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Abstract 

Low-field bench-top nuclear magnetic resonance imaging (MRI) has been applied to 

investigate the hydrodynamics in novel hollow fiber modules designed for the membrane 

distillation (MD) process. Imaging, spatially resolved velocity maps and propagators 

(probability distributions of displacement/velocity) were all acquired in the modules with 

flow in the shell side. This was performed for four fiber configurations randomly-packed 

fibers, spacer-knitted fibers, curly and semi-curly fiber, and correlated with overall module 

performance.  This revealed significantly more transverse flow for the curly configuration, 

and hence enhanced mixing, compared to the randomly packed configuration; this was 

consistent with an enhanced membrane performance (permeation flux).  Conversely the 

spacer knitted fiber configuration revealed significant flow channeling in the centre of the 

module, despite presenting enhanced membrane performance. However propagator data for 

this configuration revealed reduced stagnant regions and significant transverse flow, which 

we speculate indicates better overall module mixing that suggested by the acquired localized 

velocity image.   

 

Keywords: hollow fibers module, membrane distillation,  magnetic resonance imaging, 

hydrodynamics, velocity measurement  
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1. Introduction 

As an alternative for seawater desalination, membrane distillation (MD) is a promising 

technique credited with several advantages: low sensitivity to salt concentration and 

theoretically 100% salt rejection; feasibility to utilize low-grade heat and renewable energy 

(e.g., waste heat or solar power); low vulnerability to membrane fouling and good 

performance under mild operating conditions as compared to conventional, multi-stage 

distillation or reverse osmosis (RO)[1].Despite many attractive characteristics and extensive 

lab-scale studies, MD has not been widely implemented in industry[1, 2].One of the major 

challenges impeding its application is flow mal-distribution and/or poor mixing and hence 

severe local temperature polarization (TP) that compromises module performance[3]. 

As a preferable configuration for industrial applications, hollow fiber modules present 

more versatility, larger membrane area per unit volume, reduced vulnerability to TP[4] and 

enhanced productivity. Nevertheless, many prior studies on general hollow fiber module 

work have shown that non-ideal flow distribution in a module will lead to less active 

membrane area, insufficient mixing and local loss of driving force, and hence low heat-or 

mass-transfer efficiencies[5-12].Studies on hydrodynamic improvement in MD hollow fiber 

modules are sparse in the open literature, mainly due to fabrication and modeling 

complications[2, 13-16].Enhancing strategies such as flow alteration aids or modifying fiber 

geometries to create secondary flows or eddies (such as novel fiber configurations or 

turbulence promoters, e.g. spacers or baffles) have been proposed for improving MD 

module performance [15-17]. In the MD process employing shell-side feed, the occurrence 

of significant channeling, bypassing, or dead zones can greatly reduce the local driving 
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force and decrease module performance. Particularly, our previous work on hollow fiber 

module design showed that the fluid flow across the fiber bundles needs to be evenly 

distributed in order to achieve an effective mitigation of TP and improvement of the MD 

process efficiency. For a direct understanding of the fluid dynamics fundamentals, physical 

inspection of the module inner structures/fiber arrangement and flow distribution is 

essential in providing valuable insights for future optimum module design work. 

Traditionally, there are many approaches for characterizing flow distribution: broadly 

these are invasive or non-invasive. Invasive or quasi-invasive techniques include structural 

inspection by disassembling the module parts [18], tracer analysis[19], combined X-ray 

computed tomography (CT) scanner and radio-opaque tracer dye study and/or high-speed 

tracer photography[20-22]. However, to achieve in-situ real-time monitoring of the flow 

field inside a confined opaque vessel, non-invasive techniques are preferred, such as optical 

examination and non-optical methods. However, optical methods are only restricted to 

special conditions such as transparent membranes [23]or fluorescent tracers. As a 

non-optical technique, nuclear magnetic resonance (NMR) has various advantages 

including being non-invasive, the absence of ionizing radiations, freedom to image any 

selected plane through a complex sample (or generate a 3-dimensional image of the sample 

as a whole) and the ability to image non-metallic samples which are optically opaque[24], 

which is an ideal feature for the MD modules composed of opaque plastics.. 

