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ABSTRACT 

 

Ceramic membranes made from zeolites possess the nanoporous structure required for 

desalination of saline water including seawater. In this research, an α-Al2O3 supported MFI-

type silicalite membrane was synthesised by the direct in-situ crystallisation method via a 

single hydrothermal treatment in an autoclave under autogenous pressure. Desalination 

performance of the prepared silicalite membrane was carried out with a seawater solution 

(0.3wt% TDS (total dissolved solids)) over a long period of around 180 days at a constant 

pressure of 700 kPa at various temperatures. The prepared silicalite membrane achieved a 
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high rejection (>93%) for all major seawater ions including Na+ (except for K+, 83%) at an 

applied pressure of 700 kPa and room temperature (22 °C), but showed a continuous decrease 

in ion rejection when increasing the temperature from 22 °C and 90 °C. Permeation flux of 

the zeolite membrane significantly increased with increasing in temperature. Upon closer 

observation of the major cations, size selective diffusion in the zeolite membrane was 

observed over the temperatures tested. Larger ions Ca2+ and Mg2+ were less responsive to 

temperature than smaller ions Na+ and K+. No changes in membrane structure were observed 

by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) after 

180 days seawater exposure. However, energy-dispersive X-ray spectroscopy (EDS) mapping 

on the surface of the membrane revealed a small quantity of tightly bound divalent cations 

present in the structure, which appear to have penetrated the zeolite, accelerated by 

temperature. They were suspected to have altered the permstructure, explaining why original 

high rejections at room temperature were not reversed after heat exposure. The work has 

shown that zeolite membranes can desalinate seawater, but other unusual effects such as ion 

selective diffusion as a function of temperature indicate a unique property for desalination 

membrane materials. 

 

Keywords: Desalination; Seawater ions; Zeolite membrane; MFI; Silicalite 

 

1. Introduction 

 

   Desalination is now commonly performed using membrane technology in reverse osmosis 

(RO) mode. However, the membrane types for desalination are limited to a handful of 

materials which imposes strict pretreatment requirements, such as chlorine/oxidant removal, 

abrasive particle removal and reduced operation temperature prior to feeding water to the 

polymer membrane. Also, the polymer material is subject to fouling which damages the 

membrane, either by the foulant itself, or the cleaning chemicals used to reverse the fouling 

[1]. Research and development in alternative membrane materials could enable more 

desalination opportunities where current membranes are limited. Harnessing inorganic 

materials for developing desalination membranes could be a more robust alternative relieving 

the costly pretreatment requirements required to conform to these material limitations. 

    

   The fundamental requirement of the membrane to carry out desalination by RO is an 

inherent ability of the membrane to repel ions, but pass water. High ion rejection properties 
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are essential in tandem with high water diffusion [2].  Nanoporous inorganic membranes have 

been studied both theoretically and experimentally to reject ions by filtration, utilising single 

layers [3] and a novel bilayer concept [4, 5]. Single layers are a more simplistic approach but 

the material must possess the required pore size between ions and the water. There have been 

some studies to date applying different membrane materials such as zeolites [2, 3, 6-10], and 

hybrid organically bridged silica [5] for membrane desalination. Zeolite materials are highly 

configurable through their chemistry and offer unique frameworks for a wide variety of 

applications including chemical sensing, water treatment and chemical reaction [2, 3, 6-13]. 

Their tuneable pore size, typically in the 0.3 to 1 nm range, makes them highly suitable for 

molecular sieving (i.e. ion rejecting) applications. Over the last decade, significant progress 

in the preparation and characterisation of zeolite membranes has stimulated research in their 

application for various molecular level separations including gas phase and liquid phase 

mixtures. Zeolites have also been shown to be outstanding candidate materials for 

desalination membranes as they possess the required small pore properties to reject ions [6, 

10] as well as the thermal, chemical, and mechanical stability of ceramics [14].  

 

   A molecular dynamic simulation study conducted by Lin and Murad [10] showed that 

100% rejection of Na+ could be achieved using a perfect (single crystal), pure-silica ZK-4 

zeolite membrane by RO. They found that zeolite pore structure is ideally suited to reject 

ions. The size exclusion of hydrated ions is the separation mechanism of the perfect ZK-4 

zeolite membrane [15]. The aperture of the ZK-4 zeolite (diameter 0.42 nm) is significantly 

smaller than the kinetic sizes of hydrated ions (e.g. Na+ 0.716 nm, K+ 0.662 nm, Ca2+ 

0.824 nm, Table 1) [16]. 

 

Table 1 Diameter of water and ions [17] 

 

Ion Hydrated diameter (nm) 

H2O 0.276 
K 0.662 
Cl 0.664 
Na 0.716 
Ca 0.824 
Mg 0.856 
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   Following this computational simulation study, several research groups have explored the 

possibility of using MFI-type zeolite membranes for desalination [2, 6-9]. The MFI-type 

zeolite has orthorhombic crystal symmetry with nearly cylindrical, 10-member ring channels. 

The aperture size of the MFI-type zeolite is around 0.56 nm [8], which is smaller than the 

sizes of hydrated ions [17] but larger than the kinetic diameter of water. Performance testing 

of MFI-type zeolite membranes working in RO demonstrated that high rejections of even the 

smallest ions, including Na+ abundantly found in saline waters, are achievable [2, 6].  

