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Abstract

Power series are fundamental in the study of Geometric Function Theory. In
fact, they constitute a major part in Complex Analysis. The purpose of this dis-
sertation is to employ analytic functions defined by power series in two different
directions. The first of these discussed in Part I, mainly contributes to Analytic
Inequalities in Real and Complex Analysis, while the second direction discussed
in Part II, deals with Analytic and Univalent Function Theory.

Part I of this dissertation is devoted to some inequalities concerning power
series with real or nonnegative coefficients and convergent on an open disk. The
main purpose of this part is to derive new inequalities for functions defined by
convergent power series, which are related to the celebrated classical inequali-
ties in Real and Complex Analysis such as the Cauchy-Bunyakovsky-Schwarz,
Young’s, Holder’s and Jensen type inequalities. In particular, we obtain new
and better inequalities for the power series functions, which provide generaliza-
tions, refinements and improvements on the earlier results published by Cerone
and Dragomir [89], Dragomir and Ionescu [138], Dragomir and Séndor [136] and
others. Further, particular inequalities are obtained by applying the results for
the fundamental functions such as exponential, logarithm, trigonometric and
hyperbolic functions. Some inequalities involving special functions such as poly-
logarithm, hypergeometric, Bessel and modified Bessel functions of the first kind
are established as well.

Part II is mainly concerned with analytic functions in a unit disk and nor-
malized by the conditions f(0) = f’(0) —1 = 0. The functions in the class
S, which are analytic, univalent and normalized in a unit disk and have power
series representations, are the center of the study of Univalent Function Theory.
The properties of functions in the class S and its subclasses such as the starlike,
spirallike, convex, close-to-convex, etc., have been widely investigated by various
researchers in the past three decades. In the other direction, new subclasses of
functions, which are defined involving operators, were introduced. The Saldgean
operator [383] is one of the famous differential operators, which was used by
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Opoola [343] to introduce new subclasses of S. To provide some new properties
for certain subclasses of functions introduced by Opoola is the main objective
throughout the second part of this dissertation. In this study, we introduce the
special subclass of Opoola’s functions and then investigate some properties and
coefficients inequalities of functions in this class. Finally, we conclude Part II
by providing the Fekete-Szeg6 theorem concerning subclasses of analytic and
univalent functions.
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Chapter 1

Introduction

Power series is a special type of series of a function, that is of fundamental im-
portance in Complex Analysis. The fact that an analytic function in an open
disk can be represented by convergent power series, makes it an important el-
ement in the study of Geometric Function Theory. This chapter begins with a
concise introduction to the power series. Then, it follows by an introduction to
Inequalities Theory in real and complex analysis and Univalent Function The-
ory, which are the two main parts of this dissertation. Basic properties of the
power series and their representations for some fundamental functions are given
in the following sections. Finally, this chapter presents the main motivation for
writing this dissertation and provides an overview of the outline and content of

this dissertation.

1.1 General Background
1.1.1 Power Series

An infinite series is, informally speaking, the sum of the terms of an infinite
sequence. One of the most important infinite series, which appears in almost all

areas of pure and applied mathematics, is called power series.

A power series is a series, where a ‘variable’ is involved in the terms of the

series. Roughly speaking, a power series is an infinite series that can be written
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in a systematic pattern of change in the powers of variable, and the terms of the

series are often produced according to the certain rules. For example,

(i) 1+ax+22+23+2"+...

(ii) x—%+%—%+.... L)
(i) (x—l)—%(x—1)2+%(x—1)3—i(x—1)4+...

are the power series, which are specifically known as the geometric series, Maclau-

rin’s series and Taylor’s series, respectively.

The terminology of the infinite series was introduced in the last third of the
17th century. It probably appeared in print for the first time in 1668, in the
second of James Gregory’s manuscript entitled “Fxercitationes Geometricae”,
published in London (cf. Gregory [172, p. 10-12]). However, the first mention
of the notion of the infinite series dates back to antiquity. Historically, Greek
mathematician Archimedes (c. 287 BC - c. 212 BC) produced the first summa-
tion of the infinite series with a method that is still used in the area of calculus
today. He used the method of exhaustion' and Egyption fraction? to develop
the infinite series by calculating the area under the arc of a parabola. Hence,
he obtained a remarkable approximation value of 7 (223/71 < 7w < 22/7), see
([31, p. 233-252], [252, p. 35-37], [340]). The development of the infinite series
techniques then commenced with the computing of some more accurate values
of 7 by many mathematicians until the 17th century. Chinese mathematicians,
Liu Hui (around 265 AD) and Zu Chongzhi (around 480 AD) created the same
method based on the polygon iterative algorithm, but they considered the dif-
ferent number of polygon sides in the circle, to obtain the approximation values
of m (see [32, p. 177-178], [73, p. 202-203], [329, p. 66, 100-101]). The infinite

series were also exploited for 7, most notably by European mathematicians such

!The method of exhaustion is a method of finding area of shape by inscribing in-
side it a sequence of polygons whose areas converge to the area containing shape. If
the sequence is correctly constructed, the difference in area between the nth polygon and
the containing shape will become arbitrary small as n become large®.  “Adopted from
http://en.wikipedia.org/Method of exhaustion, on 15 May 2013.

2Egyption fraction is the sum of distinct unit fractions, where each fraction has
a numerator equal to 1 and a denominator is a positive integer’. °Adopted from
http://en.wikipedia.org/Egyption  fraction, on 15 May 2013.
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as Frangois Viete (see [32, p. 187], [428, p. 397-398]), John Wallis [429, p. 1-52,
753-754], James Gregory (see [171, p. 34-39], [172, p. 10-12]), Gottfried Wilhelm
Leibniz [32, p. 188-189] and Nicholas Mercator [307]. They found the approxi-
mation values of m by developing the infinite series to solve problems under the
particular curves. Indeed, they showed that the infinite series techniques were
the useful tool in solving the geometrical problems until the 17th century, that
is before the rise of calculus. However, in those times, to understand that a
sum with infinite number of summands could have a finite result was a great

philosophical challenge.

Obtaining the sum of a particular series of numbers is of relatively little in-
terest in comparison with the expanding of a function into a series, whose terms
depend on a variable. In modern terminology, this is called the power series ex-
pansion. The idea of the infinite series expansion of functions was first conceived
in India, in the 14th century by Madhava of Sangamagrama (c. 1350 - c. 1425).
He laid down the precursors of the modern conception of the power series and
discovered a number of the Taylor series expansion of functions, such as sine,
cosine, tangent and arctangent (see [43], [106], [168]). Alongside his discovering,
Madhava also developed the convergence criteria of the infinite series; his stu-
dents and followers at the Kerala School of Astronomy and Mathematics, India,
further expanded his works and obtained various type of series expansions until
the 16th century (see [399], [409, p. 173], [420]).

Madhava’s formula of arctangent was rediscovered, in a different way, by the
Scottish mathematician James Gregory in 1671, a few years after he published
the formal terminology of the infinite series. This discovery is attributed to
him, though he also formulated the expansion of power series for the trigono-
metric functions such as sine, cosine, arcsine and arcosine, and published several
Maclaurin’s series as well [73, p. 439-445]. After Issac Newton developed the for-
mal methods of modern calculus in 1660s, then Leibniz was able to find the series
expansions of sine, arcsine and explored many more infinite series including the
Taylor series (see [73, p. 446-447], [278], [279]). However, a general method for
constructing the Taylor series expansion for all functions was formally provided
by Brook Taylor in 1715, after whom the series are now named (cf. Taylor [416,
p. 21-23]). A Maclaurin series was named after Scottish mathematician Colin

Maclaurin, who made an extensive use of the special case of the Taylor series in
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the 18th century, when the series is expanded around zero. A remarkable con-
tribution on the development of the Series Theory also goes to Swiss Leonhard
Euler, who made some important discoveries in this field. He directly proved
the power series expansions for the exponential and inverse tangent functions
[73, p. 496-497], and provided the ways to express various logarithmic func-
tions by using the power series method. Notably, he introduced the theory of

hypergeometric series and q— series.