. NMR involves the excitation and relaxation of various nuclei under the influence of a 

magnetic field.  In this work we exclusively consider 
1
H signal [25],which originates 

predominately from the water content of our modules.  The signal strength is proportional 
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to 
1
H density modulated by various signal relaxation processes. The application of 

magnetic field gradients allows both imaging and displacement (self-diffusion and velocity).  

These can be combined to deliver velocity maps, in which velocity is measured for each 

pixel in the image; alternatively probability distributions of displacement (converted to 

velocity) can be measured, these are known as propagators [24-26].   

Early module studies used NMR flow imaging to elucidate flow distribution in 

inorganic tubular configurations by mapping the axial flow velocities and verifying with 

theoretical modeling results [27, 28]. Membrane bioreactor researchers also explored the 

capability of NMR imaging technique for observing starling flows in the shell side of 

hollow fiber modules [29, 30].Studies using both structural and velocity imaging has 

occurred in both hollow fiber membrane modules [31] and spiral would membrane modules 

[32, 33]. Applications of MRI to hemodialyzer modules containing thousands of fibers 

revealed significant flow mal-distribution despite the presence of turbulence promoters 

[34-36]. 

Despite its clear advantages and ability to inform module development, the use of MRI 

in such a capacity is limited. This is undoubtedly due to geometric constraints on the 

modules as well as comparatively poor signal to All above-mentioned studies have adopted 

super-conductive or high-field NMR techniques with a 
1
H resonance frequencies up to 600 

MHz. This is understandable given the greater signal-to-noise available; SNR µ(B0)
7/4

, 

where B0 is the magnetic field strength. However these systems are expensive, 

consequently limited in availability, immobile and generally require expert operators.  
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Consequently in the current study we employ a bench-top NMR spectrometer featuring a 

0.3 T permanent magnet and a 
1
H resonance frequency of 12.7 MHz. This presents 

comparatively simpler operation, easier maintenance, greater mobility and significantly 

lower cost and footprint, meaning it should in principle be accessible to a broader range of 

scientists and engineers.  Using this apparatus we measure the flow-field in four MD 

hollow fiber module designs (conventional randomly-packed, spacer-knitted, semi-curly 

and curly fiber modules). 2D structural and velocity images as well as velocity propagators 

are acquired and correlated against membrane performance.  We also consider the 

compromise involved in applying this bench-top apparatus compared to a high-field 

super-conducting system.   

. 

2. Experimental protocol 

2.1 Hollow fiber module preparation and MD performance tests 

In this current study Polyvinylidene fluoride (PVDF) hollow fiber membranes, of which 

MD related properties were characterized in our previous work [5, 37], were used to 

fabricate lab-scale multi-fiber MD modules. The fibers were potted into the housings that 

are made by transparent Acrylic material to facilitate direct surface observation of the fiber 

bundles, as shown in Fig. 1. Four different module configurations (Fig. 1) were assembled 

in various ways (i.e., modules with randomly-packed, spacer-knitted, curly and semi-curly 

fibers) with specifications as given in Table 1: inner diameter 19 mm and effective length 

450 mm; packing density of 30%; and membrane area of 0.1−0.11 m
2
. In this study a 
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randomly packed module, which contained 51 randomly packed fibers, was fabricated and 

used as the conventional module benchmark. Besides the semi-curly fiber configuration, 

which is considered as a compromised design to reduce the fabrication complexity, the 

assembly procedures for modules of different patterns can be found in our previous work 

[17]. In the module fabrication process, care must be taken to avoid damaging the 

membrane surface. 

The experimental setup used to evaluate the MD performance tests for all hollow fiber 

modules is shown in our previous work [37]. Both the feed and permeate solutions were 

cycled through the hollow fiber module in countercurrent mode. For the performance tests 

using synthetic seawater (3.5 wt% sodium chloride solution), the operating details can also 

be found in the literature[37]. 

