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Abstract 
 

This study explores the potential of microstructured hollow fiber designs to enhance process 

performance in a direct contact membrane distillation (DCMD) system. Hollow fibers with 

ten different geometries (wavy and gear-shaped cross sections) were evaluated. A series of 

three dimensional computational fluid dynamic (CFD) simulations were carried out to 

investigate their capability in terms of depolarizing the buildup of liquid boundary layers, thus 

improving water productivity. 

 

Analyses of heat and mass transfer as well as the flow-field distribution in respective MD 

modules were obtained. It was found that the enhancement of the heat-transfer coefficients, hf, 

was up to 4.5-fold for a module with a wavy fiber design 07 and an approximate 5.5-fold hp 

increase for a gear-shaped fiber design. The average temperature polarization coefficient and 

mass flux Nm of the gear-shaped fiber module showed an improvement of 57 % and 66 %, 

respectively, over the original straight fiber design, followed by the wavy designs 07 and 08. 

The enhanced module performance was attributed to the improved hydrodynamics through 

the flow channels of various fiber geometries, which was confirmed by the visualization of 

flow-field and temperature profiles in CFD. Investigations of the fiber-length effect showed 

that the gear-shaped fiber modules exhibited the highest flux enhancement of 57–65 % with 

the same length, compared to the modules with original straight and wavy fibers.  

 

In addition, the gear-shaped fiber module is very sensitive to feed velocity changes. Therefore, 

employing a smart microstructured design on the membrane surface would bring in a 

significant improvement under adverse flow conditions. Moreover, the computed water 
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production and hydraulic energy consumption (HEC) among the modules with various fiber 

geometries were compared. With 1.9-fold surface area increase per unit volume, the 

gear-shaped fiber configuration had the highest water production but the lowest HEC, 

followed by wavy designs 07 and 08.  

  

Key words: membrane distillation, computational fluid dynamics, microstructured fiber 

geometry, heat transfer, temperature polarization, process enhancement  
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1.  Introduction 

 

As a hybrid process of membrane separation and conventional distillation, membrane 

distillation (MD) is considered as a promising alternative technology for desalination to 

obtain clean water when waste-heat or low grade heat are available. It is a combined mass- 

and heat-transfer process, where the driving force is the vapor pressure gradient (due to the 

temperature difference) across the membrane wall. The membrane material itself should be 

sufficiently hydrophobic to separate the feed (hot) and permeate (cold) streams, as well as to 

prevent pore-wetting problems. In the configuration of direct contact MD (DCMD), the mass 

and heat transfers take place in three steps: water molecules in the hot stream first evaporate 

at the mouth of the membrane pores, then the vapor flows through the membrane matrix until 

condensation takes places on the cold permeate surface. As a result, high-purity water is 

generated. Having been studied for over 3 decades, MD is of great interest due to the benefits 

of moderate operating temperature, acceptable permeation rate and high salt rejection. 

However, industrial applications of MD remain limited due to the following technical 

challenges [1, 2]: difficulties in fabricating suitable MD membranes for high water 

permeation flux and prevention of pore wetting; relatively high thermal energy consumption 

(with the access to low great heat), and poor flow hydrodynamics and/or severe temperature 

polarization (TP) effects that compromises module performance [3, 4].  

 

In MD, the membrane structure and material properties contribute to the permeation rate, 

wetting resistance as well as the TP effect. Therefore, a surge of studies in recent years have 
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focused on membrane development [5-9], with special interest in hollow fibers due to their 

high surface area and modular versatility[3].  Although a few highly permeable hollow fiber 

membranes with large MD coefficients are available [7, 10-15], the development of MD 

membranes are still constrained by the conventional spinning methods and the limitation of 

suitable material properties. Also, the advantages of highly permeable fibers are often 

compromised by the morphological defects, weak mechanical strength and unsustainable 

long-term performance [11].  

 

On the other hand, many studies have also focused on strategies to improve the MD 

performance through optimizing operation parameters [9, 16-20] and designing novel 

membrane modules [21-23] to alleviate the TP phenomenon and enhance permeation flux. It 

is shown that by incorporating proper flow alteration aids such as channeled design, external 

spacers or baffles into module designs, secondary flows or eddies are created. As a result, the 

MD flux can be greatly enhanced and the TP phenomenon can be mitigated [1, 9, 16-19, 

24-29].  

 

Another area that has been investigated for improved module performance is the 

microstructured surface design of the hollow fiber membranes. Inspired by the concept of 

corrugated surface adopted in heat-exchangers to enhance flow hydrodynamics, novel hollow 

fibers with modified surface geometries have been fabricated using specially designed 

spinnerets [30, 31]. It was reported that hollow fibers with modified surface geometries such 

as gear or flower shapes in cross-section have greatly improved membrane filtration 

performance by not only allowing a 5 or 6-fold increase of surface area and hence significant 
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water flux enhancement, but also acting as turbulence promoters and improving anti-fouling 

performance for submerged membrane bioreactors (MBR) and ultrafiltration modules [32-36]. 