The discovery of the mathematical quantities such as the exponential, loga-
rithm, trigonometric functions of sine, cosine, tangent, etc. that could be written
as the power series expansions, was one of the great mathematical achievements
in the mid 17th century. Together with the ‘invention’ of calculus by English
scientist Newton and German mathematician Leibniz in the 1660s, then it led to
the development of many important power series in analysis. Later, the theory
of infinite series was thoroughly developed and used to work out many significant
problems that had eluded solutions with any other approach in mathematics and

various fields.

In this section, we state the formal definition of the power series in one
complex variable. The definition is adopted from the standard texts of Ahlfors
[6, p. 38|, Agarwal [5, p. 151], Ponnusamy and Silverman [359, p. 153] and
other references which are cited therein. We start with the definition of series as

follows.

Definition 1 Let (ag, a1, as,...) be an infinite sequence. Then, the sum

Zak:ao+a1+a2—|—---, (1.2)
k=0

15 called an infinite series or simply a series.

Definition 2 A power series is an infinite series of the form

Zak(z—zo)k:a0+a1(z—zo)+a2(z—zo)2+---, (1.3)

oo
=0

where z, zg € C, ai, k € {0,1,2,...} represents the coefficient of the k-th term

of the series, zy is an any fixed point in C and z varies around z.
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If zp is equal to zero (i.e., zyp = 0), then the power series (1.3) takes the

simpler form as follows:

[ee)
Zakzk =ag+ a1z + a2+ . (1.4)
k=0

The series (1.3) is often called the power series about 2z or the power series with
respect to the center at zy. It usually arises as the Taylor series of some known
functions [4, p. 65-89]. In other words, many fundamental functions in a real or
complex variable can be represented as the Taylor series expansion (as we shall
show later in Section 1.3), whereas, the series in (1.4), which involves the simple
powers of z, is known as Maclaurin’s series. It is clearly seen that Maclaurin’s
series (1.4) is the Taylor series (1.3) about the origin. The simplest form of the

power series is called the geometric series, namely

sz:1+z+22+--~. (1.5)
k=0

It is the special case of Maclaurin’s series (1.4), where the coefficients a;, = 1 for
all k€{0,1,2,...}.

The power series such as the geometric, Maclaurin and Taylor series, are
frequently used in mathematical analysis. They provide powerful ways of repre-
senting some of the most important functions in a wide range of mathematics,
physics, engineering, computer science and other fields. The crucial properties
such as the algebraic operations (including the differentiation and integration)
that can be done much more readily on the power series form, thus make such
series particularly easy to study. In analysis, the solution of linear and nonlinear
of ordinary or partial differential equations are often raised in the form of power
series (see for instance [2], [33], [100], [113], [163], [200], [276]). Power series
also arise under the name of generating function in the study of Combinatorics
Theory (see [92], [97, Chapt. 2], [178]), while, the concept of p—adic number,
which is closed related to the power series, occurs in the field of Number Theory
(see [28], [199], [413]).

Much physical modelling requires mathematical approximations and often

involves the series expansions. This method plays an important role in many
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diverse areas of applied mathematics including physics and engineering. Partic-
ularly, the Taylor series expansions are widely used for approximating functions
with a large or a small parameter. Hence, it always can be found in the study of
the wave equations (see [258], [290]), the dynamical systems (see [38], [94], [177]),
the kinetics equations (see [242], [315], [325], [326]), the quantum mechanics (see
[230], [247], [424, p. 96-104]) and the neural networks (see[231], [417]). In addi-
tion, the power series method is simpler and it is able to reduce the complicated

linear or nonlinear equations in order to find their exact solutions.

The applications of the power series also can be found in the field of computer
sciences as well. The excellent way of representing some complicated functions,
and also be able to serve the quick approximation and evaluation of functions
at the given points, makes the power series a powerful tool in many computer
algorithms developments. This means that, the power series expansions serve
as a workhorse in many computer algorithms, in which the program runs faster
or maybe even is possible. In fact, the numerical algorithm developed by using
the power series expansion is much simpler, easier and more efficient with less
error determination [205]. In other words, the approximation technique using
the power series allows the computer algorithm to approximate functions with
more speed, and in a short computational time with a high degree of accuracy
(see [251], [256], [257], [275], [323]).

Power series are also useful in chemistry as well as in mathematics, physics,
engineering and computer science for a number of reasons. First, the power series
in truncated polynomial form provide an excellent tool for fitting experimental
data, when there is no model formula available (see [95, Chap. 2], [96, Chap.
1], [258], [290]). Second, the great needs of the power series is for geometric
optimization of physical systems: for instance, the quasi-newton method makes
use of a two variables Taylor series to approximate the equilibrium geometry of a
cluster of atoms [76]. In the field of economics and finance, the geometric series
are widely used to represent the present and future value of an annuity®, and to
estimate the present value of expected stock dividends or the terminal value of
security (see [29], [197], [226, p. 175], [444]). For other applications of the power
series in the Theory of Financial, see ([156], [184, p. 416-423], [367, p. 186-191],
[425]).

3

is a series of payments made at fixed intervals of time.
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In general, the importance of the power series representation is because of
its extensive and very effective applications in various fields of pure and applied
mathematics. Their effectiveness in error determination, function optimization
and definite integral resolution are the evidence of the power series being an
enormous tool in physical sciences and computational science, as well as an

effective way of representing complicated functions in mathematical analysis.

1.1.2 Inequalities Theory

In [414], Tanner pointed out that “Mathematics begins with inequality”. He said
in a common language, the basic ideas of “more” and “less” are mathematical
ideas of unequal and they are more primitive than the ideas of equal and nu-
merals. However, these basic ideas were not symbolized until the mathematical

7

sign of equality “=" appeared in the 16th century, and the sign of inequalities
“<” and “>” in the 17th century. Tanner [414] also believes that to find an
equality in a real practice is much more difficult than inequality . His argument
seems to be relevant to the statement from the pioneers in Inequalities Theory,
Beckenbach and Bellman [55, p. 3], who say in their book “An Introduction to
Inequalities” that the fundamental results of mathematics are often inequalities

rather than equalities.

The Theory of Inequalities plays an important role in mathematical analy-
sis for finding approximations of numbers, functions, integrals, etc. Around the
beginning of the 20th century, numerous inequalities were derived and applied
in various branches of mathematics as well as in science and engineering. The
pioneers in this field were credited to Hardy, Littlewood and Pélya [185], who
transformed this field of inequalities from a collection of isolated formulas into a
systematic discipline through the book “Inequalities”, which was originally pub-
lished in 1934. This book is the first devoted solely to the subject of inequalities,
which presents a lot of fundamental ideas, problems, results, methods of proving
and applications for a large variety of classical and new inequalities. Hence, it
has had much influence on research in various branches of mathematical analysis.
Some other notable books in this area are “An Introduction to Inequalities” by
Beckenbach and Bellman [55], which was published in 1961 and the early one of
Mitrinovi¢ [316], “Analytic Inequalities” in 1970. These major books have made
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considerable contributions to the field of Inequalities Theory and serve as impor-
tant references for many mathematicians and to those who use analysis seriously.
Since them, an enormous amount of effort has been devoted to the discovery of
new types of inequalities and their applications in many part of mathematical
analysis, see for instance the books of Mitrinovi¢, Pecari¢ and Fink [318], Ka-
pur [237], Kazarinoff [239], Garling [161] and recently, Bullen [79], Cerone and
Dragomir [91].