 

 

2.2 NMR experimental protocol 

The NMR experiments were conducted using an Oxford MARAN low-field bench-top 

MRI system employing a 0.3 Tesla permanent magnet with a (
1
H) resonance frequency of 

12.7 MHz. The system features a sample access of 53 mm in diameter, any practical length 

and accommodates 3D magnetic field gradients for spatial encoding. The experimental 

setup for flowing experiments through the shell side of the multi-fiber membrane modules 

is shown in Fig. 2.  

In this experiment each membrane module was installed and tested individually in the 



 8 

5.3-cm i.d. resonator RF probe. De-ionized water (DI) was used as the flowing fluid and 

circulated through the shell side using a peristaltic pump, which was calibrated using NMR 

velocity imaging of water in an equivalent pipe. The imaging planes were chosen as both 

parallel- and perpendicular-to-flow directions (i.e., module’s axial Y and transverse Z 

directions, respectively), allowing the cross section and side view of a module to be 

analyzed. Conventional MRI pulse sequences were used to acquire images, velocity 

images/maps and propagators. 2D Images were acquired over afield of view of 30 mmx 30 

mm employing 128 pixels in each dimension (in-plane resolution of 234 mm) and a slice 

thickness of 5 cm. In terms of velocity encoding, magnetic field gradient strength was 

varied in 128 increments for propagator acquisition (gmax = 64 mT/m,d = 4 ms, D = 100 ms) 

whilst the strength employed for velocity imaging was varied depending on the velocity to 

avoid signal phase fold-over (d = 4 ms, D = 20 ms).  Total acquisition times of propagators, 

2D images and 2D velocity maps were 34, 34, and 68 minutes, respectively.   

 

2.3 Flow calibration and error assessment 

All the above-mentioned experiments were repeated and showed reproducible results. 

The flow rate of the pump was calibrated using NMR velocity imaging and volumetric 

throughput measurements of water, which showed excellent agreement (error within ±5%). 

In the MD performance experiments, the results for the water-flux fluctuations were also 

within ±5% (illustrated as error bars in the figures). The temperature and flow rate 

variations were strictly controlled within ±0.2°C and ± 10mL/min. 
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3. Theoretical basis for NMR signal analysis 

NMR signal is caused by the interaction of the nuclear spin (or quantized angular 

momentum) of a nuclei (e.g.,
1
H) with an external magnetic field (B0), causing spin 

resonance at the Larmor frequency (w0). The basic principle of MRI (and displacement 

measurements) is to spatially encode the spins by superposition of constant magnetic field 

gradient G onto a static magnetic field [23]. The change in phase (j ) of the NMR signal is 

proportional to the spin displacement ( ( )' tr ), 

( )'
d

G t
dt

j
g= r         (1) 

Where G is the linear magnetic field gradient applied across the sample, g  is the 

gyromagnetic ratio of the nuclei (e.g.
1
H). 

Pulsed Field Gradient (PFG) NMR [35] can be used to measure the probability 

distribution of displacement (i.e. propagator).  The characteristic diffusion coefficient and 

mean displacement have a close relation with the propagator, which is defined as the 

probability density of a diffusing molecule (e.g., starting at t=0 and location r and 

propagating to r+R after time t=Δ). As an inverse Fourier transform of the acquired PFG 

NMR signal, the averaged propagator P is given as: 

( ) ( ) ( )0, ,
V

P R P r r R p r drD = + Dò      (2) 

where ( )0p r  is the initial signal probability distribution as a function of initial position r.  

When analyzing the probability distributions of displacement a useful analysis 

framework is the central moment: 
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    (3) 

Where µn is the n
th

 central moment, µ is the first raw moment (i.e. mean), P(x) is the 

normalized probability distribution as function of displacement (x). The second central 

moment (i.e. variance) is used to quantify the uniformity of flow, and the spread of the 

residence time distribution (RTD). Its magnitude generally scales with increasing 

heterogeneity as wider distributions (e.g. long break-through tails) will increase its value. 

