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Abstract 

Membrane-based separation processes have found numerous applications in various 

industries over the past decades. However, higher energy consumption, lower productivity and 

shorter membrane lifespan due to polarization and membrane fouling continue to present severe 

technical challenges to membrane-based separation. Improved membrane module design and 

novel hydrodynamics offer strategies to address these challenges. 

 

This review focuses on hollow fiber membrane modules which are well-suited to membrane 

contactor separation processes. Attempts to improve membrane module design should begin with 

a better understanding of the mass transfer in the hollow fiber module, therefore this review 

provides a summary of prior studies on the mass transfer models related to both the shell-side 

and tube-side fluid dynamics. Based on the mass transfer analysis, two types of technique to 

enhance hollow fiber membrane module performance are discussed: (1) passive enhancement 

techniques that involve the design and fabrication of effective modules with optimized flow 

geometry; or (2) active enhancement techniques that uses external energy to induce a high shear 

regime to suppress the undesirable fouling and concentration polarization phenomena. This 

review covers the progress over the past five years on the most commonly proposed techniques 

such as bubbling, vibrations and ultrasound.   

 

Both enhancement modes have their advantages and drawbacks. Generally, the passive 

enhancement techniques offer modest improvement of the system performance, while the active 

techniques, including bubbling, vibrating and ultrasound, are capable of providing as high as 

315 times enhancement of the permeation flux. Fundamentally, the objectives of module design 

should include the minimization of the cost per amount of mass transferred (energy consumption 



3 

 

and module production cost) and the maximization of the system performance through 

optimizing the flow geometry and operating conditions of the module, scale-up potential and 

expansion of niche applications. It is expected that this review can provide inspiration for novel 

module development. 

 

Keywords: membrane module design, passive and active enhancement modes, mass transfer, 

hydrodynamics, energy efficiency 
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1. Introduction  

Membrane-based separation processes have found many applications in fields such as water, 

energy, chemical, petro-chemical and pharmaceutical industries. This growth has been primarily 

due to two developments: firstly, the ability to produce high permeability and essentially defect-

free membranes on a large scale; and secondly, the ability to assemble these membranes into 

compact, efficient and economical membrane modules with a high membrane surface area [1-3]. 

 

Nevertheless, there are still several limitations hindering the application of membrane-based 

processes, including flux decline, concentration polarization and membrane fouling. These 

limitations can reduce productivity, increase energy consumption and shorten membrane lifespan. 

A sustainable flux depends not only on membrane permeation properties, but also on the fluid 

hydrodynamics within the membrane module. In recent decades, numerous attempts have been 

made to design and fabricate effective membrane modules with optimized geometries and/or 

shear-induced accessories to enhance permeation and suppress undesirable polarization and 

membrane fouling [4-9].  

 

The performance improvement methods can be classified into two categories: passive 

enhancement techniques and active enhancement techniques. The passive techniques include 

modifying membrane layout or introducing spacers or baffles into the membrane modules to 

alter the flow geometries, by inducing secondary flows or eddies adjacent to the membrane 

or/and creating significant flow instabilities.  The active techniques utilize external energy to 

enhance the relative motion between the fluid and the membrane. The induced high shear rate 

can facilitate mixing and reduce the thickness of the boundary layer on the membrane surface.  
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There is considerable evidence that properly designed and fabricated membrane modules 

can improve the fluid hydrodynamic conditions and enhance overall system performance 

dramatically. However, despite its importance, membrane module design and fabrication have 

received less attention than membrane materials and membrane process development. The 

literature in this field is relatively sparse in comparison with the rapidly increased amount of 

literature in other membrane–related areas. The main reason is probably due to the fact that 

module technology has been developed commercially in the form of patents which are treated as 

proprietary knowledge by industry.   

 

This paper starts by summarizing the basic types of membrane module used for aqueous 

separations with a focus on hollow fiber modules and related mass transfer models. Then we 

discuss passive process enhancement techniques involving module/fiber configuration designs 

and active process enhancement techniques involving shear enhanced aids (vibrations/oscillation, 

bubbles and ultrasound etc) [10-12]. The focus is given to the latest developments in hollow fiber 

module design concepts and principles of mass transfer enhancement, because hollow fiber 

membrane technology is an attractive platform for many engineering processes. Moreover, by 

analyzing the working principle of each enhancement mode for practical applications, their 

benefits, limitations and technical requirements are addressed in terms of economic 

considerations (fabrication cost and complexity, energy demand) and processing engineering 

(scale-up potential and niche applications). It is hoped that this review can provide insights and 

inspire novel module design to enhance system performance of membrane-based processes for 

liquid separations. 

 

2. Development of membrane modules for liquid separation
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Industrial membrane separation requires large areas of membrane surface to be 

economically and effectively packaged. These packages are called membrane modules. Effective 

module design is one of the critical achievements that has led to the commercialization of 

membrane–based separation units [2].  

 

Generally, there are four basic types of module: plate-and-frame, spiral wound, tubular and 

hollow fiber modules. The earliest module designs were based on simple filters and consisted of 

flat sheets of membranes confined in a filter press called “plate-and-frame” modules.  Due to its 

simplicity, these plate-and-frame modules have been widely used in lab-scale and industrial 

applications. Although each type of membrane module configurations has its own pros and cons, 

hollow fiber modules have received the most attention because of their unique characteristics of 

self-support, high membrane packing density and high contact surface to volume ratio. The 

surface to volume ratio (m
2
/m

3
) is typically 350–500 for plate-and-frame modules, and 650–800 

for spiral wound modules. In contrast, hollow fiber membrane modules may have the ratio as 

high as 7000–13000. In addition to this, hollow fibers have the greatest potential to be arrayed in 

different forms for various applications [13]. The most common form is the conventional axially-

parallel fiber arrangement, as shown in Fig. 1. 
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(a)  

 (b)  

Fig. 1. A conventional parallel flow hollow fiber module 

(a) tube-feed; (b) shell-feed with dead end (redrawn from [13]) 

 

Hollow fiber modules typically operate using one of two flow patterns: tube-side (or lumen-

side) feeding or shell-side feeding. The former is commonly used in biotechnology applications 

and the latter for water applications. In some cases, such as membrane contactors, both tube and 

shell sides require controlled flows. Hydrodynamic challenges with the shell-side flow pattern of 

hollow fiber membrane modules include: bypassing, channeling and dead zones, which result in 

a loss in separation efficiency. While channeling may not be apparent in small scale bench tests, 

it becomes a serious concern in full scale applications [13]. This concern has led to major efforts 

in improving hydrodynamic conditions to overcome this problem, which is discussed in detail in 

Section 4.1 of this paper. 

 

3. Mass transfer analysis for hollow fiber module design 

Fundamentally, in all membrane separation processes, a molecule or particle is transported 

across a membrane due to a force acting on it, when this driving force is kept constant, a constant 
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flow will occur through the membrane after the establishment of a steady state. For a general 

liquid-liquid membrane separation process, the overall flux Js of the solute to be removed or 

retained can be expressed by a proportionality relationship [14]: 

sJ k F        (1) 

where F  is the overall driving force of the process, and the proportionality factor  k  is the 

overall mass transfer coefficient, which determines how fast the component is transported 

through the membrane, or in other words, k is a measure of the resistance exerted by the whole 

transport process.  

 

In a hollow fiber module, the transport of this component will follow three basic steps: from 

bulk feed to the membrane surface, across membrane and from the other surface of the 

membrane to the bulk permeate. By assuming the feed is flowing through the shell-side, k  can 

be expressed based on the resistance-in-series model [15]:
  

1 1 1 1 t in

m tube shell t out

d

k k k k d
   （ ）

             (2) 

where mk  is the membrane mass transfer coefficient; shellk , the mass transfer coefficient through 

the boundary layer on the feed side (most commonly used correlations are shown in Table 1) and 

tubek , the mass transfer coefficient through the boundary layer in the permeate side;  t ind  and 

t outd  are the inner and outer diameters of the fiber, respectively. All mass transfer coefficients 

here are calculated based on the inner membrane surface of the fiber. It should be noted that 

these theories which are involved in solute transport are not applicable to some special processes 

(e.g. membrane distillation (MD)) whose component of interest is the solvent itself (water). 
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With rapid advancement of  membrane science, currently available membranes used in many 

applications are so effective that the separation process is limited mainly  by the mass transfer 

rate to the bulk-membrane interface rather than through the membrane itself [7]. To further 

interpret the mass transfer occurring in fluids, it is conventional to correlate parameters in a 

dimensionless form, such as the Graetz number (Gz), Schmidt number (Sc) and Sherwood 

number (Sh). Gz is a dimensionless duct length, which can be expressed as the product of three 

dimensionless groups, as shown in Eq. (3). [16] 

hd
Gz Re Sc

L
       (3) 

where Re is the Reynolds number, hd  is the hydraulic diameter of the flowing channels in the 

shell-side, L  is the effective length of the module. Sh is the most common term by which mass 

transfer is described. It is defined as the ratio of convection to diffusion and is dependent on the 

shape of the duct and its dimension, as indicated by Eq. (4) 

( )hk d
Sh f Gz

D
       (4) 

 

where D is the diffusion coefficient of the solute in the feed side solution, Generally the mass 

transfer correlations can be expressed as [17]:  

 
( )hd

Sh aRe Sc
L

  
  (5) 

where a is a function of module geometry,  ,   and   are constants determined experimentally. 

Sh can be viewed as the ratio of the characteristic dimension of the flow path to the boundary 

layer thickness on the membrane surface. In laminar flow, some applicable correlations contain 

an additional factor involving the characteristic dimension divided by the length of the flow path 

( hd L ) [16].  
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Among various membrane processes involving liquid separation using membranes, for 

pressure-driven systems (e.g. reverse osmosis (RO), microfiltration (MF) & ultrafiltration (UF)), 

only the feed side (shell-side feeding pattern is assumed) may be subject to concentration 

polarization, which describes the phenomena of concentration build-up within the boundary layer 

near the membrane surface, due to the poor hydrodynamics and hence the low mass transfer 

coefficient [7]; while for most concentration-driven systems (e.g. membrane contactors), both 

tube and shell-side flows may have great impact on the overall module performance (e.g. 

artificial kidney, blood oxygenator, membrane distillation processes, etc) [18]. In some cases, 

even the membranes may play an important role in the overall mass transfer resistance [19]. 

Therefore, to design a well-performed hollow fiber module requires not only a better 

understanding of fluid dynamics on the shell-side, but also the flow on the tube-side and the 

mass transfer resistance across the membrane. A comprehensive summary of prior development 

of mass transfer models are provided  in the following section.  