Nowadays, a large number of classical and new inequalities can be found in
the literature. The classical inequalities are those associated with the names
Gauss, Cauchy, Schwarz, Bunyakovsky*, Young, Holder, Hilbert, Hardy, Little-
wood, Pélya, Minkowski, Jensen, Cebysev®, Bessel, Ostrowski, Griiss, Hadamard
and others. These type of inequalities have been explored by various researchers,
hence new inequalities are created in which to provide their generalizations, re-
finements, improvements, etc., see for instance ([9], [19], [128], [157], [158], [160],
[192], [271], [299], [302], [310], [317], [445], [449]) and the references which are
cited therein. The studies related to these classical inequalities remain the active
fields and have grown into substantial areas of research with many important

applications in various fields of Modern Mathematics.

One of the most important inequalities in analysis, that has attracted the
great attention of a large number of researchers in the last few decades, is the
famous Cauchy-Bunyakovsky-Schwarz inequality. This inequality is also known
in the literature as Cauchy’s, Schwarz’s or Cauchy-Schwarz’s inequality, and
it has a long history connected with these three names of the famous math-
ematicians. Starting with the French mathematician A. L. Cauchy [88], who
established the elementary form of the Cauchy-Bunyakovsky-Schwarz inequality
for real numbers. His inequality, later called Cauchy’s inequality, is contained in
his book “Cour d’Analyse Algébrique”, published in Paris in 1821. Then, in 1859,
the Cauchy’s student, V. Y. Bunyakovsky [81] derived a corresponding inequal-
ity for classical integrals. After around three decades later, in 1888, the German
mathematician H. A. Schwarz [388] independently rediscovered and obtained the

same result of Cauchy’s inequality for Lebesque integrals, without any reference

“There are several different spellings of Bunyakovsky’s name can be found in the literature,
for example Bunyakovskii, Buniakowski, Bounjakowsky, etc., see MatSciNet.

>The other spellings for Cebysev’s name are Chebyshev, Cebisev, Tchebycheff, etc., see
MatSciNet.



1. Introduction 9

to Bunyakovsky’s work. Meanwhile, in the year 1885, Schwarz [388] had already
obtained the generalization of Cauchy’s inequality in inner product spaces, which
is popularly known in the literature as Schwarz’s or Cauchy-Schwarz’s inequality.
The classical Cauchy inequality and its generalizations for integral and in inner
product spaces, therefore shows up under the Cauchy-Bunyakovsky-Schwarz in-
equality. For a short history of these type inequalities, see ([387, p. 64-70], [407,
p. 10-12]).

The generalization of the classical Cauchy-Bunyakovsky-Schwarz inequality
for sums was established by O. L. Holder [201] in 1889, and it is called Holder’s
inequality. Although this inequality was first derived in 1888 by L. J. Rogers
[378], then it was proved in another way a year later by Holder through his
monograph “Uber einen Mittelwertsatz”. Holder’s inequality, which is sometimes
referred as Rogers’s inequality, was built around the two positive real numbers
p and ¢ with the conditions that p > 1 and 1/p + 1/¢ = 1. The Cauchy-
Bunyakovsky-Schwarz inequality is the special case of Holder’s inequality when
p = q = 2. There are several proofs of Holder’s inequality can be found in the
literature, where one of them is the proof via a standard Young’s inequality for

the product of two real numbers.

Jensen’s inequality is another important result in Real and Complex Analy-
sis. It was developed by Danish mathematician J. L. W. V. Jensen [223] in
1906 based on the concept of converxity of functions (see also [222]). Due to
the fact that Jensen’s inequality provides a source of deriving for many classi-
cal results in analysis such as the triangle inequality, arithmetic mean-geometric
mean inequality, Holder’s inequality, Minkowski’s inequality, etc., through judi-
cious choice of convex or concave function, this type of inequality thus becomes
one of the landmarks in the study of Inequalities Theory, and in Convex Analysis

as a whole.

The classical inequalities of the Cauchy-Bunyakovsky-Schwarz, Jensen, Young
and Holder inequalities play a crucial role in the Theory of Inequalities. They
have attracted the attention of a large number of researchers, and stimulated
new research directions and influenced various aspects of mathematical analysis

and their applications.
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1.1.3 Univalent Function Theory

In Complex Analysis, a geometric function is a function whose range describes
certain geometries. A Geometric Function Theory is one of the branches of
Complex Analysis, which deals and studies the geometric properties of complex
analytic functions. The Theory of Univalent Function is one of the most impor-
tant subjects in the Geometric Function Theory, where the primary interest in
this field is the functions that are analytic® and univalent in a certain complex
domain. This theory was founded around the turn of the 20th century, when the
first important paper appeared in this area by Koebe [253] in 1907. It followed
by Alexander ([15], [16]) and Bieberbach [67] in 1915 and 1916, respectively.
Koebe [253] introduced the notion of univalent mapping through his monograph
‘Uber die uniformisierung beliebiger analytischer kurven’, which gives a great

contribution to the origin of the Univalent Function Theory.

The concept of univalent mapping has been explored by Alexander [16] in
his PhD dissertation entitled ‘Functions Which Map the Interior of the Unit
Clircle Upon Single Region’ at Princeton University, USA in 1915. Since then,
the study of Univalent Function Theory has attracted the great attention and
efforts from many mathematicians: for instance, Lindelsf [287], Plemelj [356],
Gronwall [174], Lowner ([293], [294]), Privalov [362], Nevanlinna [332], Landau
[274] and Littlewood [288] are among others, who continue the study in this area
around those decades (see also [8], [60], [145], [150], [181], [190], [264], [309],
[343], [384], [385], [397], [398]) and ([39], [188], [207], [229], [243], [344], [348],
[403], [426]) for some further studies and recent results in this field.

Many expositions of a multitude of interesting results in the Theory of Uni-
valent Functions have been published by Montel [324] in his monograph entitled
“Lecons sur les Fonctions Univalentes ou Multivalentes”, which was published
in Paris in 1933. He noted in [324] that the origin of the Theory of Univalent
Function comes from the general problem of conformal mapping, which maps
the simply connected domain to another simply connected domain in a complex
plane C. which is a powerful impetus to the “Verzerrungssats” of Koebe’s and

Bieberbach’s work. The volumes of material in the filed of Univalent Function

6The terns holomorphic and regular are also frequently used for analytic complex-valued
functions.
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Theory increased rapidly around the middle of the 20th century. According
to the two bibliography manuscripts, which were prepared by Bernardi [61] in
1966 and 1975 respectively, there have been 570 authors extensively working in
the field of Univalent and Multivalent Functions Theory since 1907. Hence, they
were able to contribute 1694 research articles and monographs, with around 1563
of the research papers published within the following ten years. These two vol-
umes of bibliography have provided valuable references to the many researchers
on this subject. The “Les Functions Multivalents” is another remarkable survey

monograph concerned with univalent and multivalent functions was produced in
Paris, in 1983 by Biernacki [68].

Along with these, there are also many texts contributing to the field of Univa-
lent Functions Theory and its related topics. For instance, the books of Goluzin
[175], Nehari [330], Jenkins [221], Hayman [189] and Ahlfors [7], which cover this
field in great detail by providing comprehensive surveys and some open problems.
Other recent books that cover this subject in depth are the three different books
entitled “Univalent Functions”, and produced individually by Pommerenke [357]
in 1975, Goodman [169] and Duren [144] in 1983. Other useful monographs that
contribute to this area are (see for instance [183], [308], [320], [406]).

One of the most classical and remarkable results in Geometric Functions
Theory is Riemann Mapping Theorem. Earlier than Koebe, in 1851, Riemann
[374] has provided this important result in Geometric Function Theory by prov-
ing that there always exists a unique analytic function, which maps a simply
connected domain onto another simply connected domain in a complex plane.
Koebe [253] initiated the study of univalent functions in 1907, then in view of
the Riemann Mapping Theorem, the study of the properties of analytic and

univalent functions began.