In spite of the potential benefits for creating similar improvement in a combined mass- and 

heat-transfer process, no related work has been done for MD applications.  

 

In parallel with extensive experimental studies to investigate the hydrodynamics in membrane 

modules, computational fluid dynamics (CFD) modeling has also been widely adopted to 

simulate and analyze fluid dynamic behaviors in membrane processes [37, 38]. With the 

visualization of the flow-field (including velocity, pressure, temperature and concentration 

profiles) at any locations in a defined flow channel, CFD modeling can be used to correlate 

the fundamental mass- and heat-transfer performance with flow hydrodynamics. Therefore, it 

has become a valuable evaluation tool for industrial applications. Nevertheless, the CFD 

simulations of the MD process have been greatly limited due to the complex coupling of mass 

and heat transfer across bulk fluids and the membrane matrix. Mostly, simplified 

mathematical models were used in prior MD modeling work [37]. For instance, simulations of 

the feed, permeate and membrane were often treated as a conjugate problem to obtain velocity 

and temperature fields; while the solute transport and latent heat induced by evaporation were 

ignored [39, 40]. To date, the CFD work on hollow fiber MD modules is sparsely reported [38, 

41]. A recent CFD study, which proposed an improved heat-transfer model to couple the 

latent heat to the energy conservation equation and combine it with the Navier-Stokes 

equations, was performed by our group to address the transport relationships between the 

fluids (feed and permeate) and the membrane in a single-fiber MD module [38]. The model 

has also been used to analyze the effectiveness of different process enhancement strategies by 
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identifying the controlling local resistances in MD under various circumstances [41, 42].  

The present work aims to evaluate the performance of a shell-side feed DCMD system with 

nine different types of modified fiber geometries via three dimensional (3D) CFD modeling. 

Since the gear- or flower-shaped fibers were comprehensively studied experimentally by 

others [30, 31], the current study mainly discusses the wavy microstructure and only one 

specific gear-shaped design. The following aspects have been investigated computationally: 

(1) optimization of fiber geometric structures in terms of main MD process metrics and 

flow-field and temperature distributions; (2) investigations of the length effect of modules 

with original straight, optimized wavy and gear-shaped fibers; (3) effect of flow conditions on 

the performance of the modules with original straight and modified fibers; (4) comparison of 

membrane area, water production and hydraulic energy consumption (HEC) among modules 

with various micro-structured fibers using the original design as a benchmark. 

 

2. Theory  

1.1 Geometric structures and CFD modeling methods  

 

3D models were developed using the commercial software Fluent 6.3 to study the 

hydrodynamic behavior and heat transfer characteristics of ten modules with original straight 

and modified fibers of various surface geometries.  

 

All the modules have the same cylindrical housings. Except for the original straight fibers, 
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modified fibers were designed to have regularly distanced waves with a constant wall 

thickness or gear-like (cross-section) structure on the outer surface. The assumed dimensions 

of these single-fiber modules are 0.25�0.84 m in length and 0.0095 m in shell diameter.  For 

the convenience of CFD modeling, the geometries were assumed to be ideal 

axially-symmetric structures. Hence, a series of geometric structure for 3D computing 

domains were built using Gambit 2.4.6 for half of the actual modules, whose mirrored images 

of cross-sectional structures (within a length range of 0.015 m with respect to the overall 

length of 0.25 m) are shown in Fig. 1 (a); while Fig. 1 (b) shows a local domain amplification 

to specify the dimensional parameters of these wavy microstructures, in which Rmi and Rmo are 

the inner and outer radii of the fiber, �x and �y are the cross-sectional dimensions of a wave 

in x and r (from the baseline to the conic peak) directions; Lx is the interval between two 

waves; b is the shape parameter, which represents the shape of the conic wave. To clearly 

show the structures of these configurations, Fig. 2 depicts the 3D schematics of single-fiber 

modules containing fibers of a representative wavy design and gear-shaped, respectively. In 

all modules, the feed and permeate streams flow through the shell and lumen of the fiber, 

respectively, in a counter-current mode. The dimensional specifications and respective actual 

outer surface area As (taking into account the surface corrugation) of these modified fiber 

geometries are given in Table 1, which shows that both wavy designs 02 and 03 have a 

3.6-fold area increase compared to the original fiber; while the gear-shaped fiber gains 

1.9-fold increase. 

 

With the geometries structured, CFD simulations were carried out using Fluent. A coupled 

heat-transfer model was built to combine the latent heat induced by evaporation/condensation 
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on the membrane surfaces into the MD process. Nevertheless, the influence of the normal 

mass flow across the membrane matrix was ignored due to a negligible contribution from the 

MD mass flux in a single module [38]. Based on the governing transport equations and 

boundary conditions involved in the simulating process discussed in a previous study [38], a 

brief summary is given in Table 2. It includes mathematical models, boundary conditions and 

modeling algorithms. In this study, a laminar model is used for simulating the original module 

operated under laminar operating conditions (Re < 2000); while a realizable k-� method is 

applied for the original module under turbulent conditions (Re>2000) or configurations with 

modified fibers. 

