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Abstract  

  Five types of novel hollow fiber module configurations with structured-straight fibers, 

curly fibers, central-tubing for feeding, spacer-wrapped and spacer-knitted fibers, have 

been designed and constructed for the Direct Contact Membrane Distillation (DCMD) 

process. Their module performances were evaluated based on permeation flux experiments, 

fluid dynamics studies, and tracer-response tests for flow distribution as well as process 

heat transfer analysis.  

The novel designs showed flux enhancement from 53% to 92% compared to the 

conventional module, and the spacer-knitted module had the best performance. The fluxes 

of all the modified configurations, except the structured-straight module, were independent 

of the feed flow velocity, and the modules with undulating membrane surfaces (curly and 

spacer-knitted fibers) were able to achieve more than 300% flux improvement in the 

laminar flow regime. The improved performance was attributed to the improved fiber 

geometries or arrangements that can provide effective boundary layer surface renewal and 

more uniform flow distribution, confirmed by the sodium chloride tracer response 

measurements. The heat transfer analysis underscores the advantage of the module with 

curly fibers with the least temperature polarization effect (temperature polarization 

coefficient =0.81−0.65 at 303 333KmT   ), which is favorable for enhancing permeation 

flux.   

Keywords: hollow fibers, module design, temperature polarization, membrane distillation
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I. Introduction 

Membrane distillation (MD) is a process for water treatment that is driven by a 

temperature gradient across a microporous hydrophobic membrane between a hot feed 

solution and a cold permeate. It involves both mass- and heat-transfer processes: the 

evaporation of the water molecules at the hot interface, the transport of water vapor across 

the porous partition (the membrane) and the condensation of water vapor at the cold interface 

[1]. MD is a promising technique for water desalination because of several advantages: low 

sensitivity to salt concentration and theoretically 100% salt rejection; feasibility  to utilize 

low-grade heat and renewable energy (e.g., waste heat or solar power); low vulnerability to 

membrane fouling and good performance under mild operating conditions  as compared to 

conventional, multi-stage distillation or reverse osmosis (RO) [2, 3]. Direct contact 

membrane distillation (DCMD) is the most studied and simplest mode among the various 

MD processes because no external condenser is required as compared to vacuum membrane 

distillation (VMD) and sweep gas membrane distillation (SGMD) [2, 4-6]. 

 

Despite many attractive characteristics and many lab-scale studies, MD has not been 

widely implemented in industry [3, 7]. Major challenges impeding its application include the 

following: developing appropriate MD membranes to avoid pore wetting; increasing the 

permeation rates; assessing the energy consumption; and mitigating flow maldistribution 

and/or poor hydrodynamics and severe temperature polarization (TP) that compromise 

module performance [2]. In recent years a surge of studies have focused on membrane 

development [8-12] and energy analysis [7, 13-16]. However, there has not been a 
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comprehensive investigation of MD module design. Yet the potential benefits of improved 

module design indicate that a more intensive effort is needed in this area. 

    

Thus far most of the work on hydrodynamic improvement in MD studies has focused 

on flat sheet membrane modules that have small membrane areas and thus are limited to 

laboratory research [5, 17-20]. In industry, hollow fiber-based membrane modules are 

preferable due to their larger membrane area per unit volume and reduced vulnerability to 

TP [1]. Although it has been often stated that poorly-designed hollow fiber modules will 

result in reduced productivity, increased energy consumption and shortened membrane 

lifespan [21], there are limited studies on improving fluid dynamics and designing hollow 

fiber modules for MD applications in the open literature [3, 22-25]. It is well-recognized that 

by incorporating proper flow alteration aids or modifying fiber geometries to create 

secondary flows or eddies (such as novel fiber configurations or turbulence promoters, e.g. 

spacers or baffles), the permeation flux can be enhanced and TP can be mitigated. An early 

exploration on hollow fiber module design by Schneider et al. [25] in 1988 investigated the 

effects of module size and modified fiber geometries on the transmembrane flux of the 

DCMD process. It showed that larger modules could achieve uniform flow more easily than 

smaller ones and certain capillary arrangements (twisted and braided geometries) could lead 

to much higher fluxes than those with straight woven fabric designs. In 2008 Teoh et al. [24] 

studied different hollow fiber configurations in the DCMD process and found that the 

introduction of baffles could increase the feed-side heat-transfer coefficients leading to 