The class A of all functions that are analytic in a simply connected domain in
a complex plane and satisfy certain conditions of normalization, was introduced.
Further, the the class of functions S C A consisting of all analytic, univalent
and normalized functions in the domain of definition, becomes the center of
the study of Univalent Function Theory. This class of functions has attracted
great attention from various researchers around the world. In order to fulfill

the requirement of the Riemann Mapping Theorem, the domain of definition is
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generally selected as the open unit disk D = {z € C: |z| < 1}, which is one of
the simplest examples of simply connected domain in a complex plane. All of
the analytic functions are conformal, in the sense that their angles are preserved
under the mapping. Thus, we simply understand that all the analytic functions
in the class S, map the unit disk D conformally and one-to-one onto another
simply connected domain in a complex plane. The most interesting about this
function is that, it can be represented by a power series expansion with real or

complex coefficients and convergent on the unit disk D.

The crucial property of such functions is that, the image domain f (D) will
describe various nice geometries, such as starlike (or star-shaped), spirallike,
close-to-star, convezx, close-to-convex, etc. The functions map the unit disk D
onto those geometrical domains with some interesting properties, which can be
characterized in several ways, such as by analytical and geometrical conditions.
The subclasses of S; such as the class of starlike, convex, close-to-convex func-
tions, etc., were defined and some properties of functions in this subclasses ex-
haustively studied by several authors in the second half of the 20th century. In
[144, p. 40-44], Duren provided an analytical description of functions in the
class of starlike and convex (see also Pommerenke [357, p. 42-44]). Kaplan [235]
introduced the class of close-to-convex functions and studied their properties of
functions in this class. Some more general subclasses of S, such as the class of
A—convex, the class of close-to-convex of order a and type (3, the class of Bazile-
vi¢ functions, etc., have been studied by numerous authors (see for instance [54],
[108], [110], [164], [182], [219], [206], [309], [319], [328], [336], [376], [400], [418]).
Libera [283] introduced an integral operator and investigated some properties
of starlike functions under this operator. Meanwhile, S&ldgean [383] studied the
class of analytic functions defined by differential operator. These works opened
new ways to study the operators in Geometric Function Theory. Hence, after-
wards, many studies have been conducted by many authors, which attempt to
generalize and define various subclasses of analytic functions involving the in-
tegral and differential operators (see for instance [62], [337], [343], [344], [382],
[383]).

Generally, an analytic and univalent function, which is defined in a unit disk
of a complex domain, lie in a complex plane by various properties and conditions.

Therefore, a general problem in the study of Geometric Function Theory is to
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investigate the properties of such functions in various subclasses of S. As a part
of the study of geometric functions, the necessary and sufficient conditions for
the existing functions to be univalent in the unit disk, is one of the fundamental

studies in the Theory of Univalent Function.

1.2 Basic Properties of Power Series

One of the most important applications of the power series is that, it provides
a useful way of representing some fundamental functions in real and complex
analysis. Therefore, the convergent property of the power series plays an impor-
tant role to guarantee that it converges back to the given function in its domain.
Generally, the power series (1.4) may be converge or diverge in a certain domain

in a complex plane.

Theorem 3 ([5, p. 38]) Suppose that the power series is given by (1.4). Then,
one of the following happens:

(a) The series (1.4) converges only when z = 0.

(b) The series (1.4) converges absolutely for all z € C.

(c) There is a number R, R > 0 such that the series (1.4) converges absolutely
for all z € C with |z| < R, and it diverges for all |z| > R.

The number R described in Theorem 3 is known as the radius of convergence
of the power series (1.4). Obviously, by allowing R = 0 in the case (i) and R = oo
in the case (ii) as above, we can consider that every power series has a positive
radius of convergence. The set of all z € C such that |z| < R is called the domain
or disk of convergence of the series (1.4). The set of all z € C with |z| = R is
called the circle of convergence of the series (1.4), and nothing is claimed about
the convergence on this circle, only the continuity of the series along the line

segment from the origin to the point z.

Power series are classified not only whether they converge or diverge, but
also by the properties of the terms a; (i.e., absolute or conditional convergence)
and by the types of convergence of the series (i.e., pointwise or uniform). The

following results describe various properties of the power series.
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Theorem 4 The power series (1.4) is said to be convergent absolutely if the
series of absolute values, i.e., Yy 1o, ‘akzk} converges. It is said to be conditionally
convergent (or semi convergent) if the series (1.4) is convergent but not absolutely

convergent.

Theorem 5 ([359, p. 174]) If the power series (1.4) converges when z = z;
(21 #0), then it is absolutely convergent at each point z in the open disk |z| <

|21].

Theorem 6 ([5, p. 151]) If z; is a point inside the circle of convergence |z| =
R of the power series (1.4), then the series converges absolutely and uniformly

in the close disk |z| < |z|.

Theorem 7 ([166, p. 28]) Let (1.4) be a power series with radius of conver-
gence R, R > 0. If0 < p < R, then the power series (1.4) converges normally,
absolutely and uniformly for |z| < p. The power series (1.4) diverges for |z| > p.

Theorem 8 ([166, p. 28]) Let (1.4) be a power series and convergent on |z| <
R, R > 0. Then the function f(z) which is represented by the power series (1.4)
continuous all z € C with |z| < R.

Several methods to determine the convergent of the infinite series are dis-
cussed in the literature, for instance, the comparison test, the integral test, the
ratio test, the roots test, the Cauchy-Hadamard formula, etc., (see [5, p. 152],
[70, p. 451-461], [98, p. 125-134], [166, p. 31], [358, p. 331-336]). The Ratio Test
is commonly used, fairly simple and applicable in the case of the power series
with real or nonnegative coefficients. The following result provides a rule for the
convergence test of the power series by using this test. The power series given

by (1.4) converges absolutely if

k+1

. 12"

lim —
(074

k—o00

<1, (1.6)

provided that the limit exists. This property is equivalent to

Qg

|z| <R = lim

k—o0

, (1.7)

QR+1

where R is the radius of convergence of the power series (1.4). Thus, we can

determine the value R of radius of convergence as well through this result (1.7).
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Remark 9 Throughout this study, we mostly considered the simplest and the
most widely used form of the power series (1.4), which is convergent in the open

disk |z| < R, R > 0.

The algebraic operations (such as addition, multiplication, division), differen-
tiation and integration, can be applied for the power series as well, where the re-
sulting new power series are convergent inside of their common domain of conver-
gence. Let, the two power series f (z) be of the form (1.4) and g(z) = Y2, br2",
which are convergent for all |2| < R; and |z| < Ry, respectively. Then, the fol-
lowing rules of algebra apply (see [4, p. 15], [5, p. 155], [26, p. 14], [93], [276],
[359, p. 186-189]):

(i) The two convergent power series are equal if their corresponding terms are
identical. That is, if f(z) = g(z), wherever the two series converge, then
ap = by for each k € {0,1,2,...}.

(ii) The two or more power series can be combined through termwise by addi-
tion or subtraction, that is,

o

f(2) £9(2) =) (ar£by) 2, (1.8)

k=0
for all z € C such that |z| < min{R;, R;}. For a real number A, the

multiple of a series converges with the same radius of convergence and
M(z) = Z Aag2®. (1.9)
k=0

(iii) If g (2) # 0 and by # 0 in the disk |z| < Ry, then the quotient

g9(2)

where the coefficients satisfy the equation a = Z;io bi—jc;j, and the radius

1) _ ickzk, (1.10)

of convergence of the series (1.10) is R = min { Ry, R, }.

(iv) The Cauchy products of f (z) and g (z) is defined by

f(2)g(z2) = Z [Z ajbk_j] 2F = Z [Z ak_jbk] 2", (1.11)

[o¢]
k=0 k=0 [j=0
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which converges with the radius of convergence R = min{Ry, R,}. The

double sum of the infinite series of the coefficients,
o k o© k
ISP 3) S e
k=0 j=0 k=0 j=0

is known as the convolution of the sequences {a;} and {b;}, k € {0,1,2,...}.