 

In addition, it is assumed that all nine modified fibers have the similar membrane 

characteristics (i.e., wall thickness, porosity, and pore size/pore size distribution, etc) as the 

original fiber but with different surface geometries [38]. Also, the module specifications and 

the operating conditions are the same as used previously [38]. The heat-transfer model has 

been verified previously [38, 41, 42],based on an established DCMD system for a series of 

experimental settings, including various feed inlet temperatures, fiber lengths and flow 

velocities, and modified module configurations with external aids. Based on our previous 

verification results, the comparisons between the CFD simulation results and experimental 

data of mass flux (Nm) and feed pressure drop (�Pf) showed good agreement with small 

relative errors of ± 5 %. Hence, the model verification shall not be repeated here.           
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1.2 Computational domain and grid structures  

 

As mentioned previously, the geometric structures of ten single-fiber modules with original 

straight and modified fibers were created in this study using the Gambit software. A 

combination of tetrahedral and hexahedral girds was adopted to generate meshes within the 

calculating domains for all configurations. The grid number was optimized using the grid 

independence tests. In the radial r direction, a grid scale of 5×10-6 m was chosen for the bulk 

permeate and membrane, and progressively increased scales from 5×10-6 to 2×10-4 m were set 

for the bulk feed (shell-side); while in the axial x direction, a grid scale of 1×10-4 m was 

employed. A local mesh structure of a modul e with straight fibers is shown in Fig. 3. It is 

noted that the effect of the hollow fiber membrane surface roughness on the wall boundary 

conditions was ignored due to its much smaller scale than that of a mesh element. The 

iteration criterion for convergence is 10-5 in Fluent. 

 

1.3 Heat-transfer analysis of MD process  

 

As the influence of the normal mass transferred across the membrane matrix was ignored due 

to the negligible amount, the corresponding induced latent heat was treated as a MD 

characteristic and coupled into the heat-transfer model during the simulations [41]. The MD 

heat transport is often elucidated in three steps, and the overall heat-transfer rate through the 

membrane, Q, consists of the latent heat QMD (evaporation) and heat loss QHL (conduction). 
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The respective heat-transfer coefficients of the feed hf, the permeate hp and the membrane hm 

can be calculated based on the temperature profiles provided by CFD simulations. The main 

heat-transfer equations and definitions and equations required for data post-processing are 

summarized in Table 3.  

 

In Table 3, the MD coefficient C and solution temperatures (vapor pressure) given in Eq. (5) 

both contribute to the permeation flux Nm. Based on the prior studies, the C is an intrinsic 

mass-transfer coefficient of the membrane [43] and is calculated based on a combination of 

structural parameters (thickness, porosity, pore size and pore size distribution) [42]. Therefore, 

in the current study a general C value for the selected original straight and wavy designs is 

determined as 8.0×10-7 kg·m-2·s-1·Pa-1; while due to the slight variation of thickness, the 

gear-shaped fiber has a modified value C* of 6.4×10-7 kg·m-2·s-1·Pa-1 with fixed membrane 

matrix structure (where C* = (0.6+0.4 (�m/�m
*))C, with the original �m = 0.27 mm and 

modified �m
* = 0.52 mm, as shown in Fig. 2(b)). As important MD performance metrics, the 

temperature-polarization coefficient (TPC) and hydraulic energy consumption (HEC) can be 

calculated based on Eqs. (9) and (10), respectively. The TPC characterizes the actual driving 

force of the system [3]; while the HEC (J·kg-1) and water production (kg·day-1) are used to 

assess the performance of these microstructured fibers in terms of the pumping electricity cost 

and water production.  

 

3. Results and discussion 

1.4 Optimization of fiber geometric designs in DCMD  

1.4.1 Improvement of heat transfer coefficients  
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Based on an analysis of the controlling heat-transfer resistance in different MD systems, 

external hydrodynamic aids can be employed to achieve a significant enhancement when the 

heat transfer through the liquid-boundary layers plays a dominant role [42]. Hence, in this 

study, a similar DCMD system [highly permeable membrane with membrane coefficient C = 

8.0×10-7 kg·m-2·s-1·Pa-1 and C*(gear) = 6.4×10-7 kg·m-2·s-1·Pa-1, and relatively low operating 

temperatures Tf = 327.15 K, Tp = 293.85 K] was selected to investigate the effectiveness of 

hydrodynamic improvement by incorporating modified fibers with various surface 

microstructures. To optimize the fiber geometry particularly for MD applications, nine 

different microstructures listed in Table 1 were simulated, and Fig. 4 shows the distributions 

of the simulated heat transfer coefficients at the feed and permeate sides, hf and hp, along the 

fiber length L, respectively, for single-fiber modules with the original and nine modified 

fibers. 