 

 

4. Results and discussion 

4.1 Water molecule contrast NMR imaging 

To acquire a direct display of the fiber arrangements, 2D images of the different designs 

(i.e., randomly packed, spacer-knitted, semicurly- and curly-fiber modules) filled with 

stationary DI water were acquired transverse and parallel to the module axis.  These are 

presented in Fig. 3. The thickness of the excited slice is 5 cm. With the signal originating 

from the water content on the shell side of the module, the fiber matrix is revealed. Well 

defined fibers in the transverse plane are aligned perpendicular to the slice direction; as 

expected these are least prominent in the curly-fiber module (Fig. 3d) and most prominent 

in the randomly packed module (Fig. 3a).  In the axial direction, the semi-undulating flow 

paths between the curly-fiber modules are revealed.   

  

 

( ) ( ) ( )
n

n

n x x P x dxm m m
¥

-¥
= - = -ò
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4.2 PFG NMR diffusion/ propagator experiments 

To evaluate the mixing intensity and fluid dynamics induced by different designed 

channels, water propagators were measured parallel (Y) and perpendicular (Z) to the 

superficial flow direction with flowing fluid (DI water) at 100 mL/min for an observation 

time of 100 ms. These are presented in Fig. 4. In general the Y-direction propagators 

present an asymmetric distribution with a greatest probability of finding water molecules 

around zero velocity, indicative of fluid holdup. It is evident that the spacer knitted design 

shows reduced holdup and comparatively better hydrodynamics; the three other designs 

present similar hydrodynamics.   

In the transverse Z direction (Fig. 4b), the greatest probability is for zero velocity, 

consistent with minimal transverse flow and significant stagnant zones as evidenced in Fig 

4a. The greatest transverse flow is observed for the curly design, consistent with the 

undulating designs intention of promoting mixing. Broadly the propagator measurements 

serve to be a useful insight into the internal hydrodynamics and hence mixing in the 

modules.   

 

 

4.3 NMR velocity mapping 

The velocity maps in a transverse slice (for velocity in the superficial flow direction) 

are shown in Fig. 5 for the four module designs over a slice thickness of 5 cm at a flow rate 

of 100mL/min over an observation time of 100 ms. What is immediately obvious is the loss 
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of signal from the centre of the spacer-knitted design – this will be discussed further below.  

All other three designs present mean velocities consistent with gravimetric measurements.  

It appears that a more homogeneous flow-field is evident for the semi-curly fiber design 

followed by the curly fiber design and finally the randomly packed design. The standard 

deviation (σ) obtained for the NMR velocity maps are spacer-knitted σ = 1.6 mm/sec, 

semi-curly σ = 3.9 mm/sec, curly σ = 7.7 mm/sec and random σ = 8.2 mm/sec. 

Fig. 6 shows a comparison of module efficiency for four designs via MD temperature 

experiments at feed and permeate flow rates of 3 L/min and 0.4 L/min, respectively..  

Undoubtedly, the permeation fluxes of all MD modules follow a classical exponential 

increase with increasing feed temperature [39]. Compared to the randomly packed module, 

significant flux enhancement is achieved using modified configurations. The highest flux 

improvement of up to 92 % was observed by the modules with extensive undulating 

membrane surface (curly fibers and spacer-knitted) at a feed temperature of 343 K. 

The loss of signal in the spacer-knitted design is indicative of comparatively high 

displacements in this central channel and consequential loss of signal due to shear-induced 

T2 signal relaxation. We proceed to explore this phenomenon more thoroughly in the next 

section 

 

 

4.4 NMR Flow analysis for spacer-knitted module 

4.4.1 Imaging vs. flow rate for spacer-knitted module 
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To further elucidate the hydrodynamics of the shell side of the spacer-knitted module, 

the relationship between the NMR signal detection and operating flow conditions were 

investigated. Fig. 7 presents a series of cross-sectional images for the spacer-knitted 

configuration by applying a gradual increase on the shell-side volumetric flow rates from 

10 to 2500 mL/min (i.e., 0.017 to 41.7mL/s), with a selected slice thickness of 5 cm and an 

echo time of 29.5ms (This is a long echo time given the large dispersions due to high flow 

rates, small pixel size (240x240mm) and low signal-to-noise ratio (~10)). Similar to what 

has been observed in Fig. 5b, a “black hole” (signal loss) starts to appear in the center of 

the module when the flow rate increases to 40 mL/min, and drastically enlarges with further 

increasing flow velocity till a complete loss of signal at 2500 mL/min. This phenomenon is 

consistent with localized channeled flow with increasing externally-applied flow rates. 