20−28% flux enhancement. In addition, they also explored the concepts of wavy geometries 
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(twisted and braided) of hollow fibers that were able to achieve as high as a 36% flux 

enhancement compared to the unaltered conventional modules. Recently, Yang et al. [12] 

described strategies to improve PVDF-based module performance in the DCMD process that 

included the investigations on the module size, packing density and critical fiber length 

combined with heat-transfer analysis. Although the existence of simultaneous concentration 

polarization (CP) and TP will lead to the reduction of mass and heat transfer driving forces, 

it is well-established that the effect of CP in the DCMD system is negligible in comparison 

to that of TP [26, 27]. Therefore, the quantification of the TP effect, which is used to assess 

the thermal efficiency, is essential for the implementation of an MD system [1, 8, 26]. Yet, 

none of the above-mentioned MD module studies have addressed associated conductive 

heat loss or the mitigation of TP by altering the fiber geometries or introducing turbulence 

aids.  

  

In spite of the absence of comprehensive module design work for MD applications, 

numerous prior studies have been done for general gas-liquid/ liquid-liquid contactors with 

focuses on the introduction of turbulence promoters (baffles/spacers/channel designs) or 

special housing configurations as well as on various aspects related to packing density, flow 

uniformity and shell-side hydrodynamics [21, 28-33]. These studies concluded that 

non-ideal flow distribution in a module will lead to less active membrane area, insufficient 

mixing and local loss of driving force, and hence low heat- or mass-transfer efficiencies. A 

recent review by Yang et al. [21] summarized the most practical membrane module design 

concepts and dynamic shear-inducing techniques to enhance liquid separation by hollow 
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fiber modules. Unfortunately, very few of these design concepts have been adapted to MD 

applications.  

 

Moreover, no report was found to correlate the flow distribution with MD process 

enhancement. In the DCMD process employing shell-side feed, the occurrence of 

significant channeling, bypassing, or dead zones can greatly reduce the local driving force 

and decrease the module performance. Hence, the detection of the flow distribution at the 

shell-side is important for module design. There are two main methods for characterizing 

the flow distribution: the experimental approach (tracer response technique) and 

mathematical modeling [22, 31, 34]. The tracer technique is widely applied for the 

characterization of the flow distribution and the degree of mixing in membrane bioreactors 

as well as for the visualization of the shell-side flow distribution in randomly packed 

membrane contactors [31, 35, 36]. It provides the residence-time distribution (RTD) for the 

fluid in a closed vessel [37]. However, no comprehensive RTD study has been done to 

evaluate MD module performance.  

 

Therefore, this study attempts to develop novel hollow fiber module designs that can 

improve hydrodynamics and thus the MD module performance. The following issues will 

be addressed: (1) novel hollow fiber module design; (2) performance evaluation of various 

designs based on flux enhancement; (3) hydrodynamic studies of modified modules; (3) 

applications of tracer-response measurement for module flow distribution; (4) heat-transfer 

analysis to quantify the TP effect and conductive heat loss of different design 
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configurations.  

 

2. Experimental  

2.1  Hollow fiber module fabrication & assembly procedure 

Polyvinylidene fluoride (PVDF) hollow fiber membranes developed by a commercial 

supplier were used to fabricate lab-scale MD modules. The fibers were potted into the 

housings that are made by transparent Acrylic material, which is provided by local supplier 

Acefund Pte Ltd., to facilitate direct observation of the flow conditions around the fiber 

bundles. Various module configurations were assembled in different ways with similar 

specifications (Table 1): inner diameter 19 mm and effective length 450 mm; packing 

density of 30%; and membrane area of 0.1−0.11 m
2
. In this study a randomly packed 

module, which contained 51 randomly packed fibers, was fabricated and used as the 

conventional module benchmark. The fabrication procedure can be found in our previous 

work [12]. In the module fabrication process, care must be taken to avoid damaging the 

membrane surface and no metal parts were inserted. 

 

Five novel designs were compared. First, a special module with structured-straight 

fibers was fabricated by weaving all fibers into a fabric sheet that was subsequently rolled 

up and packed into the housing (Fig. 1a). This structured array is anticipated to avoid the 

clustering of hollow fibers and could possibly lead to more uniform flow distribution in the 

shell-side.  
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The second module contains curly fibers (Fig. 1b). To create a curly fiber geometry, an 

appropriate temperature and heat-treatment duration as well as a certain winding angle of 

the curl were selected. The fibers were first rolled up around stainless steel rods (diameter 

1.6 mm) with a winding angle of 60° and then placed in an oven at 60°C for 1hr until the 

curly shape was permanently established. This configuration is expected to create an 

undulating membrane surface that will help to change the flow geometry which might lead 

to enhanced hydrodynamics and surface renewal under laminar flow conditions. To 

characterize this configuration the major design variable is the winding angle. 