Some other basic rules of the multiplication of the series of coefficients are

(a) ¢> ap=> (car), c€R,
k=0 k=0

(©) (i)ii

For a convergent power series, it always converges to a continuous function.
Thus, the power series can always be differentiated and integrated termwise

within in its domain of convergence, that is [5, p. 153],

d & >
—J;(Z) =S ka2 =3 (k4 1) ap 2, 2| < Ry (1.14)
Z k=1 k=0
and
0D SIS S TS W N (1.15)
0 k=0 k +1 k=1 k

d
by assuming that the summation ), differentiation e and integration [
z

are interchanged. Clearly, both of the newly derived series in (1.14) and

(1.15) have the same radius of convergence as the original series (1.4).

Let f(z) and ¢ (z) be the two power series, which are both convergent in
the unit disk |z| < 1. Then, the convolution or Hadamard product of f (z)
and ¢ (z) is denoted by f * g, and it is defined by the power series

(f*9g)(2) = Zakbkzk> 2| <1, (1.16)
k=1
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where, the geometric series

Mz =3 =2 2 <1 (1.17)

k=1 1-— Z’
is the identity function under this convolution (1.16), i.e., (f *h)(z) =
f (2). The integral convolution, which is denoted by f ® g, is defined by

(f®g) ()= a’“—f“z’ﬁ = /0 h (t)dt, (1.18)

t

see ([144, p. 246-247], [357, p. 49]).

1.3 Power Series Representations

There are many fundamental real or complex functions that can be represented
by the power series expansions with real or complex coefficients. In this section,
we give some examples of the functions and their corresponding power series

expansions in complex variable.

(1) Geometric series and their variants:

2F (1.19)

L > (1Rt (1.20)
>

142
i k
= 2F (1.21)
1—=2 —
1 - k—1
s = k1, (1.22)
(1—2) —
L = ikzk (1.23)
(1—2) —
> —1)% (2k)!
I+z = Y (=1)" @) 5 2%, (1.24)
£ 92k (1 — 2k) (K!)
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for all z € C such that |z| < 1, where k! denotes the factorial function.
(2) Exponential functions and their variants:
exp(z) = i lzk for any z € C (1.25)
P k" 2 9
exp(—z) = i (_1)kzk for any z € C (1.26)
P = Il ) y ) .
k=0
= 1
exp(v/2) = Z (Qk;)lzk’ for any z € C, (1.27)
k=0
= 1
zexp(z) = Z = 1)'21“, for any z € C, (1.28)
k=0 '
2 o ko ok
(z+2%) exp(z) = Z(k—l)'z , for any z € C. (1.29)
k=0
(3) Natural logarithmic functions:
1 N
In <1 —i—z) = kz_; P for |z| <1, (1.30)
1 ! ilk for |2| <1 (1.31)
n = — r : .
T 2 for [z
k=1
(4) Trigonometric and the inverse of trigonometric functions:
sin(z) = i Ll)kz%ﬂ for all z € C (1.32)
— (2k +1)! ’ ’
— (EDF
cos(z) = Z -z, forall z € C, (1.33)
— (2k)!
. (4)k (4k - ]-) |B2k| 2%—1 T
tan (z) = kz_% oh] 2 for 2] < 7 (1.34)
. 2k)!
arcsin (z) = Z (2k) 22 for [2] <1, (1.35)

22k (E1)? (2k + 1)

>~
I
o
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- 2k)!
arccos (z) = z —Z o (2 ) 22 for |2 < 1, (1.36)
2 = 22k (RDT(2k 4+ 1)
arctan (z) = i (1" 22 for |2] < 1 (1.37)
— 2k+1

where By, denotes the Bernoulli numbers” (see 25, p. 12], [102, p. 201],
305, p. 50-53]).

(5) Hyperbolic and the inverse of hyperbolic functions:

= 1
sinh (Z) = Z m22k+1, for all z € C, (138)
k=0 '
= 1
cosh(z) = Z (2k)'22k’ for all z € C, (1.39)
k=0 '
2 4k (48 - 1) B
tanh (z) = Z ( (Qk)') 2k 21 for |z\<g, (1.40)
k=1 '
= 4B
coth(z) = Y. (2k)2fz%—1, for |z| <, (1.41)
k=1 ’
= (=D (2k)!
arsinh (z) = Z k( 2 (2%) AL for |zl <1, (1.42)
4k (k)" (2k + 1)
= 1
artanh (z) = Z 2R for |2] < 1. (1.43)
2k +1

Instead of defining the trigonometric and hyperbolic functions of sine, cosine,
sinh and cosh by their power series expansions, it is possible and might be useful

to define them directly in terms of the exponential functions as follows:

. , 1 . ,
sin(z) = — (e —e ), cos(z) = 5 (e”4+e7*%),

(1.44)

1 1
sinh (z) = 5 (e —e ), cosh (z) = 5 (e* +e7%),

"The first few Bernoulli numbers are By = 1, By = +1/2, By = 1/6, B3 = 0, By =
—1/30, Bs = 0, Bg = 1/42..., which are derived from the recursion formula: B, = 1 —

2
-1 (2k+1
T{Fl an:lo ( 2;}: )Bgm for k > 1 and B2k+1 = O, k > 1..
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for all z € C.

Some of the above series can be found in the Handbooks of Abramowitz
and Stegun [4, p. 68-69, 81-85] and Bronshtein et al. [77, p. 698-699]. The
concept of the power series is also widely used in the Theory of Special Functions,
in which, are defined the special functions of Polylogarithm, hypergeometric,
Bessel and modified Bessel functions, etc. that we will discuss later in Chapter
5. Nowadays, there are numerous aids of modern computer software, such as
MAPLE, MATHEMATICA, MATLAB, etc. that can be easily used in finding

the series expansion of a given function.

Some numerical infinite series, which are given in the following might be

useful for the subsequence chapters:

@ 502 o 55 -2
(c) é(—llz - =2, (d) ki.:;o(/f-il)Q :,2%2%2’
b1 (1.45)
© 1 7t < (—1)
© 2%~ O X171
() é%z%, (h) é(n;)2_62’”>0

The following section discusses the main motivation for writing this disser-

tation.

1.4 Motivation

In the early 1820s, Cauchy [88] published his famous inequality involving two se-
quences of real numbers, which is popularly known in the literature as Cauchy’s
inequality. Long after Cauchy, in 1885, Schwarz [389] provided the generaliza-
tion of Cauchy’s inequality in an inner product space, which is later known as
Schwarz’s or Cauchy-Schwarz’s inequality. In 1888, Bunyakovsky interfered and

proved the corresponding version of Cauchy’s inequality for integrals. Since
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them, the inequalities, which are now referred to the Cauchy-Bunyakovsky-
Schwarz type inequalities, have attracted the attention of a large number of
researchers, and hence, have stimulated new research directions and influenced

various aspects of mathematical analysis and applications.

As noted in the celebrated monograph “Analytic Inequalities” written by
Mitrinovi¢ [316] in 1970, various remarkable results related to the celebrated
Cauchy-Bunyakovsky-Schwarz inequality were established. Also, a large number
of research papers have been published since 1970 providing various improve-
ments, refinements and generalizations of this type of the famous inequality; see
for instance [19], [20], [78], [116], [128], [138], [147], [269], [302], [408], [445] and
the references cited therein. All those results that have been established in the
literature, are mainly concerned with the finite sequences and finite sums. Conse-
quently, much effort has been made by several authors to extend the inequalities
to infinite sequences and sums, functions and integrals, in order to provide more
general results that are useful in various fields of Modern Mathematics and its
applications (see [22], [49], [52], [173]).

A revival of the interest in this area occurred in recent years with several re-
sults in analytic inequalities involving functions defined by the convergent power
series. The approach of the power series functions in the Inequalities Theory
has been explored by several researchers, see particularly [89], [122], [123], [173].
This research is mainly motivated by Cerone and Dragomir’s work in [89] in
2007, who established some inequalities concerning functions defined by the con-
vergent power series with real or nonnegative coefficients by utilising a refinement
of the Cauchy-Bunyakovsky-Schwarz inequality, which is known in the literature
as the de Bruijn inequality. They also obtained some particular inequalities by
applying the results for fundamental functions of interest such as the exponen-
tial, logarithm, trigonometric and hyperbolic functions. Applications for special

function such as polylogarithm functions are provided as well in [89].

