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Abstract  

Porous metal frameworks offer potentially useful applications for the 

aerospace, automotive and bio-medical industries. They can be used as electrodes, 

actuators, or as selective membrane films. The versatility of the physical features 

(pore size, pore depth, overall porosity and pore surface coverage) as well as the 

large range of surface chemistries for both metal oxides and pure noble metals offers 

scope to functionalise metal nano-particles and networks of nano-porous metal 

structures. As well as traditional routes to producing metal structures, such as metal 

sintering or foaming, novel high-throughput techniques have recently been 

investigated. Nanoparticle self-assembly, metal ion reduction and deposition as well 

as metal alloy de-alloying were identified as sustainable routes to produce large 

surface areas of such nano-porous metal frameworks. The main limitations of the 

current fabrication techniques include the difficulty to process stable and 

homogeneous arrays of nano-scale pores and the control of their morphology due to 

the high reactivity of nano-structured metal structures. This paper aims at critically 

reviewing the various fabrication techniques and surface functionalization routes 

used to produce advanced functional porous metal frameworks. The limitations and 

advantages of the different fabrication techniques will be discussed in light of the 

final material properties and targeted applications. 
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1. Introduction 

Porous metal materials, made from pure and alloyed metals or metal oxides, 

and exhibiting through-pores at the meso or macro scale, have been studied and 

used since the mid 1920’s 1. The scope of applications of porous metal frameworks 

includes separation membranes,2, 3 conductive porous electrodes4-7, biocompatible 

scaffolds8, 9, sensing10-13, actuators14 and hybrid composite materials15, 16. The 

development of porous cellular metal materials has been driven by the need for low 

density and high stiffness materials in the composite-material industry17-19. The 

morphology of the porous metal framework materials, i.e. the size and depth of the 

pores, overall porosity and pore surface coverage, may vary greatly with fabrication 

technique. 

Metal foams have been used in the automotive, bio-medical, and aerospace 

industries for their superior mechanical and thermo-electrical conduction properties15, 

17, 20-25. Metal foams and sponges show enhanced mechanical stability compared to 

their porous polymeric equivalents and have the advantages of both metallic 

characteristics and the soft matter properties found in polymers’15, 18, 20. The 

morphology and inter-connectivity of cells across structures made of non-connected 

voids (as in foams) or semi-continuous and tortuous networks (as in sponges) allows 

for a very fine tuning of bulk material properties. Other porous metal structures, 

including cast26 or electroplated metal grids or sintered particles, nanoparticles (NPs) 

or fibre meshes, have also been fabricated and commercialized and offer cheap and 

highly versatile pore structures that can be altered by changing the substrate 

geometry or the dimensions (size, length or aspect ratio), respectively27-30. The 

processing of either pure or alloyed porous metal structures has been demonstrated 

from noble metals, such as gold, palladium or platinum, as well as for copper, 

aluminium, nickel or iron, thereby offering a wide range of chemistries relevant to 

specific applications31. The recent interest in nano-textured metal surface chemistry 

has also opened new routes to the preparation of ‘smart’ functionalization of either 

metal oxide or pure metal surfaces32. In addition, recent research on innovative 

porous metal structure fabrication such as electro-less deposition33-35, block co-

polymer self-assembly mixed with metal particles36-38 and de-alloying39, has opened 

the way to exciting opportunities and applications for such porous metal frameworks. 

The development of innovative and inexpensive metal materials promises to benefit 
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both industry and the community in fields such as those that utilize abrasive liquid 

waste purification, industrial solvent mixtures, extremely concentrated brines or 

extreme pH conditions. 

This article aims to critically review the various fabrication techniques and 

surface functionalization routes that have been demonstrated to date to successfully 

produce advanced functional porous metal frameworks. The advantages and 

limitations of these fabrication techniques will be discussed in light of the final 

material properties and the suggested/reported applications (sensing, biological 

scaffolds and separation). This review presents, for the first time, a critical analysis of 

the relationship between the fabrication routes and the morphology of the metal 

frameworks. The present article also aims at correlating the metal frameworks 

morphology to their properties and highlights the potential and importance of surface 

functionalization towards specific applications. The most promising approaches and 

future research directions to process and chemically functionalize nano and macro 

porous metal frameworks are identified and both advantages and limitations are 

discussed.  
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2. Fabrication techniques of porous metal frameworks 

A number of techniques have been used to fabricate porous metal frameworks 

and foams and the five most widely used are: (i) bottom-up growth, (ii) top-down 

milling, (iii) phase removal, (iv) compaction / sintering, and (v) templating, Figure 1. 

Each of these general approaches has been translated into a variety of processes 

and the major techniques will be described and discussed in this section. Although 

the focus will be on porous metal structures made of pure metal or metal oxides, 

some composite and hybrid structures made of different layers, reinforcements or 

coatings of metals, organics or ceramics, will also be presented.  

 

 

Figure 1 Schematic routes to processing porous metal frameworks 

 

2.1 Metal chemical vapour deposition 

Chemical vapour deposition (CVD) produces thin layers of metal on different 

substrates such as metals, ceramics or polymers40-43. This technique has the 

advantage of producing a thin imprint that perfectly follows the substrate’s 

topography and morphology44. It is, however, typically only used to coat thin layers of 

pure metals, such as gold, platinum, palladium, zinc or nickel, onto the substrate in 

order to exploit the metal’s electrical or thermal properties. Although CVD deposition 

is routinely used for the preparation of gas separation and H2 permeable 

membranes45-47, a small number of porous metal/polymer composite and 

metal/ceramic membranes have been investigated for applications to continuous 

oxidation for water treatment48-52. 

 

Bottom-up
Growth

Top down
Lithography

Phase removal
Combustion or solvent

Compaction
Sintering
Thermal or mechanical

Templating
CVD, plating, adsorption
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2.2 Deposition from liquid metal 

2.2.1 Direct and investment casting 

The direct casting technique is typically applied for the production of large 

pore filters and grids. It is, however, not well suited to the fabrication of sub-micron 

pore size materials due to the difficulties associated with preparing the reciprocal 

imprint that is required for narrow pores. Membranes with arrays of well controlled 

and periodic pores can be obtained by this method. Although they are mostly used in 

gas purification, they also find applications in many industrial processes requiring 

very large particle removal or for membrane reactors or bio-reactors. The pores are 

typically of the order of hundreds of microns, thereby offering low liquid resistance 

but also low selectivity18, 23.  

Investment casting uses an initial template, such as polymeric foam to define the 

structure of the final metal foam. The template foam is typically filled with a dense, 

heat resistant material such as a zeolite or phenolic resin, prior to being removed. 

The image of the template then remains in the structure. For example, carbonization 

and casting of molten metal leads to a replica of the initial template foam. The filler 

can then be removed to reveal the pure metal foam. This technique leads to very fine 

pore size foams, whose morphology directly relates to that of the template foam. 

Furthermore, light-weight metal foams can be fabricated in this way by casting 

around inorganic plain or hollow particles of low density, or by infiltrating a liquid melt 

through such a porous micron sized template18, 23. The major limitation of melt metal 

usage is therefore the limited interconnectivity of the pores within the metal matrix.  

2.2.2 Direct gas foaming 

Gas injection for direct foaming within a molten liquid metal will also lead to a 

foam or sponge structure depending on the interconnectivity of the gas bubbles, the 

cooling and crystallization time, and on the temperature/viscosity of the liquid metal 

at the time of injection19. The pore morphology can be tuned by changing the gas 

type (such as N2 or argon - air is also used), or the impeller gas pressure17. The 

foam typically forms at the surface of the metal melt and can be extracted through a 

conveyor belt, prior to cooling. Mechanical reinforcement of the melt can be adjusted 
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prior to foaming by adding silicon carbide (SiC) or alumina (Al2O3). This is typically 

performed in order to reinforce the foam prior to cutting. 

The theory of metal foaming directly relies on percolation and scaling 

theories53. Foams are considered as infinite networks of randomly distributed pores 

within a rigid matrix. The pore connectivity, size, density, as well as the nature and 

morphology of the rigid matrix may vary depending on the processing technique and 

materials used. The effective connectivity threshold, i.e. the ratio K/K0 as defined in 

Equation 1, follows a power-law function of the material’s relative density18: 

𝐾
𝐾0

= 𝑧. � 𝜌
𝜌0
�
𝑡
    (1) 

where K and ρ are the effective connectivity and density of the foam respectively, K0 

and ρ0 correspond to the properties of the rigid matrix composing the cell wall 

material and z and t are geometrical and physical constants, respectively. The 

effective connectivity is here an indication of tortuosity, relating to the minimum 

distance for a molecule to travel across the pores of the material. This value is 

always greater than 1; unity corresponds to straight-through pores. 