 

   In general, permeation in an ideal molecular sieve zeolite membrane should occur only 

through the regular intracrystalline pores of the zeolite selective layer. In reality, however, the 

permeation properties will often be modified due to the existence of intercrystalline defect 

porosity caused by insufficient intergrowth of crystals, thermal removal of the template (e.g. 

tetra-propyl ammonium hydroxide (TPAOH)) [18, 19], or the complete de-watering of the 

membrane layer [20, 21]. Several researchers have reported changes in the unit cell 

dimensions of MFI-type zeolite crystals during heat treatment [21-24]. Our recent studies [25, 

26] also showed that the interaction between MFI-type zeolites and the major cations in 

seawater causes changes not only in structure but also porosity, which is expected to affect 

diffusion properties of these materials when used as membranes for desalination. An easily 

modified feature of MFI-type zeolites is the Si/Al ratio which allows structures to be tailored 

to optimize the sorption uptake and species selectivity [27]. For example, increasing the 

content of alumina can alter properties such as surface hydrophobicity and surface charge 

which can have a significant impact on diffusion of electrolytes [27, 28].  Al-rich MFI-type 

zeolite (ZSM-5) membranes were recently reported to deliver higher water fluxes when 

compared with pure silica (silicalite-1) membranes using a pervaporation setup for 

desalination of NaCl solutions, but the silicalite-1 membrane exhibited relatively high 

robustness during a long term (560 h) stability testing [29]. Little work however exists on 

longer term (e.g. 180 days) performance of MFI-type zeolite membranes for reverse osmosis 

desalination of seawater ion complexes, or the performance as a function of temperature 

which may reveal unique diffusion effects through the dynamic zeolite cage and grain 

boundaries. 

 

   In this work, a MFI-type silicalite membrane was developed by a direct in-situ 

hydrothermal synthesis method. The as-synthesised zeolite membrane underwent long term 

(180 days) desalination of seawater ion complexes in the RO mode at different temperatures. 
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The structure and morphology of the zeolite membrane was also investigated by XRD and 

FESEM techniques.  

   

2. Experimental and methods 

 

2.1 Materials 

 

   1M TPAOH solution, sodium hydroxide pellets (NaOH, 99.99%) and fumed silica (SiO2, 

99.98%, particle size 0.014 µm, surface area 200±25 m2g-1) used for membrane preparation 

were purchased from Aldrich. The seawater solution (0.3wt% TDS) used for membrane 

desalination performance test was prepared from sea salts supplied by Sigma-Aldrich. All 

these chemicals were used as received without further purification. The porous α-Al2O3 disc 

shape support (99.8% Al2O3, ~27 mm diameter × 2 mm thick, average pore size of ~100 nm, 

~30vol% porosity.) used for the current work was made by Nanjing University of 

Technology, China.  

  

2.2 Membrane preparation 

 

   The MFI-type silicalite zeolite membrane was synthesised on the disk-shaped porous α-

Al2O3 substrate by a direct in-situ crystallisation method via a standard hydrothermal process 

[2]. The synthesis precursor was prepared by dissolving 0.49 g NaOH pellets and 7 g fumed 

silica (99.98%, Aldrich) in 35 mL 1M TPAOH solution at 80 °C. The hydrothermal 

crystallisation process was conducted by placing the α-Al2O3 support into a Teflon lined 

stainless steel autoclave and adding the above prepared synthesis precursor solution and 

followed by hydrothermal treatment at 180 °C for 5 h. After hydrothermal synthesis, 

membrane was washed in deionised water to remove loose precipitate and was then calcined 

at 450 °C for 8 h with a heating/cooling rate of 1 °Cmin-1 to remove the organic template 

from the zeolite framework.  

 

2.3 Membrane desalination 

 

    Desalination performance of the MFI-type silicalite membrane for a seawater solution 

(0.3wt% TDS) was carried out on the temperature-controlled membrane test rig (Fig. 1) at a 

pressure of 700 kPa and different temperatures (22 °C, 50 °C, 70 °C  and 90 °C). The RO 
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experiments were conducted by a cross-flow operation with the membrane surface facing the 

feed solution and the substrate facing the permeate side. The membrane was first installed 

into the membrane cell and placed into the temperature control unit. The stainless steel feed 

vessel was charged with deionised water or 0.3wt% seawater solution. The operating pressure 

(700 kPa) was supplied by feeding N2 into the feed vessel and was maintained constantly 

during the test. The cation concentrations of the collected permeate samples were analysed by 

inductively coupled plasma-optical emission spectrometry (ICP-OES) (PE Optima 4300 DV, 

Perkin Elmer instruments, USA)  with 1500 w RF power.  Rejection (rj) of cation j was 

calculated by: 

 

100
)(

(%)
,

,, ×
−

=
fj

pjfj
j c

cc
r         (1) 

 

where Cj,f  and Cj,p are ICP-OES measured concentrations of cation j (j = K+, Na+, Ca2+, Mg2+) 

in the feed and permeate solutions, respectively. 

 

   After desalination testing, the desalination system (including the membrane surface) was 

flushed with deionised water and the tested membrane was then oven dried for further 

characterisation.    

 

 

 

 

  

 

 

 

 
 
 

Fig. 1. Schematic drawing of the desalination system. 
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2.4 Characterisation 

 

   The original and desalination tested MFI-type silicalite membrane was characterised by 

XRD, SEM/EDS and single gas (He or N2) permeation to determine any changes in 

membrane structure, morphology and surface elements after long term desalination testing at 

different temperatures. Prior to characterisation, the desalination tested membrane underwent 

deionised water permeation to remove weakly adsorbed material (including ions).  The 

structure of the membrane was determined by XRD (D8-Advance, Bruker) and the XRD 

patterns showed no significant differences before and after long term seawater desalination 

testing. The textures of the membrane were observed by FESEM (S-4800, Hitachi) and the 

element analysis of the samples was carried out by EDS (Noran NSS 2.2, Thermo Scientific). 

