would imply that each member of the pairs of variables came from the same

normal distribution and that there is no difference between the optimization methods

90

at a certain level of confidence. The alternative hypothesis is that there is a difference

between the means and standard deviations which would imply that the members of

each pair of variables came from different normal distributions and that there is a

difference between the optimization methods for each supply chain at a certain level

of confidence.

4.5.1 Outcomes

Figure 35 shows that for supply chain 1 using the heuristic optimization method that

the 100 data points came from a fixed normal distribution. This is because based on a

previous discussion the top left graph (run sequence plot) is flat and non-drifting

which means the mean is constant and the vertical spread in the run sequence plot is

approximately the same over the entire horizontal axis which means the variance is

constant. Also the top right hand graph (lag plot) is structure less and random which

means that the data are independent random samples (no autocorrelation). Also the

bottom left hand graph (histogram plot) is bell shaped and the bottom right hand

(normal probability plot) is linear which means that the data come from a normal

distribution with a fixed mean and standard deviation.

91

Figure 35 Supply chain 1 Heuristic 4-plot

Figure 36 shows that for supply chain 2 using the heuristic optimization method that

the 100 data points came from a fixed normal distribution though with some more

variability. This is because based on a previous discussion the top left graph (run

sequence plot) is flat and non-drifting which means the mean is constant and the

vertical spread in the run sequence plot is approximately the same over the entire

horizontal axis which means the variance is constant. Also the top right hand graph

(lag plot) is structure less and random which means that the data are independent

random samples (no autocorrelation). Also the bottom left hand graph (histogram

plot) is bell shaped and the bottom right hand (normal probability plot) is linear which

means that the data come from a normal distribution with a fixed mean and standard

deviation.

92

Figure 36 Supply chain 2 Heuristic 4-plot

Figure 37 shows that for supply chain 3 using the heuristic optimization method that

the 100 data points came from a fixed normal distribution. This is because based on

previous discussion the top left graph (run sequence plot) is flat and non-drifting

which means the mean is constant and the vertical spread in the run sequence plot is

approximately the same over the entire horizontal axis which means the variance is

constant. Also the top right hand graph (lag plot) is structure less and random which

means that the data are independent random samples (no autocorrelation). Also the

bottom left hand graph (histogram plot) is bell shaped and the bottom right hand

(normal probability plot) is linear which means that the data come from a normal

distribution with a fixed mean and standard deviation.

93

The data from supply chain 2 has more variability than supply chains 1 and 3 this

difference repeats in the following three sets of graphs for the linear programming

optimization.

Figure 37 Supply chain 3 Heuristic 4-plot

Figure 38 shows that for supply chain 1 using the Linear programming optimization

method that the 100 data points came from a fixed normal distribution. This is

because based on previous discussion the top left graph (run sequence plot) is flat and

non-drifting which means the mean is constant and the vertical spread in the run

sequence plot is approximately the same over the entire horizontal axis which means

the variance is constant. Also the top right hand graph (lag plot) is structure less and

random which means that the data are independent random samples (no

94

autocorrelation). Also the bottom left hand graph (histogram plot) is bell shaped and

the bottom right hand (normal probability plot) is linear which means that the data

come from a normal distribution with a fixed mean and standard deviation.

Figure 38 Supply chain 1 Linear Programming 4-plot

Figure 39 shows that for supply chain 2 using the Linear programming optimization

method that the 100 data points came from a fixed normal distribution, though there is

more variation and some outlier data points. This is from a possible bug in my code

that in about 5% of cases the linear programming method results in an increase of

order costs instead of a decrease. In my code for those cases, the values are forced to

zero, notice those values in the top left graph (run plot) spiking downwards to zero

and the drop off at the beginning of the bottom right graph (normal probability plot).

95

Figure 39 supply chain 2 Linear Programming 4-plot

Figure 40 shows that for supply chain 3 using the Linear programming optimization

method that the 100 data points came from a fixed normal distribution. This is

because based on previous discussion the top left graph (run sequence plot) is flat and

non-drifting which means the mean is constant and the vertical spread in the run

sequence plot is approximately the same over the entire horizontal axis which means

the variance is constant. Also the top right hand graph (lag plot) is structure less and

random which means that the data are independent random samples (no

autocorrelation). Also the bottom left hand graph (histogram plot) is bell shaped and

the bottom right hand (normal probability plot) is linear which means that the data

come from a normal distribution with a fixed mean and standard deviation.

96

Figure 40 Supply chain 3 Linear Programming 4-plot

Another exploratory data analysis technique that Dataplot has for comparing two

samples for equality of location and variation is called a Bi-Histogram this technique

combines two histogram plots like in a mirror to see if they are similar in means and

variability. The Bi-Histograms for each supply chain, plotting histograms of heuristic

and linear programming improvement samples are shown see Figure 41 – Figure 43

they suggest that there is little difference in the means and standard deviations

between the two optimization methods for each supply chain. This suggests they

came from similar populations. As the samples appear to come from normal

populations, parametric tests for mean and standard deviation would be appropriate to

quantify the similarity between the two optimization methods. From these parametric

97

tests (see Appendix E) at the 99% confidence level the null hypothesis that there is no

appreciable difference between the two optimization methods is correct.

Figure 41 Supply chain 1 Bi-Histogram

98

Figure 42 Supply chain 2 Bi-Histogram

Figure 43 Supply chain 3 Bi-Histogram

99

See Appendix E for Dataplot output of the parametric tests.

The above results show that there is not much difference between the two

optimization techniques. This is due to the fact that both are equally good at routing

goods to the supply chain that needs the most help in fulfilling orders but the heuristic

method was much easier to implement and manage changes in complexity as well as

potentially being more efficient.

100

5. CHAPTER FIVE – Discussion and Conclusion

5.1 Overview

This chapter is a discussion of the research and conclusions reached; it also includes a

discussion of the limitations of this research and direction for improvements with

future research.

5.2 Recapitulation and Discussion

Electronic management of supply chains has been maturing for the last 20 years. The

pervasiveness of the internet has made supply chain accessibility cost-effective and

far-reaching into various business communities. There is great opportunity for more

automation within the business landscape. The literature reveals various attempts

along this route. This research has identified that there is need for more research into

faster and more flexible supply chain optimisation strategies across multiple supply

chains. This research adopts an SOA model to provide the glue for integrating

loosely-coupled business services across multiple heterogeneous supply chains to

answer the first research question raised. Concerning the second research question, a

heuristically guided optimisation module has been developed and added to the

framework. The framework integrates two very different techniques, i.e., heuristic

and simplex techniques, and is open for additional planning techniques. All these

resources can be applied and controlled by the rule-based inference engine. The

research makes extensive use of and relies on existing resources exposed as services.