 

In Fig. 4 (a) the hf distribution curves for all fiber geometries show a general decreasing trend 

along the fiber length L. For the original module, the highest hf appears at the entrance of the 

feed side and then decreases along the flow direction until reaching a plateau when the flow is 

fully developed; while for the rest of the modules, the curves continuously decrease towards 

the exits. This is due to the slower build-up of the liquid boundary layer along the feed flow 

direction credited to the disturbance by the surface corrugations. Overall, the curves of 

modules with microstructured fibers are much higher than that of the original one, which 

shows the lowest average hf of 1495 W·m-2·K-1. The configuration with an alternate wavy 

design 07 (1.25/1.0 mm, Lx = 1.25 m) shows the highest hf of 6823.9 W·m-2·K-1, which is 

4.6-fold higher than the original fiber, followed by another alternate wavy design 08 (2.5/1.0 
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mm, Lx = 2.5 m) and the gear-shaped fiber. The simulation results indicate that these new 

microstructured geometries have successfully introduced flow disturbance to disrupt the 

temperature polarization layer on the membrane surface and hence enhance the heat transfer. 

Also, the significant improvement of heat-transfer coefficients by introducing the corrugated 

surfaces has confirmed the controlling role of the liquid-boundary layers in this MD system 

with a large membrane coefficient C & low operating temperatures. More discussion of the 

flow-field distribution associated with intensified local mixing, reduced TP and enhanced 

permeation flux is presented in a later section.  

 

In Fig. 4 (b) the curve of the heat-transfer coefficients on the permeate side hp of the original 

module shows a similar trend to its hf distribution � a continuous decrease appears after 

entering the inlet of the permeate side (L = 0.25 m) and then reaches a plateau. The modified 

designs wavy 01, 02, 03 and 06 follow the same trend. Surprisingly, wavy 02 (5.0/2.0 mm, b 

= 0.5) and 03 (5.0/2.0 mm, b = 0.8) even have lower hp curves than the original fiber. The 

possible reason is that the presence of deeper waves (�y = 2.0 mm) has created strong 

vortices in the valley zones on the permeate side, which caused liquid stagnation. However, 

the rest of the designs present an increasing hp trend. It is observed that the gear-shaped 

design has the highest average hp of a 5.5-fold increase compared to the original fiber, 

followed by a wavy geometry 05. For all the wavy configurations, the significant hp 

enhancement is mainly due to the appropriate size of the corrugations that have greatly 

improved the hydrodynamic conditions and heat transfer at the permeate side, by increasing 

the surface shear-rate of the flow and hence reducing the thickness of liquid boundary layers; 

while for the gear-shaped design, the improved heat transfer at the permeate side was credited 
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to the better hydrodynamic conditions on the corrugated outer membrane surface (i.e., feed 

side), which has much higher wall temperatures and hence a more efficient thermal diffusion 

across the thermal boundary layers at both sides.  

 

It should be pointed out that different from the conclusions of our previous work on the 

introduction of external turbulence promoters into MD modules [42], the current hp simulation 

results showed that microstructured designs on the membrane surface are able to improve the 

heat transfer not only at the feed but also at the permeate side.   

 

1.4.2 Temperature-polarization mitigation and flow-filed 

visualization   

 

It was observed in Fig. 4 that most of the modules with modified fiber geometries have shown 

significant enhancement in heat transfer coefficients hf and hp, which are closely related to the 

TP phenomenon—one of the critical barriers in MD practice. Thus, the corresponding results 

on TP effect are simulated and shown in Fig. 5, which gives the simulated TPC distributions 

along the module length L for all modules.  

 

It can be seen from Fig. 5 that all modules present a similar U shape – the maximum TPC 

value occurs at the entrance and the lowest at the midpoint of the module then a slow increase 

towards the exit. The reason is that the transmembrane temperature difference (Tfm � Tpm) first 

decreases and then increases due to the opposite build-ups of thermal boundary layers on the 



 15

feed and the permeate sides: the Tfm continues to decrease along its flow direction (x) and Tpm 

first increases and then decreases along -x direction. It is not surprising to see that the modules 

with wavy designs 02 and 03 (5.0/2.0 mm, b = 0.5 and 0.8) show even lower TPC curves than 

the original straight one, which are consistent with those of the heat-transfer coefficients in 

Fig. 4, i.e., the continuous wavy designs 02 and 03 had lower hp curves than the original 

straight fiber. The reason responsible for this result may be that a fiber surface with deep and 

over-frequent corrugations (waves) might result in intense local secondary flows, which are 

possibly trapped between the valleys of two neighboring projections and subsequently 

compromise the module performance. Hence, liquid stagnation would instead lead to a lower 

heat-transfer efficiency and more severe TP phenomenon.  