2.2.3 Foaming agent injection 

Similar to direct foaming, heating of a mixture of metal and a heat unstable 

foaming agent can lead to the formation of highly porous metal foams. Above the 

decomposition temperature, the foaming agent will decompose, thereby releasing 

gas, typically CO2, which forms macro-cavities within the cooling metal structure. The 

type of foaming agent, and its decomposition temperature and reactivity will govern 

the gas bubble rate formation and the overall foam porosity (67 – 75 %)18. Nano-

foams from sol-gel auto-combustion with pore sizes around 20 to 100 nm were also 

obtained through a similar technique, leading to a low density iron foam, Figure 254. 

Although gas bubble coalescence can lead to a continuous porous network, 

special conditions and foaming agents must be used to achieve reliable pore 

interconnectivity. 
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Figure 2 Examples of nano-foams, (a) silver (scale bar 1 µm), (b) titanium (scale bar 

1 µm) and (c) nickel (scale bar 200 nm) from 55  

 

2.3 Solid phase forming 

Porous metal materials can also be produced in the solid phase by processing 

metal powders and fibres. The most common technique to produce large volumes is 

thermo-mechanical sintering, but recent work has also demonstrated the benefits, in 

term of structure stability, of electrical sintering. 

2.3.1 Thermo-mechanical sintering 

A number of mechanical sintering techniques have been demonstrated to lead 

to porous metal structures, typically involving hot or cold compression of either a 

mesh of metal fibres or a bed of metal beads. Sample heating can be achieved 

through direct conduction, micro-waves or light-laser irradiation29, 56-59. The 

properties of the porous metal materials’ compressibility and the required 

morphology of the final product will determine the most appropriate heating 

technique30. The size and reactivity of the particles to be sintered have to be well 

understood in order to avoid densification by over-heating and fusion28.  

The major principle of sintering relies on the neck growth and direct mass 

transfer between particles that lead to their agglomeration60. The neck of a porous 

material structure is here defined as the average dimension of matter interconnecting 

two or more cavities. This is particularly critical with metal based structures due to 

the high degree of particle interconnection after sintering. The ratio of the neck size 

(x) to the particle radius (r) was demonstrated to depend on the sintering time (t), 

A) B) C)
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and a number of parameters related to the dominant sintering energy transfer 

mechanism (m, n and F) as shown in Equation 227, 56: 

𝑥
𝑟

= �−𝐹.𝑡
𝑟𝑛
�
1/𝑚

     (2) 

The average densification of the structure can be determined by calculating the 

average shrinkage of the centre-to-centre distance between particles where the 

centre to centre distance between particles is defined as (L), following Equation 361: 

𝛥𝐿
𝐿

= � −𝐹.𝑡
2𝑚.𝑟𝑛

�
2/𝑚

    (3) 

Pore formation relies on the remaining distance between the particles after 

sintering, and on the average particle deformation induced by the process. This 

technique can lead to higher pore interconnectivity than that with melt metal 

processes as described in Section 2.2.1. Although the kinetics of neck formation is 

well understood for large macro-particles, the sintering kinetics of NPs was 

demonstrated to be rapid due to their large specific surface area. This was attributed 

to the higher probability of defects or functional groups on the NPs surface, as well 

as to their enhanced thermal diffusivity arising from size effects and to the larger 

number of contacts made between NPs within agglomerates. Foaming agents, 

similar to the ones used in liquid forming, can also be added in order to enhance the 

porosity of the structure57, 62.  

 

2.3.2 Electrical and chemical sintering 

Electrical sintering of metal particles can be achieved by applying a current 

across a pre-formed agglomerate of particles in order to induce softening of the 

metal by heat dissipation - also called the Joule effect63, 64. This technique has been 

used particularly for the preparation of metal electrodes and conducting pathways for 

electronics as the electrodes can be moved across the agglomerate surface. This 

allows flexibility in the patterns and degree of sintering by changing the percolation 

threshold of the structure obtained. It was also reported to allow tuning of the metal 

grain size65.  
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The sintering of NPs has also been studied and has led to promising, highly 

porous structures. The altered surface morphology associated with NPs affects their 

properties and leads to, for example, lower melting points and electrical resistances, 

facilitating coalescence and decreasing the required energy for sintering. Silver NP 

(~50 nm) assemblies were sintered by low voltage (<10 V) and their coalescence 

behaviour was monitored in-situ with a Transmission Electron Microscope (TEM)66, 

67. The coalescence kinetics was found to be very fast (of the order of hundreds of 

milli-seconds) depending on the applied voltage, and follows a two-step mechanism. 

Although metal neck formation by metal ion surface diffusion is found to be the 

starting point and the dominant factor in the formation of larger NPs, the speed of 

formation of larger NPs is sharply decreased due to the increase of the electrical 

resistance of these larger agglomerates. Although iso-porous and homogeneous 

materials are generally undesirable outcomes, the formation of controlled 

bottlenecks might lead to the fabrication of customized-shaped nano-pores, within 

the 10 to 100 nm range, and nano-compartments that could be favourable for 

applications such as molecular separation or gas storage68, 69. The development of 

hourglass pores, for example, is of great interest in mimicking charge and mass 

diffusion across the living cell gate-keepers, viz. aquaporin70, 71, or for drug delivery 

systems72. Hour-glass structure, based on two nano-compartments interconnected 

through a narrow neck pore, are able to enhance separation and selectivity through 

a motion kinetic gradient between the compartment and the neck. This morphology 

is typically found in porous metal frameworks prepared by sintering, on both nano 

and macro-porous scales due to the fusion of near-by particles.  

Charge transfer sintering was demonstrated between silver NPs when 

exposed to an electrically active poly-electrolyte such as poly(di-allyl,di-methyl 

ammonium chloride) (PDAC)73. Densely packed arrays of NPs can be partially fused 

at room temperature to obtain larger interconnected aggregates, thus forming a 

highly porous network. This technique is applicable to the production of large surface 

areas, and for the processing of thick porous structures typically performed by ink-jet 

printing74, 75. The major limitation of this technique, however, resides in the 

preparation and stabilization of the ligands which may involve the use of surfactants 

or non-conductive fillers76. 
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Electrical arc spraying discharge onto stainless steel macro-particles was also 

demonstrated to lead to slightly porous structures. Although the porosity did not 

exceed 10 % for very large pores (10 – 50 µm), the large content of metal oxides 

present (up to 30%) could be used if appropriately reduced to generate large 

porosity materials77.  

 

2.3.3 Composite powder mixture extrusion 

Powder extrusion was also demonstrated to fabricate micron sized pore - 

porous metal cellular foams and structures. Polymer-metal mixtures are used in 

industry to prepare high loading metal reinforced composites, which are then 

annealed to remove the polymer matrix78. This technique is highly versatile and 

allows for the preparation of materials with a variety of pore size distributions, 

ranging from a few hundreds of nano-meters up to a few dozen microns. The 

geometry of the pores and overall porosity is, however, limited by the sintered 

particles. Therefore the development of nano-porous frameworks requires the 

sintering of NPs, and due to their high surface to volume ratios, also requires the 

management of their resultant fast coalescence79. At high concentrations, metal NPs 

tend to aggregate into semi-dense clusters, unable to be properly dispersed within 

the hydrophilic phase of the block co-polymer (BCP) and thereby preventing the 

formation of ordered pores80. In addition, the high density of the metal NPs requires 

large volumes of particles to be added to the extrusion mixture, strongly increasing 

the viscosity of the dope81. 

The porosity of these extruded materials is typically relatively low (below 50%) 

due to strong sintering and macro-particle fusion82, 83. Thus although being highly 

versatile and efficient for the production of flat sheet or fibrous porous materials, 

composite powder extrusion/carbonization is limited to a high pore range - towards 

the micron benchmark. The trade-off between the carbonization temperature of the 

sacrificial polymer and coalescence by sintering of the metal NPs is therefore the 

main difficulty to be overcome in order to achieve high porosity and nano-scale pore 

size membranes. Routes to stabilize the structures might however include the use of 

a highly viscous or a solid sacrificial phase that can be decomposed or evaporated at 

low temperature, followed by ‘cold sintering’ (up to 100oC); to simultaneously limit 
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coalescence and remove the sacrificial phase. Current research on the self-

assembly and coalescence of metal NPs is directed towards room temperature or 

cold sintering in order to maintain the high surface area and catalytic properties of 

the metal NPs. Consequently, cold composite powder extrusion might become viable 

in the near future. 

  

2.3.4 Slurry foaming 

As opposed to direct metal foaming, slurry foaming involves two consecutive 

steps in order to form largely open cell foams. The interconnectivity of these foams is 

typically higher than that of foaming agent decomposition foams and pore sizes 

down to tens of micrometers were achieved. Slurry foaming operates on the basis of 

drying a mixture of a foaming agent (surfactant, polymer or volatile compound in a 

solvent) and a metal particle slurry that expands at elevated temperatures. As 

temperature rises, the viscosity of the slurry is increased and gas is released, thus 

leading to porous open cell metal foams. However, post-reduction and annealing of 

the structures is generally necessary, both to enhance the mechanical properties 

and to sinter the metal particles into a continuous network. Although porosities close 

to 93% have been achieved with aluminium powders, issues relating to crack 

formation and low mechanical stability, when compared to conventional foaming 

products, were reported to occur due to the poor linkage between the metal particles 
22, 24, 84, 85.  