  

   Positron annihilation lifetime spectroscopy (PALS) was used to investigate the effect of 

temperature on pore size of zeolites. Zeolite powders used for this study were prepared using 

the same procedures as used for the membrane preparation. PALS experiments were 

performed using an automated EG&G Ortec fast-fast coincidence system with fast plastic 

scintillators and a resolution function of 230 ps FWHM. To measure the long lifetimes, the 

range of the time-to-amplitude-converter (TAC) was extended to 200 ns and the coincidence 

unit was removed to improve the count rates. The 30 μCi 22NaCl source was dried onto 

2.54 μm thick Mylar film which required a source correction (1.605 ns, 2.969%). The 

original and seawater exposed zeolite powder samples were degassed at 150°C under vacuum 

for 16 hours prior to measurement. The positron source was sandwiched between 2 mm of 

powdered sample and evacuated to 5 × 10-7 Torr.  A minimum of five spectra of 4.5 million 

integrated counts were collected per sample. The spectra were analyzed using LT9 software 

and were fitted to five components with τ1 being fixed to 0.125 ns due to para-positron self-

annihilation, and τ2 ~ 0.35–0.45 ns attributed to free positron annihilation. The average pore 

diameter for τ3 was calculated using the Tao-Eldrup model assuming infinitely long 

cylindrical pore shape [30, 31]. The pore sizes for the long lifetimes (τ4 and τ5) were 

calculated using the rectangular Tao-Eldrup (RTE) model based on an infinitely long channel 

[32].  
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   Gas permeation was conducted on a simple membrane test system with the same membrane 

cell used for desalination testing. The membrane was installed into the membrane cell and 

dried at 120 °C in the temperature control unit under N2 prior to gas permeation testing. 

Permeation of either He or N2 was carried out at 120 °C by feeding the gas at 100 kPa to the 

film-side of the membrane. The pressure decay occurred during the permeation test was 

monitored by a TPI 665 digital manometer (Test Products International, Inc. USA). The 

pressure was recorded by a computer with TPI 665 Data Logger software. Permeation was 

calculated by normalising the data to the membrane area and pressure drop. 

 

3. Results and discussion 

 

3.1 Desalination performance 

 

   The desalination performance of membrane was evaluated over 180 days of permeation at 

various temperatures from 22 °C to 90 °C. The membrane was tested with pure water 

(deionised water) for the first 10 hours, at which seawater was then introduced. The initial 

testing with pure water at room temperature (22 °C) showed a constant flux of ~0.03 Lm-2h-1. 

However, upon the introduction of seawater solution the permeate flux dropped by 33% to 

~0.02 Lm-2h-1. The drop is related to the reduced driving force in overcoming the osmotic 

pressure determined by: 

 

iMRT=π           (2) 

 

where π is the osmotic pressure (kPa), i is the van’t Hoff factor of the solute (-), M is the 

molarity of the salt in solution, R is the universal gas constant (8.315 LkPamol-1K-1) and T is 

the system temperature (K). For binary salt solutions like NaCl (predominant in seawater), i 

is equal to 1.8 to represent incomplete dissociation (ion pairing). So the estimation of π in our 

experiment is 220 kPa. Since the membrane had high salt rejection (Fig. 4), the effect of 

osmotic pressure reduced the effective pressure by 32% correlating well with the observed 

flux reduction.  

 

   Figure 2 shows the specific flux which was estimated according to the following equations: 
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effective
s p

JJ =           (3)             

             

)( permeatefeedtotaleffective pp ππ −−=        (4) 

         

where Js (Lm-2h-1kPa-1) is the specific flux, J (Lm-2h-1) is the flux obtained for a certain tested 

time and temperature, peffective is the effective pressure (kPa), ptotal is the applied gauge 

pressure (700 kPa) when operating under ambient permeate pressures, and πfeed and πpermeate 

are the osmotic pressure (kPa) calculated from Eq. (2) for the feed solution and permeate, 

respectively. It can be seen that the specific flux Js was small (<1.2×10-4 Lm-2h-1kPa-1) under 

an applied pressure of 700 kPa in all cases, being much smaller than state-of-the-art polymer 

membranes (estimated Js ~40×10-4 Lm-2h-1kPa-1) used for seawater with a typical TDS of 

35000 mgL-1 at operating pressures of 5.5–6.5 MPa to achieve water fluxes of 12–17 Lm-2h-1 

[33]. While the flux achieved in this study is practically too low for industrial applications, 

we acknowledge that zeolite membranes synthesised by the in-situ method (thickness ~3 µm) 

[6, 7] are much thicker than commercial RO membranes (0.2 µm) [34, 35]. Membrane 

resistance to water transport is proportional to the dense skin thickness. As a result, water 

fluxes on polymer membranes are much higher than those through zeolite membranes.  

 

   Some simulation studies [36-39] have shown that a high pressure (e.g. 60–100 MPa) is 

required to infiltrate water into the purely siliceous pores of MFI zeolites (e.g. hydrophobic 

silicalite). However, a small increase in “hydrophilicity” of the porous framework could 

result in a change of the pores from being dry to being completely filled with water at 

saturation conditions [39]. It is known that during the synthesis of silicalite membranes, the 

alumina substrate will contribute some alumina into the zeolite thus departing it from ideal 

pure silicalite [40, 41]. Therefore, while we aim to make a silicalite membrane, we expect 

some alumina in our zeolite which makes it less hydrophobic thus providing more favourable 

conditions for water to enter the material.  