 

On the other hand, the alternate wavy designs 07, 08 and gear structured modules present 

relatively higher TPC curves, which are also consistent with their high hf and hp distributions 

in Fig. 4. Compared to the original design, a TPC increase of 70 % is achieved by the 

gear-fiber module. This might be due to the intensified secondary flows induced by 

gear-shaped corrugations on the membrane surface that has reduced the thickness of thermal 

boundary layer and facilitated the heat transfer. For the alternate wavy designs 07 and 08, the 

reason for improvement may include two factors: firstly, these alternate wavy projections with 

an appropriate height have increased the surface roughness to create flow eddies and improve 

the hydrodynamic conditions on both sides; secondly, the presence of wavy corrugations have 

broadened the flow channel at the permeate side, which allows more cooling water to flow 

through and achieve better heat exchanging performance. Therefore, the temperature 

polarization phenomenon is greatly mitigated due to the effective flow alteration caused by 
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modified flow channels. As a result, the overall driving force is increased.  

 

To further reveal the fundamentals of the heat-transfer enhancement by employing 

microstructured fibers in MD modules, Fig. 6a shows the local flow-field and temperature 

distribution in modules with various fiber geometries (within a length range of 0.105�0.125 m 

with respect to the overall length 0.25 m). The velocity profiles are described by stream traces 

and temperature distribution in band colors. These simulation results are consistent with the 

trends of the heat-transfer coefficients curves shown in Fig. 4 and TPC distributions in Fig. 5 

for these modified designs. Clearly, the intensity of secondary flows induced by the wavy 

corrugations increases with increasing wave depth and decreases with increasing the arching 

width. Nevertheless, it is shown that a microstructure of deeper and more frequent 

corrugations is not necessarily a superior choice for achieving improved module performance. 

For example, the wavy design 02 with continuous waves �x of 2.5 mm and depth �y of 2.0 

mm showed a negative effect in terms of TP mitigation; while another lower wavy design 05 

with continuous waves (�x = 2.5 mm and �y = 1.0 mm) performed much better. Interestingly, 

the alternative design 08 with less and low waves (�x = 2.5 mm, �y = 1.0 mm and Lx = 2.5 

mm) achieved the best results among these three configurations. However, a further decrease 

in the number of turbulence aids might result in insufficient flow disturbance and mixing 

instead, which was reported in a prior study [42]. Due to the difficulty in presenting via a 

cross-sectional flow field, the flow conditions of the gear-fiber module is analyzed using the 

local temperature and pressure contours (slicing planes at x = 0.01, 0.10 and 0.20 m) in band 

colors, as shown in Fig. 6b. Compared to the module with an original straight fiber, the 

presence of a gear-shaped geometry successfully disrupts the liquid boundary layers on the 
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feed side and simultaneously enhances the permeate flow. Hence, the TP effect is greatly 

reduced and heat transfer enhanced as indicated in Figs. 4 and 5. Thus, combining the 

simulation results shown in Figs. 4 and 5, it is concluded that an appropriate design of the 

membrane surface geometry can lead to reduced thermal boundary layers, alleviated TP 

phenomenon and hence enhanced heat transfer in a liquid-film controlled MD system.  

 

1.4.3 Enhancement of permeation flux 

 

Fig. 7 gives the distributions of mass fluxes Nm along the fiber length L for modules packed 

with fibers of various microstructural designs, under the same operating conditions. It is noted 

that Nm is defined based on the outer membrane area of the fiber. For the original module, the 

Nm curve has a similar trend as its TPC distribution (shown in Fig. 5), which firstly decreased 

and then slightly increased due to the countercurrent build-ups of the thermal boundary layers 

on the feed and permeate sides. However, the modules with modified fibers show dramatic 

flux increase along the feed flow direction. This is due to the slower flow development and 

hence boundary layer buildup along a channel with corrugated surface. 

 

Similar to the TPC results in Fig. 5, few configurations with modified fiber geometries show 

negative results compared to the original straight fiber — wavy 02, 03 and 04, which gain 

even lower average mass fluxes; while wavy 05 slightly outscores the original configuration. 

The highest flux enhancement of 60 % is achieved by the module with gear fibers, followed 

by the alternate wavy designs 07 and 08 with approximate improvement of 38 %. These 
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modeling results again imply the advantages of a gear-shaped structure and alternate wavy 

geometries for achieving better module performance. However, the relatively lower fluxes per 

unit area of the continuous wavy designs 02�05 do not necessarily result in lower water 

production per day, due to the enhanced contact area generated by the corrugated geometry (a 

comparison of actual membrane areas As is given in Table 1). Therefore, a fair comparison 

will be provided in terms of water production (kg·day-1) in a later section.  