 

3.1 Mass transfer in shell-side 

 

Although many studies have focused on either empirical or fundamental approaches to 

describe the shell-side mass transfer coefficient in conventional cross-flow hollow fiber modules 

[20-24], none of them are presented in a general form which can be applied to all membrane 

processes involved liquid phases. Most of the studies on mass transfer inside hollow fiber 

modules are based on membrane contactors, and the blood oxygenator and CO2 contactor are the 

most adopted processes to study the shell-side fluid behavior due to their simplicity. However, 

more and more rigorous engineering approaches have been developed by many researchers in 

recent years, for example, a generalized correlation using the analogy between heat and mass 
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transfer was proposed by Lipnizki and Field [21]. This approach covers a wide range of packing 

densities, the effect of flow mal-distribution, both laminar and turbulent flow, the entrance 

effects, and the development of both the hydraulic and concentration profiles. It can be 

interpreted as: 

1. Laminar flow (Re<2300) 

(i) Both hydrodynamic and concentration profiles are fully developed, 

0.4

1 3.66 1.2Sh         (6) 

where   is the packing density. 

(ii) A developing concentration profile with full hydrodynamic development, and the entrance  

effect is taken into account: 

0.25 0.33

2 1.615(1 0.14 ) ( )hRe Sc d
Sh

L
        (7) 

(iii) Both profiles are developing, the entrance effects are considered: 

1/6 0.5

3

2
( ) ( )
1 22

hRe Sc d
Sh

Sc L



      (8) 

if there is a need to include entrance effects even when the fluid leaves the module with fully 

developed profiles. 1Sh  and 2Sh  can be combined to predict the overall average mass transfer 

coefficient: 

3 3 1/3

1 2( )Sh Sh Sh        (9) 

If the fluid leaves the module with fully developed hydrodynamic profile and developing 

concentration profile, and entrance regions should be included, the overall average Sh can be 

expressed as: 

3 3 1/3

2 3( )Sh Sh Sh        (10) 
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Similarly, if the complete range of profile developments is considered, Sh for the whole 

range can be calculated by: 

3 3 3 1/3

1 2 3( )Sh Sh Sh Sh         (11) 

 

2. Turbulent flow (2300<Re≤10
6
) 

The mass transfer correlation can be derived based on a heat transfer analogy for flow 

through an annulus by Stephan [25], with Sc >> 0.0454: 

0.225 0.8 0.330.021Sh Re Sc       (12) 

 

As mentioned above, most of the empirical correlations developed by different researchers 

are based on specific studies of various systems and operating conditions, and most importantly, 

some influential factors such as the entrance effects, the development state of hydrodynamic and 

concentration profiles, the impact of packing density and mal-distribution phenomenon, and fiber 

polydispersity are neglected. To make the model more comprehensive, Lipnizki and Field [21] 

incorporated the effect of packing density and mal-distribution into the hydraulic diameter, 

divided the hollow fiber module into segments and proposed the prediction of average Sh via a 

sum of the local Shk: 

1

1
( , )

n

av k k k k

k

Sh A Sh Re
A




        (13) 

where k refers to the segment. However, the fiber polydispersity is not considered in this model. 

Hence, there are several new correlations developed by other authors that include random 

packing density [23, 26, 27].  
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As an important variation developed based on the conventional cross-flow modules, 

transverse-flow hollow fiber module has been intensively reported to have larger mass transfer 

coefficient, minimal flow channeling and better scale-up characteristics. For more precise 

performance prediction, several correlations have been proposed to describe its shell-side mass 

transfer [20]. To give an example, one of the shell-side mass transfer correlations has been 

developed based on the free surface model [28], which agrees well with the experimental results 

of the best-known Liqui-Cel
®
Extra-Flow module: 

0.42 0.332.15Sh Re Sc       (14) 

Here Re varies from 0.8 to 20. The detail of Liqui-Cel
®
Extra-Flow module is discussed in 

Section 4.1.2. 

 

An overview of the historical development of mass transfer correlations, is summarized in 

Table 1, which contains some popular models developed by various researchers in recently years. 

Although there is already a comprehensive review on hollow fiber membrane contactors by 

Gabelman and Hwang  in 1999 [20], this paper focuses mainly on the developments since 2000. 

In addition, regardless of the increasingly comprehensive models that have been developed, it 

should be noted that there is still no universal form which can be applied due to the complexity 

of coupling factors. However, a relatively rigorous approach is still feasible to analyze the 

hollow fiber module performance and hence help to identify the bottlenecks of module design in 

terms of process engineering. 

 

3.2 Mass transfer in the tube-side  

For some membrane processes dealing with liquid phases, both shell-side and tube-side flows 

have major contributions to the overall mass transfer, such as membrane contactors. In fact, the 
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flow is usually laminar instead of turbulent in the hollow fibers because of the small fiber 

diameter and comparatively long length. Any turbulent flow will eventually be reduced to 

laminar flow after passing a certain length, due to friction with the membrane wall [29]. 

 

Therefore the fluid flowing in the tube-side is generally treated as laminar flow, and the 

individual mass transfer coefficient tubek  is dependent on the flow velocity. Though there are 

several correlations available for the tube-side flow calculation [6, 30], the Lévêque solution (Gz > 

4) [31] has been widely accepted in the literature to predict tubek
 
with a reasonable degree of 

accuracy: 

 
0.33 0.33 0.331.62 ( )

tube t in t in

t

k d d
Sh Re Sc

D L
 

  (15) 

 

0.33
2

1.62 t
tube

t in

D
k

Ld

 
  

 
 

  (16) 

where Dt is the diffusion coefficient of the solute in the tube side solution. However, Eq (15) 

always overestimates the tube-side mass transfer coefficients when Gz<4. To develop a more 

rigorous correlation for hollow fiber systems, Wickramasinghe et al [6] incorporated the 

polydispersity of hollow fiber diameters to calculate the average. Their commonly used 

correlations for the tube-side mass transfer are also summarized in Table 1. 

 

3.3 Mass transfer across the membrane  

 

As mentioned previously, sometimes the membrane itself may present as the major resistance 

in the overall mass transfer, especially in some membrane contactor processes. Here, the local 

mass transfer coefficient mk can be defined as [32]:
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D
km

m






  (17) 

where D is the diffusion coefficient of the solute through the membrane, which can be calculated 

by applying the Wilke and Chang method [33]; ε is the membrane porosity, m is the thickness of 

membrane wall and τ is tortuosity. Thus, mk  is merely depending upon the solute diffusivity and 

the membrane structure regardless of the operating parameters (It is noted that this solute 

transport mechanism across the membrane is not applicable in the MD process because it 

involves only water vapor transport).  
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Correlation 
Eq 

no. 

Operating 

Conditions 

Packing 

density (%) 
Remarks Ref 

Shell-side axial flow       

0.6 0.330.048 ( )h

t out

d
Sh Re Sc

d
   (18) -- -- 

From Toyobo’s RO module, its flow 

condition is not clear  

[24, 

34] 

0.6 0.33(1 ) ( )hd
Sh Re Sc

L
    (19) Re >500 0.4-40 

  is 5.8 for hydrophobic and 6.1 for 

hydrophilic membranes 
[35] 

0.53 0.33(0.53 0.58 )Sh Re Sc   (20) Re =20-350 32-76 

Remixing and splitting of fluid is considered, 

fresh fluid constantly presents on the 

membrane surface is assumed 

[36] 

0.93 0.33 0.931.25 ( )hd
Sh Re Sc

L
  (21) Re <1000 2.5, 26 -- [30] 

0.019 hd
Sh ReSc

L
  (22) Gz <60  

Closely packed modules of various 

geometries 
[6] 

0.338.8( )hd
Sh Re Sc

L
  (23) Laminar 15 Channeling needed to be incorporated [37] 

0.74 0.338.71 ( )hd
Sh Re Sc

L
  (24) 

Re =0.16-

7.30 
30 -- [38] 

(0.8 0.16 ) 0.330.09(1 )Sh Re Sc    (25) Re <10 35-97 For regularly packed fibers cases. [39] 

Table 1. Correlations for shell/tube-side mass transfer in hollow fiber modules 
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2 0.9 0.33(0.31 0.34 0.10)Sh Re Sc     (26) Re =32-1287 8-70 Flow mal-distribution is taken into account. [40] 

0.25 3 1.5 0.5 1/3[4.212 (1 0.14 ) 0.302 ]k k k k kSh Gz Gz Sc    

 

1

1
( , )

n

av k k k k

k

Sh A Sh Re
A




   

 

(27) 

 

(13) 

Re <2300 

Sc>>1 
10-75 

Entrance effects, packing density and flow 

mal-distribution are taken into consideration a 

hollow fiber module with fully .developed 

hydrodynamic and developing concentration 

boundary layer profiles. where kSh  and ovSh  

are the local and overall average Sherwood 

number, respectively. 

[21] 

0.225 0.8 0.330.021Sh Re Sc  (12) 

2300<Re 

≤10
6 

Sc>>1/22 

10-75 
Derived based on a heat transfer for flow 

through an annulus by Stephan 
[25] 

2

2

(4.0108 4.4296 1.5585) 0.33

( 0.4575 0.3993 0.0475)Sh

Re Sc 

 

 

   


 (28) Laminar 30.6-61.2 

Based on osmotic distillation systems, Re is a 

function of packing density 
[22] 

0(0.3 0.14)

0 0

1
( )

(0.86 0.3 )

h

r

d
Sh ReSc

L


 





 (29) 

Re =68-1194 

Gz=70-5039 
20-50 

The overall average mass transfer coefficient 

r
Sh incorporated the randomcity of 

fiber/flow distribution,    is a dimensionless 

group presenting the deviation of randomly 

packed module from uniformly packed one. 

[26] 
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0 0

0

0 0

2 /( )

0 0

( ) ( )d d

2 ( )d

( ) ( )d d
ln

( ) ( )d d

h

k rl v

vf g r rd
Sh

D l rg r r

vf g r r

e vf g r r 

  



  

  

 



 

 






 



 

 

 
(30) -- 25-75 

For the first time both randomicity of flow 

distribution and polydispersity of fiber 

diameter on shell-side mass transfer are 

considered together. 

[23] 

      

Shell-side transverse flow      

0.556 0.330.575Sh Re Sc  (31) Re <1000 -- 

The analogy of a well-established heat 

transfer correlation for flow across or 

transverse to a “staggered bank” of tubes. 

[41] 

0.8 0.330.15Sh Re Sc  (32) Re >2.5 -- 

Developed by alternative module geometries, 

such as cylindrical/helically wound bundles 

and rectangular-bed configuration. 

[6] 

0.330.12Sh ReSc  (33) Re <2.5 -- 

Obtained by the similar configurations with 

Eq (32) under conditions which may induce 

uneven flow channels among fibers.  

[6] 

0.34 0.331.38Sh Re Sc  (34) 1<Re <25 70 

Developed from tightly packed module for O2 

or CO2 removal, it was based on heat transfer 

correlations of single tubes. 