 

   Small fluxes have also been reported elsewhere for zeolite membranes [6, 42]. Kumakiri et 

al. [42] reported a total flux of 0.058 Lm-2h-1 (estimated Js ~0.4×10-4 Lm-2h-1kPa-1) on a 

zeolite A membrane for RO mode rejection of ethanol from its aqueous solution under an 

applied pressure of 1.5 MPa. Li and co-workers [6] also reported a stabilised flux of 
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~0.112 Lm-2h-1 (estimated Js ~0.6×10-4 Lm-2h-1kPa-1) for a single 0.1 M NaCl feed solution 

under an applied pressure of 2.07 MPa and 0.058 Lm-2h-1 (estimated Js ~0.4×10-4 Lm-2h-1kPa-

1) for a complex feed solution (0.1 M NaCl+0.1 M KCl+0.1 M NH4Cl+0.1 M CaCl2+0.1 M 

MgCl2) under an applied pressure of 2.4 MPa with MFI-type zeolite membranes. Our recent 

study [43] on a MFI-type silicalite membrane prepared by the seeded secondary growth 

method also showed a flux of ~0.1 Lm-2h-1 (estimated Js ~1.6×10-4 Lm-2h-1kPa-1) for a 

3000 mgL-1 (~0.05 M) NaCl feed solution under an applied pressure of 700 kPa. Therefore it 

seems the membrane used for this study exhibited reasonable fluxes under the pressure tested 

(700 kPa) as expected for zeolite membranes.  
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Fig.2. Variation of specific water flux on the MFI zeolite membrane with 
temperature during the long term desalination testing. Solution fed at 700 kPa 

pressure.  
 

   To reduce capital cost and increase desalination capacity, fluxes of zeolite membranes need 

to be significantly increased. While zeolite membrane thickness was mentioned as a potential 

reason for reduced flux, studies have shown that the flux of zeolite membranes could be 

improved by changing the hydrophobicity of the membrane [44] or through a single crystal 

zeolite nano-membrane [45]. Li et al. [46] decreased the hydrophobicity of the membrane by 
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adjusting the Si/Al ratio to 50 and increased the flux from ~0.11 Lm-2h-1 (estimated Js 

~0.4×10-4 Lm-2h-1kPa-1) to ~1.1 Lm-2h-1 (estimated Js ~4×10-4 Lm-2h-1kPa-1) for a 0.1 M NaCl 

feed water under an applied pressure of 2.76 MPa. A most recent molecular dynamic 

stimulation study carried out by Liu et al. [45] showed that a nanoscale single crystal zeolite 

(FAU or MFI type) membrane with uniform pore size and high pore density can potentially 

achieve higher permeability (specific flux) than that of state-of-the-art polymer RO 

membranes. They also pointed out that for such zeolite nano-membranes to be suitable for 

practical desalination applications, the ratio of the membrane thickness to the pore radius of 

the porous substrate should be properly optimised. While flux optimisation is in need to meet 

expected fluxes of commercial polymer membranes, the key purpose of this work is to 

explore ion diffusion effects in high salt rejecting zeolite membranes.  

   

   The specific flux of seawater solution also remained almost constant for the whole testing 

period at room temperature (over 70 days at 22 °C), and showed a similar level to that of pure 

water (Fig. 2) confirming that the drop in flux upon the introduction of seawater solution after 

initial pure water test was caused by the decrease in the driving force (effective pressure) in 

overcoming the osmotic pressure. It was found from Figure 2 that there was only a slight 

increase in the specific flux when the operating temperature was increased to 50 °C, but a 

significant increase in specific flux was observed when temperature was further increased to 

70 °C and 90 °C. The specific flux at higher temperatures (70 °C and 90 °C) was relatively 

unstable compared to that of lower temperatures (22 °C and 50 °C). The retesting at room 

temperature showed a similar level of specific flux to that between 22 °C and 50 °C.  

 
   It can be seen from Figure 2 that the specific flux increased at an increasing rate when the 

operating temperature increased from 22 °C to 90 °C (increased 2.5 fold). Increase in 

permeate flux with increasing temperature is typical for microprous materials, especially 

MFI-type zeolites as observed in pervaporation studies which is attributed to activated 

transport [29, 47]. In desalination through the same structures, activated diffusion was also 

observed by Li et al. [8]. They found in their study that both water and ion fluxes increased 

significantly when raising the feed temperature from 10 °C to 50 °C.  

 
   Changes in the absolute concentrations of cations in the permeate during the long term 

desalination testing were determined by ICP-OES and shown in Figure 3. The ion rejections 

calculated from the ICP-OES measured absolute concentrations by Eq. (1) are presented in 
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Figure 4. It was found from Figure 3 that some Na+ and K+ were detected in the permeate 

samples obtained from the initial pure water testing. Na+ in the pure water permeate is likely 

due to the release of residual Na+ from zeolite membrane preparation as NaOH was added in 

the synthesis precursor [6, 25]. During the preparation of the zeolite membrane with the high 

concentration of NaOH and SiO2, significant amounts of Na+ may have been trapped in the 

substrate and the zeolite intercrystal pores and formed some low-solubility sodium 

aluminosilicate compounds (e.g. Na2SiO3, Na[Al(SiO3)2]) during heat treatment [6]. These 

sodium aluminosilicate compounds cannot be thoroughly cleaned up by the regular rinsing 

and leaching processes but the Na+ can dissolved slowly into the permeate solution during the 

RO operation [6].  The potassium ions present as impurities in the structure directing agent, 

TPAOH, are the source of K+ detected in the pure water permeates. It is common in zeolite 

synthesis that Na+ and K+ impurities come from the commercially available TPAOH 

solutions [25, 48]. No Ca2+ and Mg2+ were detected in the permeates from the initial pure 

water testing as expected as there are no other sources of these ions other than what is 

provided in the seawater solution. 
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Fig.3. Concentrations of cations captured in the permeate samples obtained 
from the long term desalination testing on the MFI zeolite membrane. Solution 

fed at 700 kPa pressure.  
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Fig.4. Ion rejections by the MFI zeolite membrane fed with 0.3wt% seawater 
solution (Ca2+ 31 mgL-1, Mg2+ 100 mgL-1, K+ 33 mgL-1, Na+ 948 mgL-1) at 700 kPa 

pressure. 
 