 

To create transverse flow and more uniform fiber arrangement in a module, a central 

tube was inserted and surrounded by the woven fabric sheet in the third design; the feed 

inlet and outlet were still located at the shell-side via two drawtubes mounted on the central 

tube (see Fig. 1c). The gaps between the drawtubes and the feed entrance or exit on the 

housing were sealed using epoxy (Araldite
®

) ; in this case the feed would mostly flow 

through the holes on the central tube and the permeate would flow through the fiber lumen. 

Caution must be taken when designing the interval and number of holes on the central tube, 

because it is related to the uniformity of the flow distribution through the holes and the 

degree of transverse flow pattern. To investigate the potential variations of this 

configuration, the design of the central tube can be varied by adjusting the shapes of the 

flow distributing holes and the intervals between holes. In addition, the tube size, 

wall-thickness, size/shape of the holes and interval between the holes should be 

appropriately chosen. 
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The fourth design with spacer-wrapped fibers is shown in Fig. 1d. Here the woven 

fabric sheet was wrapped by spacers (with mesh size 1.6 mm) and rolled up. This is 

expected to create transverse flow across the membrane surface by evenly allocating layers 

of spacers between layers of fibers. However, it is possible that the inappropriate allocation 

of spacers or a tightly packed pattern might lead to liquid stagnation that instead would 

adversely affect the hydrodynamics. 

 

In the fifth novel design that fibers were knitted into the mesh of the spacer (refer to 

the spacer-knitted module in Fig. 1e) to facilitate a meandering fluid flow. The 

inappropriate allocation of spacers or over-packed pattern can also lead to adverse effects 

on the hydrodynamics due to the liquid stagnation between the mesh and fibers as observed 

with the spacer-wrapped fibers. 

 

2.2 Module performance evaluation and heat transfer analysis  

To evaluate the module performance for various configurations, the following 

experiments were carried out: (i) attainable flux experiments in which the feed temperature 

was varied while holding the permeate temperature and other operating conditions constant;  

(ii) fluid dynamics experiments in which the recirculating feed or permeate velocity was 

varied while holding the other operating conditions constant. All the experiments were 

conducted using the DCMD system. The experimental setup is shown in our previous work 

[12]. Both the feed and permeate solutions were cycled through the hollow fiber module in 
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countercurrent mode. For the performance tests using synthetic seawater (3.5 wt% sodium 

chloride solution), the operating details can be found in the literature [12].  

    

 Deionized (DI) water was also used in the experiments to investigate the TP effect 

associated with the heat transfer analysis while excluding the CP effect. Both hot and cold 

DI water streams were circulated countercurrently through the shell and lumen sides. On 

the shell side the hot water was heated to between 308 K343 K and circulated by a 

peristaltic pump (15.6 L·min
-1

). On the lumen side the cold permeate was cooled by a 

circulating bath (between 298 K328 K) and cycled by another peristaltic pump (0.1-2.1 

L·min
-1

). Two conductivity meters were installed to assess the water quality in the feed and 

permeate sides, respectively. The product was collected in an overflow tank placed on a 

balance (±0.1 g). The fluid dynamics experiments were performed with careful control of 

the temperature difference (<10 K) between the hot feed and cold permeate.  

 

2.3 Tracer response protocol  

The tracer-response studies were conducted using the same DCMD set-up to 

investigate the shell-side flow distribution in these modules. A schematic showing a module 

with the location of tracer injection and effluent concentration monitors is depicted in Fig. 2. 

At room temperature DI water was pumped into the shell-side of the modules as the feed 

stream (blank background solution) and a pulse input of sodium chloride solution was 

injected at the feed inlet. The tracer response signal was measured at the exit of the effluent 

stream. Since the salt rejection of this PVDF-based hollow fiber membrane is 100% [12], 
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no leakage of the tracer was detected on the lumen side. The amount of tracer used was 1 

mL with a concentration of 1 mol·L
-1

. The resulting concentration of tracer at different 

times was monitored by a conductivity meter (±0.1 µs·cm
-1

) installed at the exit of the 

effluent. The signals were monitored and recorded via a data-acquisition system. To 

determine the relationship between the concentration of sodium chloride solution and 

corresponding conductivity, samples of known concentrations were tested to obtain 

conductivity values using an external conductivity bridge. 