Again, although the pixel information obtained from velocity maps is not sufficient for 

quantifying the flow status, a qualitative comparison on the signal loss caused by regional 

fast flow (large displacement) is rather useful in analyzing the flow transition for such 

special case as the spacer-knitted module. Hence, a plot of NMR signal magnitude as a 

function of volumetric flow rate at the shell side of the spacer-knitted module is given in 

Fig. 8, in which an initial significant decrease on the slope at a lower flow rate range and 

then a gradual decline occur. This finding supports our previous statement that this 

configuration allows the transition of a sudden occurrence of fast regional flow (with 

correspondence to the results in Fig. 7) and a subsequent tendency for an even flow 

distribution to slowly take place through the entire channel.  
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4.4.2 Probability distribution vs. flow rate for spacer-knitted module-don’t warrant their 

own section – combine with above.   

To quantitatively confirm the statements made from Figs. 7 & 8, propagator 

experiments were conducted with flowing DI water at the shell-side ofthe spacer-knitted 

module in both parallel- (Y) and perpendicular-to-flow (Z) directions, at an increasing 

volumetric flow rate from 20 to 400 mL/min. Fig. 9 gives the normalized displacement 

distribution in terms of flow velocity at different flow conditions. It is observed that with 

increasing flow rate the height of the distribution curve decreases significantly while the 

width (dispersion) increases at the axial Y direction, as shown in Fig. 9a; Similar to what 

was observed from the propagators in Fig. 4a, this is because that at a lower flow rate there 

is a higher probability of finding water molecules at small displacement (0 mm). Hence, the 

distribution curve tends to have a relative symmetric shape under such applied flow 

condition (e.g., at 20 mL/min). As the flow rate increases, the probability curve is more 

spread out and becomes more asymmetric, i.e., a longer tail at the large displacement side 

(e.g., at 400 mL/min).Therefore, it gives a lower probability at small displacement and 

more molecules found at larger displacements relative to a low flow rate condition. This is 

an indication of more intensive flow interaction taken place induced by the combination of 

faster externally-applied flow condition and internally-altered flow channel. In the 

transverse Z direction (Fig. 9b), the probability distribution curve lowers and widens as the 

applied volumetric flow rate increases. This is very encouraging information for expecting 

a strong transversal mixing and a subsequent improvement on the overall flow distribution.  
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However, due to the limitations of NMR signal detection, a further increase on the flow 

rate seem to greatly increase the difficulty in tracking fast moving molecules from such a 

thin selected slice and interpreting the signal. Without considering the absolute pixel counts 

of propagators shown in Fig. 8, an analysis of the normalized probability distribution at two 

extremely different flow rates is given in Fig. 10– 400 mL/min with an acceptable level of 

signal loss (approximately 57% signal detected based on Fig. 8) and1500 mL/min (only 

less than 10% signal detected based on Fig. 8). In contrast to the trend observed in Fig. 9, 

both Y and Z direction propagators at 1500 mL/min are relatively narrower and has a much 

higher probability finding water molecules at small displacement (0 mm), compared to that 

of 400 mL/min. One reason is that a significant signal loss occurred in large displacement 

regimes, which corresponds favorably with the pixel comparison provided in Fig. 8. The 

other possible cause is due to the formation of vortices and subsequent circulation of 

certain molecules results in signal offset at a high flow rate of 1500 mL/min. 