   With the introduction of 0.3 wt% seawater at room temperature (22 °C) there was almost no 

Ca2+ and Mg2+ measurable in the permeate samples (Fig. 3), indicating a high rejection for 

these cations (>98% for  Ca2+ and >99% for Mg2+, Fig. 4). Good rejections were also 

achieved for Na+ (>93%, Fig. 4) and K+ (>83%, Fig. 4) for this period of desalination, but 

they are not as high as those of Ca2+ and Mg2+, indicating that the zeolite membrane is more 

favourable for the rejection of divalent cations Ca2+ and Mg2+ than monovalent Na+ and K+. 

Similar trends were also observed in the study carried out by Li et al. [6] on the RO 

separation of the multiple-salt solution. Ca2+ and Mg2+ have higher ion charge density than 

Na+ and K+, thus have greater ability to polarise the neighbouring water molecules and form 

larger and more rigid hydrated complexes [49, 50]. Na+ rejection of 93% achieved in the 

current work is the best RO desalination on MFI zeolite membranes shown so far at a low 

applied pressure of 700 KPa. Previous studies by Li and co-workers [6] showed a Na+ 

rejection of 76.7% for a single 0.1 M NaCl feed solution under an applied pressure of 

2.07 MPa and 58.1% for a complex feed solution (0.1 M NaCl+0.1 M KCl+0.1 M 
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NH4Cl+0.1 M CaCl2+0.1 M MgCl2) under an applied pressure of 2.4 MPa. More recently, 

Na+ rejection (from 0.1M NaCl solution) was measured at 99.4% at 2.76 MPa [51]. 

Regardless, it is important to point out that MFI-type zeolites indeed have the required pore 

size to reject the most important ion, Na+, from water thus making them suitable for water 

passive, ion rejective applications including desalination. 

 

   When the testing temperature was increased from 22 °C to 50 °C, there was an increase in 

permeate ion concentrations in all cases, with a significant increase being observed for Na+ 

and K+ (Fig. 3). As a consequence of this, the ion rejections decreased. However, the 

rejection for the divalent cations Ca2+ (>90%) and Mg2+ (>93%) still remained quite high 

compared to that of Na+ (78–90%) and K+ (60–80%) (Fig. 4). Further increase in operating 

temperature (70 °C to 90 °C) resulted in a significant increase in permeate ion concentrations 

in all cases (Fig. 3) thus leading to a significant drop in ion rejections (Fig. 4). As mentioned 

earlier, the permeate flux showed a significant increase when increasing the testing 

temperature to 90 °C. This affected both water and ions, but had a greater impact on the ion 

permeation than on the water permeation thus resulting in a decrease in ion rejection [8]. This 

is a special phenomenon which requires further exploration for specialist ion selective 

applications (e.g. nutrient recovery). It was also interesting to note that the rejections obtained 

for K+ decreased to below 0% when the testing temperature was increased to 90 °C (Fig. 4). 

This unexpected observation of negative rejection of K+ might be due to the piezodialysis 

[52] on the zeolite membrane. Piezodialysis is the mechanism of salt transport in preference 

to water, driven by pressure gradient. This would suggest that the zeolties can diffuse ions 

driven by pressure. It may be possible with potassium considering it is the smallest cation in 

solution and would presumably require transport of chloride anions to maintain charge 

neutrality in the permeate. However more data would be needed to prove our unexpected 

negative rejection to be piezodialysis within zeolites. 

 

   A combination of phenomena is likely to be responsible for the variation in rejection as a 

function of temperature witnessed here. As shown in Figure 5, the ion rejection increased 

with increasing hydrated diameter of ions (Table 1: K+<Na+<Ca2+<Mg2+) at all temperatures 

tested except for the retest at 22 °C after testing at 90 °C. These results have demonstrated a 

size selective diffusion in the RO process of the zeolite membrane. In particular it was found 

that there was a significant drop in rejection of the smallest of the hydrated cations K+ as the 

operating temperature was increased. This is indicative of zeolite intrinsic pores opening in 
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the membrane to such an extent that the hydrated ion is easily accommodated in the structure 

and passage through the membrane becomes possible. Conveniently, the K+ hydrated 

diameter is very close to that of Cl-, being 0.662 nm and 0.664 nm respectively (Table 1). 

Charge balance can therefore be maintained by the simultaneous transfer of K+ and Cl-.  
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Fig.5. Ion rejections on a MFI zeolite membrane as functions of the hydrated 
diameter of ions (Table 1). 0.3wt% seawater solution (Ca2+ 31 mgL-1, Mg2+ 

100 mgL-1, K+ 33 mgL-1, Na+ 948 mgL-1) fed at 700 kPa pressure and different 
temperatures. 