[30] 

0.4 0.330.9Sh Re Sc  (35) 1<Re <25 7 
Similar to Eq (34), for loosely packed 

modules. 
[30] 
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0.363 0.330.61Sh Re Sc  (36) 0.6<Re <49 0.3 For extremely low packing density cases. [42] 

0.32 0.331.45Sh Re Sc  (37) -- -- 
Obtained from bubble-free aeration of water 

using transverse flow fiber arrangement. 
[43] 

0.59 0.330.24( )hd
Sh Re Sc

L
  (38) -- -- 

Similar to Eq (37), but used a sealed fiber 

bundle unconfined in a jet stream instead. 
[44] 

0.42 0.332.15Sh Re Sc  (14) 0.8<Re <20 -- 

Developed based on free surface model, 

which agrees well with the experimental 

results of the best-known Liqui-Cel®Extra-

Flow module 

[28] 

Tube-side mass transfer      

0.33 0.33 0.331.62 ( )
t ind

Sh Re Sc
L

  (15) Gz>4  

Reasonably accuracy is obtained for mass 

transfer coefficients estimation when Gz >4 

cases, but overestimates when Gz<4. 

[31] 

0[1 (18 7] ]Sh Sh Sh Gz x     (39) --  

Polydispersity of hollow fiber diameters is 

incorporated into calculating the average 

<Sh>, Sh is for a uniform distribution of fiber 

radii, 0x  represents the deviation divided by 

the mean. 

[6] 

0.8 0.330.023Sh Re Sc  (40) Re>2000  
Based on Chilton-Colburn and Deissler 

analogies. 

[45, 

46] 

0.11

(1 0.25 ) 0.33'
m

m

w

f Sc
Sh Re Sc

f Sc

    
   
   

 
(41) 

10
4
<Re<10

5
, 

Sc>1000 
-- 

Sh , the corrected Sherwood number under 

conditions of porosity and variable properties, 

wSc  is the corrected Schmidt number on the 

membrane wall; f is the friction factor and f” 

[17] 
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Note:  

1. This table contains most of the correlations developed after 1999; some earlier models were reviewed by Gabelman and 

Hwang [20]. 

2. Only applications for liquid separation are presented, i.e. gas separation such as adsorption is not included. 

3. No chemical reaction is involved in these cases. Some special transverse flow correlations derived from hollow fiber fabric 

modules are not presented in this table, they will be given below in the case study. 

is the corrected friction factor, m=0.5 or 1.0 

depends on smooth or porous/rough surface. 

Applicable for Newtonian flow 
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3.4 Basic principles for mass transfer enhancement 

The above discussions clearly indicate that the mass transfer in a hollow fiber module is 

closely linked to the fluid hydrodynamics and membrane module geometry. Using the membrane 

contactor as an example, while the mass transfer through the membrane ( mk ) is independent of 

the flow conditions, the mass transfer on shell and tube sides ( shellk and tubek ) are functions of the 

flow conditions and fiber/module geometries. The semi-empirical mass transfer correlations shed 

some light on strategies to improve the mass transfer by varying flow conditions and flow 

channel design.  

   

On the tube side, Eq (15) is widely used to predict the mass transfer coefficients, where Re  

represents the hydrodynamic conditions. However, the predictions by this model slightly 

overestimate the experimental data when the flow velocity is very low [20], which may be due to 

the non-uniform flow distribution inside the tube. It was found that it is not only related to the 

flow velocity (via Re), but may also relate to the effect of fiber length and fiber dimensions. As a 

certain degree of uniformity is reached, the mass transfer coefficient tubek  can be predicted 

reliably. It increases with increasing Re and the diffusivity of the solute of interest [20] , but 

decreases with increasing inner diameter and fiber length.  Under given conditions, Re seems to 

be the dominant factor affecting tubek . 

 

On the other hand, the prediction of the shell-side mass transfer coefficient shellSh  is more 

challenging, since the shell-side geometry and hydrodynamics are more complicated to correlate. 

Though there are numerous studies that focus on the shell-side, none are universally applicable 

due to the various parameters incorporated in the different models. However, the basic principle 

of mass transfer enhancement shown in these correlations is similar. According to the 
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increasingly complex form of the model development, it can be concluded that the mass transfer 

depends on many factors and their combinations, such as the flow velocity (Re), states of 

hydrodynamic/concentration profiles, hydraulic shell diameter and effective length of the module, 

entrance effects, fiber polydispersity, packing density, and flow mal-distribution. Furthermore, it 

may also be influenced by the interaction between the surface properties of the membrane (i.e. 

hydrophobic/hydrophilic character) and the diffusivity of the solute of interest, which is playing 

a role in calculating k value [20]. For example, hydrophilic membranes may facilitate the 

transport of inorganic solutes, while hydrophobic membranes may transport the organic solutes 

preferentially [19, 20]. 

 

Clearly, the main objective of improved membrane module design is to enhance the overall 

mass transfer. The basic strategies include enhancing the module’s capabilities to create more 

eddies or turbulence between fibers, reduce the boundary layer thickness and provide better 

mixing. To achieve these goals, various methods and devices have been employed to enhance the 

mass transfer inside the module (e.g. the passive enhancement techniques, and active 

enhancement techniques). These strategies are reviewed in the following sections (refer to 

Section 4.1 and Section 4.2). 

 

4. Process enhancement techniques 

4.1 Passive enhancement techniques  

 

The majority of laboratory or industrial scale modules are designed for use with flat sheet 

membranes, because the membrane structure is simple and the membrane replacement is easy. 

From a commercial standpoint, however, hollow fiber modules are more productive as they have 
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much larger surface area per volume. Despite the relatively high fabrication cost, hollow fiber 

modules can play an important role and gain better performance to minimize the cost per unit 

product volume [47-49]. 

 

Most hollow fiber modules are designed for pressure-driven filtration processes rather than 

concentration-driven or thermally-driven contactor processes. However, from the process 

enhancement point of view, their applications may be potentially extended to suit and improve 

other separation processes. 

 

4.1.1 Fabric hollow fiber modules 

In the early days, due to limited materials and fabrication methods, membranes themselves 

tended to be the controlling resistance in membrane-based separations. With the advancement of 

membrane fabrication techniques, it has been possible to produce thinner membranes with higher 

permeability. As a result, improving mass transfer of the process has shifted to alternative 

geometries that are able to offer better performance than the conventional parallel flows.  

 

It is widely reported that flow mal-distribution in the membrane modules may lead to 

decrease module performance and hence a reduction of the average mass transfer coefficient [50]. 

To overcome the problems of non-uniform fiber spacing in hollow fiber modules, which often 

results in a flow mal-distribution, several researchers have introduced fiber-woven fabric into 

hollow fiber modules to gain more uniform spacing and baffles to create better mixing [47-49]. 

The results showed that the shell-side mass transfer coefficient was significantly higher than that 

of the commercial parallel modules. In order to make a comparison, they designed and tested 
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various configurations (Figs.2-6). Their detailed features can be found in an earlier review by 

Gabelman and Hwang [20]. In this paper, only a brief summary is given in Table 2. 

 

To provide some perspectives on hollow fiber module design, some researchers [48, 49] 

correlated Re (flow velocity) and Sh (mass transfer coefficient) with single-fiber modules under 

different flow regimes and developed a set of analogous shell-side mass transfer correlations 

which showed good agreement with the experimental data (some of these correlations are listed 

in Table 1). According to their observations, counter-current flow patterns had much better mass 

transfer. Surprisingly, the baffled rectangular module performed more poorly than non-baffled 

modules and a cylindrical module with fewer baffles was comparable to a fully-baffled one. 

Therefore, it can be seen that baffles can constrain the hydrodynamic conditions in some cases. 

These previous studies suggest that turbulence promoters do not always enhance module 

efficiency. The effectiveness depends on how the promoters are arranged and how the flow 

channels are actually distributed. However, most of the mentioned configurations improve the 

fluid distribution and mixing to achieve much higher mass transfer coefficients in both gas and 

liquid separations [48, 49].  
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Module type 
Key characterisitics 

& performance 
Figures 

Axial helically wound 

module [49] 

 All fibers wound helically around a central core; 

 The Feed was forced radially outward by a plug for 

perpendicular flow distribution. 

 
Fig. 2 Axial helically wound module 

Fabric woven module 

[49]  

 Woven hollow fiber fabric wound helically around 

a central core, with mounted plugs and O-rings; 

 Mass transfer coefficients were 10 times higher 

than commercial parallel-module at very low flow 

rates; 

 The mounted plugs and O-rings created multiple 

shell-side passages.  
Fig. 3 Fabric woven module 

Vane module [49] 

 A vane of  hollow fiber fabric mounted diagonally 

inside an open ended box; 

 It had the highest mass transfer coefficient 

compared to the first two configurations. However, 

the fabrication is the most complicated. 

 

 
Fig. 4  Vane module 

 

Table 2. Summary of fabric hollow module configurations 
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Partially-baffled 

rectangular module 

[48] 

 

 Woven fibers with 2 baffles; 

 Both countercurrent contact and perpendicular flow 

were supplied to the well spaced fibers; 

 Performed more poorly than non-baffled modules, 

due to the stagnation of liquid caused by the baffles. 

 

 
Fig. 5 Partially-baffled rectangular module 

 

Fully-baffled 

cylindrical module 

[48] 

 

 Woven fibers with 5 baffles; 

 A better fluid mixing since the fluids tended to flow 

backwards and forwards between the spacers; 

 Achieved the highest mass transfer coefficients. 

 

 
Fig. 6  Fully-baffled cylindrical module 
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4.1.2 Hollow fiber modules with transverse flow 

Another geometry-based membrane module improvement technique is known as “transverse 

flow” or “radial cross-flow” (baffled modules have some of this feature). With this technique, the 

membrane module has a central tube for shell-side feed distribution. The flow pattern in the 

module is radial cross-flow. The function of the central tube is to eliminate the concentration 

polarization and enhance the process in the upstream when scaling-up to a larger diameter (e.g. 

0.3m). This configuration can also be achieved by forming a membrane bundle with knitted 

hollow fiber fabrics instead of individual hollow fibers, similarly to the modules discussed in 

section 4.1.1. 

 

One of the best-known commercial modules with a central tube is the Liqui-Cel
®
Extra-Flow 

module (as shown in Fig. 7), which was patented by CELGARD LLC [51]. This module contains 

Celgard® microporous polypropylene fibers that are woven into a fabric and wrapped around a 

central tube feeder that supplies the shell-side fluid. The woven fabric allows a more uniform 

fiber spacing, which leads to better flow distribution and higher mass transfer coefficients than 

those obtained with individual fibers. The fibers are potted into a solvent-resistant epoxy or 

polyethylene tube-sheet (Fig. 7). 

 

 

Fig 7. The design features of Liqui-Cel
®
Extra-Flow module (redrawn from [51]) 

 

The Extra-Flow module has a central shell-side baffle which improves the module 

efficiency by minimizing shell-side bypassing and provides a radial cross-flow to achieve a 

higher mass transfer coefficient than that of conventional parallel flows (see Section 4.1.1). The 

largest module can handle liquid flow rates of thousands of liters per minute [52].  
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Another transversal flow membrane module for liquid separation contains a number of 

hollow fibers which are arranged perpendicularly to the longitudinal axis of the module [53]. 