In this study, we employ the techniques developed in [89], to derive new
and better inequalities for functions defined by the power series with real or
nonnegative coefficients, and convergent on an open disk. Utilising the classical
results that have been available in the literature such as Buzano’s inequality [82]

and Schwarz’s result in inner product spaces due to Dragomir [118], we provided
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some refinements and improvements of some known results, which are related to
the celebrated Cauchy-Bunyakovsky-Schwarz inequality for functions defined by
the power series. Besides Buzano’s and Schwarz’s results, the other crucial tools
that have been used for our investigations are Young’s, Holder’s and Jensen type
inequalities, as well as their refinements, reverses and counterparts. Particular
examples that are related to some fundamental real or complex functions such
as exponential, logarithm, trigonometric and hyperbolic functions are presented.
Some applications for special functions such as polylogarithm, hypergeometric,
Bessel and modified Bessel functions of the first kind are presented as well in the

first part of this dissertation.

Geometric Function Theory is the branch of Complex Analysis, which deals
with the geometric properties of analytic functions, founded around the turn
of the 20th century. The cornerstone of this theory is the Theory of Univalent
Functions, which is mainly concerned with the analytic and univalent functions
f(2) in a unit disk, and normalized by the conditions f(0) = 0 and f’(0) = 1
It is a fact that all functions in the class S, which are analytic and univalent
function in a unit disk can be represented by convergent power series with real

or complex coefficients.

Conjecture Bieberbach [67] is one of the major problems in the field of Geo-
metric Function Theory, which asserts the modulus of the k-th coefficient in
the power series expansion of functions in the class S is less than or equal to &
for all £ > 2. In spite of this famous coefficient estimate that was completely
solved by de Brange [75] in 1984, it suggests various approaches and directions
for the study of Univalent Function Theory, and Geometric Function Theory as
a whole. Hence, various subclasses of analytic and univalent functions such as
starlike, spirallike, convex, close-to-convex, etc., have been introduced by numer-
ous researchers in the last few decades and developed many interesting properties

of functions in these classes.

In the other direction, the new subclasses of analytic functions, which are
defined involving operators were introduced. The Saldgean differential operator
D", n € Ny, is one of the famous operators, which was established by Sdldgean
in [383]. In [343], Opoola introduced and studied the new class T (), o > 0,
0 <8 <1, neNU{0} of analytic functions, which satisfies certain conditions
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involving the Saldgean differential operator. Regarding this class, we investigate
in second part of this dissertation, some properties of functions in this class. In
order to stimulate further investigation in this field and the related topics, we
introduce the class T' o (B) and T, (B), A > 1, and provide new properties and
coefficient inequalities of functions in these classes. The properties of the gener-
alized Salagean operators D" f¢ and DY f are also established. We conclude the
second part of this dissertation with some results on the Fekete-Szegtd theorem

concerning analytic and univalent functions.

Functions in the class of analytic and univalent functions S and its subclasses,
which map the unit disk or half-plane conformally onto another simply connected
domain in a complex plane, have found many applications in engineering, physics,
electronics, medicines and other branches of applied mathematics (see [153],
[238]).

1.5 Thesis Outline

This dissertation is partitioned into two main parts, where each part is further
divided into several chapters that have a number of sections and subsections.

Overall, this dissertation contains eight chapters including Chapter 1 as above.

In the first chapter, we provide a brief introduction to the power series,
Inequalities Theory and Univalent Function Theory. The power series that are
the most important elements throughout this dissertation, are also discussed
in this chapter. Some examples of analytic functions with their corresponding
power series expansions are given as well for useful references in the subsequent

chapters.

Part T consists of Chapter 2 - Chapter 5, and mainly deals with Analytic
Inequalities in Real and Complex Analysis. The main purpose of this part is
to establish some inequalities concerning the power series with real or nonneg-
ative coefficients. Chapter 2 provides some basic concepts and introductory
materials in Inequalities Theory including the triangle, means and convexity in-
equalities. Some of the most important and classical inequalities such as the

Cauchy-Bunyakovsky-Schwarz, Young’s, Holder’s and Jensen type inequalities
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are emphasized in order to provide an essential background for the subsequent

chapters.

In chapter 3, we derive new and better inequalities for functions defined by the
power series, which are related to the celebrated Cauchy-Bunyakovsky-Schwarz
inequality. In particular, we provide some refinements and improvements of the
Cauchy-Bunyakovsky-Schwarz inequality by utilising Buzano’s and Schwarz’s
results in inner product spaces, and the technique based on the continuity prop-
erties of modulus. Particular inequalities that are related to some fundamental
functions of interest such as the exponential, logarithm, trigonometric and hy-

perbolic functions are obtained.

More inequalities for functions defined by the power series are established
in Chapter 4. To develop some inequalities for the power series by utilising
the standard of Young’s inequality, the refinement and the reverse of Young’s
inequality, the Jensen type inequality and one of its reverses due to Dragomir
and Ionescu [139], is the main purpose of this chapter. Applications for some

fundamental functions of interest are also presented.

Chapter 5 is devoted to some inequalities for special functions. In this chap-
ter, we employ some results established in Chapter 3 and Chapter 4 to obtain
particular inequalities involving special functions such as polylogarithm, hyper-

geometric, Bessel and modified Bessel functions of the first kinds.

Part II consists of Chapter 6 - Chapter 7, devotes to the study of Univalent
Function Theory. In this part, we mainly concern with the class of functions,
which are analytic and univalent in a unit disk, and normalized by a standard
conditions. To investigate some properties of certain subclasses of analytic and

univalent functions is the main objective throughout this part.

Chapter 6 is written as a reference point for the subsequent chapter. Some
fundamental facts and basic concepts regarding analytic and univalent functions
are provided. We emphasize the class A of analytic functions and the class S
of analytic, univalent and normalized functions in the unit disk D. Some basic
properties and coefficient inequalities of functions in the class S and its subclasses
are presented. We also present the well-known Saldgean differential operators

and their related subclasses at the end of this chapter.
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Chapter 7 presents some new properties and coefficients inequalities for func-
tions in certain subclasses S. The properties of the generalized Saldgean differ-
ential operator [383] are also given. Some results of the Fekete-Szego functional
concerning analytic and univalent functions are included at the end of this chap-

ter.

Finally, we summarize the work of this dissertation in Chapter 8, which

contains the summary and main achievements of the work.

The various theorems, corollaries, lemmas, propositions, remarks and exam-
ples are numbered in order, consecutively throughout the thesis, whereas, the
equations are numbered consecutively within each chapter. The end of the proof

of a theorem, corollary or lemma is indicated by a solid square ‘W’.
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ANALYTIC INEQUALITIES IN
REAL AND COMPLEX
ANALYSIS
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Chapter 2

Elementary and Some Classical

Inequalities

Chapter 2 provides some essential background for the subsequent chapters of the
first part of this dissertation. This includes the introductory materials and basic
inequalities in Real and Complex Analysis. The elementary inequalities such
as triangle, means and convexity inequalities are discussed in Section 2.2. The

basic properties of normed, linear and inner product spaces are also addressed.

We emphasize in Section 2.3 the basic inequalities of the classical Cauchy-
Bunyakovsky-Schwarz type in real and complex numbers, and in inner product
spaces. The corresponding version of the Cauchy-Bunyakovsky-Schwarz inequal-
ity for functions defined by the power series is also given. Some results related
to thsese types of inequalities such as the de Bruijn inequality, the Buzano’s and
Schwarz’s results are mentioned as a foundation for the next chapters. Young’s
inequality and its variants, and Holder’s inequality and its generalizations to the
power series functions are briefly discussed in Section 2.4 and Section 2.5, re-
spectively. Inequalities of the Jensen type and their reverses are given in Section
2.6. Some other well-known inequalities in analysis are provided at the end of

this chapter.