 

In this experiment the proper selection and use of the tracer are essential to get correct 

E(t) curves that represent the age distribution of all components in the effluent stream. A 

physical, nonreactive and unabsorbable chemical must be used as a tracer. A sodium 

chloride solution meets these criteria and was therefore chosen in this study. The 

concentration and dosage of the tracer solution also affect the results, and many attempts 

were made to determine the appropriate concentration and dosage to detect the shell-side 

flow distribution in the modules. In addition, the pumping speed had to be carefully chosen 

due to the relatively small size of the test modules. The feed solution (pure water) was 

pumped at 2.1−2.4 L·min
-1

 into the shell-side until the effluent had no recorded tracer. To 

obtain reproducible and comparable results, the tracer tests for each module were repeated 

8−10 times under constant operating conditions. 

 

2.4 Error assessment  

All the above-mentioned experiments were repeated and showed reproducible results. 
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The results for the water-flux fluctuation were within ±5% (illustrated as error bars in the 

figures). The conductivity meters had accuracies of ±0.1 ms·cm
-1

(feed side) and ±0.1 

µs·cm
-1 

(permeate side), respectively. Two modules for each configuration were fabricated 

by following the same procedures and measured repeatedly under the same operating 

conditions. The temperature and flow rate variations were strictly controlled within ±0.4°C 

and ±0.2 L·min
-1

, respectively. These would also result in less flux fluctuation. 

 

3. Theoretical basis for data analysis  

3.1 Temperature polarization coefficient and heat loss analysis  

 This study focuses on the application of an experimental approach to quantify the TP 

effect and acquire the temperature polarization coefficient (TPC). The following modeling 

considerations (assumptions) are applied: 

(a) Theoretically, the vapor flux N can be expressed in terms of the transmembrane 

temperature difference when it is less than 10°C and pure water is used as feed [1]:  

                    = T f m p mm

dP
N C T T

dT
                            (1) 

where C  is the mass-transfer coefficient, mT  is the membrane temperature, fmT  and 

pmT are the membrane surface temperatures on the feed and the permeate sides, respectively.  

By assuming the temperature polarization effect is similar on both sides of the membrane, 

mT  can be estimated by ( fT + pT )/2. 

(b) The Clausius-Clapeyron equation is applicable to determine the vapor pressure 

gradient dP/dT across the membrane when assumption 1) is satisfied. Hence, 
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2T Tm m

dP P M

dT RT


                (2) 

where (J۰kg
-1

) is the latent heat-of-vaporization, M is the molecular weight of water, R is 

the gas constant (8.314 J۰K
-1

), and P  is obtained from the Antoine equation [38].  

 The overall heat-transfer flux in MD, q , consists of the conductive heat flux cq  

across the membrane and the latent heat transfer vq  accompanying the vapor flux N [1]:  

     m m
c v fm pm T fm pm fm pm

m m
m

k k dP
q q q T T N C T T H T T

dT
 

 

   
             

   
  (3) 

where H  is the effective heat-transfer coefficient based on the transmembrane 

temperature difference, m  is the wall thickness of the membrane, and mk (W۰m
-1
۰K

-1
) is 

the overall thermal conductivity of the membrane. The m m
k   value of the PVDF fiber 

used in this study is taken as 274 W۰m
-2
۰K

-1
 based on the method provided by Sarti et al. 

[39]. Combining Eq. (3) with the energy-conservation Eq. (4), TP can be determined 

quantitatively by Eq. (5): 

   f f fm p p pmq h T T h T T                          (4) 

                  1f m p m f p f p f pT T T T H h H h T T                (5) 

where fh and ph are the local heat-transfer coefficients for the hot feed and the cold 

permeate sides, respectively.  1 1 f pH h H h     is the TPC that represents the 

contribution of the overall thermal driving force  f pT T to the effective mass-transfer 

driving force  fm pmT T . The schematic of the temperature and the vapor-pressure profiles 
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in the MD process is given in Fig. 3. Combining Eqs. (3) and (5) yields the following: 

1 1 1
1 m mkT

N dP dT C h h



 

  
   

 
                   (6) 

where  1 1 1f ph h h   is the overall boundary layer heat-transfer coefficient and 

 f pT T T   . Therefore, with the measurable quantities
m m

k  , fT , pT  and N  as well 

as the predetermined values of dP dT  from Eq (2), the only unknown parameters h  and 

C  can be calculated from the intercept and the slope by plotting 
T

N


versus 

1

dP dT
 as 

explained by Schofield et al. [1]. 