This type of module comprises many transverse-current flow segments formed by the seals 

between the main body and the shell. The channels in the fibers are connected to a space 

presented around the body which is further surrounded by a shell.  

 

The concept of transversal flow in hollow fiber modules arose from the fabrication of 

similar flat sheet modules [54, 55]. It has recently been widely applied to gas-liquid absorption 

such as CO2 removal from natural gas, pervaporation of ethanol from water, concentration of 

organic substances from aqueous solutions and dialysis in the artificial kidney (as shown in Fig. 

8). Similarly, a rectangular cross-flow module, which introduces transverse flow with staggered 

fiber arrangement and mounted face plate, was designed by Sirkar et al for MD process recently 

[56]. Compared to the conventional contactors such as mixing towers or columns, the membrane 

contactors can avoid the constraints of flooding, loading, entrainment and foaming. In addition, 

this membrane module featured with a special fiber layout provides better mixing, higher 

recovery and lower energy consumption than the hollow fiber module with a parallel layout. In 

spite of the complication in module assembly, one of the most competitive advantages of the 

transversally-arrayed hollow fiber module in liquid separation is the reduction of channeling and 

polarization phenomena. It may also help to avoid the membrane wetting since the whole system 

employs a relatively low velocity due to the smaller hydrostatic pressure drop along the fiber 

[57]. Hence, such configurations can be potentially applied to new processes like membrane-

based extraction and membrane distillation which are subject to pore wetting. 
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Fig. 8. Transversal membrane contactor (redrawn from [53])  

 

4.1.3 Dual hollow fiber modules/ U-shape modules 

A dual hollow fiber module for CO2 removal is shown in Fig 9. This integrates the 

absorption and desorption processes in one module with different fluids flowing in the two 

bundles, respectively [57]. Similar designs can be found from previous studies [58, 59]. 

Compared to conventional linear modules, this type of module comprises one or more hollow 

fiber bundles which not only increases the contact area between fluids, but also crimp the flow 

channels to create better hydrodynamics.  It was reported that this may favor both the gas and 

liquid separation due to the improved permeate flow characteristics and improved space/volume 

characteristics. The fiber bundles are very flexible and can be of any shape rather than being 

subject to mechanical stretching by the sealing epoxy. The possible configurations are shown in 

Fig. 10. To avoid or minimize liquid film transfer resistance, the liquid within the module needs 

to be agitated by circulating or other means (e.g. stirrer). 
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Fig. 9. Dual hollow fiber module (redrawn from [57]) 

   (a)  (b)   

(c) (d)       

Fig. 10. Flexible U-shape hollow fiber modules: (a) coiled; (b) French horn; (c) spiral; (d) 

one-ended U shape (redrawn from [59]) 

 

4.1.4 Hollow fiber module with modified fiber geometries 

Most researchers focus on introducing channeled designs to enhance the flow passage, 

presenting various fiber layouts to even the flow distribution effectively, inserting turbulence 

promoters such as spacers, screens or baffles. Limited work [8, 60-63], however, has been done 
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to investigate the enhancement effect of hollow fiber configurations with wavy geometries such 

as crimpled, braided and twisted fiber geometries, shown in Fig 11.  

 

 

Fig. 11. Hollow fiber configurations with wavy geometries (redrawn from [8])  

 

As reported by Teoh et al [8], the application of different hollow fiber configurations with 

wavy geometries in the MD process led to flux enhancement by as much as 36% compared to 

that of a conventional straight-fiber module without inserting any external turbulence promoter. 

This seems to be more efficient than window or helical baffles assisted systems which 

correspond to 20~28% enhancements, respectively. Ghogomu et al [61] studied MD using a 

hollow fiber module with coiled fibers. It was found that all the curved geometries, such as those 

that are helically coiled, twisted sinusoidal or meander-shaped, can induce dean vortices 

(secondary flows) which can significantly enhance the process as compared to conventional 

straight fibers. Li et al [62] also reported the use of a commercial hollow fiber module 

Monsanto’s Prism® with crimpled fibers which was made by Monsato Company. Although it 

has been successfully used in H2 recovery, it may have the potential to be applied in liquid 

separation processes in the future.  

 

Curved fibers as a geometry improvement can efficiently and easily be applied to increase 

the fluid-membrane contact area per unit volume, create better hydrodynamic conditions and 



32 

 

enhance membrane flux. Moreover, this type of configuration can find its place in a broad range 

of industrial applications. 

 

4.1.5 Other hollow fiber modules 

Some other passive, geometry-based membrane module improvements are described here.  

One hollow fiber module with a plurality of membrane units was designed to perform an 

attempted separation of components from a multi-component feed (Fig. 12), each unit contains a 

number of elongated hollow fibers which are connected to the collecting manifolds. The axial 

movement of fibers is allowable due to unrestrained manifolds. This design solves a classical 

problem in hollow fiber modules that fibers should have a longer length than the shell in case of 

axial shrinking, and it alleviates the differential expansion between the membrane tubes and shell 

since the novel design allows the membrane tubes to expand independently. In order to meet 

different requirements of different separation processes, an integral two-stage (in parallel or 

series) module with two embodiments is also applicable [62] (Fig. 13). 

 

Fig 12. Novel hollow fiber modules for fluid separation (redrawn from [64])  
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Fig. 13. Internal staged permeator for fluid separation (redrawn from [65]) 

 

Submerged membrane modules are more versatile in aqueous separation processes; they are 

widely used in membrane bioreactor processes [66] (Fig. 14). In most cases, due to the severe 

fouling in biological wastewater treatment, the submerged module is operated with air sparging 

which can enhance the process effectively. This approach will be discussed in more detail in 

Section 4.2.2. 

 

Fig. 14. Advanced submerged hollow fiber module (redrawn from [66]) 

 

Some of the membrane separation processes (such as membrane distillation or osmotic 

distillation) require extra cooling or heating devices for post treatment or to increase process 

driving force. Multi-functional modules, which serve separation as well as heat exchange 

purposes, have been developed [67, 68]. If the heat exchange operation is sufficient in a single 

module, then subsequent connected heat exchangers may be rendered unnecessary. For example, 

Memstill
®
 technology developed by TNO institute and Keppel Seghers Company is now 

operated at the pilot scale in Singapore [67]. It combines a continuum of evaporation stages in 

countercurrent flow pattern which makes the heat recovery process simultaneously. A similar 

concept can be found from a European patent (Fig. 15). 
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Fig. 15. Filter membrane module comprising an integrated heat exchanger (redrawn from [68]) 

 

Most of these passive enhancement modules have been applied in gas/liquid contactors. 

However, they have the potential to be used for concentration-driven liquid/liquid mass transfer 

and temperature-driven MD processes, where their simplicity (and hence ease in manufacturing) 

would be an advantage. Furthermore, these configurations offer substantially higher mass 

transfer rates. Some of the commercially available filtration modules can also be applied to 

concentration-driven or thermally-driven processes such as MD, as they are able to provide good 

mixing conditions to enhance heat and mass transfer in both the bulk solution and the solution-

membrane interface. It should be noted that most of these modules have only been studied in 

laboratory scale, except the Liqui-Cel
®

Extra-Flow module. As reviewed previously by Gabelman 

and Hwang [20], there are some other commercial examples which have not been categorized 

due to insufficient information, such as the DISSO3LVE
TM

 module  (W.L. Gore & Associates) 

which was primarily applied for the ozonation of semiconductor wastewater treatment; the 

Separel
TM

 EFM-530 module (Pall Corporation) which was used in ultrapure water applications 

as a bubble-free gas/liquid membrane contactor; and modules designed for oxygenation 

processes in bioremediation and aeration (Membrane Corporation) were also used as bubble-free 

gas/liquid membrane contactors in wastewater treatment. In addition, in the late 1980s, Enka AG 

developed a commercial hollow fiber module for the MD process [69]. 
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4.2  Active enhancement techniques 

Advancements in membrane materials and membrane fabrication techniques and the 

resulting increase in broad applications of membrane-based processes have facilitated 

development of technologies for membrane modules. There have been several generations of 

membrane modules to meet the demands of various applications. While the passive enhancement 

techniques described above can enhance membrane performance significantly by utilizing and 

distributing the energy of the fluid flow itself, there are still limitations that allow these 

techniques to only offer a moderate enhancement in mass transfer, which is limited by 

concentrated or viscous feed solutions.  

 

In contrast, active enhancement techniques allow the introduction of various forms of 

external energy to improve membrane processes. Fane and Chang [9] have briefly summarized 

various active enhancing strategies and reviewed their development up to early 2005.  Those 

strategies include pulsed flow, high shear devices (rotating and vibratory systems), two-phase 

flow systems, electro-filtration, ultrasound-enhanced filtration, etc. This paper will focus on the 

mass transfer enhancing mechanisms and progress in the past five years on the most commonly 

proposed techniques, such as bubbling, vibration waves and ultrasound. Additionally, the 

benefits and drawbacks of these active enhancement techniques will be highlighted in this 

section, and they are then further compared in Section 5 with respect to fabrication cost, energy 

demand, scale-up potential, etc. 

 

4.2.1 Bubbling system 

The most widely used active approach to avoid membrane fouling in membrane-based 

processes, especially in membrane bioreactors, is air bubbles [11, 70-73] to induce liquid 

movement and promote surface shear and reduce membrane fouling. Especially in a membrane 

bioreactor process, air sparging serves the double purpose of providing aeration and causing two-

phase flow to control fouling. As reviewed by Cui et al [74], the mechanisms of process 

enhancement and fouling control using bubbling systems (gas flow applied either inside or 

outside of the fiber) includes: 

(1) Bubble induced secondary flow;  

(2) Displacement of the concentration polarization layer;  
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(3) Passing bubble induced pressure pulsing;   

(4) Increase of superficial cross-flow velocity; 

(5) Movement of the fibers (external bubbling and lose fibers).  

 

To correlate the bubble size/characteristics (effects of air flow rate, orifice size, fluid 

properties, submergence. etc) and bubble induced fiber movement into the module performance, 

it is essential to characterize the uniqueness of the bubbling system and distinguish the 

contribution from bubbles of different sizes. Many researchers [11, 75-78] have investigated the 

effect of bubble size on module performance in the submerged MBR systems. For example, to 

observe the relationship between bubbling and module performance via critical flux, trans-

membrane pressure (TMP) and membrane fouling formation, Wicaksana et al [11] studied the 

interaction between bubbling and fiber movement in submerged hollow fiber membranes. It was 

found that a lower fouling rate could be achieved by more fiber movement under certain 

conditions such as fiber looseness, smaller bubbles, higher air flow rate, lower feed viscosity and 

lower solid concentration. The authors also stated that the fiber movement was enhanced by 

using thinner and longer fibers, but it was insensitive to nozzle sizes (bubble sizes) used in the 

system. To study the fouling mechanism in submerged hollow fiber membrane modules with 

bubbling, Yeo et al [76, 79] used particle image velocimetry (PIV) to examine the bubble-

induced phenomena by varying and correlating different operating parameters, they also stated 

that many small bubbles are better than few large bubbles.   