This allows integration, monitoring and control to be far easier within SOA.

Preliminary results showed that optimised supply chains delivered much better time

101

and cost savings for each retail request, compared with traditional static supply

chains. Also that of the two techniques used for optimization of supply chains there

was no significant difference between them in savings in compared with traditional

static supply chains.

5.3 Study Limitations

The limitations of this research are that the data was simulation data not real world

data. This was unfortunate, but was unavoidable, as the sources for real world data I

approached were not willing to share their supply chain data; not even anonymously.

After consulting a supply chain academic, who stated that companies would be

unwilling to share data, as it gave away too much knowledge of their business and in

essence, could be considered their intellectual property?

5.4 Directions for Future Research

Some further research that is planned, is to see if routing rules can be acquired

automatically by machine learning techniques. Also additional research that is

planned is to see if multi-criteria optimization methods might be helpful in

optimization of supply chains. We also hope to have a better visual overview of

supply chain interactions, of which an example is shown in Figure 20. An additional

research future research improvement is keeping a log of each user's actions so that in

case of failure, safe recovery mechanisms could be called into play. This would be

essential for a real world system. Some extra supply chain contextual information

could be logged as well which would be useful for auditing purposes as well as to

provide for more complex reasoning rules. It would also be good to have access to the

infrastructure from tablets and mobile devices. The web pages would be smaller and

102

simpler to interact with, but be essentially unchanged. Any device capable of running

a browser could use web services to interact with my system. An extra security layer

would be needed to prevent unauthorized access.

103

REFERENCES

Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993) Network Flows: Theory,

Algorithms, and Applications, Prentice Hall.

Bailey, J., Papamarkos, G., Poulovassilis, A., Wood, P.T., (2002) An Event-

Condition-Action Language for XML in Proc. WWW ‘2002, pages 486-495, Hawaii,

2002.

Bowersox, D.J., Closs, D.J. and Stank, T.P. (1999) 21st Century Logistics: Making

Supply Chain Integration a Reality, Council of Logistics Management, Michigan

State University.

Chopra, S. and Meindl, P. (2004) Supply Chain Management: Strategy, Planning,

and Operation, Prentice-Hall Publishing.

Christopher, M., Peck, H. and Towill, D. (2006) ‘A taxonomy for selecting global

supply chain strategies’, The International Journal of Logistics Management, Vol. 17,

No. 2, pp.277–287.

Christopher, M. and Towill, D. (2001) ‘An integrated model for the design of agile

supply chains’, International Journal of Physical Distribution & Logistics

Management, Vol. 31, pp.235–246.

Concurrency and Application Design (2013) available at

https://developer.apple.com/library/ios/DOCUMENTATION/General/Conceptual/Co

ncurrencyProgrammingGuide/ConcurrencyandApplicationDesign/ConcurrencyandAp

plicationDesign.html, (accessed 1st November 2013).

Dai, W., Moynihan, P., Gou, J., Zou, P., Yang, X., Chen, T. and Wan, X. (2007)

‘Services oriented knowledge-based supply chain application’, Proceedings of the

2007 IEEE International Conference on Services Computing, IEEE Computer

Society, Los Alamitos, CA, USA, pp.660–667, available at

http://www.conferences.computer.org/scc/2007/ (3rd place award contest team).

Emerson, D. and Piramuthu, S. (2004) ‘Agent-based framework for dynamic supply

chain configuration’, Proceedings of the 37th Hawaii International Conference on

System Sciences, pp.1–9.

NIST/SEMATECH e-Handbook of Statistical Methods (2012) available at

http://www.itl.nist.gov/div898/handbook/, (accessed 24th January 2012).

https://developer.apple.com/library/ios/DOCUMENTATION/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyandApplicationDesign/ConcurrencyandApplicationDesign.html
https://developer.apple.com/library/ios/DOCUMENTATION/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyandApplicationDesign/ConcurrencyandApplicationDesign.html
https://developer.apple.com/library/ios/DOCUMENTATION/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyandApplicationDesign/ConcurrencyandApplicationDesign.html

104

Fayaz, M., Rabello, L. and Mollaghasemi, M. (2005) ‘Ontologies for supply chain

simulation modeling’, Proceedings of the 2005 Winter Simulation Conference.

Fayazbakhsh, K. and Razzazi, M. (2008) ‘Coordination of a multi-commodity supply

chain with multiple members using flow networks’, IEEE Second International

Conference on the Digital Society, pp.25–30.

Goldberg, A.V., Tardos, E., and Tarjan, R.E. (1990) Network Flow Algorithms, Paths,

Flows, and VLSI-Layout, Springer-Verlag, pp.101–164.

Hetherington, M. and Ismail, H.S. (2006) ‘Qualitative examination of how agility and

agile manufacturing fit with traditional strategy and the Triz framework’.

Horvath, L. (2001) ‘Collaboration: the key to value creation in supply chain

management’, Supply Chain Management: An International Journal, Vol. 6, No. 5,

pp.205–207.

Kumar, S., Dakshinamoorthy, V. and Krishnan, M.S. (2007) ‘Does SOA improve the

supply chain? An empirical analysis of the impact of SOA adoption on electronic

supply chain performance’, Proceedings of the 40th Hawaii International Conference

on System Sciences, pp.1–10.

Lee, H.L. and Bianchi, C. (1995) ‘The evolution of supply chain management models

and practices at Hewlett Packard’, Interface, Vol. 25, No. 5, pp.42–63.

Lim, B. and Wen, J. (2003) ‘Web services: an analysis of the technology, its benefits,

and implementation difficulties’, Information Systems Management.

Linear Programming (2012) available at

http://en.wikipedia.org/wiki/Linear_programming.htm (accessed 7th January 2012).

Mason, D., Naylor, B. and Towill, D.R. (2000) ‘Engineering the legible supply chain’,

International Journal of Agile Managements Systems, Vol. 2, No. 1, pp.54–61.

Moynihan, P. and Dai, W. (2010) ‘Knowledge-based service system for supply chain

management’, Proceedings of the 7th IEEE International Conference on Service

Systems and Service Management, June, pp.591–596, IEEE Press, Tokyo, Japan.

Operations Research (2012) available at

http://en.wikipedia.org/wiki/Operations_research.htm (accessed 7th January 2012).

Papazoglou, M.P. and Georgakopoulos, D. (2003) ‘Service-oriented computing’,

Communications of the ACM, Vol. 46, No. 10, pp.24–25.