 

3.2 Residence-time distribution (RTD)  

   This current study will use the sodium chloride tracer-response technique [37] for 

investigating the flow distribution on the shell-side of novel hollow fiber configurations. An 

example of an initial tracer concentration c (mol۰m
-3

) and its corresponding temporal 

values in the effluent stream known as C(t) curve for pulse injection is shown in Fig. 4. The 

RTD function E(t) (s
-1

) can be used to further interpret the residence-time results [37]:  

0

( )
( )

( )

C t
E t

C t dt





                              (7) 

where the denominator represents the dosage of the tracer injected at the feed entrance; it is 

also the area under the C(t) curve.  

 

 In the RTD approach many metrics can be used to evaluate the results. One of the 
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main parameters is the mean residence time (tm, s) that can be calculated based on the E(t) 

curve: 

0
( )mt tE t dt



                              (8) 

The theoretical (plug flow) residence time t (s), which is also as known as hydraulic 

residence time, is equal to the actual vessel volume V divided by the fluid flow rate 0Q . In 

a hollow fiber MD module the difference between t  and mt  shows the degree of mixing 

in the vessel [37], i.e., a larger deviation might indicate a longer contact time and hence 

more effective heat transferred across the membrane. However, the uniformity of the flow 

distribution is also crucial in the vessel design. Thus, another important parameter is used 

to represent the spread of the RTD curve − the variance 2 ; a larger value indicates a 

wider spread, or more deviation from the uniform flow pattern [37].  

 
22

0
( )mt t E t dt



                                 (9) 

 

In order to obtain comparable results for vessels of different size and mean residence 

time, the normalized E(t) function and dimensionless form of variance are more commonly 

used: 

( ) ( )mE t E t                                 (10) 

   
2

22

20
1

m

E d
t

 


   



                            (11) 

By applying the above RTD theory with the experimentally measured parameters (e.g., the 

tracer entrance concentration C0 and dosage of tracer injected) and a responding 
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concentration curve C(t) that can be obtained from the assessment of tracer concentration in 

the effluent stream, the RTD function curve E(t) can be determined based on Eq. (7). Thus, 

the mean residence time tm and variance 2  (as well as the dimensionless variance) can be 

calculated based on Eqs. (8) to (11), respectively. 

 

4. Results and discussion 

4.1 Membrane properties 

As mentioned previously, a newly-developed PVDF hollow fiber membrane was 

characterized and tested in the current study; its properties are given in Table 1. It can be 

seen that this highly porous PVDF fiber showed reasonably large contact angles for water, 

high liquid-entry pressure for water (LEPw), good mechanical strength, small maximum 

pore size and a narrow pore-size distribution. More information on the methodologies for 

membrane characterization can be found in our previous work [12].   

 

4.2 Attainable flux (feed-temperature tests) 

Fig. 5 plots the permeation flux as a function of feed temperature for six module 

configurations. All five modified modules show improved performance over the 

conventional randomly packed module. The greatest enhancement is achieved by the 

modules with spacer-knitted and curly fibers for which the flux is increased more than 90% 

at Tf =313 K and 70% at Tf =333 K, respectively. The modules with curly fibers and 

spacer-wrapped fibers show similar performance, while those with central tubing and 

straight fibers are slightly lower, but still show significant improvement over the randomly 



 17 

packed module. Teoh et al. [24] reported that the maximum flux enhancement achieved in 

modules with spacers/baffles or wavy geometries was only from 20 to 36% at feed 

temperature Tf =348 K. In comparison, the 70 to 90% improvement under milder operating 

temperature in this study is encouraging, and may be due to more appropriate choice of 

flow rates. 

 

The enhancement of permeation flux in the modified modules would be due to the 

improved hydrodynamic conditions achieved by the modified shell-side flow channels in 

the novel configurations. Hence, it is anticipated that the heat and mass transfer would 

increase and the TP effect would decrease in a well-designed module when compared to the 

conventional randomly packed configuration. The discussion in the following sections 

addresses these points. In addition, another important factor that could affect the heat- and 

mass-transfer processes is fluid channeling or bypassing (shell-side) that was characterized 

using the tracer-response technique and will be discussed later. 