 

   In order to explore the overall effect of temperature on the intrinsic pores and grain 

boundaries, PALS was conducted with results shown in Figure 6. Temperature was observed 

to have a slight effect on pore size of the zeolite. As mentioned above, increasing temperature 

is known to increase the zeolite intrinsic pores as shown in the PALS result. However due to 

the large uncertainties calculated for each point, only a very general increasing trend can be 

shown. Uniquely at 90 °C, an intrinsic pore size of around 0.6 nm is possible within the upper 

limit of certainty. This is approaching the size of the hydrated Na+ and Cl-. Another 

interesting result from PALS showed that the microporous grain boundaries decreased in size 
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with increasing temperature, which may be due to the slight expansion of the crystals thus 

causing the boundaries to close. They are still large enough to accept all cations listed in 

Table 1 at 90 °C (>0.9 nm), but the effect of activated diffusion appeared to outweigh any 

size reduction. No significant trend was observed over uncertainties in size for the 

mesopores.  
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Fig.6. Effect of temperature on pore size of zeolites measured by PALS. 
Intrinsic zeolite pores (left) and non-zeolite pores (right) made of micropores 

and mesopores 
 

   It is also important to keep in mind that while the MFI structure is expanding with 

temperature, the extent of hydration of ions decreases [53]. This means that the hydration 

diameter decreases at the same time as the zeolite intrinsic pores open, leading to the 

breakthrough of the K+ ion. Another important point is the slight changes in symmetry of the 

MFI structure that occurs throughout the temperature range being studied here. Early work 

into the MFI and ZSM-5 structures was able to show a symmetry change in the structure that 

occurs at 82–84 °C [54]. This slight, but distinct change may also contribute to a change in 

the pore characteristics of the structure, potentially enhancing diffusion or making the pores 

more accessible. If this is the case the reversibility of the system [55] would mean the 

structure would return on cooling, assuming no other changes have occurred.  

 

   Any charge-based rejection would also be reduced by the increased temperature. From a 

holistic viewpoint, the electrical double layer is the region where electrostatic forces of 

ordering outweigh the thermal forces of disorder [56]. From this concept, increasing the 

temperature would increase this disorder and weaken the effect of the double layer. This is 
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supported by theory that shows that while the characteristic thickness of diffuse layer would 

increase, the ability of the layer to store charge would decrease. This would allow more ready 

movement of ions near the surface of particles. In particular, this would influence diffusion 

via intercrystal pores where the double layer dominates ionic rejection mechanisms. This 

effect facilitates all ions, particularly the large divalents which cannot transport within the 

zeolitic pores, to diffuse through the membrane material. 

 

   The retest at 22 °C after testing at 90 °C showed a reversal in ion rejections to some extent, 

but did not achieve the similar level to that obtained for the initial test at 22 °C, suggesting 

that irreversible changes in the zeolite membrane might have occurred after testing at a 

relatively high temperature up to 90 °C. As was noted earlier, the change in symmetry in the 

MFI structure appears to be reversible suggesting this is not responsible for the change [55]. 

There is, however, an effect from the presence of different cations incorporated into the pores 

of the structure in order to maintain charge neutrality [55]. The reduction of the electrical 

double layer, enlargement of zeolite pores and increased rates of diffusion at higher 

temperatures have combined to allow not just significant transfer of K+ to the permeate but 

also a rise in the transfer of other ions. This implies a greater incorporation of these ions in 

MFI. This is likely to be the source of the apparent irreversible change to the structure. Apart 

from the strong impact from the temperature, long periods (e.g.180 days) of desalination 

testing might also have led to some slight changes on the zeolite membrane although  the 

structure was maintained at macroscale (Fig. 8b). The recent stability study carried out by 

Drobek, et al. [29] on zeolite membranes showed some permanent decay after up to 560 h 

desalination testing in pervaporation mode. This was due to the combined effects of ion 

exchange and water dissolution mechanisms. 

 

3.2. Permeation activation energy 

 

  It is known that the ion flux can be described by the Arrhenius function and the permeation 

activation energy can be estimated from an Arrhenius plot. Figure 7 shows the Arrhenius 

plots for the cations Na+, Ca2+, and Mg2+. We see for the points included in the plot, that they 

follow a linear relationship. The overall activation energies obtained for the cations are 

presented in Table 2. However it can be seen on Figure 7 that only the data obtained at 22 °C, 

50 °C and 70 °C were used for K+ as it deviated significantly when the temperature was over 

70 °C. Due to the rapid increase in K+ flux that is not attributed to conventional activated 
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transport (attributed to matching of zeolite pore size to hydration diameter), the data point for 

70 °C begins to depart from the model for K+ (Fig. 7) and the  correlation coefficient R2 for 

K+ is lower than that for Na+, Ca2+, and Mg2+ (Table 2). As observed earlier, the pores 

appeared to open for K+ (or its counter ion Cl-) to penetrate freely through the material which 

would impact the diffusivity coefficient. Diffusion would require another relationship 

reflecting the dynamic structure of the zeolite, but interestingly we observe this is not 

significant until a certain point where a major change to diffusion is observed.  
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Fig. 7. Arrhenius plots of the overall mass transport coefficients for the cations 

K+, Na+, Ca2+, and Mg2+. 0.3wt% seawater solution (Ca2+ 31 mgL-1, Mg2+ 
100 mgL-1, K+ 33 mgL-1, Na+ 948 mgL-1) fed at 700 kPa pressure. Jj (molm-2h-1) is 

the flux of ion j (j = K+, Na+, Ca2+, or Mg2+) and dCj is in molm-3 where j is the 
ion; R is the universal gas constant (8.315 LkPamol-1K-1) and T is the system 

temperature (K). 
 