Pomykalski, J.J., Truszkowski, W.F. and Brown, D.E. (1999) ‘Expert systems’, in

Webster, J. (Ed.): Wiley Encyclopedia for Electrical and Electronics Engineering.

http://en.wikipedia.org/wiki/Linear_programming.htm
http://en.wikipedia.org/wiki/Operations_research.htm

105

Reveliotis, S. (2003) An Introduction to Linear Programming and the Simplex

Algorithm, available at http://www.isye.gatech.edu/~spyros/index.html> (accessed on

22 February 2010).

Stonebraker, P.W. and Liao, F. (2006) ‘Supply chain integration: exploring product

and environmental contingencies’, Supply Chain Management: An International

Journal, Vol. 11, No. 1, pp.34–43.

Strohmaier, M. and Rollett, H. (2005) ‘Future research challenges in business agility –

time, control and information systems’, Proceedings of the 2005 Seventh IEEE

International Conference on E-Commerce Technology Workshops (CECW’05), pp.1–

7.

Vanderbei, R. (2007) ‘Linear Programming’ chapter 5, Operations Research and

Financial Engineering, Princeton University, Princeton, NJ 08544, pp.4-5.

Weizi, L., Huiying, G., Zhijun, Y. and Kecheng, L. (2008) ‘On dynamic agility of

inter-organizational processes’, IEEE Xplore, pp.1–5.

Wu, X., Fang, G. and Wu, Z. (2006) ‘The dynamic IT capabilities and firm agility: a

resource-based perspective.’

Yi-nan, Q. and Zhao-fang, C. (2009) ‘The impact of supply chain strategies on supply

chain integration’, 2009 International Conference on Management Science &

Engineering, 14–16 September, pp.534–540, Moscow, Russia.

Zsiflovits, H.E. and Engelhardt-Nowitzki, C. (2004) ‘An analysis of frameworks for

measuring supply chain agility’, IEEE Xplore, pp.87–95.

106

APPENDIX A

The following discussion is drawn heavily from my development diary (the

unashamed use of the first person part of speech). It shows the complexity that can

arise from creating innovative software.

To test the finished system I thought I would use a website stress testing tool called

“The Grinder3”, it has a learning curve as the tests have to be written in the Python

language, which I used to be familiar with, but haven’t used for a while. It is a very

powerful tool. But in the end, it took too long to set up to get a suit of website stress

tests to run and so; I wrote my own humble test harness tool in java.

I worked on the load facts module on the client side. Testing had shown that the client

side module needs to be isolated to a single class to prevent multiple differing web

service calls creating unnecessary threads and connections to the database. The server

side code was done and it is now a part of the INDEX web service. At the time it still

had some problems. I fixed two main bugs that were causing INDEX to throw two

SQL exceptions. One was that I needed to test that the new ddp(threadnumber) table

that was created upon the receiving of a new http connection, was not already existing

in the database (I have to query the database first before creating the table).

And the second one was that the method to clear the table was not passed the right

thread number so couldn’t select the right table name. These are now fixed and there

are no more exceptions but there was still erratic behaviour, all the facts were not

added to the right table.

Another thread is interrupting, causing the final facts to be added to another threads

working memory table. Some of this is due to the client application adding facts from

an external class, which causes another web service call, which creates another http

107

connection, which causes another instance of INDEX to be created with its own

working memory table. The threads need to be more isolated from each other. I may

use thread-local variables to provide this isolation.

To get the load facts module to load facts within the same thread as the http

connection (this was to ensure that the right working memory table was loaded with

facts, as a new table was created for each call to INDEX for inferencing services.) I

needed to load them all within the same web service call. To do this the dynamic

invoker had to be able to pass an array of the facts to the web service. I had modified

the dynamic invoker (a program to call a generic web service) to be able to pass an

array of strings to the web service. At first I thought this had worked (no errors), but

until I had modified INDEX and rebuilt the service I didn’t know for sure.

Unfortunately after I had done this the dynamic invoker started throwing errors up.

 Axis 1.4 (a java API for adding web service functionality to applications) will allow

simple arrays of primitive types to be passed across the protocol but not arrays of

arrays (I later found this to be wrong). I realized then that I was attempting to pass an

array of string arrays. (An array of facts, each fact has an object, attribute and value

strings.) If each fact were packed into a string with a delimiter character separating

each object attribute and value string, then there would be only a simple array of

strings to be passed to the web service. At the time and after searching on the web I

formed the conclusion that I would probably need to migrate to axis2.

Some other ideas that I considered then were having a static singleton class manage

http sessions with transaction ID’s but that extra housekeeping code in the end wasn’t

necessary.

Getting the web service infrastructure to pass bulk data was the first short term goal. I

obtained the source code and java docs for axis-1.4, jaxrpc, and wsdl4j. I set these up

108

so that eclipse (a java development tool) would be able to access them so I could set

breakpoints inside the axis libraries and have pop-up windows for the documentation.

I then wrote a web service to test passing an array of strings to and from a web

service. The web service test code worked when called from a local main method.

I used my normal procedure to build and deploy it as an axis mediated web service

inside tomcat. It built normally but when I tried to deploy it, the axis admin client

raised a strange axis error that I had never seen before. I checked the procedure and

the code and everything was ok, the procedure and libraries worked flawlessly if you

followed the procedure rigidly. After a few hours of checking, and trying other code, I

concluded that my axis installation had just gone bad, and I would have to replace it

entirely. I restored a clean version from my archives, and the web service deployed

perfectly. But when I ran the application, there were errors from the dynamic invoker

from the client side this time (I didn’t know this at the time, I thought it might have

been a fault in the server side). I kept adding libraries to the client side until the errors

subsided; eight libraries (approx. 2 MB) are the minimum needed to run the dynamic

invoker to be able to call a web service.

 After getting all this working the web service still wouldn’t pass a complete array

only the name back and forth from the web service to the dynamic invoker. I read all

of the axis documentation and set some hidden settings (server-conf.wsdd is the file

to configure axis capability) it still wouldn’t work, the documentation said that axis

can pass arrays of various type and java beans and all kinds of mime attachments.

Then I tried all the samples, most of them didn’t work, they were composed of

conglomerations from various other projects, they were there to give you ideas not

necessarily working code. I tried pieces of code from the various samples but still

only a single item from the array would be sent or received.

109

I also tried a couple of other web service technologies Axis2 and JaxWS (apache cxf

is the implementation). Cxf crashed my eclipse installation, it might be a good system

but I will need a better computer. Axis2 didn’t have a dynamic invoker; I would have

to create one from scratch, again a good system but a lot more time to get it to do the

simple thing that the project needed.