 

4.3 Fluid dynamics 

Experiments were performed to study the effects of the recirculating flow velocities 

(characterized as Reynolds number, Re, of the feed and permeate) on the fluxes in different 

membrane modules. Fig. 6 shows the permeation flux as a function of the Ref of the feed 

flow for six different modules. Four of these novel designs show relatively stable fluxes in 

the range of 10 to 12 kg·m
-2

·h
-1

 from extremely low Ref (laminar condition, e.g., fRe 500 ) 

to turbulent conditions ( fRe >2000 ). This represents a significant improvement over the 
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conventional randomly packed module as well as the structured-straight module, whose 

flux initially was rather low and increased with increasing fRe until turbulent flow 

occurred. It is well understood that the steady flux across the Re range indicates a shift to the 

heat and mass transfer being controlled by the membrane and/or the lumen-side boundary 

layer. Normally, a higher recirculating velocity (i.e., higher mixing intensity) can help to 

reduce the thickness of the boundary layer adjacent to membrane surface and maximize the 

driving force between the feed and permeate sides [14, 40, 41], which is favorable for the 

mitigation of concentration and temperature polarizations. However, increased pumping 

energy is required to provide a higher velocity. From this study it can be seen that a much 

lower velocity can be chosen by employing novel configurations to reach the steady flux. 

Hence, there is no need to increase the flow rate.  

 

From Fig. 6 it can also be observed that when compared with the randomly packed 

module, a one to three-fold flux enhancement could be obtained even at an extremely low 

flow velocity in four modified configurations. The highest flux enhancement (>300 %) was 

achieved by the modules with undulating membrane surface (spacer-knitted and curly 

fibers) under a low operating flow rate range. This might be due to a more even flow 

distribution in the modified module that improves the fluid dynamics. This finding will be 

corroborated by conducting residence-time distribution (RTD) tests in the later section (4.4). 

For example, the module with spacer-knitted fibers would facilitate a meandering fluid flow, 

thereby achieving a well-mixed condition. Moreover, secondary flows might be induced 

simultaneously to achieve more efficient heat and mass transfer. 
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Experiments were also conducted to investigate the effect of the lumen-side resistance 

by varying the recirculating permeate flow velocity ( pRe ). Fig. 7 plots the permeation flux 

as a function of the permeate-side flow rate for six module configurations with Ref =1901.3. 

A similar response to the increase of the permeate flow rate as the randomly packed module 

presented was observed for the five modified modules. Our previous work [12] indicated 

that the heat-transfer process could be enhanced by increasing the velocity to minimize the 

thermal boundary layer on the permeate side; i.e., when the temperature at the membrane 

surface approaches the temperature in the bulk permeate, the driving force for vapor 

transport through the membrane can be maximized. Moreover, an early onset of the steady 

state was observed at Rep<200. The possible reason may be due to the increased transverse 

vapor flux that helped break down the laminar boundary layer, thus greatly enhancing the 

mixing on the membrane surface and facilitating the heat transfer at the permeate side. In 

addition, the four modified configurations show 28 to 39% flux enhancement compared to 

that of the with structured-straight module and a more significant improvement (110 to 

127%) over the conventional randomly packed module after reaching a steady state 

(attainable fluxes). This is probably due to the enhanced heat transfer at the feed sides of 

those improved geometries, leading to a higher transmembrane vapor flux and 

consequently more efficient heat transfer at the permeate side.  

  

4.4 Residence-time distribution (RTD) tests  

In the RTD tests, when the sodium chloride solution was injected into the module at the 
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feed inlet, it took time to travel through the whole system before reaching and being 

detected by the conductivity analyzer located at the feed outlet. The theoretical residence 

time, based on a plug flow vessel of the same actual volume (Vhousing-Vfibers), was calculated 

to be approximately 7.2 seconds from the injection point to the detector with a flowrate of 

2.1−2.4 L۰min
-1

 and a connecting tubing length of approximately 500 mm. The tracer 

responses for different modules are shown in Fig. 8, which plots the concentration of the 

tracer in the effluent stream as a function of time. To view the experimentally determined 

C(t) curves more clearly, Fig. 8 depicts only the first 20 seconds of each module test. The 

solid lines and dots represent the experimental data, while the dashed lines are the Gaussian 

distribution curves (normalized distribution) that have symmetric shapes to simplify the 

probability prediction. For further comparison the average values of mean residence time tm 

and the dimensionless variance σθ for each module are summarized in Table 2.  

 

It can be seen from Fig. 8 that the curves of the randomly packed and 

structured-straight modules have double peaks that imply the existence of parallel flow 

paths or channeling in the modules [37]. Also, the relatively early peaks accompanied the 

occurrence of long tails on the right of the curves, implying that these two modules could 

be subjected to stagnant backwaters (local dead zone effects). The summary in Table 2 

shows that their RTD curves have relatively wider dispersions (0.263 & 0.115) than the 

other modules.  