 

Although Fane & Chang [80] and Cui et al [74], have extensively documented the 

development of membrane processes associated with bubbling and demonstrated the benefits of 

bubbling systems that have caused an upsurge of interest in the use of air bubbles to enhance 

membrane process (e.g. submerged membrane bioreactors ), there are some limitations in the 

applications of this coupled system. For instance, in most bio-separation processes using UF/MF 

hollow fiber modules [74], the fragmentation of protein or micro-organisms [81-83] could occur 

and aggregation could easily happen due to the high shear rate when bubbles burst. Therefore, 

bubble-flow induced bio-separation process can only perform well under relatively low air 

sparging rates. In high pressure membrane processes (NF and RO), the air can be dissolved into 
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the feed at the high pressure side and released into the permeate side which may lead to back 

pressure build-up and lower the efficiency of the separation process. Additionally, a certain 

volume of gas must be injected into the modules at the operating pressure to achieve a higher 

critical flux. This could be energy intensive for high pressure applications.  

 

Although the concept of gas sparging to enhance transport and reduce fouling formation can 

be very effectively applied to various membrane processes, a comprehensive study is deficient 

on the characteristic flow patterns (bubble flow, slug flow, churn flow and annular flow) in this 

gas-liquid two phase system, the dominant role of the slug flow regime, parameters contributing 

to pressure losses and fouling rate controlling factors. In hollow fiber modules, it is important to 

determine that the bubbles should be introduced through tube or shell sides, and to overcome the 

difficulty in ensuring even air distribution in a confined hollow fiber module. 

 

4.2.2 Vibrating membranes 

The original concept of dynamic filtration to improve membrane performance by applying 

vibration was initiated by Armando et al [84] from New Logic International Inc. The system is 

known as vibratory shear enhanced processing (VSEP), and contains a stack of membrane disks 

mounted in a circular casing connected to a torsion spring and a motor. The motor generates a 

vibrating force on the membrane elements. The vibrations can help to disrupt the concentration 

and/or temperature polarization and fouling layer formation, which as described above are the 

major challenges in membrane-based processes. This concept has also been commercialized by 

Pall Filtration, US [85], their product was named as PALL-Sep Vibrating Membrane Filter. 

 

Compared with the conventional cross-flow system, a vibrating membrane offers several 

advantages. The conventional cross-flow system has a relatively low shear rate (less than 

10,000~15,000/s), which limits its application for high-concentration and high-viscosity feed 

solutions. Moreover, in spite of the high flow rate introduced into the system, membrane fouling  

and flux decline still easily occur due to an insufficient shear rate that cannot prevent the 

accumulation of retained particles on the membrane surface. In comparison, the vibrating system 

of the VSEP unit induces a much higher shear rate (100,000~150,000/s) that increases turbulence 
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at the membrane surface and promotes the back diffusion of particles to the bulk solution 

effectively. Comparison of the working principles and wall velocity distributions in a 

conventional cross-flow and a VSEP system are shown in Fig. 16 and Fig. 17, respectively. It is 

clearly illustrated that in a VSEP system, the maximum flow velocity occurs near the membrane 

wall which will break down the boundary layer and keep particles suspended above the 

membrane surface [86]; while in a conventional cross-flow system, the flow adjacent to the 

membrane wall is stagnant. 

 

(a)  

(b)  

Fig.16. The mechanism of particles removal due to shear in (a) conventional 

cross flow system and (b) VSEP unit (redrawn from [87])  

  

(a)  (b)  

Fig. 17.  Comparison of velocity distribution profiles in:  

(a) cross-flow system; (b) VSEP system 
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Due to its benefits, the commercial VSEP module has been successfully used in treating 

concentrated feeds such as landfill leachate and high-salinity seawater (mainly reverse osmosis) 

in industry [86]. Recently, several researchers have tried to broaden its applications in the food 

industry [88, 89] or pervaporation process [90], and extend this concept to hollow fiber modules 

such as submerged membrane bioreactors [91-94]. Although the hollow fiber modules have 

higher potential for practical applications, there are only limited studies involving vibrating 

assisted hollow fiber modules [10, 91, 93, 94] (a vibrating submerged hollow fiber module is 

shown in Fig. 18). 

 

 

Fig. 18. Hollow fiber vibrating membrane bio-reactor (VMBR) associated with vibrating device 

(redrawn from [93]) 

 

To summarize the vibrating membrane techniques, vibrating the membrane itself, as 

opposed to vibrating the flow, can advantageously achieve the most relative motion on the 

membrane surface. This motion between bulk solution and membrane can greatly reduce the 

liquid boundary layers and the membrane fouling, polarization effects on both sides of the 

membrane. As a result, vibratory systems might have the potential to be coupled with other 

processes which suffer from low permeability or severe polarization, such as MD or membrane 

distillation bioreactors (MDBR). 
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Thus, it is hoped that the vibrating concept can be implemented for various applications 

because it offers economically competitive advantages in treating high-salinity water and has the 

potential to greatly advance the use of membranes in desalination. However, there are also some 

limitations in this area, such as the potentially high demand of external energy input (detailed in 

Section 5) and the complexity of rotating devices, which lead to the relatively high operation 

maintenance and equipment cost in the system. 

 

4.2.3 Ultrasonic systems 

Ultrasonic waves, as one of the active enhancement techniques in membrane separation, 

refers to acoustic waves of frequency between 20 kHz and 10 MHz accompanied by some 

concomitant physical effects, such as those to do with mechanics, thermotics and cavitation. The 

propagation of ultrasonic waves in various media is beneficial to many physical and chemical 

processes.  

 

By introducing ultrasonic vibration, micro-streaming induced rapid fluid movement, 

acoustic heating and cavitations, ultrasonic technique owns the practical capability to enhance 

filtration and membrane separation by mitigating membrane fouling, reducing 

concentration/temperature polarization effects and removing fine particles from the surface. It 

has been successfully applied to several membrane processes [95-105], such as MF, UF and 

dialysis which suffer from concentration polarization and subsequent fouling. It has also been 

reported that acoustic vibration and induced heating could enhance thermally driven processes 

such as MD [12, 106], and improve their permeability, greatly reduce temperature polarization 

and membrane fouling. The mechanism of an ultrasonic irradiation system is illustrated in Fig. 

19. 
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Fig. 19. Mechanism of ultrasonic irradiation system (redrawn from [106]) 

 

This concept was initiated by Madsen [107] who investigated the influence of ultrasound on 

hyper-ultra-filtration membrane separations. Later, Kobayashi et al [98, 108] observed for a 

cross-flow UF of dextran that the high frequency vibration of the membrane surface resulted in 

the reduction of concentration polarization, thus increasing permeate rate as compared to the 

classical stirred system. The authors also stated that ultrasonically assisted dead-end UF system 

can be equally effective. It is also reported that the ultrasonic wave can induce convective 

currents and cavitation which are able to mitigate the concentration polarization [109]. Other 

authors found that ultrasound is a promising technique to recover trans-membrane flux [110, 

111]. For example, 70~80% recovery was achieved for a CuPolyethylenimine (CuPEI) 

solution. A detailed review on flux recovery with ultrasound can also be found in other literature 

[9]. 

 

By combining the experimental data and mathematical modeling, researchers found that 

process improvement increased with increasing intensity, and decreased with increasing acoustic 

frequency, solution temperature or even active membrane area. In an ultrasonic-assisted air gap 

MD system [106], the predicted enhancement was up to 200%  with 0 to 5 Wcm
-2

 intensity of the 

ultrasonic irradiation. 

 

In previous studies, the ultrasonic enhancement technique was mainly applied to filtration 

process using flat sheet membranes, and only a few studies have been reported on other 

membrane processes involving hollow fiber modules [99, 104, 105, 112]. This may be due to the 
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difficulty in identifying the appropriate position to place the reflection plate (refer to Fig. 19) and 

the transducer on the module; and the process enhancement factor can be affected.  Thus, the 

enhancement potential of ultrasonic-assisted hollow fiber modules (membrane contactors) is yet 

to be exploited.  

 

Notwithstanding the positive enhancement to several membrane processes, some authors 

have reported that ultrasonic radiation at inappropriate frequencies and intensities may damage 

the membrane. For instance, it has been observed via field emission scanning electron 

microscopy (FESEM) that some polymeric materials can be restructured by ultrasonic irradiation 

[110, 113, 114], such as polyethersulphone (PES), cellulose nitrate with cellulose acetate (CN–

CA) or nylon6 (N6); on the other hand Poly Vinylidene Fluoride (PVDF) and Poly Acrylonitrile 

(PAN) showed no observable damage with long term exposure. Though some work has been 

done to examine the mechanism of membrane damage by ultrasound [115], caution must be 

taken to choose proper membrane materials, ultrasonic intensity and irradiation duration to avoid 

membrane damage. 

 

4.2.4 Miscellaneous techniques 

 

Beside vibration, bubbling and ultrasonic techniques which have been intensively reported, 

there are other techniques, such as magnetic stirring, ozonation [116] the use of electric fields 

[117] and even the introduction of bi-disperse suspensions for higher critical flux in RO systems 

[118], that can create enhanced hydrodynamic conditions in membrane separation systems to 

enhance the permeation and reduce membrane fouling. 

  

5 Qualitative comparison of enhancement techniques 

 

Both passive and active enhancement techniques described above have demonstrated the 

feasibility of enhancing membrane performance. However, the main objectives of module design 

should not only focus on maximization of the system performance through optimizing the flow 

geometries and external assistant devices, but also include minimization of the cost per unit of 
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mass transferred (energy consumption and module production cost), the potential of scale-up and 

niche applications. Considering these factors, these two enhancement modes have their own 

advantages and limitations.          

                                                                                                                                                                                                                                                                                                                                                  

As the fiber arrangement and module configuration will directly affect the shell side mass 

transfer, which plays an important role in membrane contactors, the passive methods offer 

reasonable flux enhancement by effectively distributing the energy of the flow itself and broaden 

the potential applications of hollow fiber modules. However, the flow channels have to be 

carefully designed. For example, the fabric woven module (Fig.3) gained 10 times higher mass 

transfer coefficient than the conventional parallel module at very low flow rates, due to the 

uniform fiber spacing and the multiple flow passages created by the mounted plugs and O-rings, 

while the baffled-rectangular module (Fig.5) performed more poorly than baffled ones due to the 

stagnation of liquid caused by the baffles. This suggests that passive turbulence promoters do not 

always enhance the module performance. From the engineering point of view, the complex 

fabrication procedures of these high-performing hand-built modules may outweigh the benefit of 

enhancement and restrict their commercialization [20]. Additionally, complex module 

geometries tend to form closely packed configurations or patterns? which may not be applicable 

to the treatment of concentrated or viscous solutions.  