I decided that I would write my own and use a packed string to pass facts across the

web service barrier. This I know will work, as the dynamic invoker can pass single

strings and numbers to and from a web service.

At last I now know why the dynamic invoker would not pass arrays even though axis

does support them. First a little history, the original dynamic invoker was written by

“Davanum Srinivas” (who worked for Yahoo) in 2001 as a command line tool to test

a web service installation. It uses JAXRPC (Java XML extensions for Remote

Procedure Calls) and axis calls to collect data from the command line and pass it to

the web service from any environment, it is completely stub less (you don’t need

receiving code on the web service side for it to work). As complex data is not usually

passed from the command line Davanum used a simple serializer (a program to

manage data transfer across a protocol) from axis to manage the data types. A simple

serializer will only pass simple strings and numbers. Axis also comes with other

serializers, an array serializer for instance which is the default, but is not used by the

current dynamic invoker.

I did not alter the dynamic invoker in the short term (murphy’s law had leaned

heavily on me and I didn’t want to waste any more time) I used packed strings to pass

the facts across, in java (for my application) a single packed string will be able to

carry about a 1000 facts and I set up the INDEX service to be able to pass five packed

110

strings back and forth in one go, this will be sufficient in the short term, I will alter

the dynamic invoker if in the future I need more functionality.

The load facts module took longer than I thought. I first built a simple version using

string arrays; this would pack an array of strings into a single string separated by

commas (CSV’s). I also wrote a method that would unpack a packed string into an

array of strings. These all worked perfectly. I then wrote a simple web service that I

could send a packed string to, and it would unpack the string internally. This worked

as a java application. I then packaged and deployed it as a web service in Tomcat.

This worked perfectly, verifying that it was possible to send multiple facts and or

rules to a web service in one call.

I then tried to retrofit the “SOADemo” and INDEX to see if this approach would

work for them. I first tried with the “SOADemo”. Instead of using a String array for

the client side to aggregate the facts, I used a String Buffer object (similar to a String

Builder object but thread safe) to build up the packed string as I went. I created a

“loadFacts” method to handle the client side fact aggregation.

 This method was to be called multiple times throughout the “SOADemo” whenever a

fact triplet was to be sent to INDEX. This method would accept a fact triplet (object,

attribute and value) plus a Boolean (true or false) variable called “sendFacts”, this

variable if set to false was to tell the “loadFacts” method to both aggregate the fact

triplet and return for more facts to aggregate, or if set to true to aggregate the fact

triplet and send the fact aggregation to INDEX. This was to allow the reuse of the

“loadFacts” method and tell the method when enough facts had been collected to send

to the INDEX web service for inferencing.

This client side method worked perfectly as a java application. To test it as a web

browser application I had to set up three programs to run concurrently, an Eclipse

111

debugging application, a debug version of Tomcat and a web browser to initiate the

“SOADemo”. A stub was inserted into INDEX to receive the packed string.

There were quite a few problems to get this to work properly. Some of which was that

the debug version of Tomcat is a separate application to the Tomcat usually used as a

server. This debug version uses “jpda” technology to enable it to act as a client server

so that Eclipse can send and receive debugging information on port 8000. The start-

up script for the debug version of Tomcat has to have some magic commands added

to it. This debug version of tomcat was so that you can debug servlets running inside

of the Tomcat container.

The problem of using the debug version of tomcat was in moving a copy of the

“SOADemo” and INDEX web service to a separate version of Tomcat and not editing

some of the configuration files for the demo and INDEX. They needed some path

strings changed to reflect the location of the new version. Anyway after tracking

down all the errors and fixing them, I was able to verify that the right packed strings

were getting correctly passed to INDEX.

I then started on the Server side with INDEX. I wrote an extended method inside

INDEX that unpacked the strings sent over from the client side, and added this data to

a thread created working memory table called “ddp (threadnumber)”. This worked

perfectly. The problem now, was that the facts (though all added to the database table

on the same thread of execution) was still a different thread than the client call, to

start inferencing on the added data.

The adding of facts and the command to start inferencing needs to be on the same

“http” connection thread, so that the facts go into the right working memory table,

because the temporary working memory table name is created for each “http”

connection thread number. Because of this requirement I decided that the load facts

112

“INDEX “method should immediately call the inferencing subsystem after loading

the facts into ddp. This was logically what always happened anyway, but a separate

web service call to initiate inferencing was always made. This testing showed the

extra web service call actually initiated another “http” connection, which didn’t

matter in the single threaded version of INDEX, but is an important difference in a

multi-threaded version. Also how do you easily track which data or commands go

with which http connection over time, and have this scalable?

I made the load facts module in INDEX call the inferencing subsystem. This worked;

a single “http” connection thread handled the loading of facts and inferencing and

returned the right results to the user that initiated the service.

The multi-threaded version of INDEX now worked, but it only worked under the

Eclipse debugger, this is because the debugger makes the INDEX worker thread wait

until SQLServer has returned from its database update. Outside the debugger the

thread doesn’t wait long enough and the data is not added to the right working

memory table which causes “no conclusion” to be returned. So far making the thread

sleep for 100ms was not enough time (I later found if I fixed the code it wouldn’t

need any wait). It was exciting the project was nearly finished.

I got INDEX working outside the debugger. A thread sleep of 300ms got INDEX and

“SQLServer” communicating together allowing the facts to be added to the temporary

working memory which then allowed INDEX to come to the right conclusion and the

results to be returned to the webpage properly. On moving INDEX to the production

version of Tomcat I found that I had to increase the thread sleep time to 500ms.

There were some significant bugs still left in the SOADemo notably in INDEX. The

demo did run better, the bugs were typically, for a multithreaded application,

intermittent; and they would significantly compromise scalability.

113

Now I will talk about the last part of INDEX development and testing. I used a

program called “FindBugs” it is a program similar to C’s Lint in that it reads source

code and identifies stylistic inconsistencies and most importantly potential errors.

It identified about 50 errors on the first run which I fixed. A snippet of the output

follows:

com.index.inference.core.DDP.create(String, String, String) may fail to close

Statement DDP.java /ConcurrentIndex/src/com/index/inference/core line

243 FindBugs Problem (Normal Priority)

com.index.inference.core.DDP.updateOA(String, String, String) may fail to close

Statement DDP.java /ConcurrentIndex/src/com/index/inference/core line

184 FindBugs Problem (Normal Priority)

The main progress in resolving the faults occurred when I created a better testing

framework. This was one that by passed the internet and let me test INDEX threading

as a standalone application. This allowed me to see clearly what was going on and fix

errors and inefficiencies.

