

Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow

This is the Accepted version of the following publication

Yu, Hui, Yang, Xing, Wang, Rong and Fane, Anthony G (2011) Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow. Journal of Membrane Science, 384 (1-2). pp. 107-116. ISSN 0376-7388

The publisher's official version can be found at http://www.sciencedirect.com/science/article/pii/S037673881100682X Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/25291/

Material	Density kg/m ³	Specific heat J/(kg·K)	Thermal conductivity W/(m·K)
PVDF[23]	1775	1325	0.2622
Vapor*	0.554	2014	0.0261
Membrane	302.2	1896.9	0.0662

Table 1. Properties of the PVDF membrane

Table 2. Properties of the fluids

Material	Density kg/m ³	Specific heat J/(kg·K)	Thermal conductivity w/(m·K)	Viscosity $\times 10^{-4}$ Pa·s
3.5% synthetic seawater(~323K) [24]	1013.2	4064.8	0.642	5.86
Pure water(~303K) [25]	995.2	4182.1	0.613	8.38

Table 3. PVDF membrane characterization and module specifications

Membrane properties							
Material	Dimension	Contact angle (°)	Porosity ε (%)	LEPw (Bar)	Tensile modulus E_t , MPa	Strain at break $\delta_b, \%$	
PVDF	<i>R_{mo}</i> : 1.45 mm δ _m : 275 μm	105 ± 1	85	1.38	44.60	98.60	
Module specifications							
Housing diameter, d_s , mm		m No. c	No. of fibers, <i>n</i>		Effective fiber length L, m		
9.5			1		0.25~1.02		

<i>L</i> (m)		T_{fi} (K)	$T_{fo}\left(\mathbf{K} ight)$	Error (%)	T_{pi} (K)	T_{po} (K)	Error (%)
0.25	Exp.	327.2	325.7	-	294.0	301.4	_
	Sim.	-	325.9	0.0614		300.9	-0.166
0.34	Exp.	327.2	325.2	-	293.5	302.8	-
	Sim.	-	325.4	0.0615		302.5	-0.0991
0.54	Exp.	327.2	324.8	-	294.0	306.0	-
	Sim.		324.6	-0.0616		306.6	0.196
0.64	Exp.	327.2	324.2	-	294.0	306.3	-
	Sim.	-	324.1	-0.0308		308.6	0.848
0.74	Exp.	327.2	323.7	-	294.7	307.8	-
	Sim.	-	323.7	0.00		310.6	0.910
0.84	Exp.	327.2	322.7	-	293.7	310.0	-
	Sim.		323.3	0.185		311.4	0.452
1.02	Exp.	327.2	322.0	-	294.0	312.1	-
	Sim.	-	322.6	0.186		313.9	0.577

Table. 4. The temperature comparison of experimental data and simulation results (Re_f =836, Re_p = 460)

Fig. 1. Schematic diagram of heat & mass transfers

Fig. 2 CFD domain & meshes of the single-fiber module in a 2D model

Fig. 3. Temperature distribution inside the module $(Re_f=836, T_{fi}=327.2 \text{ K}, Re_p=460, T_{pi}=294.0 \text{ K})$

Fig. 4. $q_f \& \Delta T_f$ distributions along the dimensionless module length x/L(Re_f =836, T_{fi} = 327.2 K, Re_p = 460, T_{pi} = 294.0 K)

Fig. 5. $q_p \& \Delta T_p$ distributions on the membrane surface along the dimensionless module length *x/L* (*Re_f*=836, *T_{fi}* = 327.2 K, *Re_p*= 460, *T_{pi}* = 294.0 K)

Fig. 6. Distribution of Nu along the dimensionless x distance $(Re_f=836, T_{fi}=327.2 \text{ K}, Re_p=460, T_{pi}=294.0 \text{ K})$

Fig. 7. $Nu_f \& Nu_p$ distributions along the module length at different Re_p (L=0.25m, Re_f =836, T_{fi} = 327.2 K, Re_p = 200~2000, T_{pi} = 294.0 K)

Fig. 8. $Nu_f \& Nu_p$ distributions along the module length at different Re_f (*L*=0.25m, Re_f =500~2000, T_{fi} = 327.2 K, Re_p = 460, T_{pi} = 294.0 K)

Fig. 9. $h_f \& h_p$ distributions along the module length at constant flow conditions $(L=0.25\text{m}, Re_f=836, T_{fi}=327.2 \text{ K}, Re_p=460, T_{pi}=294.0 \text{ K})$

Fig. 10. *TPC* distributions along the dimensionless module length x/L(Re_f = 836, T_{fi} = 327.2 K, Re_p =460, T_{pi} = 294.0 K)

Fig. 11. Distributions of local mass fluxes along the dimensionless x/L distance $(Re_f = 836, T_{fi} = 327.2 \text{ K}, Re_p = 460, T_{pi} = 294.0 \text{ K})$

Fig. 12. Distributions of local N_m along the dimensionless module length x/L (L=0.25m, $Re_f=500\sim2000$, $T_{fi}=327.2$ K, $Re_p=200\sim2000$, $T_{pi}=294.0$ K)

Fig. 13. Distributions of η_h along the dimensionless *x/L* distance (*L*=0.25m, *Re_f*=500~2000, *T_{fi}* = 327.2 K, *Re_p*= 200~2000, *T_{pi}* = 294.0 K)