 

1.5 Effect of fiber length for modules with various fiber geometric 

designs  

 

Based on the previous discussions of the selected MD system (high C value and low operating 

temperatures), an appropriate modification of fiber geometry could greatly enhance the 

module performance. Thus, the most promising were selected to further explore their potential 

for industrial applications. A series of simulations were conducted to compare the length 

effect among single-fiber modules with original straight, wavy 08 and gear-shaped fibers. The 

results are shown in Figs. 8 and 9, which depict the effects of module length (L = 0.25, 0.54 

and 0.84 m respectively) on the distributions of TPC and Nm along the dimensionless module 

length x/L under given operating conditions.  

 

In Fig. 8 all TPC curves for different modules show U shapes with different curvatures. 

Regardless of fiber geometries, the average TPC values of these configurations decrease with 

increasing module length. i.e., shorter modules are less vulnerable to the TP effect and hence 
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show higher TPCs. Overall, the modules with original straight fibers have the lowest curves 

among all configurations with the same lengths; while the ones with gear-shaped and wavy 08 

fibers show similarly high TPCs. For the module with the original fiber, an increase of length 

from 0.25 m to 0.54 m causes 20 % TPC decrease; a further increase of length to 0.84 m 

results in an approximate 50 % decrease in the average TPC. Moreover, the shorter module (L 

= 0.25 m) presents a rather flat U shape compared to the longer ones with much slower flow 

development along the dimensionless length x/L. Yet, the module with a wavy design 08 

presents 17 % decrease with a length increase from 0.25 m to 0.54 m and 21 % deterioration 

with a further increase to L = 0.84 m. The modules with gear-shaped fibers show a similar 

percentage of TPC decrease with increasing fiber length. Apparently, a much slower decrease 

with increasing fiber length is observed for modified fibers, due to a slower buildup of 

boundary layers at the same location (but a smaller x/L as the module gets longer). Although it 

was reported that longer modules tend to be subject to more severe TP effect [9], the 

simulated results in Fig. 8 show that fibers with modified geometries are advantageous for 

scale-up modules.   

 

Fig. 9 shows the distributions of mass flux Nm for these three fiber geometries (straight, wavy 

08 and gear-shaped) along the dimensionless module length x/L. In general, for the same 

configuration the local mass flux decreases with increasing module length at the same x/L, 

which is consistent with both our previous experimental data and simulation results [38, 44]. 

This is mainly due to the decrease in the local driving forces and the build-up of thermal 

boundary layers as the flow channel length increases. Except for a downward U shape for the 

module with a short straight fiber (0.25 m), the rest of the Nm curves show an upward U shape 
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— a slight decrease at the entrance region, where the thinnest boundary layer of the feed side 

appears, and then an increase as the transmembrane temperature difference increases with 

increasing dimensionless length x/L. This is a result of the counter-current buildup of liquid 

boundary layers. Although longer modules with larger membrane areas will result in a higher 

water production, an optimized length should be chosen for industrial applications based on 

an acceptable magnitude of the local driving force and a more even distribution of Nm. 

 

It is also observed in Fig. 9 that the Nm of the modified designs (wavy and gear-shaped) 

increases more significantly along the dimensionless module length x/L than the original 

module. This is mainly attributed to the increase of driving force as a result of disruptive 

boundary layers by surface corrugation. Overall, the modules with gear-shaped fibers gain the 

highest flux enhancement ratios among all configurations with the same length. Interestingly, 

compared to original modules, the gear-fiber configuration gains a slight increase of 

enhancement from 57 % to 65 % with increasing length from 0.25 m to 0.84 m. Therefore, it 

is meaningful to employ a modified fiber geometry like a gear-shaped, which performs more 

advantageously when longer modules are desired for a higher water production in industry.  

 

1.6 Effects of flow conditions for modules with different fiber 

geometries 

1.6.1 Reynolds number of the feed, Ref  
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As a conventional strategy to improve hydrodynamic conditions in MD systems, an increase 

of flow velocity to create turbulence is found to be effective. However, similar to other 

hydrodynamic approaches [42], its effectiveness may differ in MD modules of different 

configurations. Based on the previous simulation results of geometric optimization, the 

gear-shaped design was selected and simulated to investigate the effect of flow conditions 

with modified surface geometry. With other operating conditions kept constant, Figs. 10 and 

11 show the effects of flow conditions (in terms of Reynolds number, Re) on the TPC and 

mass flux Nm distributions for 0.25 m-long modules with single straight and gear fibers, 

respectively. In Fig. 10 (a) the average TPC increases with increasing Ref for either 

configuration due to the improved fluid dynamics at a higher flow velocity. For the original 

module, all TPC distributions for varied feed flow conditions from laminar to turbulence (i.e., 

Ref = 420 – 2500) show a similar U shape—initially decreasing after entering the module and 

then slowly increasing towards the exit; while the curves of the gear-fiber modules present a 

rather flat trend after leaving the entrance region. It is noted that the Ref for the gear-fiber 

module was calculated based on the modified hydraulic diameter characterized by its 

gear-shaped surface. 