Because of this better testing, I rewrote some of the Multi-threaded parts of INDEX.

This created a lot more stability and fixed the intermittent bugs, and I didn’t need to

add any more wait states to enable thread synchronization.

There was one last bug still to be fixed. For a reason I can’t recall I removed the

logging framework from INDEX, most likely to reduce the logging output and found

another bug (the last major one I hope) that was hiding behind the logging framework

thread (the logging framework runs in its own thread). This had been masking a

thread issue with the database. It only occurred intermittently when the thread timing

was just right. The first thread that closed the database connection caused the other

threads to raise an exception about the database connection being closed.

114

In a typical run when this bug occurs, thread “main-1” finishes first and closes the

database connection and returns the correct conclusion, and when thread “main-2”

tries to access the database and close it the SQLServer driver raises an exception, as it

can’t be closed twice, this is a bug in the JDBC SQLServer driver. I quote from an

Internet blog:

“Apparently with the MSSQL driver (and also the Data Direct Driver) you cannot

close a connection twice. If you do so, something will get screwed in the driver. It

won’t show up all the time, just when you push the driver. So check your code and

make sure you don't close a connection twice. Data Direct is responsible for making

the MS driver, so perhaps someone should tell these guys about the problem. “

This causes thread “main-2” to return “no conclusion”

After investigating this situation I was able to ascertain that two classes are

responsible for the database connection thread race condition. They are KDS.java and

Rule.java. They connect and close the connection with the database, differently from

the rest of INDEX.

The solution is to make KDS and Rule conform to the rest of INDEX (quick to do) or

the make the other classes conform to KDS and Rule (slower to do). I hope to try the

easy way soon. Update! I still haven’t fixed it, INDEX keeps running flawlessly. I

will have to fix it sometime.

A snippet from the log of a successful run follows:

Thread: main-1 running

retailQuant[0] = 520.0

retailQuant[1] = 430.0

retailQuant[2] = 100.0

distribQuant[0] = 690.0

distribQuant[1] = 940.0

distribQuant[2] = 160.0

manufactQuant[0] = 10.0

manufactQuant[1] = 90.0

manufactQuant[2] = 40.0

115

Some Facts are =

retailQuant0,<,distribQuant0,retailQuant1,<,distribQuant1,retailQuant2,<,distribQuan

t2,retailTime0,=,0.0,retailTime1,=,0.0,retailTime2,=,0.0,

Thread: main-2 running

retailQuant[0] = 130.0

retailQuant[1] = 370.0

retailQuant[2] = 890.0

distribQuant[0] = 620.0

distribQuant[1] = 700.0

distribQuant[2] = 670.0

manufactQuant[0] = 90.0

manufactQuant[1] = 50.0

manufactQuant[2] = 100.0

Some Facts are =

retailQuant0,<,distribQuant0,retailQuant1,<,distribQuant1,retailQuant2,<,distribQuan

t2,retailTime0,=,0.0,retailTime1,=,0.0,retailTime2,=,0.0,retailQuant0,<,distribQuant0,

retailQuant1,<,distribQuant1,retailQuant2,>,distribQuant2,retailTime0,=,0.0,retailTi

me1,=,0.0,retailTime2,=,2.0,

thread [main-1] INFO InferenceEngine:39 - Entering InferenceEngine()

thread [main-1] INFO CreateDestroyTable:265 - Entering CreateDestroyTable()

main-1

thread [main-2] INFO InferenceEngine:39 - Entering InferenceEngine()

thread [main-2] INFO CreateDestroyTable:265 - Entering CreateDestroyTable()

main-2

thread [main-1] INFO DataSourceManager:23 - Entering DataSourceManager()

thread [main-1] INFO DataSource:19 - Entering DataSource()

thread [main-1] INFO GDI:18 - Entering GDI()

thread [main-1] INFO GoalDriven:28 - Entering GoalDriven()

thread [main-2] INFO GDI:18 - Entering GDI()

thread [main-2] INFO GoalDriven:28 - Entering GoalDriven()

thread [main-2] INFO ICS:56 - Entering ICS()

thread [main-1] INFO ICS:56 - Entering ICS()

thread [main-1] INFO KDS:28 - Entering KDS()

. . .

thread [main-1] INFO CreateDestroyTable:464 - DeleteTable Drop TABLE ddp1

. . .

thread [main-2] INFO Fact:19 - Entering Fact()

thread [main-2] INFO CreateDestroyTable:464 - DeleteTable Drop TABLE ddp2

Inference results =

<?xml version="1.0" encoding="utf-8" ?>

<conclusion>

 <result number="1">

116

 <ObjectName>optimize</ObjectName>

 <ObjectAttribute>retailTime</ObjectAttribute>

 <ObjectValue>2</ObjectValue>

 </result>

 . . .

 <result number="9">

 <ObjectName>optimize</ObjectName>

 <ObjectAttribute>add</ObjectAttribute>

 <ObjectValue>productQuant2Batch</ObjectValue>

 </result>

 <result number="10">

 <ObjectName>add distrib2Retail2Diff</ObjectName>

 <ObjectAttribute>to</ObjectAttribute>

 <ObjectValue>distributorBatch</ObjectValue>

 </result>

</conclusion>

Inference results =

<?xml version="1.0" encoding="utf-8" ?>

<conclusion>

 <result number="1">

 <ObjectName>retailTime0</ObjectName>

 <ObjectAttribute>=</ObjectAttribute>

 <ObjectValue>0</ObjectValue>

 </result>

 <result number="2">

 <ObjectName>optimize</ObjectName>

 <ObjectAttribute>add</ObjectAttribute>

 <ObjectValue>productQuant0Batch</ObjectValue>

 </result>

 . . .

 <result number="8">

 <ObjectName>optimize</ObjectName>

 <ObjectAttribute>add</ObjectAttribute>

 <ObjectValue>productQuant2Batch</ObjectValue>

 </result>

 <result number="9">

 <ObjectName>add distrib2Retail2Diff</ObjectName>

 <ObjectAttribute>to</ObjectAttribute>

 <ObjectValue>distributorBatch</ObjectValue>

 </result>

</conclusion>

The log snippet shows that the inference engine is running concurrently with two

different sets of facts and returning two different conclusion xml files. One file from

thread “main-1” has ten results the other from “main-2” has nine.