 

In contrast, the active enhancement methods show advantages in treating concentrated or 

viscous feed solutions, such as municipal waste-water treatment with MBRs incorporating 

bubbling [92] or vibratory devices [93], and the treatment of landfill leachate and RO brines by 

vibratory modules [86, 87]. Typically, the active methods offer 3-15 times enhancement with the 

same membrane area by creating the shear-induced liquid movement and hence suppressing the 

polarization and fouling rate. However, energy consumption and capital cost are of major 

concern in the active enhancement systems, as these systems involve potentially high demand for 

external energy input (e.g. ultrasound) or greater design complexity (vibratory or rotating 

systems).  
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 Fortunately, many energy-reduction strategies have been proposed by different researchers. 

For example, in submerged MBR systems, the main contribution of energy consumption is 

aeration and  effective implementation of intermittent air-sparging and appropriate nozzle sizes 

can minimize the cost and suppress the fouling rate effectively [74, 122, 123]. In high flux 

vibratory systems, the major energy consumption is rotation or vibration. For some applications, 

the VSEP system uses the resonant frequency to maximize the vibrating amplitude and presents a 

low specific energy consumption (SEC) in industrial modules. The SEC is estimated as 4.1 kWh 

m
-3

 product in MF and 2.5 kWh m
-3

 product in RO for waste water treatment with a 150 m
2
 

VSEP module and would be 22% less for surface water treatment [87]. Genkin et al [92] applied  

vibrations to a submerged membrane system to achieve considerably higher critical fluxes of 130 

L h
-1

 m
-2

 (normally around 20 L h
-1

 m
-2

) by applying a combined axial-transversal oscillation at a 

low frequency of 10 Hz. Furthermore, with the addition of a reasonable amount of coagulant (34 

mgL
-1

)  the critical flux reached a maximum value of 86L h
-1

 m
-2

 at low frequency (1.7 Hz) 

instead of at high frequency (10 Hz) when floc break up tended to occur. (This low frequency 

operation required a SEC of only 0.29 kWh m
-3

). With the application of ultrasound, researchers 

[12, 103] also found performance enhancement at certain frequency (lowest 20 kHz) and 

irradiation intensity, but the SEC was relatively higher (e.g. 352.9 kWh m
-3

, with flux of 16 L h
-1

 

m
-2

 in a lab-scale air gap membrane distillation system using PTFE flat sheet membrane [12]) 

than other systems because of the high frequency imposed. Thus, compared to the other 

techniques, the ultrasonic system may be the least economic method.  

 

Finally in terms of the potential for scale-up, the applications of bubbling and vibratory 

systems on MBRs and concentrated feed treatments have received attention both in laboratory 

and industrial scales. Although external energy and complex assistant devices are required, they 

can be easily scaled up [119, 120]. However, some active methods such as ultrasound may not be 

suitable for larger scale applications, because of the need to provide even distribution of 

ultrasonic radiation, the attachment of reflection plate and also the streaming-induced heat which 
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may cause additional problems[104, 121], though it is found to benefit some thermal processes 

such as MD or MDBR [106].  

 

To qualitatively evaluate various enhancement methods, a brief comparison based on the 

analysis of potential process enhancement, fabrication cost and complexity, energy demand, 

scale-up potential and niche applications is give in Table 3. 

 

.  
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Table 3. Qualitative comparison of various enhancement methods 

Enhancement technique 
Passive enhancement 

(modified configurations) 

Active enhancement 

(Dynamic shear-induced systems) 

 
Fabric woven modules Bubbling system Vibratory system Ultrasonic system 

Potential enhancement  Moderate Moderate High High 

Fabrication cost  

(equipment cost/complexity) 
High Low to moderate High High 

Energy demand Low Low to moderate Moderate to high High 

Scale-up potential Moderate to high High High Low 

Niche applications 

Membrane contactors 

(gas-liquid or liquid-liquid 
separations) 

Submerged MBRs 

(municipal/industrial waste-
water treatment) 

Concentrated & viscous feed 
solutions (e.g. Landfill 

leachate, RO brine), or  MBR 
systems 

UF systems, 
Seawater 

desalination (e.g. 
MD, MDBR) 

Reference [20] [120] [119, 124] [12, 109] 
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Above all, the approaches for energy reduction in membrane processes are focused on 

minimizing the fouling rate while maintaining an optimum performance, which is associated 

with reliable and economic operation to produce high quality products. This is the key factor that 

drives membrane technology to be more competitive than the conventional separation methods. 

 

6 Conclusions 

Membrane-based separation processes have found numerous applications in industries in 

recent decades. However, concentration and temperature polarization (in MD) and membrane 

fouling-induced high energy consumption, low productivity and short membrane lifespan 

continue to present severe technical challenges to the commercialization of most membrane 

processes for liquid separation. Novel membrane module technology is one of the key 

technologies to tackle the challenges. 

 

Attempts to improve membrane module design should begin with a better understanding of 

the mass transfer, therefore this review provides a summary of prior studies on the mass transfer 

models related to both the shell-side and tube-side fluid dynamics. Based on the mass transfer 

analysis, two types of membrane performance enhancements have been discussed. The primary 

approach (referred to as “passive enhancement techniques”) is to design and fabricate effective 

modules with optimized flow geometry to suppress the undesirable concentration polarization, 

temperature polarization and fouling. The other method (referred to as “active enhancement 

techniques”) is to utilize external energy to induce a high shear so as to facilitate the mixing and 

reduce the thickness of the concentration/temperature boundary layer over the membrane surface.  

 

Generally, the passive enhancement techniques offer moderate increases in mass transfer but 

cannot provide a convenient means to control the degree of process enhancement. Active 

techniques, on the other hand, have been shown to provide 3~15 times enhancement on the 

permeation flux. However, both enhancement modes have their advantages and disadvantages. 

Regardless of which enhancement mode is chosen, there is still much to be done in achieving 

optimum operating conditions.  
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As most of the concepts mentioned here have not been industrialized, and some commercial 

applications have not yet reached their full potential, attempts to develop novel modules should 

begin with better understanding of the mass transfer in the membrane module. Fundamentally, 

for industrial applications, the design objectives should minimize the cost per amount of mass 

transferred and optimize other features such as fiber characteristics (diameter, thickness, porosity, 

tortuosity and length), packing density, operating flow rate, flow direction and fluid properties, 

etc. Constrains of module fabrication cost, scale-up potential, operating period, fouling control 

and membrane replacement should also be considered. It is hoped that this review can provide 

inspiration for novel module development. 
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Nomenclature  

 

A  effective membrane area,  m
2
 

a  constant of Eq. (5) 

hd  hydraulic diameter,  m 

t ind  inner diameter of the hollow fiber, m 

t outd  outer diameter of the hollow fiber, m 

D  diffusion coefficient of the solute through the membrane, m
2
۰s

−1
 

sD  diffusion coefficient of the solute in shell-side,  m
2
۰s

−1
 

tD   diffusion coefficient of the solute in tube-side,  m
2
۰s

−1
 

F  overall driving force of the mass transfer 

Gz  Graetz number, hd
Re Sc

L
   

J  overall flux Js of the solute to be removed or retained, kg·m
-2

·s
-1

 

k  overall mass transfer coefficient,  m۰s
−1

 

shellk  local mass transfer coefficient in shell side,  m۰s
−1

 

tubek  local mass transfer coefficient in tube side,  m۰s
−1

 

km  local mass transfer coefficient in membrane,  m۰s
−1

 

L  effective fiber length,  mm 

Re   Reynolds number, hd 


 

Sc  Schmidt number, 
D




 

Sh  Sherwood number, hk d

D
 

  fluid velocity,  m·s
−1
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Greek letters  

  constant in Eq. (5) 

  constant in Eq. (5) 

  constant in Eq. (5) 

  packing density 

m  membrane thickness,  μm 

   pump efficiency,  % 

   viscosity of the fluids,  Pa·s
-1

 

  membrane tortuosity 

  Porosity 

  

Suffix  

m Membrane 

p Permeate 

s Solute 

w membrane wall 

  



51 

 

References: 

 

[1] M. C.Porter, Handbook of Industrial Membrane Technology, William Andrew Inc, 1990  

[2] R. W. Baker, Membrane Technology and Applications, John Wiley and Sons, 2004  

[3] V. Abetz, T. Brinkmann, M. Dijkstra, K. Ebert, D. Fritsch, K. Ohlrogge, D. Paul, K. V. 

Peinemann, S. Pereira-Nunes, N. Scharnagl and M. Schossig, Developments in Membrane 

Research: from Material via Process Design to Industrial Application, Advanced Engineering 

Materials, 8 (5) (2006) 328-358 

[4] F. Li, W. Meindersma, A. B. de Haan and T. Reith, Optimization of commercial net 

spacers in spiral wound membrane modules, Journal of Membrane Science, 208 (1-2) (2002) 

289-302 

[5] P.Drinker, R.Bartlett, R.Bialer and B.Noyes, Augmentation of membrane gas transfer by 

induced secondary flows, Surgery, 66 (4) (1969) 775 

[6] S. R. Wickramasinghe, M. J. Semmens and E. L. Cussler, Mass transfer in various hollow 

fiber geometries, Journal of Membrane Science, 69 (3) (1992) 235-250 

[7] M. L. Crowder and C. H. Gooding, Spiral wound, hollow fiber membrane modules: A 

new approach to higher mass transfer efficiency, Journal of Membrane Science, 137 (1-2) (1997) 

17-29 

[8] M. M. Teoh, S. Bonyadi and T.-S. Chung, Investigation of different hollow fiber module 

designs for flux enhancement in the membrane distillation process, Journal of Membrane 

Science, 311 (1-2) (2008) 371-379 

[9] A.G.Fane and S. Chang, Techniques to Enhance Performance of Membrane Processes, 

Handbook of Membrane Separations, CRC Press, 2008  

[10] W. B. Krantz, R. R. Bilodeau, M. E. Voorhees and R. J. Elgas, Use of axial membrane 

vibrations to enhance mass transfer in a hollow tube oxygenator, Journal of Membrane Science 

124 (2) (1997) 283-299 

[11] F. Wicaksana, A. G. Fane and V. Chen, Fibre movement induced by bubbling using 

submerged hollow fibre membranes, Journal of Membrane Science, 271 (1-2) (2006) 186-195 

[12] C. Zhu, G. L. Liu, C. S. Cheung, C. W. Leung and Z. C. Zhu, Ultrasonic stimulation on 

enhancement of air gap membrane distillation, Journal of Membrane Science, 161 (1-2) (1999) 

85-93 

[13] M. C. Porter, Handbook of Industrial Membrane Technology, William Andrew Inc, 1990  

[14] M. Mulder, Basic Principles of Membrane Technology, 2nd, springer, 1996  

[15] E.L.Cussler, Hollow fiber contactors, Membrane Processes in Separation and Purification, 