   Although R2 for K+ is lower than the other cations because of the effect mentioned above, it 

is clear that the permeation activation energies for divalent cations Ca2+, and Mg2+ are greater 

than that for monovalent cations K+, Na+ (Table 2). This indicates that it requires more energy 

for these larger ions to diffuse through the zeolite which is sensible considering that they are 
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larger and probably have a stronger attraction to the zeolite material due to the stronger 

charge density. 

 

Table 2 The overall activation energies obtained from the Arrhenius plots and correlation 

coefficient R2 (Fig. 7) for permeation of the cations K+, Na+, Ca2+, and Mg2+. 

 

Ion  Hydrated diameter (nm) Overall activation energies Ej (kJ/mol)  R2 

K  0.662 50  0.81 

Na  0.716 51  0.99 

Ca  0.824 63  1.00 

Mg  0.856 100  0.96 

 

3.3. SEM 

 

   SEM was employed to investigate the morphology of the zeolite membrane before and after 

long term seawater exposure. Prior to SEM measurements, the desalination tested membrane 

was rinsed with deionised water to remove weakly adsorbed material (including ions), but 

was not cleaned too strongly to avoid removing the salts from within the zeolite. Figure 8 

shows the SEM images of the top layer of the MFI silicalite membrane. The image (Fig. 8a) 

of the as-prepared zeolite membrane surface showed typical randomly orientated silicalite 

crystals. Most of the crystals of silicalite lay disorderly on the surface of the Al2O3 support. 

The top view (Fig. 8b) of the surface of the seawater tested membrane also showed no 

significant change to the membrane structure after long term seawater exposure. 

Macrostructure of the membrane remained intact, only some ‘loose’ deposition of seawater 

salts on surface was observed after desalination. 
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(a) 

 
(b) 

 

Fig.8. SEM images on the surface of the zeolite membrane: (a) the original; (b) 
after long term seawater desalination. 

 

   Elemental analysis was also conducted by EDS on both surface and cross-section of the 

original and desalination tested membrane to determine elemental changes after long term 

seawater exposure. As shown in Table 3, K+ and Na+ were detected on the surface of original 

zeolite membrane by EDS scanning. This confirms the results obtained from ICP-OES 

analysis for the permeate samples from the initial pure water testing on the zeolite membrane 

(Fig. 3). As mentioned earlier in section 3.1, Na+ and K+ impurities are from the precursor for 

membrane synthesis. Comparing the seawater exposed membrane, we see an overall 

reduction in elements corresponding to the zeolite material (silicon and oxygen) such that the 

sea salts were making up a larger proportion of the material. Looking more closely, after 
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seawater treatment there was a decrease in K+ but Mg2+ and Ca2+ were detected on the zeolite 

membrane. The presence of Mg2+ and Ca2+ coupled with the visible material on the exposed 

membrane would suggest that some scaling has occurred, however the anion involved is not 

clear. While sulphate is a strong possibility, carbonate and hydroxide may also be possible. 

This in turn makes it difficult to determine if the scale is a result of the long exposure time or 

if it is a result of the higher temperatures used. Regardless, the decrease in presence of 

potassium also suggests an ion exchange process is occurring. With the increasing 

concentrations of species limited to Mg2+ and Ca2+, this would be the most likely ions 

exchanged.  

 

Table 3 EDS measured element contents on the zeolite membrane surface before and after 

180 day desalination test 

 

Element Weight percentage 

before desalination 

Weight percentage after 

desalination 

O 

Na 

Mg 

Al 

Si 

Cl 

K 

Ca 

Total 

46.01 

0.20 

- 

37.16 

16.32 

- 

0.32 

- 

100 

42.94 

0.23 

0.11 

31.82 

11.13 

0.02 

0.03 

0.10 

100 

   

   It should be noted that the EDS measured weight percentage of Mg2+ (0.11wt%) and Ca2+ 

(0.1wt%) after desalination (Table 3) may have relatively larger measurement errors when 

compared to that for the elements (e.g. O, Si, Al) with a high concentration. For SEM-EDS, 

with decreasing concentration, statistical errors and uncertainties in background corrections 

become dominant. The theoretical detection limits in SEM-EDS measurements are about 

0.08wt% [57]. Typical detection limits for EDS are about 0.1% [58]. We should point out 

here that the membrane was subjected to deionised water permeation after seawater testing. 

Therefore the detection of ions after seawater and deionised water permeation is a good 
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indicator that the ions were tightly bound into the zeolite. Therefore it seems that divalent 

ions are strongly bound into the intercrystalline pores (micro- and mesopores) of zeolite as 

they have a stronger charge density and are physically larger than monovalent ions. This 

supports the theory above that temperature alters the structure to facilitate irreversible 

entrance of divalents into the structure. K+ was found to be depleted from the material 

presumably due to the deionised water permeation which supports this theory. Na+ however 

remained unchanged and because we have identified that K+ and Na+ uniquely enter the 

zeolite cage (while divalents cannot) [25, 26], it sees that Na+ preferred to remain in the 

zeolite cage due to the strong charges within the zeolite structure. 

 

   A significant amount of  aluminium was also detected on the surface of both original and 

seawater tested zeolite membrane, suggesting that Al might have incorporated into the zeolite 

material and/or  the zeolite could have grown within the Al2O3 substrate. The Al2O3-supported 

MFI membranes are generally not Al free in their frameworks despite of the use of Al-free 

synthesis solutions during the membrane preparation [7]. Al can incorporate into the zeolite 

framework due to the dissolution of the Al2O3 surface in the high concentration of NaOH 

synthesis solution and solid-state diffusion of Al3+ during calcinations [40]. It is known that 

the penetration depth of the EDS is 0.5–5 µm [59], but the thickness of the zeolite 

membranes synthesised by the in-situ method is reported to be ~3 µm [6, 7]. Therefore, EDS 

could also measure aluminium from the substrate. 