117

APPENDIX B

Data from experiments

SoaData1 SoaData2 SoaData3 LpData1 LpData2 LpData3

37.445877 30.387577 40.187366 36.798466 30.387577 40.187366

31.478830 42.146862 37.284042 19.747478 42.146862 37.609524

41.822319 44.022949 43.446621 39.092403 44.303745 43.450703

45.502251 41.765820 36.271744 45.502251 41.765820 36.271744

23.121887 47.154095 31.452332 19.162468 47.643986 31.505575

41.762100 21.925781 36.574764 41.762100 21.925781 36.574764

41.119404 43.867088 29.956314 41.243534 43.867088 29.956314

26.084146 45.400459 42.511681 26.084146 45.400459 42.511681

50.338131 28.294250 29.181549 50.338131 28.294250 29.181549

35.733803 29.287676 28.712944 35.733803 18.636715 28.902822

42.237091 44.883530 42.816181 42.723499 44.883530 29.874987

40.482914 29.786386 35.178989 40.482914 29.786386 35.178989

47.826069 25.315979 31.662405 47.826069 25.315979 31.662405

35.155399 21.397947 29.529404 35.155399 21.397947 29.529404

34.190350 29.394468 39.013344 34.190350 0.000000 41.629219

41.035347 33.049236 36.973633 41.035347 33.049236 36.973633

23.981462 21.578676 21.017944 23.981462 21.686468 19.802719

35.467323 40.749229 43.461914 35.467323 40.753548 43.461914

25.711170 52.110165 46.495102 24.837156 52.192753 46.495102

26.580370 48.142971 50.096596 27.274776 48.142971 36.134060

33.108913 32.613529 31.632917 33.108913 31.839254 31.653080

36.285183 39.691704 47.188648 36.373512 39.733593 27.959463

38.231617 33.175610 38.936687 38.231617 33.175610 38.936687

31.432983 26.652046 25.962576 31.470415 0.000000 25.962576

44.966431 21.674229 37.964592 44.966431 18.147520 40.151188

41.194607 53.809608 30.997095 41.194607 53.809608 30.997095

39.714970 21.838804 15.918496 39.714970 21.838804 15.918496

28.828367 36.820415 41.629436 28.828367 37.515465 16.769573

48.294563 33.315670 32.092342 35.126713 33.315670 32.358799

30.306334 49.604771 42.690998 30.306334 47.346325 43.745911

47.935848 33.541904 33.470661 47.744919 30.138584 33.470661

41.572495 34.216347 40.890835 41.572495 34.216347 40.890835

42.717327 27.669548 23.488764 42.717327 27.669548 23.488764

38.637024 37.416618 37.290737 38.768188 37.416618 36.632320

23.459551 46.725433 45.818233 23.459551 46.725433 45.818233

28.143150 21.198072 55.406879 31.650574 0.000000 20.942051

40.066578 53.044743 32.792130 40.066578 53.044743 32.792130

38.438984 35.090508 25.968002 38.438984 35.090508 25.968002

34.317337 38.931236 33.805405 34.317337 38.984116 33.805405

27.827913 42.323181 54.592453 27.927000 42.644730 47.175575

31.530207 51.014797 48.670521 31.530207 51.389019 11.684208

51.189148 29.584789 49.196194 51.580654 29.584789 49.196194

118

24.711519 34.649628 32.865803 24.711519 34.649628 32.865803

39.874805 58.892639 21.506458 39.874805 57.439495 21.506458

44.157879 46.842739 21.503315 44.157879 46.842739 21.503315

26.834238 29.581400 54.761421 27.508131 29.581400 37.942219

38.684444 58.975391 33.498493 38.684444 58.771896 33.498493

42.199867 32.089130 35.788639 42.199867 32.381897 35.788639

16.235897 30.034075 37.772327 16.235897 30.034075 37.772327

31.964680 34.016342 31.086821 29.761696 34.094631 31.542221

34.190662 23.791967 27.807692 34.459843 23.992048 27.812437

39.014210 41.248936 34.749050 39.014210 41.248936 34.749050

44.923767 29.074965 50.026215 18.618029 29.588465 50.026215

39.252670 37.351395 34.258118 38.139309 37.358196 34.258118

37.090458 32.097168 22.965963 37.090458 32.097168 22.965963

47.388638 24.913689 50.640583 47.388638 24.913689 49.368958

33.331173 37.756027 36.187180 33.331173 37.756027 36.187180

32.771908 34.030022 38.903557 20.502810 34.030022 39.950302

36.599098 35.269096 34.418392 36.599098 35.307045 33.743473

30.837542 38.669689 37.165077 29.189596 0.000000 43.503685

28.359264 56.009281 54.428272 33.164005 31.733278 55.093418

34.397217 38.860435 54.037834 34.746365 38.860435 49.750919

41.359474 39.081032 38.853088 41.359474 39.081032 38.853088

39.569889 44.881733 35.071159 39.625515 44.303421 35.071159

28.870424 44.579815 31.173021 29.943531 35.609585 31.173021

24.125790 41.259373 44.902885 24.125790 41.259373 44.902885

44.490772 45.402431 30.840382 44.490772 45.402431 30.840382

29.867676 41.622211 39.890354 29.867676 41.622211 39.890354

34.331810 31.675602 43.601673 34.546814 31.675602 39.945076

36.807846 27.354225 43.112305 36.807846 27.354225 43.112305

34.155266 41.343586 39.517467 34.155266 41.343586 39.517467

29.038916 75.606819 34.490707 29.038916 75.414520 25.117392

41.834141 39.293262 35.907337 33.961220 39.293262 37.694729

30.446678 46.505630 37.737961 30.446678 46.505630 37.737961

37.247162 43.705307 29.981106 37.247162 43.705307 30.011595

36.473984 21.069162 49.173157 36.473984 21.069162 49.173157

34.593655 42.566910 32.948341 34.709000 32.020748 32.948341

36.083580 35.872738 26.209795 36.083580 30.984301 26.568142

34.724567 40.470905 32.229446 34.774860 40.470905 32.196903

44.822392 48.587185 42.632851 45.188770 0.000000 42.877003

35.571751 42.180237 45.773800 35.571751 42.180237 45.773800

28.698391 52.369221 33.137074 28.698391 52.369221 33.137074

31.219032 54.953312 40.504368 31.219032 54.953312 40.504368

33.478046 33.414536 50.885288 33.478046 33.414536 50.913002

23.960686 54.352303 34.449825 23.960686 54.352303 34.449825

30.127153 32.307259 37.025406 29.785507 32.307259 37.192440

31.616390 40.640060 44.114517 31.616390 40.640060 44.675392

30.352238 26.985983 38.242050 30.352238 26.960960 38.347107

36.806316 43.072483 46.131725 31.258556 43.639179 46.131725

25.878668 51.379986 34.469631 25.878668 51.379986 34.469631

39.877708 30.765829 29.613733 39.223724 30.765829 29.624447

31.413034 33.644001 47.432949 31.413034 33.959858 35.974304

119

39.476830 36.338009 35.979744 43.145683 36.338009 35.979744

33.975143 29.745092 34.419724 33.975143 27.452793 34.547440

44.523067 38.563381 44.382015 29.345318 39.590729 44.382015

44.940281 23.232840 46.666210 45.669342 22.553053 48.557198

39.693180 31.747107 34.758862 39.693180 31.747107 34.758862

32.611973 42.494766 43.258156 32.611973 44.651356 31.570852

37.950684 42.011677 45.576920 37.950684 42.011677 45.576920

39.898361 32.494362 29.773643 40.456894 32.494362 20.638634

120

APPENDIX C

The original given model for cost per unit to manufacture, transport and store was:

 [()]

 ∑

 P = manufacturing costs per unit

 a = supply cost per unit from supplier a

 b = supply cost per unit from supplier b

 c = supply cost per unit from supplier c

 SL = $100 transport cost per 500 units

 tc = total cost per unit

 ∑

 ∑
 = storage costs $d per unit for t days models a trickle feed from

manufacturer with constantly increasing storage space needed over n days.

Simplify for calculation purposes:

∑

 ()

 ()

Multiply generic sum of arithmetic series by d:

∑

 ()

 ()

∑

Collect terms and simplify:

121

∑

 ()

Then final simplified model for calculation purposes of the total cost per unit to

manufacture, transport and store for n days is:

 ()

For the scenario of a supply chain with the longest delivery time (large retail order,

low distributor stock, and low manufacturing production throughput, this produces a

large time to fulfill order). The heuristic rule for this scenario is to choose the supply

chain with the smallest delivery time, and after its current order has been fulfilled, to

transfer its production stream to the supply chain with the longest delivery time. The

math to calculate the new improved delivery time is:

For each isolated supply chain the normal delivery time depends on what is available

from the warehouse and how fast the manufacturer can make up the difference.

The un-optimized delivery time in days for single isolated supply chain is:

For shared supply chains if the supply chain with fastest throughput can supplement

the supply chain with the least throughput then:

Then the optimized delivery time for the supply chain with the least throughput is:

122

()

Expand and then simplify:

123

APPENDIX D

Optimization procedures

The first procedure is to create and populate the data structures that will contain and

encapsulate the hierarchical data objects; list of supply chains, individual supply

chains and the individual supply chain artifacts (retailers, distributors, manufacturers

and suppliers).

Figure 44 Data structures

Data structures are sorted to find largest and smallest times to fulfill retail orders.

124

Figure 45 Sort retail time objects by time

Calculate optimized retail order times by applying equation see line 360

Figure 46 Optimized retail order times by equation

Calculate savings in cost components (optimized order, transport and storage costs)

Figure 47 Optimized order, transport and storage costs

125

Data Generation procedures

The data generation procedures are first, the individual supply chain artifacts are

filled with randomized data (within certain ranges).

Figure 48 Fill supply chain artifacts with randomized data

The randomized supply chain artifacts are ready to be sent to two optimization

modules. One the heuristic based approach that uses the optimization model from my

web based research prototype, but the internet components have been removed to aid

efficiency (the heuristic based optimization module will be called at least 100 times in

each run). The second is a linear programming Simplex based module; this will also

be called at least 100 times during a run. Next a data file is initialized and told to

generate 100 data sets for each Heuristic and Simplex modules and a flag is set to tell

the system that it is writing to the file for the first time so that the file will be cleared

of old data or else it will be appended to the file during each run.

126

Figure 49 Generate data and write to file

Figure 50 Create data file name

Next some variables are created to handle the dataflow and control signals between

the two optimization modules and the calling module.

127

Figure 51 Variables for data flow and control

The randomized data is sent to the heuristic optimization module first and the savings

are returned and added to a common data structure.

Figure 52 Data from Heuristic optimization model ready for writing to file

Then the same randomized supply chain data is sent to the Simplex module and the

savings are returned and added to the same common data structure as the heuristic

module was added to and then the common data structure is written to the data file.

Figure 53 Data from Simplex module written to file

128

The method “writeToFile()” writes column headings then formats the data and writes

a line of data to the file.

Figure 54 Method writeToFile()

See APPENDIX B for example of file format.

Figure 55 Simplex Solver driver initialize variables

129

Figure 56 Simplex Solver driver add data from model to solver

Figure 57 Simplex Solver driver run model and return results

130

Figure 58 Simplex Solver itself

Figure 59 Simplex Solver build model

131

Figure 60 Simplex Solver finishes building model

Figure 61 Simplex Solver solve model and return results to driver

132

APPENDIX E

The following Dataplot output are the parametric tests for each supply chain LP1 is

linear programming optimization for supply chain 1 and SOA1 is heuristic

optimization method for supply chain 1.

Two Sample t-Tests for Equal Means

First Response Variable: LP1

Second Response Variable: SOA1

H0: Population Means Are Equal

Ha: Population Means Are Not Equal

Sample One Summary Statistics:

Number of Observations: 100

Sample Mean: 34.91064

Sample Standard Deviation: 7.245900

Sample Standard Deviation of the Mean: 0.7245900

Sample Two Summary Statistics:

Number of Observations: 100

Sample Mean: 35.79009

Sample Standard Deviation: 6.899811

Sample Standard Deviation of the Mean: 0.6899811

Two-Tailed Test (Assume Equal Variances)

H0: u1 = u2; Ha: u1 <> u2

--

 Null

 Significance Test Critical Hypothesis

133

 Level Statistic Value (+/-) Conclusion

--

 50.0% -0.8789650 0.6757308 REJECT

 80.0% -0.8789650 1.285842 ACCEPT

 90.0% -0.8789650 1.652586 ACCEPT

 95.0% -0.8789650 1.972017 ACCEPT

 99.0% -0.8789650 2.600887 ACCEPT

 99.9% -0.8789650 3.340340 ACCEPT

Two-Tailed Test (Assume Unequal Variances)

H0: u1 = u2; Ha: u1 <> u2

--

 Null

 Significance Test Critical Hypothesis

 Level Statistic Value (+/-) Conclusion

--

 50.0% -0.8789650 0.6757339 REJECT

 80.0% -0.8789650 1.285852 ACCEPT

 90.0% -0.8789650 1.652604 ACCEPT

 95.0% -0.8789650 1.972046 ACCEPT

 99.0% -0.8789650 2.600948 ACCEPT

 99.9% -0.8789650 3.340461 ACCEPT

Two Sample F-Tests for Equal Standard Deviations

First Response Variable: LP1

Second Response Variable: SOA1

134

H0: Sigma1 = Sigma2

Ha: Sigma1 not equal Sigma2

Sample One Summary Statistics:

Number of Observations: 100

Sample Mean: 34.91064

Sample Standard Deviation: 7.245900

Sample Two Summary Statistics:

Number of Observations: 100

Sample Mean: 35.79009

Sample Standard Deviation: 6.899811

Conclusions (Upper 1-Tailed Test)

H0: sigma1 = sigma2; Ha: sigma1 <> sigma2

--

 Null

 Significance Test Critical Hypothesis

 Level Statistic Region (>=) Conclusion

--

 50.0% 1.102835 0.9999990 REJECT

 75.0% 1.102835 1.145651 ACCEPT

 90.0% 1.102835 1.295129 ACCEPT

 95.0% 1.102835 1.394061 ACCEPT

 97.5% 1.102835 1.486234 ACCEPT

 99.0% 1.102835 1.601498 ACCEPT

 99.9% 1.102835 1.873411 ACCEPT

Two Sample t-Tests for Equal Means

135

First Response Variable: LP2

Second Response Variable: SOA2

H0: Population Means Are Equal

Ha: Population Means Are Not Equal

Sample One Summary Statistics:

Number of Observations: 100

Sample Mean: 35.66766

Sample Standard Deviation: 12.80811

Sample Standard Deviation of the Mean: 1.280811

Sample Two Summary Statistics:

Number of Observations: 100

Sample Mean: 37.98339

Sample Standard Deviation: 10.04330

Sample Standard Deviation of the Mean: 1.004330

Two-Tailed Test (Assume Equal Variances)

H0: u1 = u2; Ha: u1 <> u2

--

 Null

 Significance Test Critical Hypothesis

 Level Statistic Value (+/-) Conclusion

--

 50.0% -1.422772 0.6757308 REJECT

 80.0% -1.422772 1.285842 REJECT

 90.0% -1.422772 1.652586 ACCEPT

 95.0% -1.422772 1.972017 ACCEPT

 99.0% -1.422772 2.600887 ACCEPT

136

 99.9% -1.422772 3.340340 ACCEPT

Two-Tailed Test (Assume Unequal Variances)

H0: u1 = u2; Ha: u1 <> u2

 Null

 Significance Test Critical Hypothesis

 Level Statistic Value (+/-) Conclusion

 50.0% -1.422772 0.6758016 REJECT

 80.0% -1.422772 1.286087 REJECT

 90.0% -1.422772 1.653028 ACCEPT

 95.0% -1.422772 1.972708 ACCEPT

 99.0% -1.422772 2.602326 ACCEPT

 99.9% -1.422772 3.343215 ACCEPT

Two Sample F-Tests for Equal Standard Deviations

First Response Variable: LP2

Second Response Variable: SOA2

H0: Sigma1 = Sigma2

Ha: Sigma1 not equal Sigma2

Sample One Summary Statistics:

Number of Observations: 100

Sample Mean: 35.66766

Sample Standard Deviation: 12.80811

Sample Two Summary Statistics:

137

Number of Observations: 100

Sample Mean: 37.98339

Sample Standard Deviation: 10.04330

Conclusions (Upper 1-Tailed Test)

H0: sigma1 = sigma2; sigma1 <> sigma2

H0: sigma1 = sigma2; Ha: sigma1 <> sigma2

 Null

 Significance Test Critical Hypothesis

 Level Statistic Region (>=) Conclusion

 50.0% 1.626362 0.9999990 REJECT

 75.0% 1.626362 1.145651 REJECT

 90.0% 1.626362 1.295129 REJECT

 95.0% 1.626362 1.394061 REJECT

 97.5% 1.626362 1.486234 REJECT

 99.0% 1.626362 1.601498 REJECT

 99.9% 1.626362 1.873411 ACCEPT

Two Sample t-Tests for Equal Means

First Response Variable: LP3

Second Response Variable: SOA3

H0: Population Means Are Equal

Ha: Population Means Are Not Equal

Sample One Summary Statistics:

Number of Observations: 100

Sample Mean: 35.67877

138

Sample Standard Deviation: 8.415528

Sample Standard Deviation of the Mean: 0.8415528

Sample Two Summary Statistics:

Number of Observations: 100

Sample Mean: 37.67469

Sample Standard Deviation: 8.288676

Sample Standard Deviation of the Mean: 0.8288676

Two-Tailed Test (Assume Equal Variances)

H0: u1 = u2; Ha: u1 <> u2

 Null

 Significance Test Critical Hypothesis

 Level Statistic Value (+/-) Conclusion

 50.0% -1.689746 0.6757308 REJECT

 80.0% -1.689746 1.285842 REJECT

 90.0% -1.689746 1.652586 REJECT

 95.0% -1.689746 1.972017 ACCEPT

 99.0% -1.689746 2.600887 ACCEPT

 99.9% -1.689746 3.340340 ACCEPT

Two-Tailed Test (Assume Unequal Variances)

H0: u1 = u2; Ha: u1 <> u2

 Null

 Significance Test Critical Hypothesis

 Level Statistic Value (+/-) Conclusion

139

 50.0% -1.689746 0.6757311 REJECT

 80.0% -1.689746 1.285843 REJECT

 90.0% -1.689746 1.652588 REJECT

 95.0% -1.689746 1.972020 ACCEPT

 99.0% -1.689746 2.600893 ACCEPT

 99.9% -1.689746 3.340352 ACCEPT

Two Sample F-Tests for Equal Standard Deviations

First Response Variable: LP3

Second Response Variable: SOA3

H0: Sigma1 = Sigma2

Ha: Sigma1 not equal Sigma2

Sample One Summary Statistics:

Number of Observations: 100

Sample Mean: 35.67877

Sample Standard Deviation: 8.415528

Sample Two Summary Statistics:

Number of Observations: 100

Sample Mean: 37.67469

Sample Standard Deviation: 8.288676

Conclusions (Upper 1-Tailed Test)

H0: sigma1 = sigma2; Ha: sigma1 <> sigma2

--

 Null

 Significance Test Critical Hypothesis

 Level Statistic Region (>=) Conclusion

140

--

 50.0% 1.030843 0.9999990 REJECT

 75.0% 1.030843 1.145651 ACCEPT

 90.0% 1.030843 1.295129 ACCEPT

 95.0% 1.030843 1.394061 ACCEPT

 97.5% 1.030843 1.486234 ACCEPT

 99.0% 1.030843 1.601498 ACCEPT

 99.9% 1.030843 1.873411 ACCEPT