Kluwer Academic Publishers, Dordrecht, 1994  

[16] M. J. Costello, Shell-side fluid dynamics and mass transfer through hollow fibre 

membrane modules, PhD Thesis, (1995)  

[17] Vassilis Gekas and B. Hallstrom, Mass transfer in the membrane concentration 

polarization layer under turbulent cross flow: I. Critical literature review and adapation of 

existing sherwood correlations to membrane operations, Journal of Membrane Science, 30 (1987) 

153-170 

[18] M. S. El-Bourawi, Z. Ding, R. Ma and M. Khayet, A framework for better understanding 

membrane distillation separation process, Journal of Membrane Science, 285 (1-2) (2006) 4-29 

[19] X. Yang, Y.-M. Cao, R. Wang and Q. Yuan, Study on highly hydrophilic cellulose 

hollow fiber membrane contactors for thiol sulfur removal, Journal of Membrane Science, 305 

(1-2) (2007) 247-256 



52 

 

[20] A. Gabelman and S. Hwang, Hollow fiber membrane contactors, Journal of Membrane 

Science, 159 (1-2) (1999) 61-106 

[21] F. Lipnizki and R. W. Field, Mass transfer performance for hollow fiber modules with 

shell-side axial feed flow: using an engineering approach to develop a framework, Journal of 

Membrane Science, 193 (2001) 195-208 

[22] R. Thanedgunbaworn, R. Jiraratananon and M.H.Nguyen, Shell-side mass transfer of 

hollow fibre modules in osmotic distillation process, Journal of Membrane Science, 290 (2007) 

105-113 

[23] W.P. Ding, D.Y. Gao, Z. Wang and L. Q. He, Theoretical estimation of shell-side mass 

transfer coefficient in randomly packed hollow fiber modules with polydisperse hollow fiber 

outer radii, Journal of Membrane Science 284 (2006) 95-101 

[24] A. Kumano, M. Sekino, Y. Matsui, N. Fujiwara and H. Matsuyama, Study of mass 

transfer characteristics for a hollow fiber reverse osmosis module, Journal of Membrane Science, 

324 (2008) 136-141 

[25] K. Stephan, Wärmeübergang bei turbulenter und bei laminarer Strömung in Ringspalten, 

Chem.Ing.Tech., 34 (1962)  

[26] J. M. Zheng, Z.K. Xu, J.M Li, S.Y. Wang and Y. Y. Xu, Influence of random 

arrangement of hollow fiber membranes on shell side mass transfer performance: a novel model 

prediction, Journal of Membrane Science 236 (2004) 145-151 

[27] J. M.Zheng, Y. Y.Xu and Z. K. Xu, Flow distribution in a randomly packed hollow fiber 

membrane module, Journal of Membrane Science 211 (2003) 263-269 

[28] J.-M. Zheng, Z.-W. Dai, F.-S. Wong and Z.-K. Xu, Shell side mass transfer in a 

transverse flow hollow fiber membrane contactor, Journal of Membrane Science, 261 (1-2) 

(2005) 114-120 

[29] Lixin Mi and S.-T. Hwang, Correlation of concentration polarization and hydrodynamic 

parameters in hollow fiber modules, Journal of Membrane Science, 159 (1999) 143-165 

[30] M. C. Yang and E. L. Cussler, Designing hollow-fiber contactors, AIChE Journal 32 

(1986) 1910-1915 

[31] M. A. Lévêque, Les lois de la transmission de chaleur par convection, Ann. Mines 13 

(1928) 201-299 

[32] A. Kiani, R. R. Bhave and K. K. Sirkar, Solvent extraction with immobilised interfaces in 

a microporous hydrophobic membrane, Journal of Membrane Science, 20 (1984) 125 

[33] R. C. Reid and J. M. Prausnitz, C.R. Wilke and P. Chang method (1955), The Properties 

of Gases and Liquids, McGraw-Hill Inc, 1987  

[34] S. Kimura and S. Sourirajan, Analysis of data in reverse osmosis with porous cellulose 

acetate membrane used, AIChE J., 13 (1967)  

[35] R. Prasad and K. K. Sirkar, Dispersion-free solvent extraction with microporous hollow-

fiber modules, AIChE Journal 34 (2) (1988) 177 

[36] M. J. Costello, A. G. Fane, P. A. Hogan and R. W. Schofield, The effect of shell side 

hydrodynamics on the performance of axial flowhollowfibre modules, Journal of Membrane 

Science, 80 (1993) 1-11 

[37] L. Dahuron and E. L. Cussler, Protein extractions with hollow fibers, AIChE Journal 34 

(1) (1988) 130-136 

[38] R. M. C. Viegas, M. Rodríguez, S. Luque, J.R. Alvarez, I.M.Coelhoso and J. P. S. G. 

Crespo, Mass transfer correlations in membrane extraction: analysis of Wilson-plot methodology, 

Journal of Membrane Science, 145 (1998)  



53 

 

[39] R. Gawronski and B. Wrzesinska, Kinetics of solvent extraction in hollow fibre 

contactors, Journal of Membrane Science, 168 (2000)  

[40] J. Wu and V. Chen, Shell-side mass transfer performance of randomly packed hollow 

fiber modules, Journal of Membrane Science 172 (2000) 59-74 

[41] F. Kreith and W. Z. Black, Basic Heat Transfer, Harper & Row, New York, 1980  

[42] P. Côté, J. L. Bersillon and A. Huyard, Bubble-free aeration using membranes: mass 

transfer analysis, Journal of Membrane Science, 47 (1989) 91-106 

[43] T. Ahmed and M. J. Semmens, Use of transverse flow hollow fibers for bubbleless 

membrane aeration, Water Research 30 (1996) 440-446 

[44] D.W. Johnson, M.J. Semmens and J. S. Gulliver, Diffusive transport across unconfined 

hollow fiber membranes, Journal of Membrane Science, 128 (1997) 67-81 

[45] R.Deissler, Anaylysis of turbulent heat transfer, mass transfer and friction in smooth 

tubes at high Prandtl and Schmidt numbers, J.P.Hartnett (Ed.), Advances in heat and mass 

transfer, McGraw Hill, New York, 1961  

[46] C.Bennett and J.Myers, Momentum heat and mass transfer, McGraw Hill, New York, 

1982 560-587 

[47] S. R. Wickramasinghe, M. J. Semmens and E. L. Cussler, Better hollow fiber contactors, 

Journal of Membrane Science, 62 (3) (1991) 371-388 

[48] K. L. Wang and E. L. Cussler, Baffled membrane modules made with hollow fiber fabric., 

Journal of Membrane Science, 85 (3) (1993) 265-278 

[49] S. R. Wickramasinghe, M. J. Semmens and E. L. Cussler, Hollow fiber modules made 

with hollow fiber fabric, Journal of Membrane Science, 84 (1) (1993) 1-14 

[50] E. L. Cussler, Hollow fiber contactors, Membrane Processes in Separation and 

Purification, João G. Crespo, Karl W. Böddeker, Kluwer Academic Publishers, Netherlands, 

1994  

[51] K. K. Sirkar, newer concepts and applications for the food industry, in Bioseparation 

Processes in Foods, Membrane separations, CRC Press, New York, 1995  

[52] B. W. R. A. Sengupta, F. Seibert, Liquid±liquid extraction studies on semi-commercial 

scale using recently commercialized large membrane contactors and systems, (1994)  

[53] F. Bitter.Johan G.A, harry, Racz.Imre G, counter-current flow membrane modue for 

liquid separations, patent no:5,048,1/59(Canada), 9001514 (1991)  

[54] Nichols, Transverse sheet membrane separation module,components thereof and related 

methods, European Patent 0 414 367 A1(US), 90307672.7 (1991)  

[55] Kopp.Clint, Module with self-supporting sheet membrane, patent no: PCT WO 

03/059494 A1(US), PCT/US02/10375 (2002)  

[56] L. Song, B. Li, K. K. Sirkar and J. L. Gilron, Direct contact membrane distillation-based 

desalination: novel membranes, devices, larger-scale studies, and a model, Industrial & 

Engineering Chemistry Research, 46 (2007) 2307-2323 

[57] I. G. Wenten, Novel large scale applications of membrane technology, personal 

communication, (May, 2009)  

[58] S. Schlosser and E. Sabolov, Three-phase contactor with distributed U-shaped bundles of 

hollow-fibers for pertraction, Journal of Membrane Science, 210 (2) (2002) 331-347 

[59] Trimmer.Johnny.L, Flexible hollow fiber fluid separation module,  PCT WO Patent 

93/12866, (1992)  

[60] L. Liu, L. Li, Z. Ding, R. Ma and Z. Yang, Mass transfer enhancement in coiled hollow 

fiber membrane modules, Journal of Membrane Science, 264 (1-2) (2005) 113-121 



54 

 

[61] J. N. Ghogomu, C. Guigui, J. C. Rouch, M. J. Clifton and P. Aptel, Hollow-fibre 

membrane module design: comparison of different curved geometries with Dean vortices, 

Journal of Membrane Science, 181 (1) (2001) 71-80 

[62] D. Li, R. Wang and T.-S. Chung, Fabrication of lab-scale hollow fiber membrane 

modules with high packing density, Separation and Purification Technology, 40 (1) (2004) 15-30 

[63] S. L. H. Mallubhotla, G. Belfort, Membrane filtration with self-cleaning spiral vortices, 

(1997)  

[64] Paul.J.R, membrane module for separation of fluids, patent no: PCT WO 2004/060593 

A1 (US), (2002)  

[65] M. G. Generon, Internal staged permeator for fluid separation, patent no: PCT WO 

00/71234 A1(US), (2000)  

[66] Jiang.JI, Advance submerged membrane module systems and processes, patent no: PCT 

WO 2005/118116 A1(US), (2004)  

[67] J. H. Hanemaaijer, J. van Medevoort, A. E. Jansen, C. Dotremont, E. van Sonsbeek, T. 