Although the very high porosity of these materials would be of interest for 

flow-through contactors or membranes, the potential and great versatility of slurry 

foaming is limited by the formation of very large pores due to the sacrificial phase 

expansion process. These foams might however form very promising supports for 

composite multi-layer metal porous structures if judiciously combined with meso or 

nano-porous metal layers, or as electrically conducting plating substrates for electro 

or electro-less metal deposition. 
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2.4 Metal ion deposition, reduction or assemblies 

  

2.4.1 Electro-plating 

Electro-plating has been used to coat surfaces including highly porous 

substrates for which the pores may be on the micron scale. The control of the 

technique within porous structures is challenging due to the requirement of using the 

surface as an electrode. This leads, within micro and nano-porous structures to pore 

filling and clogging86, 87. This substantially reduces the surface porosity and pore 

density. In electro-deposition, the substrate to be plated is used as an electrode in 

conjunction with a counter electrode. The metal ion feedstock can either be present 

within a solution, as a metal salt, or if high enough electrical currents are provided, 

may be generated from the oxidation of the metallic counter electrode. As the rate of 

deposition is directly related to the applied current across the plating cell, electro-

plating is therefore a highly efficient method for the fast processing of rough coatings 

of metals. It is possible to prepare porous membranes of large pores with this 

technique, but the specificity of the support geometries and the relatively poor control 

of the porosity of the coating are generally not considered sufficient for membrane 

standards. Therefore, this method has not been extensively used for the preparation 

of porous metal membranes86. 

Although not entirely suitable on its own, the application of electro-plating, as 

a cheap and fast binding technique, into mechanically weak pre-formed metal 

materials with large pore size, such as foams, may lead to reinforced materials with 

narrower pore size distributions. This may, however, dramatically reduce the final 

porosity of the material and lead to pore obstruction of either open or closed macro-

compartments. Electro-plating may also be used to prepare cheap metal plated 

supporting layers for active layers prepared through other techniques. For example it 

is possible to plate ‘cheap’ metals, such as copper, aluminium or nickel onto 

preformed polymeric materials such as textile reinforcements or porous grids. 
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2.4.2 Electroless deposition  

Electroless deposition, although exhibiting a much slower rate of deposition 

than electro-deposition, is a much more appropriate technique for the fabrication of 

porous metal substrates88, 89. Electroless deposition is generally a 3-step process, 

Figure 3, in which a metal is deposited from solution onto an activated surface. 

During the first step, referred to as sensitization, the surface is immersed in a 

solution of tin which can chelate with functional groups on the surface. In the second 

step, referred to as activation, the surface is typically immersed in a solution 

containing highly noble metal ions, such as silver or palladium, to deposit catalytic 

particles of a high density onto the surface. In the third step, the activated surface is 

immersed in a final metal plating bath containing a reducing agent (commonly 

formaldehyde, dimethylamine borane, hypophosphite). The catalytic silver or 

palladium particles adsorbed onto the surface provide sites for the reduction of the 

metal ions onto the surface, Figure 3.  

The deposition mechanism occurs via the nucleation, growth and coalescence 

of metal particles onto the surface. The thickness of the deposited metal layer will 

increase with time and the process can be stopped when the desired thickness is 

reached. A number of highly porous and organized metal structures have been 

successfully prepared with electro-less deposition89. Electroless deposition presents 

a beneficial technique for the fabrication of highly controllable structures. It can coat 

surfaces within confined spaces such as porous materials and is not discriminative of 

the nature of the substrate material used. However electroless deposition of porous 

materials requires a high density of initial nucleation sites in order to form a highly 

compact and homogeneous metal coating. A higher density of nucleation sites can 

be achieved by adopting a slower rate of deposition that will allow enough time for 

the initial nuclei to form before the growth stage dominates. Additionally a controlled 

and slow deposition rate is required for the coating of porous membranes as the 

metal is preferentially deposited onto the top surfaces of the membrane. Therefore, a 

slower deposition rate will allow deposition to occur within the depths of the pores - 

before the pores at the surface of the membrane are blocked. The deposition rate is 

controlled by the pH, temperature, concentration of metal ions, reducing agents and 

complexing agents within the plating bath. Through altering the bath conditions the 

deposition rate can vary between a few nanometres to a few hundred microns an 
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hour. The versatility of electro-less deposition has allowed a number of porous 

substrates to be efficiently plated including polymer surfaces90-93, carbon fibres94, 

metal surfaces and particles34, 95, carbon nanotube surfaces96, glass97, 98 or porous 

ceramics (silica, alumina, titania)35, 99-102. Gold and metal nanotube membranes have 

been fabricated through this approach and used for electrode fabrication103, 

molecular separation100, 104, lithography,105 and sensing13, 106. 

The simultaneous co-deposition of different metals was also demonstrated to 

be an effective way to produce porous or dense metal alloy layer107, 108. Although 

metal deposition is thermodynamically specific due to the affinity between the 

sensitizing agent and the metal ions, simultaneous metal deposition is possible 

through controlling the mixture of different sensitizing agents. The co-deposition rate 

is then proportional to the individual selective adsorption of the sensitizing agent and 

on their relative surface coverage on the substrate. This technique could prove to be 

a very powerful method for the preparation of finely tuned alloyed structures with 

nano-scale grain size for use in de-alloying or sintering metal particle mixtures. 

The slow kinetics of electro-less deposition and the necessity for a chemically 

compatible and physically accessible surface are the main limiting factors in the 

development of porous metal structure fabrication. A trade-off between deposition 

rate and homogeneous coating must therefore be achieved, with higher deposition 

rates leading to coarser structures with larger grains and lower rates leading to 

smoother and denser deposition. The template materials need to possess either very 

specific properties, such as high wettability and preferential good affinity for the 

sensitizing agent, while also being highly porous - to allow for metal deposition109. 

 

 

Figure 3 Electroless deposition plating procedure110 
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Figure 4 Example of gold electroless deposition onto a porous alumina template. (a) 

presents the alumina support prior to metal deposition, (b) the formation of the gold 

nanotubes across the alumina pores, (c) a cross section of the alumina after plating 

and (d) the pore size distribution determined from the SEM image (b)111  

 

 2.4.3 Electro-spun web fabrication 

Electro-spinning is a technique used to extrude and produce nano-fibres with 

a diameter ranging in the order of the tens to hundreds of nanometres. ES has been 

used to fabricate very thin polymeric112-114, ceramic115 and metal fibres116, 117. 

Plain118, 119, hollow 120 and porous116, 121 metal fibres have been prepared from metal 

salts mixed into dissolved polymer solutions. Electro-spinning was shown to be an 

excellent technique for producing ramified or branched fibrous materials122, and this 

has been applied to filtration methods since the early 2000’123. A number of metal 

nano-fibres including indium124, 125, iron126, cobalt126, nickel127, and copper128 have 

been produced by metal salt electro-spinning. During the process, a liquid solution 

containing a polymer is charged within an electric field with a reasonably high 

voltage (typically between 2 and 30 kV) that is sufficient to draw the liquid into fine 

sub-micron fibres113, 114. The fibres’ diameter, morphology and length may be varied 

by changing parameters such as the solution viscosity, the molecular weight of the 
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dissolved polymer and the voltage difference between extrusion system and the 

reception support112-114. The incorporation of metal NPs into a polymer/solvent 

mixture was also performed129 and after subsequent carbonization/annealing, led to 

the formation of metal/carbon rich nano-fibres130. However, issues related to the 

stability and interconnectivity of the metal NPs were raised and metal salt solution 

electro-spinning was shown to lead to the spinning of fibres with more controlled 

morphology and properties, Figure 5. 