 

 

4.4.3 Variance vs. flow rate for spacer-knitted module    

As an important parameter in conventional flow analysis in a confined vessel, the 

variance (or standard deviation)shows the degree of dispersion around the mean 

displacement, i.e., the spread of the flow distribution curve. A large value indicates a big 

deviation from a uniform flow pattern. An ideal flow would have a small variance with a 

high mean, indicative of a homogenous mixing with molecules at large displacement 

regimes. Therefore, a variation of the variance can provide valuable information in 
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revealing the relationship between the probability distribution function (pdf) and flow 

behaviors. Thus, to understand the flow dispersion mechanism in a channel as the applied 

flow conditions change, a calculation on the second central moment — variance (Eq. (3), 

n=2) based on the propagators was conducted. Fig. 10 presents the variance as a function of 

the volumetric flow rate at the shell-side of the spacer-knitted module, in both 

parallel-to-flow Y and transversal Z directions. It is noted that in both flow directions the 

variance is first increases and then drastically decreases with increasing flow rate. Clearly, 

this has violated the conventional trend of variance in a developing flow – an initial and a 

subsequent plateau value under complete mixing is reached. This violation, however, can 

be explained by the corresponding NMR signal loss detected in the propagators (Fig. 9) due 

to the high speed inflow and outflow. The changes on the variance may also identify a shift 

on the dispersion mechanism (i.e., mechanical, Taylor or hold-up dispersion), which is not 

discussed in this paper. 

 

 

4.5 Overall comparison for all modules   

For a thorough evaluation of the flow behaviors in all four modules, key moments such 

as the mean displacement (mm, Eq (3), n=1), variance (mm
2
, Eq. (3), n=2) and skewness 

(mm
3
, Eq. (4), n=3) are calculated and compared based on the propagator experiments, as 

shown in Table 2. At an observation time of 100 ms, in the parallel-to-flow Y direction both 

the curly and semi-curly modules show relatively higher mean displacement; while the 

spacer-knitted one presents the lowest value, relative to the benchmark (randomly-packed 
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module). Consistent with the module performance as well as NMR velocity images, the 

curly-fiber design presents the lowest deviation and a high mean — implying the existence 

of an even flow distribution with fast flowing fluid. Similarly, in the transversal Z direction 

the curly fiber module shows more vigorous molecular movement and homogeneous 

mixing, with a larger mean displacement as well as a high variance; on the contrary, the 

randomly-packed module shows the lowest mean (negative) and variance in this direction, 

possibly caused by the existence of liquid stagnation or slight back flow. 

Overall, this moment analysis corresponds well with the MD performance shown in 

Fig. 6 and our previous MD studies [17], which indicated that the heat-transfer process 

could be enhanced by modifying the flow channel and/or increasing the velocity and to 

reduce the thermal boundary layer on the membrane surface .i.e., when the temperature at the 

membrane surface approaches the temperature in the bulk permeate, the driving force for 

vapor transport through the membrane can be maximized. In general, the modules with 

undulating membrane surface (e.g., curly and spacer-knitted fibers) show advantages by 

achieving higher vapor permeability and mitigating TP effect with reasonably lower energy 

losses; this is mainly due to the enhanced shell-side hydrodynamics induced by altered fiber 

geometries and relatively uniform shell-side flow distribution, which are confirmed by this 

current NMR study. 
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5. Conclusions  

With the aid of nuclear magnetic resonance imaging (MRI) technique, the 

hydrodynamic conditions and flow distribution in membrane distillation (MD) hollow fiber 

modules were studied. The pulse field gradient (PFG) experimental technique was used to 

acquire the molecular displacement information in the various flow channels. As an 

evaluation of module efficiency, the molecular contrast cross-section imaging, diffusion 

and propagator experiments in the shell-side flow, and the velocity mapping for all studied 

design patterns were conducted. 

The results showed that compared to the conventional randomly-packed module, the 

curly fiber design presented a narrower water propagator at Z (perpendicular-to-flow) 

direction, a higher probability of water molecules at high displacement at Y 

(parallel-to-flow) direction, and more intense local mixing and improved hydrodynamics 

revealed through its velocity map, which agreed well with the MD performance assessment. 