 

Several researchers [35, 37, 42, 43] have stated that the variance is an important metric 
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to evaluate the flow distribution. A smaller variance indicates a narrower RTD curve 

dispersion and a more ideal flow pattern. For example, the last three modules (Fig. 8) with 

curly, spacer-knitted and spacer-wrapped fibers show similar C(t) curves with a relatively 

spiked and asymmetric shape that indicate a reasonably uniform flow distribution, which is 

consistent with their small variances (lower than 10%, Table 2) indicating narrow curves. 

Although these three modules have relatively larger mean residence times tm, which 

deviates from the plug flow behavior, they showed higher fluxes and enhanced 

performance in hydrodynamic investigations when compared to the other configurations. 

This may be due to their more complicated flow paths caused by the modified geometries 

that promote more even flow distribution and induce secondary flows to greatly enhance 

the mass/heat transfer between the hot feed and cold permeate. In addition, a direct 

comparison of the variance is illustrated in the histogram in Fig. 9 that shows a plot of 

dimensionless variance for the various module configurations. Interestingly, the overall 

RTD results correlate with the module performance. 

 

4.5 Temperature-Polarization coefficient (TPC) and heat-loss assessment 

A series of pure water tests were performed in the laminar flow regime to determine 

the corresponding heat-transfer coefficients and TPC for the various module configurations. 

The unknown parameters h  and C  were obtained based on the known operating 

parameters and membrane properties by plotting 
T

N


vs. 

1

dP dT
, as shown in Fig. 10. 

Based on these plots, the heat transfer coefficient h was found to be from 943 
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W۰m
-2
۰K

-1
 for the module with randomly packed fibers to 2300 W۰m

-2
۰K

-1
 at =333KmT

 

for the module with curly fibers, which is consistent with its performance evaluation results. 

Also, the TPC and ratio of the conductive heat loss to the overall heat flux cq q for each 

configuration are shown in Figs. 11 & 12 as functions of the membrane temperature mT , 

respectively. It can be seen that both the TPC and cq q
 
decrease with increasing 

membrane temperature mT . The TPC decreases because the higher fluxes generated by the 

higher vapor pressure gradient of dP dT  [(Eq. (2)] result in an increase in the effective 

membrane heat transfer coefficient H [(Eq. (3)]. Comparing the various designs (Fig. 11) 

the module with curly fibers shows the least temperature polarization under the same 

operating conditions (e.g., TPC 0.8  at =303KmT  and 0.65 at 333K ), followed by the 

module with central tubing and spacer-knitted fibers; while the modules with 

structured-straight and randomly packed fibers display higher vulnerability to the 

temperature-polarization effect. This again underscores the enhanced driving force and 

improved performance by the module with curly fibers. However, it is noted that the 

module with spacer-knitted module has a slightly lower TPC. This may be due to the more 

complicated layout and insertion of spacers leading to possibly lower thermal efficiency. 

Overall, compared to the TPC range (0.4−0.7) achieved by a typical MD system with 

satisfactory module performance [8], the current results are encouraging.   

 

The ratio of the conductive heat loss to total heat flux, cq q , also decreases with 

increasing membrane temperature (Fig. 12), because cq  has linear relationship with the 

temperature difference  fm pmT T  while the evaporation heat eq  shows an exponentially 
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increasing trend [Eq. (3)]. Interestingly, the module with curly fibers loses a larger portion 

of heat to conduction (e.g., 55%
 
at =30 CmT 

 
and 23% at 333 K), which is explained by 

a higher TPC and hence higher transmembrane temperature differences (driving force). 

Therefore, a trade-off exists between the TPC and the ratio of conductive heat loss to the 

total heat flux for module performance. However, it has been widely reported that the ratio 

of conductive heat loss to overall heat flux across the membrane is from 20% to 50% in a 

typical MD unit [8]. Thus, the conductive heat-loss levels of the best performing modules 

are still acceptable for the range of operating temperatures studied here. For example, the 

module with curly fibers had a TPC 0.65  and 23%cq q   at 333KmT  .  

 

Based on the above results, a summary is given in Table 3 to provide an overall 

comparison for all configurations. In general, the modules with undulating membrane 

surface (e.g., curly and spacer-knitted fibers) show advantages by achieving higher vapor 

permeability and mitigating TP effect with reasonably lower energy losses; this is mainly 

due to the enhanced shell-side hydrodynamics induced by altered fiber geometries and 

relatively uniform shell-side flow distribution.   

 

5. Conclusions 

In this study, five types of novel hollow fiber module configurations were designed and 

constructed for the DCMD process. Their module performances were evaluated based on 

permeation flux experiments, fluid dynamics investigation, and tracer-response tests as well 

as process heat-transfer analysis.  
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 Experiments reveal that the novel module designs are able to enhance permeation flux 

up to 90% as compared to the conventional module, and the modules with curly and 

spacer-knitted fibers had the best performance.  