Although being an emerging technology, electro-spinning has a great potential 

for the preparation of sub-micron porous metal meso-structures. The versatility of the 

process may also lead to the preparation of metal alloyed fibres while the possibility 

to mixing a range of nano-fibres made of different metals or metal oxides may be 

particularly interesting for storage or bio-compatible materials, where only minute 

amounts of noble metals are required. The fabrication of porous metal frameworks 

from these nano-fibres may also find applications in filtration and separation where 

some metals’ catalytic properties of the nano-textured surfaces and natural anti-

microbial properties may be required. 
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Figure 5 Transmission Electron Micrographs of electro-spun metal nano-fibres, from 
126. The annealing conditions (a, b, c and d) were shown to be critical to form pure 

metal oxide materials and to remove most of the carbon deposited during 

carbonization 

 

 2.4.4 Wet casting / drying or coating 

Wet casting and drying involve the deposition of metal rich slurries onto 

appropriate supports, and can be used to produce thin films made of pre-dispersed 

metal NPs or hybrid metal-filler composite structures. The cast samples may 

generally require annealing or carbonization in order to remove the filler phase and 

produce a purely metallic porous material. Although dense metal supports have been 

extensively used for the preparation of H2 permeable membranes, recent works have 

also demonstrated the potential of porous metal membranes for H2 generation, 

exhibiting uniform pores of ~33 nm for a porosity of ~30%99, 131. This structure 

enhances the catalytic properties of the metal and favour H2 generation and 
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diffusion, prior to separation from other gaseous or liquid species. Stainless steel 

(SS) hollow-fibres were processed by casting-drying slurries of SS macro-particles 

mixed with stabilizing agents and surfactants29. High fibre interconnectivity was 

obtained by post-casting sintering the entangled fibres at high temperature. An 

optimal sintering temperature of 1150oC was found to lead to an enhanced 

mechanical strength while maintaining sufficient porosity for high N2 permeation. The 

pores across these structures were found to be relatively large (400 to 500 nm at 

1150oC) due to the high fibre packing density.  

This technique, that is easy to implement for the preparation of self-

assembled metal layers, has not been demonstrated to form nano-porous structures. 

As for most metal NP assembly techniques, this is likely due to the difficulty of 

controlling thermal sintering64, 132. Although yet to be investigated, wet casting has 

great potential as an alternative technique for the preparation of large pore size 

macro-porous supports by electrical sintering63, 64. In this regard, electrical sintering 

was recently shown to be a smooth and slower-kinetics technique for the production 

of low density metal NP networks through charge transfer coalescence. Wet casting 

is particularly suited to electrical sintering if the casting support is judiciously chosen 

as an electrode. Although very much experimental, this technique could lead to a 

great enhancement in controlled metal NP coalescence and sintering - and this is an 

area of active research28, 133, 134. 

 

2.5 Self-assembly of nano-particles  

 2.5.1 Block co-polymer metal conjugated self-assembly 

Ultra-thin and highly porous metal films have been synthesized with metal 

NPs using functionalized block copolymer self-assembly. A mixture of block co-

polymer (BCP) and stabilized NPs36, 37, 135, 136 have been spin coated onto a porous 

support to produce the filtration layer, Figure 6.  

These films may be synthesized by using BCPs as templates and 

incorporating metal NPs into a given phase to create a BCP/metal NP hybrid. The 

morphology of the crystalline phases may be altered by varying processing 

parameters such as the BCP concentration or average molecular weight, the ratio of 
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the different monomers composing of the BCP, pH, temperature or additives137. 

Highly crystalline and ordered meso-structures may be obtained, allowing for fine 

control of the NPs distribution. Self-assembly occurs across multi-phase 

disorganized materials through a spontaneous process, typically involving either 

amphiphilic or a mixture of hydrophilic and hydrophobic molecules or molecular 

blocks136, 138. The thermodynamic incompatibility, typically seen as 

hydrophobic/hydrophilic interactions, between the n molecular blocks of the polymer, 

leads to micelle formation. The size distribution and morphologies of these micelles 

are therefore directly dependent on the properties, morphology and composition of 

the BCPs137. However, at thermodynamic equilibrium, macro-phase separation 

across the polymeric blend is prevented by the strong entropic interactions between 

the micelles and the solvent/BCP system. Therefore, in solution, the molecular 

blocks will be dispersed and form micelles above their critical concentration (CMC) 

and critical micelle temperature (CMT)139 leading to a semi-ordered material made of 

two or more phases.  

Although a number of crystalline phases can be obtained, both lamellar and 

hexagonal structures are typically sought after due to their high anisotropy. For 

instance, in the case of poly(ethylene oxide) (PEO)/poly(propylene oxide) (PPO) co-

polymers, it was shown that an overall BCP concentration of 60 to 70 wt% was 

necessary to obtain a hexagonal structure140. Variation of concentration or addition 

of NPs or nano-materials 141, 142, such as carbon nanotubes140, leads to a change in 

crystalline structure, typically resulting in spherical shapes at low concentrations and 

lamellar structures at high concentration, while increased temperature was shown to 

re-organize micelles from spherical to rod-like structure143. 

The incorporation of metal NPs may be performed either through direct mixing 

of metal NPs with a single BCP or a mixture of BCPs 38, or by the in situ growth of 

metal NPs within the BCP macro-structure from metal precursors 136. The addition of 

NPs into BCP was previously shown to affect the crystalline structure of the BCP by 

nucleating self-assembly140. A subsequent reducing step is generally used to 

stabilize the metal precursors into pure metal or metal oxide NPs. Higher metal 

loading can, however, be obtained through the mixing approach, as ligand-stabilized 

NPs can easily coalesce through thermal or electrical sintering into porous networks. 

The metal meso-structure can then be revealed through either evaporation or 
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carbonization of the solvent/BCP mixture144. In order to achieve high NP loading 

across the BCP matrix, the NPs should therefore: be easily suspended and 

dispersed in the solvent phase; exhibit preferential interaction with only one block of 

the BCP; and be smaller than the gyration radius of the preferred block. The BCP 

used should also be short enough to ensure a reasonable core/corona volume ratio 

to form at least two meso-structured phases136. 

The main limitations of the formation of metal reinforced BCP self-assembled 

membranes reside in the control of the long range order of the crystalline structure. 

In addition, NP loading was found to be the limiting factor of the self-assembly 

process and high NP loadings led to highly organized and iso-porous hexagonal 

structures145. The size of the NPs is also suggested to dominate the pore size of the 

final porous structures, with larger NP size leading to larger pores. Metal NPs were 

either directly integrated into BCPs36, 135, 145 or in situ synthesized by metal ion 

reduction146. Most work carried out to date on large scale BCP self-assembly 

requires the use of expensive BCPs, prohibiting their expansion for mass 

production145. Although promising, this technique is yet to be demonstrated on a 

larger scale and with less expensive BCPs. Further research is needed in this area, 

including a stronger theoretical understanding of both the interactions between 

surfactant molecules and NPs and the sintering mechanisms between nano-scale 

metal particles. 
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Figure 6 Hexagonal phase formation by block copolymer self-assembly with 1-2 nm 

diameter metal NPs145. The different crystalline phases are visible in (d) while the 

high order of the gold NPs within the hydrophilic phase of the BCP is visible is (e, f, g 

and h).  

 

 2.5.2 Layer-by-layer assembly 

 Layer-by-layer (LbL) deposition of metal NPs on polymeric surfaces was also 

demonstrated to be an efficient way to form thin metal NP network films147. 

Decoration of porous metal structures with more catalytic NPs was shown to be a 

promising route to induce chemical degradation of contaminants, gas sensing or to 

enhance the electrical conductivity148, 149 or magnetic properties150 of non-conductive 

membranes or bio-materials. While LbL was performed within the pores and on the 

surface of polymeric hollow fibre membranes, it was also successfully used to 

decorate electro-spun nano-fibres151. The weak ionic interactions generated by the 

adsorption of poly-cations onto the surface of ceramic or polymeric materials 

represent a versatile way to functionalize non-conductive material surfaces with 

metal NPs. However, the stability of the deposited thin films is highly dependent on 

the solution pH and on the type of solubilized ions151, 152. The polyethylene imine 
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primer used in this work is stable at pH 8.5 and higher. A very low gold NPs 

adsorption was shown to occur at lower pH. In addition, to the best of the authors’ 

knowledge, despite having been successfully used to catalytically reduce nitro-

aromatic compounds, these surface coatings have not been used on model water 

based solutions containing more complex contaminants or exhibiting high salt 

concentrations. As shown in Figure 7, porous metal oxide structures can be readily 

processed through LbL, opening the route to form fine porous nano-structures on 

adequate nano-templates153. 

 

 

Figure 7 LBL assemblies of titanium oxide nanotubes from 153 The alumina support 

(a, b) was used to deposit titania at different rates (c, d) leading to well-built titania 

CNTs after template removal.  

 

2.5.3 Ink-jet printing 

Ink jet printing may be used to precisely fabricate intricate layers on either flat 

or 3D substrates by depositing thin films of particles that were mixed into a gel 

solution with either a polymeric or an inorganic ligand154. A micron thick layer of this 
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gel is then deposited at high shear flow onto the printing substrate. This high-

throughput technique, that is able to prepare patterned structures down to the micron 

resolution155, is also highly promising for the preparation of thin film porous metal 

structures. The large range of printing substrates makes ink-jet printing one of the 

most versatile techniques to date for the synthesis of multi-layer composite 

materials156, 157.  