 

Compared to the gear-fiber configuration, in Fig. 10 (a) the original module generally shows 

lower average TPC values and a negligible change with a velocity increase under laminar 

flow (Ref � 1500). The TPC of the original module only fluctuates within 6 % with Ref 

increasing from 420 to 1500; while the turbulence condition (Ref = 2500) brings 30 % TPC 

increase compared to that of Ref = 420. The dramatic enhancement is credited to the reduced 

thickness of liquid boundary layer and hence improved heat transfer under turbulent flow 
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conditions. In contrast, the gear-fiber module shows fairly significant changes with the 

corresponding Ref adjustment. This is probably because of the ups and downs of the 

gear-shaped surface, which could facilitate the occurrence of cross flow and hence enhanced 

fluid dynamics even at an extremely low Ref. For instance, the gear-fiber module shows an 

encouraging average TPC of 0.7, which is 1.6 times higher than the original configuration, at 

the same low Ref of 420.  

 

In Fig. 10 (b) the mass flux Nm increases with increasing Ref for both configurations. Similar 

to the TPC distributions, the Nm curves of the original module show a downward U shape 

along the fiber length L and have a rather insignificant response to a Ref increase under 

laminar conditions (Ref � 1500); its Nm distribution presents a dramatic increase along the 

feed flow direction once the turbulent condition is reached (Ref = 2500). The maximum flux 

increase is up to 50 % compared to that of Ref = 420. On the other hand, the gear-fiber module 

shows an initial decrease at the entrance and subsequent increase along the fiber length for 

each flow condition. Although a relatively flat curve is obtained at an extremely low Ref of 

420, the slope of the Nm curve for the gear-fiber configuration increases significantly with 

increasing Ref. This indicates that the flow disturbance induced by the gear microstructure 

becomes more intense as the flow develops along the flow channel, especially at a higher flow 

velocity.  
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3.3.2 Reynolds number of the permeate, Rep 

 

Similarly, with the Ref kept constant, the permeate flow conditions (Rep) was varied to simulate 

the module performance in terms of TP alleviation and flux enhancement. Fig. 11 presents the 

TPC and Nm distributions along the fiber length L for both the original and gear-fiber modules 

with increasing Rep from 220 to 2500. Similar to Fig. 10, the original module shows much 

lower TPC and Nm curves compared to the modified configuration at the same Rep.  

 

In Fig. 11 (a) the average TPC increases with increasing Rep for both configurations. The 

reason is that a change in the heat-exchange rate at a higher Rep leads to a decrease of 

permeate bulk temperature and hence a higher transmembrane temperature difference (driving 

force) occurs at the same fiber length. However, different from the influence of the feed flow 

conditions, a major increase of Rep from laminar to turbulence only brings a modest change in 

their respective TPC results—an increase of 19 % occurs for the original module and 10 % for 

the gear-fiber one.  

 

Similarly, Fig. 11(b) shows that the average Nm increases with increasing Rep for both 

modules. Generally, at a relative higher Rep (� 1500) the Nm curves of both modules show an 

increasing trend along the permeate flow direction. This is because of a decrease of flow 

temperature on the permeate side, which results in an increasing transmembrane temperature 

difference towards the feed inlet (L = 0 m) at under-developed flow conditions. However, at 

an extremely low Rep of 220 when the flow tends to be fully developed, the Nm curves of the 
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original module shows a decreasing trend; while the gear-fiber module show a more dramatic 

decrease after the permeate flow enters the module. This is probably due to its particular 

corrugated gear structure that might regionally retain some liquid at low Rep and hence result 

in a reduced local driving force due to a more rapid flow development and buildup of liquid 

boundary layer along the permeate flow direction. Nevertheless, compared to the original 

module, the gear-fiber module still gains 47 % flux enhancement at such a low Rep of 220. 

Overall, a change in the flow conditions from laminar (Rep = 220) to turbulence (Rep = 2500) 

has brought significant influence on the permeation flux—32.5 % flux enhancement for the 

original module and 46 % for the gear-shaped fiber.   

 

However, it should be pointed out that instead of employing high flow velocity to create 

turbulence, a major achievement of TP mitigation and flux enhancement could be 

accomplished by utilizing fibers with smarter microstructured designs under laminar 

conditions.  

 

1.7 Comparison of water production and hydraulic loss for 

modules with various fiber geometries 

 

As discussed in the previous sections, an appropriate geometric modification on the 

membrane surface (e.g., alternate wavy or geared shapes) would greatly reduce the 

heat-transfer resistance and improve the module performance, when the heat transferred 
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through the liquid-boundary layers presents a dominant resistance. To fully evaluate these 

fibers of various geometries, two important process metrics—water production (kg·day-1) and 

hydraulic energy consumption (HEC) were calculated and compared among various modules 

(geometric specifications listed in Table 1), as shown in Fig. 12. Assuming that each ideal 

module contains one-hundred pieces of fiber with different geometric designs (i.e., total 

membrane area A = 100 As), the configuration with original straight fibers has a HEC of 6.5 

J·kg-1 and water production of 46 kg·day-1; while the module with gear fibers shows the 

highest water production of 136 kg·day-1 but the lowest HEC of 3.5 J·kg-1, followed by the 

alternate wavy designs 01, 07 and 08. Although the continuous wavy designs 02 and 03 also 

gain reasonably high water production, they tend to be subject to high hydraulic loss (> 20 

J.kg-1). Overall, the gear-fiber module shows the most promising features for achieving 

approximately 3-fold water production enhancement with only half of the hydraulic loss, 

compared to the original design.  