 The fluid dynamic studies show that the performance of all modified configurations 

except the structured-straight module are independent to the feed flow velocity, and the 

modified fiber geometries with undulating membrane surface can achieve up to 

three-fold flux enhancement in the laminar flow regime.  

 The sodium chloride tracer response technique is able to reveal the shell-side flow 

pattern and distribution for various designs. Improved fiber geometries or 

arrangements can provide a better flow distribution , thus much lower pumping energy 

cost and higher thermal efficiency could be accomplished. 

 The heat transfer analysis underscores the advantage of the modules with undulating 

membrane surface for mitigating TP. Although a trade-off exists between the TPC and 

conductive heat loss, all modified modules showed acceptable heat loss within the 

range of operating temperatures.  
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Nomenclature 

 

A  Effective membrane area,  m
2
 

C  Mass-transfer coefficient or membrane-distillation coefficient,  

kg·m
-2

·h
-1

·kPa
-1

 

C(t) Temporal tracer concentration at the effluent, mol۰m
-3

 

0c
 

Pulse injection tracer concentration at the feed entrance, mol۰m
-3

 

od
 Outer diameter of the hollow fiber,  mm 

sd  Housing diameter of the module,  mm  

tE
 Tensile modulus,  MPa 

H  Effective heat-transfer coefficient based on the temperature difference 

across the entire membrane,  W۰m
-2
۰K

-1
 

h
 Overall heat-transfer coefficient 

1 1

f ph h
  , W۰m

-2
۰K

-1
 

fh  Feed-side local heat-transfer coefficient, W۰m
-2
۰K

-1
 

ph  Permeate-side local heat-transfer coefficient,  W۰m
-2
۰K

-1
 

mk  Thermal conductivity of membrane,  W۰m
-1
۰K

-1
 

L  Effective fiber length,  mm 

M
 

Molecular weight of water, g۰mol
-1

 

m Total amount of tracer, mol 

n  Number 
f fibers 

N  Vapor flux, kg·m
-2

·h
-1

 



 27 

P  Vapor pressure of the bulk streams, kPa 

q  Total heat flux, W۰m
-2

 

cq  Conductive heat loss through the membrane, W۰m
-2

 

vq  Latent heat flux, W۰m
-2

 

fQ  Feed flow rate, L min
-1

 

pQ  Permeate flow rate, L min
-1

 

0Q  Influent flow rate in tracer study, m
3
۰s

-1
 

R
 

Gas constant, 8.314 J۰K
-1

 

Re  
 

Reynolds number, hd 


 

maxr  Maximum pore size, μm 

meanr  Mean pore size, μm 

fT  Bulk temperature of the feed, K 

fmT  Temperature at the membrane surface on the feed side, K 

mT  Membrane temperature, K  

pT  Bulk temperature of the permeate, K 

pmT  Temperature at the membrane surface on the permeate side, K 

T  Bulk temperature difference, K 

t
 

Time, s 

tm Mean residence time, s 

t  Theoretical residence time of the vessel 0V Q , s 

V  Volume of the vessel, m
3
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fv  Recirculated feed velocity, m·s
−1

 

pv  Recirculated permeate velocity, m·s
−1

 

  

Greek letters  
 

   Membrane porosity, % 

  Module packing density, % 

  Temperature-polarization coefficient (TPC) 

2  Variance, s
2
  

2

  Dimensionless variance 

  Dimensionless time 

b  Strain at fiber breakage, % 

m  Membrane thickness, μm 

  latent heat-of-vaporization, J۰kg
-1

 

ρ Density of water, kg۰m
-3

 

μ Viscosity of water, Pa۰s 

  

Subscripts   

f Feed  

p Permeate 
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Fig. 1. Novel module design and fabrication: (a) Structured-straight module; (b) Curly-fiber  

module; (c) Central-tubing module; (d) Spacer-wrapped module; (e) Spacer-knitted module 
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Fig. 6. Effect of recirculated feed velocity on permeation flux (3.5%NaCl solution as feed 
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Fig. 8. RTD concentration C(t) response curves for various configurations in tracer tests 

(Background solution: pure water; tracer: sodium chloride solution, 1mol/L; amount: 1mL; 
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Fig. 11. Comparison of the TP effect for various module configurations in pure water tests  

[Qf =4 L۰min
-1
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-1

 (Rep=180), Tm=303~333K]  
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