Room temperature sintering via ink jet printing was demonstrated to occur for 

metal nano-particles73. Sintering of closely packed silver NPs via this route was 

demonstrated to lead to a semi-dense network with porosity and pore size ranging 

between 10 and 40 % respectively (as evaluated from Scanning Electron Micrograph 

analysis - Figure 8), and 40 to 150 nm respectively at room temperature without 

pressure73. As per other self-assembled metal NPs routes, coalescence of NPs has 

been shown to occur naturally at room temperature in NP agglomerates in order to 

minimize surface energy, by increasing the specific surface area158.  

The scope of application of metal particle ink–jet printing is relatively large and 

ranges from the preparation of bio-compatible or lithography mask surfaces to the 

preparation of micro-fluidics or electro-mechanical devices92, 154, 159, 160. It might be 

possible to prepare more refined structures with pore size distributions below this 40 

nm benchmark by better controlling the deposition mechanisms and post-treatment 

conditions. The adequate use of smaller metal NPs could lead to the preparation of 

narrower pore size and larger porosity materials132. The stabilization of the NP 

network and the control of the mechanical properties of the layers are, however, 

once again critical issues to be studied and solved in order to allow for an extension 

of this technique to the mass production of thin porous metal films. 
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Figure 8 Room temperature sintering used in ink-jet printing process 73. The 

progressive addition of Poly (diallyl–dimethyl ammonium chloride) (PDAC) led to an 

increase of the average particle size and stabilized the network to form sub-100 nm 

pores between the particle aggregates.  

 

2.6 Thin film de-alloying 

Chemical or electro-chemical oxidation of noble metal surfaces was 

demonstrated to be an efficient way to create or widen pores across metal thin films 

and has the potential to lead to the preparation of porous metal frameworks. It is 

essentially a selective etching process whereby a number of metal phases are 

removed from an alloy matrix. The noblest phase will remain, forming the pore walls 

of the future metal porous framework. A variety of either oxidative or reductive 

chemical etching solutions such as sulphuric acid 161, hydrochloric acid162 or sodium 

hydroxide163 have been used to selectively etch away metals. Electro-de-alloying has 

also been carried out and typically leads to finer structures due to the greater metal 

etching selectivity. De-alloying has been used to prepare catalysts164, electrodes, 

actuators165 and diffusion membranes166. 

De-alloying of multi metal alloy films was shown as a way to create nano 

porosity across pre-deposited metal structures167. Both pore size and morphology 

are strongly related to the material grain size and to the relative metal content within 
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the alloy. Narrow pore size distribution can be achieved across metal thin films if the 

metal mixing is good and if one of the metals can be selectively removed over the 

other without affecting the grain network. Templating / de-alloying was recently 

performed in order to fabricate hollow nano porous gold shell assemblies168. The 

initial Ag/Au coating was obtained by electroless deposition of metals onto 

poly(styrene) (PS) nano-spheres. After carbonization of the polymer template, Ag 

metal was removed through a diluted nitric acid treatment which produced porous 

monoliths exhibiting pore sizes ranging between 20 and 30 nm and porosity close to 

50%,- corresponding to the initial Ag content within the alloy90. Furthermore, fine 

nickel oxide films were recently converted into full nickel metal porous structures by 

annealing and reduction of the metal oxides at 400oC. The porous metal oxides 

exhibited porosity close to 50% and pore size distributions between 100 and 500 nm 
26, Figure 9. The use of highly noble metals unaffected by chemical or electro-

chemical etching, within pre-formed metal alloy films, containing gold for instance, 

can lead to very well organized structures with narrow pore size distributions, as 

seen in Figure 10. In addition, the fabrication of de-alloyed multi-layer metal sheets 

by selective etching of copper exhibited a gradient of porosity and pore size across 

silver/copper films169. The dual-layer structure was due to a strong atomic ratio 

gradient of silver over copper across the thin films, which led to a pore size between 

182 and 264 nm. The interface between the two layers was found to be atomically 

smooth and homogeneous, which opens the route to the fabrication of asymmetric 

porous metal structures.  

De-alloying is also a fast sample processing route that can selectively etch 

metal oxides or metals from multi-phase alloys. The major strength of the de-alloying 

technique therefore lies in its high production throughput and ability to prepare nano-

scale pores within the range of ~ 20 to a few hundreds of nano-meters. The control 

of the metal alloy texture and grain size is critical and very fine grain textures are 

required in order to further reduce the pore size of final de-alloyed thin films below 

the 20 nm benchmark. Although hardly studied to date, the potential of multi-phase 

or gradient-phase de-alloying is also very important and could lead to very 

homogeneous structures with tuned pore tortuosity and pore shape - with potential 

applications in separation science. 
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Figure 9 Scanning electron micrographs of different de-alloyed structures from (left) 

de-alloyed Ag/Au (50/50) leaves 11; (centre): Cu/Mg (30/70) 170 and (right) Cu/Ni 

(50/50) 171.  

 

 

Figure 10 Scanning electron micrographs showing the interpenetrating solid-void 

composite structure of the porous Au. The de-alloyed samples were annealed at the 

indicated temperature for 10min. (a) 100 ℃, (b) 500℃ and (c) 700℃ 172.  

 

2.7 General morphology of porous metal frameworks 

The relation between material morphology and the main techniques presented 

in this review are presented in Table 1. The morphology of porous nano-structures 

depends directly on the processing technique. As discussed in the previous section, 

a number of parameters are critical to form porous metal frameworks with adequate 

pore shape, size and morphology. The most critical parameters to be controlled and 
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investigated include pore interconnectivity, pore size distribution and overall porosity 

in order to either ensure high permeation across the material or to provide high 

specific surface contact area.  

Although, to date, sintering and foaming are the most mature technologies for 

the preparation of commercial porous metal frameworks, these techniques do not 

allow great versatility in terms of membrane morphology and nano-scale pore size 

control. Most of the sintered commercial membranes exhibit porosity below 40% and 

pore sizes larger than 500 - 600 nm. The macro-properties of porous metal 

frameworks, such as their thermal, mechanical or electrical properties, are directly 

related to the interconnectivity and stability of the network. This has been especially 

documented for sintered materials and more research effort should be dedicated 

towards a finer control of their porosity, tortuosity, and pore size distribution173-175. 

The prohibitive costs associated with raw metal materials should also be taken into 

account when competing with cheaper commercially available polymeric or ceramic 

materials. Alternative routes to prepare porous metal frameworks, requiring less 

energy, generating less waste materials, or allowing greater material recovery and 

recycling should also be considered. 

Although metal NPs fabrication and assembly, as beads or fibres, either by 

self-assembly or ink-jet printing, are attractive due to their enhanced surface 

properties, such as specific surface area and high morphological versatility, issues 

with the stability of the metal NPS and interfaces during sintering are limiting their 

current development. Further research is needed to improve the understanding of 

metal NP coalescence mechanisms and to find routes to stabilize the particles into 

well-ordered or interconnected networks in order to fabricate reproducible meso-

structures. Ink-jet printing appears to be the most suitable technique for the 

preparation of thin film porous NP assemblies as it allows for fast processing rates 

and can be applied to a variety of substrate shapes and morphologies. More work is 

needed to provide a sustainable fabrication route towards nano-scale pore formation. 

One of the most promising (emerging) porous metal fabrication routes appears to be 

selective de-alloying, as it is a fast, cheap and highly up-scalable technique. De-

alloying of specifically designed metal alloys, such as those comprising an atomic 

gradient content or made of layers with multiple grain size distributions, have great 

potential in the fabrication of asymmetric materials. The preparation of such 
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materials, likely by electroless deposition or electro-deposition, can open the route to 

the fabrication of highly controlled pore morphology and tortuosity, which is 

fundamental to the customized development of porous metal frameworks for specific 

applications. Recent developments in the fabrication of large arrays from stable 

metal nano-particles176-178 and in the functionalization32 or coating of metal 

surfaces179, may further push the envelope of the these techniques leading towards 

the fabrication of nano porous materials with a pore size below the 20 nm 

benchmark. In addition, the synthesis of multi-metal alloy films or NPs180 could also 

lead the way to the processing of nano-textured alloys, with multiple nano-porosities, 

for use in de-alloying processing routes.  