Yuan and L. De Ryck, Memstill membrane distillation - a future desalination technology, 

Desalination, 199 (1-3) (2006) 175-176 

[68] Olapinski.H and Feuerpeil.H, Fliter membrane module comprising an integrated heat 

exchanger,European Patent: 2000/011301(Germany), (2001)  

[69] R. Schneider, W. Hölz, R. Wollbeck and S. Ripperger, Membranes and modules for 

transmembrane distillation, Journal of Membrane Science, 39 (1) (1988) 25-42 

[70] A. G. Fane, S. Chang and E. Chardon, Submerged hollow fibre membrane module -- 

design options and operational considerations, Desalination, 146 (1-3) (2002) 231-236 

[71] C. Psoch and S. Schiewer, Critical flux aspect of air sparging and backflushing on 

membrane bioreactors, Desalination, 175 (1) (2005) 61-71 

[72] Y. Z. Li, Y. L. He, Y. H. Liu, S. C. Yang and G. J. Zhang, Comparison of the filtration 

characteristics between biological powdered activated carbon sludge and activated sludge in 

submerged membrane bioreactors, Desalination, 174 (3) (2005) 305-314 

[73] J. Kim and F. A. DiGiano, Defining critical flux in submerged membranes: Influence of 

length-distributed flux, Journal of Membrane Science, 280 (1-2) (2006) 752-761 

[74] Z. F. Cui, S. Chang and A. G. Fane, The use of gas bubbling to enhance membrane 

processes, Journal of Membrane Science, 221 (1-2) (2003) 1-35 

[75] S. Chang, A. G. Fane and S. Vigneswaran, Modeling and optimizing submerged hollow 

fiber membrane modules, AIChE Journal, 48 (10) (2002) 2203-2212 

[76] A. P. S. Yeo, A. W. K. Law and A. G. Fane, Factors affecting the performance of a 

submerged hollow fiber bundle, Journal of Membrane Science, 280 (1-2) (2006) 969-982 

[77] K. Zhang, Z. Cui and R. W. Field, Effect of bubble size and frequency on mass transfer 

in flat sheet MBR, Journal of Membrane Science, 332 (1-2) (2009) 30-37 

[78] Y. Lu, Z. Ding, L. Liu, Z. Wang and R. Ma, The influence of bubble characteristics on 

the performance of submerged hollow fiber membrane module used in microfiltration, 

Separation and Purification Technology, 61 (1) (2008) 89-95 

[79] A. P. S. Yeo, A. W. K. Law and A. G. Fane, The relationship between performance of 

submerged hollow fibers and bubble-induced phenomena examined by particle image 

velocimetry, Journal of Membrane Science, 304 (1-2) (2007) 125-137 

[80] A. G. Fane and S. Chang, Techniques to Enhance Performance of Membrane Processes, 

Handbook of Membrane Separations, CRC Press, 2008  



55 

 

[81] J. R. Clarkson, Z. F. Cui and R. C. Darton, Protein Denaturation in Foam: I. Mechanism 

Study, Journal of Colloid and Interface Science, 215 (2) (1999) 323-332 

[82] J. R. Clarkson, Z. F. Cui and R. C. Darton, Protein Denaturation in Foam: II. Surface 

Activity and Conformational Change, Journal of Colloid and Interface Science, 215 (2) (1999) 

333-338 

[83] J. R. Clarkson, Z. F. Cui and R. C. Darton, Effect of solution conditions on protein 

damage in foam, Biochemical Engineering Journal, 4 (2) (2000) 107-114 

[84] A. D. Armando, B. Culkin and D. B. Purchas, New separation system extends the use of 

membranes, (1992)  

[85] PallSep, http://www.pall.com, (2004) 

[86] B. Culkin, Concentrating RO Reject Streams with VSEP (guest article), New Logic 

Research, Inc, (1992)  

[87] B. Culkin and A. D. Armando, New separation system extends the use of membranes, 

Filtration & Separation, 29 (5) (1992) 376-378 

[88] O. A. Akoum, M. Y. Jaffrin, L. Ding, P. Paullier and C. Vanhoutte, An hydrodynamic 

investigation of microfiltration and ultrafiltration in a vibrating membrane module, Journal of 

Membrane Science, 197 (1-2) (2002) 37-52 

[89] O. A. Akoum, M. Y. Jaffrin and L. H. Ding, Concentration of total milk proteins by high 

shear ultrafiltration in a vibrating membrane module, Journal of Membrane Science, 247 (1-2) 

(2005) 211-220 

[90] L. M. Vane, F. R. Alvarez and E. L. Giroux, Reduction of concentration polarization in 

pervaporation using vibrating membrane module, Journal of Membrane Science, 153 (2) (1999) 

233-241 

[91] S. P. Beier and G. Jonsson, Separation of enzymes and yeast cells with a vibrating hollow 

fiber membrane module, Separation and Purification Technology, 53 (1) (2007) 111-118 

[92] G. Genkin, T. D. Waite, A. G. Fane and S. Chang, The effect of vibration and coagulant 

addition on the filtration performance of submerged hollow fibre membranes, Journal of 

Membrane Science, 281 (1-2) (2006) 726-734 

[93] S. P. Beier and G. Jonsson, A vibrating membrane bioreactor (VMBR): Macromolecular 

transmission--influence of extracellular polymeric substances, Chemical Engineering Science, 64 

(7) (2009) 1436-1444 

[94] S. P. Beier and G. Jonsson, Dynamic microfiltration with a vibrating hollow fiber 

membrane module, Desalination, 199 (1-3) (2006) 499-500 

[95] Lenart I and A. D, The effect of ultrasound on diffusion through membranes, Ultrasonics, 

18 (5) (1980) 216-218 

[96] Okahata and H. Noguchi, Ultrasound-responsive permeability control of bilayer-coated 

capsule membranes, Chemistry Letters, (1983) 1517-1520 

[97] J. Kost and R. Langer, Ultrasonic enhancement of membrane permeability, (1988)  

[98] T. Kobayashi, X. Chai and N. Fujii, Ultrasound enhanced cross-flow membrane filtration, 

Separation and Purification Technology, 17 (1) (1999) 31-40 

[99] M. Band, M. Gutman, V. Faerman, E. Korngold, J. Kost, P. J. Plath and V. Gontar, 

Influence of specially modulated ultrasound on the water desalination process with ion-exchange 

hollow fibers, Desalination, 109 (3) (1997) 303-313 

[100] E. S. Tarleton and R. J. Wakeman, Microfiltration enhancement by electrical and 

ultrasonic force fields, Filtration & Separation, 27 (3) (1990) 192-194 

http://www.pall.com/


56 

 

[101] J. Li, R. D. Sanderson and E. P. Jacobs, Ultrasonic cleaning of nylon microfiltration 

membranes fouled by Kraft paper mill effluent, Journal of Membrane Science, 205 (1-2) (2002) 

247-257 

[102] S. Muthukumaran, S. E. Kentish, M. Ashokkumar and G. W. Stevens, Mechanisms for 

the ultrasonic enhancement of dairy whey ultrafiltration, Journal of Membrane Science, 258 (1-2) 

(2005) 106-114 

[103] D. Feng, J. S. J. van Deventer and C. Aldrich, Ultrasonic defouling of reverse osmosis 

membranes used to treat wastewater effluents, Separation and Purification Technology, 50 (3) 

(2006) 318-323 

[104] L. Liu, Z. Ding, L. Chang, R. Ma and Z. Yang, Ultrasonic enhancement of membrane-

based deoxygenation and simultaneous influence on polymeric hollow fiber membrane, 

Separation and Purification Technology, 56 (2) (2007) 133-142 

[105] T. Tran, S. Gray, B. Bolto, T. D. Farmer and T. F. Collings, Ultrasound enhancement of 

microfiltration performance for natural organic matter removal, Organic Geochemistry, 38 (7) 

(2007) 1091-1096 

[106] C. Zhu and G. Liu, Modeling of ultrasonic enhancement on membrane distillation, 

Journal of Membrane Science, 176 (1) (2000) 31-41 

[107] R. F. Madsen, Hyperfiltration and Ultrafiltration in Plate-and-Frame systems, Elsevier, 

Amsterdam, 1977  

[108] X. Chai, T. Kobayashi and N. Fujii, Ultrasound effect on cross-flow filtration of 

polyacrylonitrile ultrafiltration membranes, Journal of Membrane Science, 148 (1) (1998) 129-

135 

[109] A. Simon, L. Penpenic, N. Gondrexon, S. Taha and G. Dorange, A comparative study 

between classical stirred and ultrasonically-assisted dead-end ultrafiltration, Ultrasonics 

Sonochemistry, 7 (4) (2000) 183-186 

[110] R.-S. Juang and K.-H. Lin, Flux recovery in the ultrafiltration of suspended solutions 

with ultrasound, Journal of Membrane Science, 243 (1-2) (2004) 115-124 

[111] S. Muthukumaran, S. Kentish, S. Lalchandani, M. Ashokkumar, R. Mawson, G. W. 

Stevens and F. Grieser, The optimisation of ultrasonic cleaning procedures for dairy fouled 

ultrafiltration membranes, Ultrasonics Sonochemistry, 12 (1-2) (2005) 29-35 

[112] K. K. Latt and T. Kobayashi, Ultrasound-membrane hybrid processes for enhancement of 

filtration properties, Ultrasonics Sonochemistry 13 (2006) 321-328 

[113] X. L. Wang, X. F. Li, X. Q. Fu, R. Chen and B. Gao, Effect of ultrasound irradiation on 

polymeric microfiltration membranes, Desalination, 175 (2) (2005) 187-196 

[114] I. Masselin, X. Chasseray, L. Durand-Bourlier, J.-M. Lain, P.-Y. Syzaret and D. 

Lemordant, Effect of sonication on polymeric membranes, Journal of Membrane Science, 181 (2) 

(2001) 213-220 

[115] D. Chen, L. K. Weavers and H. W. Walker, Ultrasonic control of ceramic membrane 

fouling by particles: Effect of ultrasonic factors, Ultrasonics Sonochemistry, 13 (5) (2006) 379-

387 

[116] X. Huang, Wu, J, Improvement of membrane filterability of the mixed liquor in a 

membrane bioreactor by ozonation, Journal of Membrane Science, 318 (1-2) (2008) 210-216 

[117] J.-P. Chen, Yang, C.-Z., Zhou, J.-H., Wang, X.-Y, Study of the influence of the electric 

field on membrane flux of a new typeof membrane bioreactor, Journal of Chemical Engineering 

128 (2007) 177-180 



57 

 

[118] Y. P. Zhang, A. G. Fane and A. W. K. Law, Critical flux and particle deposition of 

bidisperse suspensions during crossflow microfiltration, Journal of Membrane Science, 282 (1-2) 

(2006) 189-197 

[119] O. A. Akoum, M. Mercier-Bonin, L. Ding, C. Fonade, P. Aptel and M. Jaffrin, 

Comparison of three different systems used for flux enhancement: application to crossflow 

filtration of yeast suspensions, Desalination, 147 (1-3) (2002) 31-36 

[120] S. Judd, The MBR book: principles and applications of membrane bioreactors in water 

and wastewater treatment, Elsevier, Amsterdam, 2006  

[121] K. K. Latt and T. Kobayashi, Ultrasound-membrane hybrid processes for enhancement of 

filtration properties, Ultrasonics Sonochemistry 13 (2006) 321-328 

[122] A. Sofia, W. J. Ng and S. L. Ong, Engineering design approaches for minimum fouling in 

submerged MBR, Desalination, 160 (1) (2004) 67-74 

[123] X. Zheng and J. X. Liu, Development and cost analysis of MBR for wastewater treatment 

and reuse in China, Oral presentation World Engineers' Convention, Shanghai, (2004)  

[124] M. Frappart, M. Jaffrin and L. H. Ding, Reverse osmosis of diluted skim milk: 

Comparison of results obtained from vibratory and rotating disk modules, Separation and 

Purification Technology, 60 (3) (2008) 321-329 

 

  