All the results are given without proof. Some of their proof can be found in
the literature, see for instance, the books of Beckenbach and Bellman [55], Bullen
[79], Hardy, Littlewood and Pélya [185], Mitrinovi¢ [316], Mitrinovi¢, Pecari¢ and
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Fink [318] and the numerous textbooks devoted to the Inequalities Theory and

their related topics.

2.1 Symbols and Notations

We start this chapter by introducing some of the symbols and notations that we
shall use in this dissertation. First, let z, zy be two points in a complex plane
C and R is a positive real number. Then, the set of all points that satisfies the
inequality |z — 29| < R is called the open disk (or simply the disk) with center
2o and radius R [44, p. 13]. It is denoted by D (zo, R), i.e.,

D (z0,R) ={2€ C: |z — 2| < R}. (2.1)

The boundary is denoted by 0D (29, R), where |z — zy| = R, while, the closure
D (29, R) contains the set of all points given by (2.1), including its boundary
points. If the center of the open disk is zero (i.e., zg = 0), then from (2.1) we

have
D(0,R)={z€C:|z| < R}. (2.2)

The open unit disk (or simply unit disk) is the disk centered at the origin and
the radius is 1 (see [357, p. 10]), i.e.,

D=D(0,1)={zeC: || <1}. (2.3)

Let n be a nonnegative integer and a € C such that a # {..., -2, —1}. Then,
the Pochhammer symbol (a), is defined by (see [4, p. 256], [404])

1, for n = 0;

(@), = a(a+1)---(a+n—-1), forn>1 (24)

This symbol, which is also known as the rising factorial or the shifted factorial

function, can also be expressed in the following form (see [26, p. 86]):

3

m%=‘1m+j—n:£#%%ﬁ,n:Lz“w

J

(2.5)



2. Elementary and Some Classical Inequalities 29

for a, a +n € C\{...,—2,—1}, where I' (2) is the gamma function defined by
['(z) = [ t*"'eldt, for any z € C such that Re(z) > 0. Other notations
such as a”, a™ and (a,n) may be found in the literature, which represent the

Pochhammer symbol as well.

The (a), has simple values at the arguments 0 and 1, i.e.,

Some other useful formulas associated with the Pochhammer symbol are given

in the following:

(=" 2 = n! _ (a+n—1)!
(@) = (1—-a),’ (@), (a—mn)! (a—1)! 7
(@t )] (2.7)

S (@) = (e K), (a),,

where n and k are nonnegative integers. The Pochhammer symbol is widely used
in the Theory of Special Functions, particularly to represent the coefficients of

hypergeometric functions.

A binomial series is an infinite series defined by
(142)* = i (O‘) & (2.8)
o \F

where « is an arbitrary complex number. The series in the right hand-side of
(2.8) converges absolutely for all z € D, with the generalized binomial coefficients
defined by

(Z) - (a—L/L:)'k' (2.9)

for any o € C and k£ € Ny. Some well-known formulas of binomial coefficients

are given as follows:
00 O
2.10
-0 () )
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which holding for all « € C and k € Nj.

A real signum or real sign function is a function denoted by y = sgn (x) (

read ‘y is equal to sign of x”), and it is defined by the equations

—1, for x < 0;
sgn(z)=¢ 0, forz=0; (2.11)

1, forx>0.

In the other interactive way, the function y = sgn(z) is related to the function

y = |z|, where its moment’s reflection shows that for each real number «,
la| = a sgn (a) or equivalent to a = |a| sgn (a). (2.12)
On the other hand, the equation in (2.12) provides another characterization of

the absolute value of a real number a. In the complex plane, a complex sign

function is defined by

for z € C\ {0};

sgn (z) = 12 (2.13)
0, forz=0.
The two positive real numbers p, ¢ such that
1 1
-—+-=1, (2.14)
P q

are called the conjugate exponent. For p = 1, the conjugate exponents of p is
q = oo. If p and ¢ are integers, then the only pair of the conjugate exponents is
2, 2.

2.2 Elementary Inequalities in Analysis

We shall begin this section with some basic inequalities in Real and Complex
Analysis. These include the triangle inequality, mean inequalities and the in-

equalities involving convex functions.



2. Elementary and Some Classical Inequalities 31

2.2.1 Basic Inequalities

There are many basic facts, which are fundamental in the Theory of Inequalities.

First, we state the two simple propositions called azioms (see [55, p. 7], [239, p.

2]):

Axiom 10 A given real number x satisfies precisely one of the following: x = 0,

x>0 o0orx<0.

Axiom 11 If x andy are positive numbers, then the sum x +y and the product

xy are positive numbers.

Consequently, there are obvious variations and extensions of these axioms,

for example,

Axiom 12 If z, y € R, then one and only one of the following relationships
holds:

r=y,  r>y or  x<y, (2.15)

where the symbols “>7 and “<” represent the strict inequalities.

The following fundamental rules of algebra also hold for all the real numbers
x,y, z € R ( see [55, p. 7-21]):

(a) If x > y and y > 2, then = > 2.
(b) If z <y, then x +a < y+a for any a € R.

(¢) If £ > y and a > 0, then ax > ay andfzg. If a <0, then ax < ay and
- a " a
Y
a” a

(d) f z > y and a > b, then = + a > y + b for any a, b € R.
(e) If z >y > 0 and a, b are positive integers, then x%/® > y*/°.

The next result is of fundamental importance and frequently used in dealing

with inequalities.
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Theorem 13 ([55, p. 10]) The product zy of a positive number x and negative
number y is a negative number, while, the product of two negative numbers x and

Y 18 a positive number.

We observe that the square of any real number can never be negative. Thus,
we obtain one of the simplest and most useful results in the Theory of Inequalities

as follows.

Theorem 14 ([55, p. 11]) Any real number x satisfies the inequality x> > 0,
with the equality holds if and only if © = 0.

Accordingly, for any two real numbers a and b, we have the quantity that
(a —b)*> > 0, which implies
CL2 + b2
2

> ab, (2.16)

with equality occurring in (2.16) if and only if a = b. If a > 0 and b = 1 in

(2.16), then we have

1
a+=>2 (2.17)
a

The inequality (2.16) can be written in the form [55, p. 48]

Tty

> (2.18)

by replacing a? by x and b? by y, with x and y being positive real numbers.
Clearly, the equality in (2.18) occurs if and only if x = y. This inequality is
often called the arithmetic mean-geometric mean inequality for the two positive

real numbers (we shall discuss further this inequality in Section 2.2.3).

Analogously, for complex numbers, |z — w|2 > 0, we have

> Re (270) , (2.19)

for any z, w € C. The equality in (2.19) is achieved if and only if z = w.

The inequalities given by (2.16) and (2.19) are of fundamental importance in

the study of Analytic Inequalities in Real and Complex Analysis. They have a
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much richer interpretation in the Theory of Inequalities as well. In fact, these
bounds are the sources and the methods of proof of many important classical

inequalities in analysis.

2.2.2 Triangle Inequality

If z and w are the two points in the complex plane, then we can associate the
vectors from the origin to the each point. Now, we consider the triangle with
the vertices are the origin, z and w, with the lengths of its sides are |z|, |w| and
|z — w| (or |w — z|). Thus, using the geometrical fact that the sum of the lengths
of two sides of a triangle is greater than or equal to the third side, implies the
inequality

2]+ w| = [z — w], (2.20)

with the sign of equality holding in (2.20) if and only if Re (¢2w) = |zw|. Since
w represents an arbitrary complex number, then the inequality (2.20) still holds

if w is replaced by —w, thus we obtain
|| + |w| > |z +w]|, (2.21)

for all z, w € C, in which, the equality occurs again in (2.21) if and only if
Re (zw) = |zw|. The inequality (2.21) is popularly known as the triangle inequal-

ity for two complex numbers. On the same basis, we also have the inequality
|z —w| > ||z] = |wl], (2.22)

which is concerned with the length of the difference of the two complex numbers.
We note that, if w is replaced by —w in (2.22), it then yields

|z +w| > ||z] — |w]]|. (2.23)

The inequality (2.23) is called the reverse triangle inequality, which provides the
lower bounds instead of the upper bounds of |z 4+ w|. Thus, for any 2z, w € C we

have

2] = Jw[] <[z £ w| <[z] + |w], (2.24)
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which obviously follows from the inequalities (2.20) - (2.23).