 

3.4. Gas permeation 

 

   Gas permeation was used to evaluate the intactness of the zeolite membrane. The 

permeation of single gas (He or N2) measured for the original and seawater tested zeolite 

membrane is shown in Table 4. The gas permeation results for the bare α-Al2O3 support are 

also included in Table 4 for comparison. To release adsorbed water (water molecules can 

occupy the tight micropore spaces of the zeolite structure), gas permeation test was carried 

out at 120 °C.  

 

   It can be seen from Table 4 that the permeance of He and N2 measured for the original 

zeolite membrane was significantly smaller than that of the Al2O3 substrate (~34-fold smaller 

for He and ~24-fold smaller for N2), confirming that a zeolite layer was formed on the 

surface of the support. The permeance of He measured for the MFI zeolite membrane 
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prepared (in-situ method) in this study was smaller than that reported in literature [60] for the 

MFI zeolite membranes prepared by the seeded secondary growth. This is likely to be due to 

the different materials (e.g. pore size of the Al2O3 substrate) and synthesis conditions (e.g. in-

situ or seeded secondary growth) performed within different laboratories. The membrane 

prepared in this work could be slightly thicker than those in literature [60]. The high 

resistance of the MFI zeolite membrane prepared in this work may explain partly the low 

water flux as discussed in Section 3.1. The MFI zeolite membrane [43] prepared in our 

laboratory by the seeded secondary growth showed a similar level of He permeance to that in 

literature [60]. 

 

Table 4 He and N2 gas permeation testing on the zeolite membrane at 120 °C before and 

after desalination 

 

Membrane condition Permeance of He 

(× 10-10 molm-2s-1Pa-1) 

Permeance of N2 

(× 10-10 molm-2s-1Pa-1) 

He/N2 

α-Al2O3 support 

Original 

6300 

185 

4400 

180 

1.4 

1.1 

After desalination 2.5 0.72 3.5 

    

   After desalination testing, a significant decrease in gas permeation on the zeolite membrane 

was observed, indicating that the membrane was still intact after long term exposure to 

seawater ion complexes under different conditions. This is in good agreement with the 

observation from SEM (Fig. 8) showing an intact membrane, and the ion rejection results 

(Fig. 4) where salt rejections remained reasonably high (>60%) and no size cut off observed. 

However compared to the initial ion rejection results of >90%, it would seem apparent that 

some non-selective defects emerged that led to the uniform drop in rejection of all ions at the 

end of the test (Fig. 4). But this does not correlate with the gas permeation data where flux 

decreases and selectivity increase would indicate a better desalination membrane. It seems 

that the membrane experienced a disproportionate loss towards the larger pores of the 

membrane, which is mainly caused by the filling of the divalent ions into the grain 

boundaries [25]. So while they infiltrate the zeolite and open the pores thus reducing overall 

salt rejection, in gas permeation, they are dry and immobile, and instead block the pores to 

give a lower flux and high selectivity for small molecule gases. The kinetic diameter of He is 
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0.26 nm and N2 is 0.36 nm, so since the zeolite has a larger intrinsic pore size (0.56 nm) than 

these gases it seems highly likely that the reason why gas diffusion was inhibited was 

because of blocking by adsorbed cations as observed in Table 3. It is also worth pointing out 

that the He/N2 selectivity of 3.5 is larger than the Knudsen model value of 2.6 suggesting 

even the zeolitic pores are sufficiently blocked to allow size selective diffusion of He over N2 

within the MFI intrinsic pores. The finding that ions block pores via this membrane diffusion 

study aligns with our materials investigation of the influence of ions on MFI-structures [25, 

26]. As discussed earlier, it appears temperature accelerated this effect. 

 

4. Conclusions 

 

  In the current work, long term desalination through a α-Al2O3 supported MFI-type zeolite 

membrane synthesised by the direct in-situ crystallisation method was investigated for a 

seawater solution (0.3wt% TDS) under a pressure of 700 kPa and at increased temperatures. 

High rejection (>93%) of the major seawater ions (Ca2+, Mg2+ and Na+) was achieved at an 

operating pressure of 700 kPa and room temperature by the zeolite membrane. With 

increasing temperature, permeation flux of the zeolite membrane increased but ion rejection 

decreased. XRD and SEM measurements confirmed the formation of randomly orientated 

MFI-type silicalite membrane film on the surface of α-Al2O3 support, but showed no changes 

in structure after long term exposure of the membrane to seawater solution. Temperature may 

have caused accelerated ion diffusion, alterations in the zeolite structure and electrical double 

layer, and also the hydration diameter of ions, all contributing to penetration of divalent 

cations that explains why rejections did not increase to their original values when temperature 

was reduced. The results obtained in this study also confirmed that a nearly perfect rejection 

of ions including Na+ on a real MFI-type zeolite membrane at low temperature is achievable, 

which has potential application for conventional reverse osmosis desalination. But the ion 

selective behaviour as a function of temperature may be useful for tuneable ion separation 

applications. 
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Research highlights: 
 

• 180 day stability of MFI-type zeolite membrane for seawater desalination was 

confirmed.  

• The membrane achieved a high rejection (>93%) for the major seawater ions 

including Na+.  

• Increasing the temperature decreased the ion rejection and increased the permeation 

flux. 

• Larger ions Ca2+ and Mg2+ were less responsive to temperature than smaller ions Na+ 

and K+.  

• Ions infiltrate the zeolite material and alter its size selective property.  
 