 

Another important route which warrants further enquiry, concerns the 

combination of different fabrication techniques. For instance, the development of 

weak foam structures could be mechanically reinforced by electro-deposition or 

electroless deposition of metals at the thin necks between the metal cells. The 

synergies between different strategies might lead to a much better final outcome, 

limiting the drawbacks of some of the techniques requiring post-sintering, for 

example. 
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Table 1 Summary of the different fabrication techniques with indicative minimum pore size achieved, ranges of porosities and 

overall morphologies and advantages and drawbacks 

Techniques Pore size Porosity (%) Morphology Advantages Drawbacks 

Direct casting 5 to 500 µm+ 40 - 60 Straight pores or random 

network 

Highly up-scalable and cheap 

Large range of sacrificial phases 

Large pore size and need for 

carbonization 

Foaming >50 nm 50 - 95 Highly random network, open or 

closed cells 

High through-put, cheap and 

mechanically resistant 

Large versatility in shape forming 

Mature technology 

Large pore size distribution and 

difficulty to reach nano-scale pore 

size; presence of closed cells 

Mechanical stability might be low 

Thermal 

sintering 

>300 nm+ 30 – 60+ Random network of assembled 

particles 

High tortuosity 

Easily up-scalable 

Mature technology 

Cheap to process 

Coalescence of particles, issues 

with stability, thermal energy is 

expensive 

Electrical 

sintering 

>30 nm * Random network of assembled 

particles 

High tortuosity 

Finer structure than thermal 

sintering as energy is better 

transmitted 

Very thin films only reported to 

date due to electrical current 

diffusion (< 250 nm) 

Electro-spinning >50 nm 50 - 75 Straight or random pore 

network between fibres 

High up-scalability, great 

versatility and relatively cheap 

Weak mechanical strength, need 

for post-treatment including 

sintering and carbonization 

Self-assembly >10 nm+ 40 – 60+ Porous entangled network to 

highly ordered pores (opal 

shape) 

Great versatility depending on 

template and particle shape and 

size 

Easy to combine different metals 

Slow and difficult to control over 

large scales 

Limitation due to necessary post-

treatments including sintering 

Ink-jet printing >50 nm 40 - 60 Straight pores with low 

tortuosity to highly entangled 

Extremely high through-put 

Versatile to cover 3D surfaces 

Need for post-treatments such as 

sintering or carbonization 
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network depending on size of 

the particles and processing 

conditions 

Able to control thickness and 

printing dope composition 

towards multiple layers or 

different metals composition 

Great potential for lithography 

deposition 

Promising but still immature 

 

Electroplating >1 µm 40 - 60 Straight pores with low 

tortuosity to highly entangled 

network depending on the 

substrate 

Potential as a binding technology 

onto pre-formed porous metal 

networks (of large pore size) 

Requires a conductive substrate 

or pre-treatment onto the surface 

to be plated 

Large grain size distribution 

leading to large pores or low 

porosity 

Electroless 

deposition 

>10 nm+ 30 - 70 Straight pores with low 

tortuosity to highly entangled 

network depending on the 

substrate 

Very fine grain size formation 

Able to replicate virtually any 

substrate shape and morphology 

Excellent at depositing ultra-thin 

layers and processing nano-

scale pore size distribution 

Very slow kinetics of diffusion 

Requires great control of the 

plating bath composition, pH, 

temperature 

Sensitizing agents are critical to 

selective deposition 

De-alloying >20 nm 10 - 90 Random network of pores 

depending on the grain size, 

homogeneity of the alloy and 

de-alloying conditions 

Very versatile, cheap and high-

through-put technique 

Symmetric, homogeneous or 

heterogeneous and asymmetric 

materials 

Mature technology that has not 

been highly applied yet due to the 

difficulty to prepare ultra-thin 

layers of fine grain size alloys 

* Insufficient data to estimate a range 
+ Variable depending on the substrate, template or sacrificial phase morphology  
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3. Chemistry of metal surfaces 
 

Functionalization of metal surfaces can be beneficial to the dispersion and 

stabilization of metal NPs in solution181-184. Conjugation with organic molecules such 

as ligands185, 186 or proteins12, 187, 188 may enable NP self-organization189, 190, or may 

protect against corrosion191, 192. In regard to the latter, metal surfaces are naturally 

prone to oxidation under most industrial and day-to-day applications leading to a 

generally high level of metal oxidation on their surfaces. This section presents the 

major routes that have been demonstrated to lead to strong covalent bonding to both 

metal oxide and pure metal surfaces that can be used to fine tune the materials’ 

properties. Although very few of these routes and chemistries have been applied in 

metal frameworks science to date, the nature of the interactions in solution between 

the membrane surface and both solvent and potential contaminants makes surface 

functionalization an inevitable step in the further development of porous metal 

membranes. A strong focus on NP functionalization has been given to this section 

since this is expected to be associated with enhanced reactivity. This section does 

not attempt to be comprehensive but rather to provide a guide to the reader of the 

most commonly used chemistries. 

 

3.1 Chemistry on metal oxide surfaces 

General interest in metal oxide NPs is increasing because of their interesting 

optical and magnetic properties182, 193-195. A number of modifiers, including thiols, 

carboxylic acids or amines196-198 have been successfully grafted onto metal oxide 

surfaces. The most popular routes to modifying metal oxide nanoparticles are 

through the addition of phosphonate or silane ligands, since the functionalization 

routes are better understood. Although ligand exchange on a metal oxide NP surface 

is possible these reactions are generally not favourable, since both incoming and 

outgoing ligands must exhibit similar charge and be able to fit into the exact same 

number of coordination sites199. Metal oxide surfaces must, therefore, rearrange to 

accommodate the addition of extra ligands within the limits of steric hindrance and 

thermodynamically viability. 
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3.1.1 Carboxylates 

Carboxylate ligands, such as fatty acids, are often used for modifying metal 

oxide NPs200. For example, the binding of carboxylate ligands onto the surface of 

titania nanoparticles with various controlled sizes from 0.7 to 6.0 nm has been 

investigated and it was shown that the surface binding energies are NP size-

dependent. The overall chemisorption of carboxylate groups increased with a 

decrease in NP size - leading to denser surface coverage201. Carboxylate coupling 

was also reported on various metal oxide surfaces such as silicon202, copper203, 

iron203 and tungsten oxide NPs203. 

 

3.1.2 Silanes 

Silanes are the most popular surface functional groups grafted onto metal 

oxide surfaces. This is mostly related to the very broad choice of commercial silanes 

available, and to their relative facile synthesis on laboratory scale. Furthermore, 

silanes can also be introduced simultaneously with the metal oxide precursors 

through simple and high yield sol-gel reactions204. Silanes are also able to support 

numerous functionalities on their backbone chain, such as amino, cyano, carboxylic 

acid or epoxy groups32, 205-209, making them very versatile compounds either for 

direct functionalization or for use in intermediary steps. Silanes have been grafted 

onto numerous metal oxides such as SiO2, Al2O3, TiO2, SnO2, ZrO2, and V2O5. A 

disadvantage of silane sol-gel condensation residues is the production of reaction 

by-products that can alter the metal oxide NPs. Magnetic ferrite NPs were shown to 

dissolve readily upon reaction with chloro-silane because of the liberation of HCl210 as 

a reaction product. If performed carefully, silane chemistry remains a highly 

competitive method that leads to dense surface coverage211, 212. 

 

3.1.3 Phosphonate 

Analogous to silanes, surface grafting of phosphides occurs through the 

formation of a metal–oxygen–phosphorus bond. These reactions are generally 

thermodynamically favourable and able to occur over a large pH range, as with 
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titania213, 214. As opposed to silanes where unstable Ti–O–Si bonds are formed, Ti–

O–P bonds are very stable with respect to hydrolysis, making them promising 

grafting agents for aqueous membrane applications. Phosphorus, like silicon, is able 

to expand its coordination number to form stable hyper-coordinated phosphorus 

species215. In addition, as opposed to silanes where Si-O-Si reactions can occur, 

phosphonates will not cause homo-condensations that has the advantage of 

increasing the grafting yield 197. Alumina, tin oxide, zirconia and magnetite were also 

shown to be readily functionalized with phosphonate groups6, 214, 216-218. In addition, 

due to larger steric hindrance effects, phosphonate groups may also form multiple 

anchorages onto metal oxide surfaces, further stabilizing the structure219. Although 

phosphonate modification is a very powerful method for functionalizing metal oxide 

surfaces such as alumina or titania, the relatively unstable Si–O–P bonds formed are 

more sensitive to hydrolysis compared to most other metal–oxygen–phosphorus 

bonds 215. For this reason, the use of phosphonate is mostly limited to non-siliceous 

particles214, 220.  