 

4. Conclusions 

 

In this study a series of CFD simulations were carried out to explore the potential benefits of 

employing microstructured hollow fiber membranes used in a DCMD system.  

 

It is found that the module with fibers of gear-shaped structure acheives the highest average 

TPC and mass flux Nm values compared to the original straight design, followed by the 

alternate wavy fibers. The enhanced performance of modified modules can be attributed to the 
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improved hydrodynamics caused by intense secondary flows and improved surface renewal 

with the presence of corrugations on the membrane surface, which is confirmed by the 

observation of the flow-field and temperature profiles from the CFD simulations. The 

investigations on fiber-length effect show that the gear-shaped fiber modules provide the 

highest flux enhancement ratios with equivalent effective lengths, followed by the modules 

with alternate wavy fibers. Interestingly, the advantages of the smart fiber designs are further 

amplified for longer modules, which is attractive for scale-up to a higher total water 

production in industrial applications. 

 

Investigations of the flow conditions showed that the gear- shaped fiber module has a 

promising enhancement at an extremely low Re. Although a flow transition from laminar to 

turbulent conditions would bring a significant improvement in a conventional MD module, 

introducing a smart microstructured design into the membrane surface would be a 

cost-effective option under adverse flow conditions. Also, the computed water production and 

hydraulic energy consumption (HEC) of different modules with various fiber geometries have 

been compared. The configuration with gear-shaped fibers has the highest water production 

but the lowest HEC. In addition, a high water production can be obtained using modules with 

wavy fibers, due to their greatly increased membrane area by surface corrugations. However, 

these geometries might possibly cause higher HEC. It is hoped that this study can bring a new 

perspective on the development of smart membranes for MD applications, and provide a 

foundation to guide the fabrication of microstructured hollow fiber membranes with an 

optimal design.  
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Nomenclatures 

A total membrane area of 100 fibers (m2) 

As membrane area of a single fiber (m2) 

b shape parameter of the wavy arch on the membrane surface 

C membrane distillation coefficient of the membrane (kg·m-2·s-1·Pa-1) 

cp specific heat capacity of material (J·kg-1 ·K-1) 

di inner diameter of the hollow fiber (mm) 

do outer diameter of the hollow fiber (mm) 

h local heat-transfer coefficient of fluids and membrane (W·m-2·K-1) 

�HT latent heat of vaporization of water at temperature T (J·kg-1) 

k thermal conductivity  (W·m-1·K-1) 

Lb dimension of a gear with a square shape (mm) 

Lx interval between two corrugated waves on the membrane surface (mm) 

Nm transmembrane mass flux (kg·m-2·s-1) 

P water vapor pressure (Pa) 

�Pfluid pressure drop along the module length in the shell side (Pa) 

Q heat-transfer rate through the liquid film (W) 

q heat flux (W·m-2) 

qMD transmembrane latent heat flux (W·m-2) 

qHL conductive heat loss (W·m-2) 

Re Reynolds number 

Rmi, Rmo inner, outer radii of hollow fiber (m) 

Sh source term of energy transport equation (J·m-3·s-1),  

 

T temperature (K) 

 velocity of feed or permeate (m·s-1) 

V volumetric flow rate of the fluid (m3·s-1) 
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u normalized velocity of feed or permeate (m·s-1)  

x, r axial, radial directions in cylindrical coordinate (m) 

�x cross-sectional dimension of the wavy arch in x direction (mm) 

�y cross-sectional dimension of the wavy arch in r direction (mm) 

  

  

Greek letters 

� interval angle between two neighboring gears on the cross section 

of the fiber 

 stress tensor (kg·m-1·s-1) 

 

� viscosity (Pa·s) 

� Density (kg·m-3) 

m�  membrane wall thickness (mm) 

r�  
grid scale in the r direction 

  

 

Suffix 

b bulk average 

f Feed 

fm feed-side membrane surface 

m membrane, or membrane surface 

i, o inlet and outlet of fluids 

p Permeate 

pm permeate-side membrane surface 

HL Heat loss 
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                                                         Research highlights 

 

 

� Microstructured hollow fibers were designed using CFD modeling for MD 

applications.  

 

� Analyses of heat and mass transfer and flow field distribution in MD modules were 

obtained. 
 

� The mass flux of the gear-shaped fiber module showed 66% improvement.  
 

� It was attributed to improved hydrodynamics in the flow channels with varied 

geometries. 
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