However, as a well-performed configuration testified via membrane process experiments, 

the spacer-knitted module showed a surprisingly significant NMR signal loss at high 

displacement, which indicated a poor hydrodynamics. Fortunately, this quest was unveiled 

via further propagator experiments at a much higher volumetric flow rate. Meanwhile, this 

issue has suggested the potential limitations on spatial resolution using the NMR 

instruments to assess hydrodynamics in a complex flow channel. 

In summary, this study has demonstrated the capability of a low-field NMR instrument 

to analyze the fluid dynamics non-invasively could therefore greatly assist in implementing 



 19 

novel module design and determining the optimum operating conditions in membrane 

separation. 
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Nomenclature  

 

A  Effective membrane area, m
2
 

C  Mass-transfer coefficient or membrane-distillation 

coefficient,kg·m
-2

·h
-1

·kPa
-1

 

C(t) Temporal tracer concentration at the effluent, mol٠m
-3

 

0c
 

Pulse injection tracer concentration at the feed entrance, mol٠m
-3

 

od
 Outer diameter of the hollow fiber, mm 

sd  Housing diameter of the module, mm  

tE
 Tensile modulus, MPa 

H  Effective heat-transfer coefficient based on the temperature difference 

across the entire membrane,  W٠m
-2
٠K

-1
 

h
 Overall heat-transfer coefficient 

1 1

f ph h
º + , W٠m

-2
٠K

-1
 

fh  Feed-side local heat-transfer coefficient, W٠m
-2
٠K

-1
 

ph  Permeate-side local heat-transfer coefficient, W٠m
-2
٠K

-1
 

mk  Thermal conductivity of membrane, W٠m
-1
٠K

-1
 

L  Effective fiber length, mm 

M
 

Molecular weight of water, g٠mol
-1

 

m Total amount of tracer, mol 

n  Number  f fibers 

N  Vapor flux,kg·m
-2

·h
-1
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P  Vapor pressure of the bulk streams, kPa 

q  Total heat flux, W٠m
-2

 

cq  Conductive heat loss through the membrane, W٠m
-2

 

vq  Latent heat flux, W٠m
-2

 

fQ  Feed flowrate, L min
-1

 

pQ  Permeate flow rate, L min
-1

 

0Q  Influent flow rate in tracer study, m
3
٠s

-1
 

R
 

Gas constant, 8.314 J٠K
-1

 

Re
 

Reynolds number, hd nr
m

 

maxr  Maximum pore size,μm 

meanr  Mean pore size,μm 

fT  Bulk temperature of the feed, K 

fmT  Temperature at the membrane surface on the feed side, K 

mT  Membrane temperature, K 

pT  Bulk temperature of the permeate, K 

pmT  Temperature at the membrane surface on the permeateside, K 

TD  Bulk temperature difference, K 

t
 

Time, s 

tm Mean residence time, s 

t  Theoretical residence time of the vessel 0V Q , s 

V  Volume of the vessel, m
3
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fv  Recirculated feed velocity, m·s
−1

 

pv  Recirculated permeate velocity, m·s
−1

 

  

Greek letters  
 

e  Membrane porosity, % 

f  Module packing density, % 

t  Temperature-polarization coefficient (TPC) 

2s  Variance, s
2
 

2

qs  Dimensionless variance 

q  Dimensionless time 

bd  Strain at fiber breakage,% 

md  Membrane thickness, μm 

g  latent heat-of-vaporization, J٠kg
-1

 

ρ Density of water, kg٠m
-3

 

μ Viscosity of water, Pa٠s 

  

Subscripts  

f Feed  

p Permeate 
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parameters: 128×128 pixels, 32 average, 5 cm slice. Gradients applied G: gradient pulse 
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Fig. 11. The change in variance as function of flow rate for the spacer-knitted module in the 
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parameters: 128×128 pixels, 32 average, 5 cm slice. Gradients applied G: gradient pulse 
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