 

3.2 Chemistry on pure metal surfaces 

The types of chemical groups that can be readily grafted onto pure metal 

surfaces differ markedly from those applied to metal oxide surfaces. In the case of 

metal oxides, covalent bonds are generally formed via the oxygen atom(s) bridging 

the metal to the relevant functional group, while in the case of pure metals grafting is 

related to the direct metal coordination of the relevant functional group and therefore 

to sharing electrons between the unsaturated electronic band of a Lewis acid and 

excess electrons from a Lewis base. Therefore, general pathways for pure metal 

functionalization may lead to unstable bonds that can be impaired through the input 

of thermal, chemical or electrical energy221, 222. Pure metal nanoparticles have been 

successfully functionalized with thiols204, 223, 224, di-sulfides200, amines223, 225-227, 

nitriles, carboxylic acids and phosphines225, 226, 228. Selected examples will be 

presented in the following sections. Although mostly focused on noble metals, such 

as gold, silver or platinum, most of the chemisorption routes described in this section 

should also be applicable to less noble metal surfaces such as iron, copper, 

aluminium or nickel.  
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3.2.1 Thiols and Di-sulfides 

The grafting of organo-sulfuric groups to metal nanoparticles is amongst the 

most developed routes, since such groups strongly coordinate to various metals, 

such as Ag, Cu229, Pt, Hg, Fe, Li230 or Au231. The metal-sulphur interaction is strong 

enough to immobilize the thiol groups on the surface of metal nanoparticles. The 

chemisorption energy between gold and sulfur was estimated at 126 kJ.mol-1 and 

shown to require two gold atoms per thiol group232. The strength of interaction 

however strongly decreases upon oxidation of the thiol group to sulphate or 

sulphonate233. In addition, aromatic thiols were shown to occupy various 

coordination/adsorption sites on the metal surface with very small energy differences 

between them, suggesting additional electrostatic interaction between the aromatic 

ring and the surface which is highly dependent on the aromatic ring orientation 

relative to the gold surface233, 234. Thiols and di-sulphides can either readily physiorb 

on the metal surface or chemisorb through the splitting of the sulphur-hydrogen bond 

of the molecule, thus generating a negatively charged group235, 236. This was 

demonstrated spectroscopically for methyl-thiolate chemisorption onto gold surfaces 

where methyl-thiolate radicals covalently bind to gold without any metal-thiol charge 

transfer237.  

Organo-sulfur compounds can also be capped onto metal surfaces through a 

two stage process. The first step is very rapid and depends on the concentration of 

the organo-sulfur compound in solution. During the second step, the organic groups 

bonded to the sulfur atoms interact with each other and reorganize themselves to 

minimize energy and enhance the stability of the adsorbed layer. The grafting 

kinetics of the second step is directly linked to ligand–ligand interactions200. It is, 

therefore, possible to substitute thiols present on the particle surface with different 

functionalized thiols through thiol–thiol substitution225, 238. This procedure is 

interesting for the functionalization of nanostructured surfaces where the organic 

function to be introduced is not compatible with the synthesis conditions of the pure 

metal surface 239. The stability of thiols is limited and thiols were shown to desorb 

during aging in biological media224, 240, which was directly related to the electronic 

structure of the metal particle core228.  
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3.2.2 Amines and Ammonium Ions 

Amine functionalization of pure metal NPs was generally performed in order to 

stabilize particle suspensions225, as demonstrated for hexa-decylamine grafted Pd 

NPs226. A common method to stabilize noble metal NPs is by adsorption of tetra-

alkyl-ammonium halides - as the long alkyl ammonium ion chains exhibit amphiphilic 

properties, allowing the creation of well dispersed micelles241. Hydrophobic metal 

NPs and surfaces, stabilized with long alkyl ammonium ion chains, can be rendered 

hydrophilic through this process227. Although interactions between amino groups and 

metal NP surfaces are much weaker than those of thiol terminated compounds, large 

proteins and peptides were shown to link to silver NPs through both thiol and amine 

functionalities223.  

 

3.2.3 Carboxylic acids 

Deprotonation of carboxylic acids, into carboxylate groups, was also shown to 

lead to bridging with metal surfaces223, 242, 243. Although not strong chemisorption, 

Density Functional Theory (DFT) calculations performed on the attachment of N-

isobutyryl-L-cysteine to gold NPs suggested that both thiol and carboxylate functions 

were involved in surface binding, while that of penicillamine involved the thiol, amine 

and carboxylate groups. The stability of such systems may be dramatically enhanced 

owing to the multiple attachments of each function group providing sufficient stability 

to maintain chemisorption223, 244, 245.  

 

3.2.4 Phosphine 

The attachment of phosphine groups onto metal NP surfaces was shown to 

be easily achieved225 but to led to very weak bond energies225, 228 and subsequently 

to very poor stability of the NPs in solution. The lack of stability results in an easy 

exchange with other ligands, such as complete exchange with thiols, as thiols bind 

more strongly to the metal surface225. This exchange capability can be used in 

synthesis as an intermediary step towards more complex thiol attachment which 
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cannot be readily grafted due to steric hindrance. Tri-phenyl-phosphine was 

previously grafted onto gold NPs228. Although similar substitutions occur between 

amine and phosphine ligands, less stable gold particles were obtained225. The lack of 

stability of phosphine ligands can be partially overcome by introducing poly-

phosphine ligands as previously demonstrated for bis (diphenylphosphino) - decane 

or bis (diphenyl phosphinoethyl) phenylphosphine functionalized palladium NPs226. 

 

3.3 Summary 

A number of surface functionalization routes have been demonstrated to 

produce stable surface coatings. The control of surface energy is a critical aspect of 

porous material design as processing high specific surface area materials is not 

sufficient to enhance the bulk materials properties. The formation or deposition of 

nano-textures through specific grafting of chemical groups, in order to favour specific 

chemical interactions with the surrounding media, or to control liquid wetting across 

the pores or to protect the metal surface, is crucial to the processing of advanced 

functional porous metal frameworks. Clear functional pathways have been 

developed to provide metal corrosion protection or to tune surface energy for specific 

adsorption or grafting, but more research is needed to test the impact of these 

structures and functionalities on the properties of final materials. 
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4. Major fields of application of porous metal frameworks  

 

4.1 Heat storage and dissipation 

Open cell metal frameworks of high porosity have emerged as attractive heat 

exchange media for a wide range of applications where large surface to volume heat 

dissipation is required246, 247. These periodically structured materials composed of 

stacked metal meshes or foams, must present well-ordered morphologies with low 

porosity and large interconnected through pores in order to act as efficient heat 

sinks21, 248. In addition to their morphology, these materials must also offer high 

thermal conductivity and diffusivity16, 247, 249, 250. The thermal and fluid flow 

characteristics of such woven metal textiles were comparable to plate-fin heat 

exchangers while being up to 40 % lighter. The continuity of the metal phases and 

the structure of the micro-lattice250 were also critical234, 251 as sintered metal 

materials exhibited higher thermal conductivity than solely packed metal materials. 

Forced convective heat transfer in packed beds of sintered and non-sintered copper 

spheres, for instance, demonstrated that sintering significantly increases the overall 

heat transfer coefficient and heat dissipation rate due to the reduced thermal 

resistance of the material247, 252. The crystalline structure and composition of the 

nodes interconnecting the metal particles, ligament or fibres also greatly affect heat 

dissipation253. The forced air convective thermal efficiency of brazed metal fibre 

woven structures was, for instance, up to three times larger than that of open-celled 

metal foams, primarily due to a lower air flow resistance during coolant circulation 

through the porous metal framework pores252. 

The development of asymmetric porous metal frameworks may therefore lead 

to better heat flow control across the material and act as specific heat channels, 

towards co-regeneration or energy transfers. Similarly, the development of novel 

alloys and a better understanding of the sintering mechanisms at the nano-scale 

may also greatly improve heat transfer dynamics towards more efficient and cheaper 

heat dissipation materials. Ageing of these materials may also be an issue that has 

not been substantially investigated to date as porous metal materials exhibit 

enhanced surface to volume ratio and are subsequently more prone to oxidation and 

degradation. Changes in thermo-mechanical properties over time and under such 
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drastic heat transfer conditions may therefore affect the long term stability of the 

materials. 

 

4.2 Reinforcement for composite materials 

Porous metal frameworks have been incorporated with ceramics and 

polymers to form dense hybrid composite materials with highly versatile and 

tuneable properties254. Combining the properties of porous metal structures along 

with other functional materials has been demonstrated across fields such as the 

automotive, building and aerospace industries, printing, and acoustics255, 256. The 

nature of the interface between the different phases will here play a great role in the 

overall thermal, electrical or mechanical properties of the composite materials257. 

The characterization of the pore interconnectivity, surface roughness, adhesion or 

binding of the different materials has therefore been one of the primary focuses of 

their development258-261. The fabrication of lightweight materials with enhanced 

thermo-mechanical properties is of interest to reduce operating costs and energy 

requirements in the automotive and aerospace industry262, 263.  

Controlling the interface and the affinity between the reinforcing metal and the 

filling matrix continues to be the main challenge with the incorporation of such 

porous metal materials. . Metal materials of high surface area are more reactive to 

oxidation and degradation mechanisms and must therefore be protected, either 

through the introduction of gas impermeable materials or by controlling the thickness 

and composition of the oxide layer on their surface. 

 

4.3 Sensors, actuators and electrodes 

Porous nano-structured metal electrodes, exhibiting typical surface areas a 

few decades larger than similarly dimensioned planar electrodes, and consisting of 

either anisotropic or random pore distributions have received considerable attention 

in recent years264. These electrodes are of particular interest for chemical, water 

vapour or gas sensing265, 266, as lower detection limits can be achieved10, 11, 193, 264 

and for electro-analytical chemistry, where rates of reactions are interface 
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dependant267, 268. Porous metal actuators have also been produced by metal 

foaming269. The increased surface of exchange can lead to larger Faradaic 

currents267 and to higher signal to noise ratios, enhancing the sensitivity of the 

sensor response electrode. Noble metal electrodes of high surface area have been 

fabricated using a number of different approaches including hard templating of 

poly(styrene) spheres or silica spheres28, 270, 271, chemical de-alloying11, electro-

chemical de-alloying39, electroless deposition within the pores of nano-porous 

membranes as well as from sintered metal NPs232, 270, and electro-spun metal 

webs272, 273.  

To date chemical de-alloying and electroless deposition appear to be the most 

mature technologies for the preparation of metal based nanoscale porous sensors 

and electrodes. The natural electrical and thermal properties of metal structures are 

obviously great advantages in this field compared to ceramic and polymeric 

materials but greater work is needed towards the development of nano-porous 

materials for specific detection, channelling or separation. The large range of 

chemical groups that can be grafted onto metal surfaces make porous metal 

frameworks highly promising candidates for integration into advanced electro-active 

materials. 

 

4.4 Orthopaedic and biomedical use  

A large number of porous metal frameworks have been developed as 

mechanically strong bio-compatible materials for a range of medical and orthopaedic 

applications. Traditional metallic bone implants based on light and soft metals such 

as nickel, stainless steel or aluminium9, 274, 275 are typically dense and are prone to 

oxidation-reduction reactions as well as exhibiting a lack of adequate space for 

biological tissue growth276. New architectures based on mimicking the morphology 

and properties of natural bone have been developed based on macro-porous metal 

structures. The use of biocompatible and corrosion resistant metallic materials to 

reduce or prevent adverse anti-body reaction and graft rejection have been 

successfully demonstrated primarily through the use of titanium and some of its 

alloys. These materials offer excellent biocompatibility, high strength-to-weight ratio, 

a lower elastic modulus compared to traditional materials, and superior corrosion 

resistance274. Powder metallurgy and space holder sintering are the two main routes 
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for the preparation of these micron-pore size metal frameworks275. Pore shape, 

porosity, and pore size distribution, were adjusted across hundreds of microns as 

desired for osteo-conductive applications277, 278. Porous bio-compatible metal 

frameworks offer high elasticity and mechanical ageing resistance which are 

necessary for most load-bearing applications in fracture fixation and bone 

replacement276, 279.  

Although relatively limited in terms of research, the development of functional 

groups on the surface of the porous metal materials may further improve bio-

compatibility and the interface with biological cells. 

 

4.5 Membrane separation 

Metal micro-filtration (MF) membranes have been used in a number of studies 

related to liquid and slurry food preparation and filtration, including dairy, fruit juice 

and alcohol 280. Metal membranes were here shown to be competitive against 

polymeric membranes as facile cleaning can be performed by high pressure back-

flushing of the modules, limiting the need for and impact of cleaning chemicals. The 

stability of metal membranes during steam sterilization is also an advantage in food 

processing where high frequency cleaning and disinfection of the membrane 

materials are desired to prevent bacterial contamination. Notably, porous metal 

membranes have especially been used in a number of water applications including 

MF, membrane reactors and bio-reactors, electrolysers and membrane 

evaporators151, 281-288. The catalytic properties of pure metal and metal decorated 

membranes have been particularly sought after for in water treatment (Table 2). 

Denitrification, corresponding to the conversion of nitrates into nitride, was 

demonstrated to be enhanced with alumina coated palladium and copper NPs44, 287, 

289. Smaller grain size led to higher activity coefficients287. Micro-filtration ozone 

assisted experiments were also demonstrated to limit surface fouling on metal 

membranes by activating the metal surface. This led to a decrease of the cleaning 

frequency and was shown to be beneficial when metal membranes were used as 

pre-treatment steps in dual systems with electro-dialysis290. Desalination was also 

demonstrated with porous metal membranes by membrane evaporation, a novel 

desalination technique using metal membranes both as heating elements and 

porous separation layers between a saline feed and an air-gap. The principle behind 
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metal evaporators is close to that of air gap membrane distillation except that the 

feed-water is not heated by the membrane291-294. This technique is highly promising 

but requires hydrophobic porous membranes to efficiently desalinate water. In this 

regard, stainless steel membranes have been coated with hydrophobic poly(di-

methyl-siloxane) (PDMS) and heated through exposure to ultra-violet lamp 291-294.  

A number of challenges remain and should be tackled to offer more specific 

solutions to unsolved engineering and separation problems. While metal membranes 

offer clear advantages over polymeric membranes in seawater pre-treatment and 

abrasive liquid purification, current commercial metal membranes have limited scope 

for applications due to their inadequate pore size and shape that is inherent in their 

fabrication process. To date, commercial metal membranes are either processed by 

sintering62, 295 or foaming18. These fabrication processes typically lead to large pore 

size (> 1 µm), low pore connectivity and limited porosity (<50%)62, and do not offer 

separation properties sufficient for fine particle separation such as these achieved by 

polymer membrane ultrafiltration (pore size 10 to 100 nm). The optimization of 

surface properties of these commercial metal structures has not been systematically 

investigated despite the demonstrated potential for metal surfaces to exhibit strong 

catalytic activities due to their partially unsaturated electronic state facilitating 

chemical oxidations96, 296. Therefore, the opportunity exists to develop new 

processing techniques for fabrication of highly porous metal nano-structured 

materials of tuned nanoscale pore morphology and chemistry to make significant 

technological breakthroughs and hence provide sustainable solutions to the 

purification of industrial liquid wastes. 
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Table 2 Application of porous metal membranes in purification technologies 

Application Structure or manufacturer Main features 

Denitrification  Gamma-alumina, zirconia 

supported Pd, Cu and Pd:Cu 

alloys particles 

(20 to 100 nm) 

Catalytic degradation 

Highest catalytic activity for 1:1 Pd:Cu alloys287, 289, 

297-299 

Ammonia and 

phosphate 

removal 

Hitachi Metal  

(pore size around 100 nm) 

Surface activation 

Ozonation lead to lower surface fouling (less than 5 

% flux loss in 200 h)290 

Rainwater 

purification 

FibreTech  

(pore size between 1 and 5 

µm) 

Anti-bacterial effect 

Better bacteria (coliform) inactivation than polymeric 

membranes under ozone for higher flux and lower 

trans-membrane pressure300 

Fouling control in 

microfiltration for 

municipal 

sewage 

reclamation 

Hitachi  

(pore size around 200 nm) 

Intermittent back ozonation more efficient than 

aeration due to the metal catalytic activity: flux 

recovery up to 90% after (0.25 mg O3.cm-3.cycle-1)301 

Natural Organic 

Matter removal 

for colour and 

TOC removal 

MF with 

coagulation pre-

treatment 

Hitachi Metal  

Huber 

(pore size between 100 -200 

nm) 

Full recovery after backwash, no degradation; more 

than 95% removed after 3 cycles (between 2 cleaning 

processes) 

Coagulation pre-treatment 

with polyaluminium chloride (PAX-16) of raw water 

with 

a colour of 50 mg/L Pt revealed that a specific 

aluminium 

dosage of 5 mg/L Al removed >95% of true colour, 

∼87% of 

UV-absorbing compounds, and 65–75% of DOC 251, 

272 
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5. Conclusions and prospects 

Porous metal frameworks have unparalleled potential in a number of 

engineering fields for their versatile catalytic, electrical and mechanical properties. 

The potentially large range of porous morphologies that can be processed make 

porous metal frameworks highly promising and complementary alternatives to 

polymeric and ceramic based materials for sensing, energy storage and molecular 

separation. Despite being less studied than polymers and ceramics, metal surfaces 

offer great prospects in terms of functional group coordinating or grafting, leading to 

a versatile array of potential chemistries. The range of stable coordinated or covalent 

functional groups that can be linked to pure metal or metal oxide surfaces opens the 

route to fine tuning for selective adsorption, surface energy interface control and bio-

compatibility. Novel fabrication and functionalization routes may open the way to the 

fabrication of porous nanoscale metal materials more economic and reduce capital 

and maintenance costs for specialty membranes. The development of cheaper nano 

porous metal frameworks based on easily up-scalable techniques would allow 

porous metal frameworks to expand their scope of technical applications beyond 

their mainstream applications of bio-compatible and electrode materials, and target 

niche markets in water treatment and energy storage.  

It appears that novel nano-fabrication techniques, such as de-alloying, 

electroless depositions, as well as self-assembly of metal NPs are very promising for 

the preparation of nano-scale pore materials. However, issues related to the stability 

of the metal NP network and coalescence are however limiting their expansion. 

Further research is therefore needed in order to design novel fabrication routes or to 

combine existing approaches, such as electrical sintering or electro-plating with 

foaming or sintering, in order to better control the interactions between the particles 

and the inter-connection mechanisms.  
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