The triangle inequality in (2.21) can be generalized for n complex numbers

21,29, ..., zn € C as follows:

n
2%
i=1

< 1251, (2.25)
7=1

with the equality occurring in (2.25) if and only if the ratio of any nonzero terms
is positive [4, p. 11]. In terms of their weighted version, the following inequality
holds:

n
E :O‘jzj
J=1

< ajlzl, (2.26)
j=1

where a; > 0 for j € {1,2,...,n} such that Z?:l a; = 1. The last two types of
the triangle inequalities are the most important and frequently used in mathe-

matical analysis.

2.2.3 Mean Inequalities

A mean is a notion of average for collection of numbers, data, etc. For instance,
the arithmetic mean is the simplest type of means that is commonly used in
Probability and Statistics Theory to measure the central tendency of numbers
or data. Besides this mean, there are several types of means occurring in various
contexts of measuring the central tendency of numbers, such as geometric mean
and harmonic mean. The values of these means have an important relationship,
that we shall emphasize in this section. Before that, we shall recall the basic
definitions of the arithmetic, geometric and harmonic means for n positive real

numbers.

Let a = (ay,as,...,a,) be a sequence of positive real numbers. Then, we
denote the arithmetic mean, geometric mean and harmonic mean for n numbers
by AM, GM and HM respectively, which are defined by the following equations
(see [77, p. 19-20], [239, p. 16]):
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1/n -1
AM (a) = :1aj, GM (a) = (H aj) , HM(a)zn(Z é) .

1

nj =1
The value of these means always lies between the lowest and the highest of its
numbers. In the same manner, we can generalize these means into their weighted
versions. Let us fix a set of positive real numbers w; > 0 for j € {1,2,...,n}.
Then, the weighted version of the AM, GM and HM are defined by the following

expressions:

. . -1 . 1/
AM (w,a) = J; wja, (Z wj) , GM(w,a) = (H a;f’j)

j=1 j=1
(2.28)
and
~1
Immm:2w<zﬂ), (2.29)
j=1 j=1 4j
where the w;’s, j € {1,2,...,n} are called the weights. The ordinary means

mentioned in (2.27) are the special case of these weighted means, when the

weights w; are equal for all j € {1,2,...,n}.

The most important in the Theory of Inequalities is the relations between
these means. As mentioned in the book of Kapur [237, p. 1] (see also [55, p.
54]), the relation HM < AM < GM holds for n positive real numbers. More

precisely, we have the following result:
Theorem 15 ([55, p. 54]) For any n nonnegative real numbers ay,an, ..., Gy,
1
1 n n "
it (2.30)
n =1 j=1

The sign of equality holds in (2.30) if and only if all the numbers ay,as, ..., a,

are equal.

Since there is the obvious relation between the arithmetic mean and the

harmonic mean, that is,
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HM (q) — [AM <1)} o (2.31)

a
where 1/a = (1/a1,1/as,...,1/a,) and a;, j € {1,2,...,n} are positive real
numbers, we can derive a similar inequality between the harmonic mean and

geometric mean as follows:

n L/n nq -1
(lj%) Zn(E ;) : (2.32)

for a; >0, j € {1,2,...,n}. Again, the case of equality occurs in (2.32) if and
only if a; = a3 = --- = a,. The inequalities given by (2.30) and (2.32) are
well-known in the literature as the arithmetic mean-geometric mean inequality
and the geometric mean-harmonic mean inequality for n numbers respectively,
or they are simply denoted by (AM-GM)-inequality and (GM-HM)-inequality.
These inequalities are widely used in Optimization Theory, for instance, in solv-
ing of the optimization problems for two or more dimensional spaces, where the
maximum or minimum achieved at the point of the equality of a given inequality
occurs (see [55, Chapt. 5], [237, Chapt. 2]).

It can be clearly seen from (2.32) that the harmonic mean is bounded by
the geometric mean, which in turn is bounded by the arithmetic mean (2.30).
Hence, this string of the fundamental inequalities can be expressed as follows
(see [4, p. 10], [237, p. 1]):

1 n n 1/n noq !
EZC@Z(HO@) Zn(Z—) : (2.33)

i=1 =104
for any positive real numbers ay, as, . .., a,. The equalities occur in (2.33) if and
only if a; = as = -+ = a,. The double inequality in (2.33) is often called the

arithmetic mean-geometric mean-harmonic mean inequality, or simply denoted
as the (AM-GM-HM)-inequality. The weighted means of the (AM-GM-HM)-
inequality also holds [237, p. 225], namely

n

S wya > [0 > (z ﬂ) - (2.34)

J=1 J=1 j=

,_.
S
)



2. Elementary and Some Classical Inequalities 37

for w; >0, j € {1,2,...,n} such that 37, w; > 0. The simplest case of (2.33)

for two positive real numbers is that

T+

Qyz\/a:yz

: (2.35)

8 =

+

< =

for any x, y > 0, where the first inequality in (2.35) has been mentioned in the
previous section as (2.18). Hence, we also have from (2.34) that [91, p. 4]

aa+ b o

< gy < 015
a+p = -

+

: (2.36)

2R

S Ie

for the weighted version of the (AM-GM-HM)-inequality, with a, b > 0 and «,
f > 0 such that « + 8 > 0. The equality holds in (2.36) if and only if a = b.
We note that by letting p = (a+8) /o, ¢ = (a+ ) /B8, x = a5 and
b = y%/(@+B) in the first inequality of (2.36), it reduces to

xy < il + y—q, (2.37)

p q

for any x, y > 0, with p, ¢ > 1 such that 1/p + 1/¢ = 1. This inequality
(2.37) is one the most important results in Analytic Inequalities, which pro-
vides a principal tool for deriving some classical inequalities in analysis; such as
the Cauchy-Bunyakovsky-Schwarz’s, Holder, Minkowski inequalities, etc. It also
happens to be a special case of the classical Young’s inequality for the product
of two real numbers. In the other sense, the result in (2.37) becomes one of the

most important tools of our investigations in Chapter 4.

2.2.4 Convexity Inequalities

Convexity is a simple and natural notion of functions, which can be traced back
to Archimedes (c. 250 B.C), in connection with his famous estimate of the value
of m. It has a central role in the study of Convex Function Theory. Convex
functions, which are extensively treated in various textbooks on calculus (see for
instance [333], [352, Chapt. 2|, [360], [375], [377]), play an extremely important
role in many branches of mathematics as well as their applications in various
fields.
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The subject of convex functions was studied by Danish mathematician J.
Jensen ([222], [223]) in the 1900s, although this class of functions was already
treated by Ch. Hermite [195], O. Holder [201], J. Hadamard [176] and O. Stolz
[410]. In the third chapter of Hardy, Littlewood and Pdlya’s famous work [185]
and the sixth chapter of Steela’s work [407], they revealed that the convexity
and its generalizations, play a crucial rule in the Theory of Inequalities. Many
classical inequalities such as the triangle, Cauchy-Bunyakovsky-Schwarz, Holder,
Minkowski inequalities, etc., are closely related to the converxity of certain un-

derlying functions.

Roughly speaking, there are several basic properties of convex functions that
made them so widely used in theoretical and applied mathematics. As noted in
[334, p. 11], the basic ideas of convex functions begins in the context of real-
valued functions of a real variable. So, we have the following property of convex
functions defined on an interval (see also [318, p. 1], [375, p. 2]).

Definition 16 Let I be an interval in R. Then, the real-valued function f : [ —
R is said to be convex if for all xz, y € I and X € [0, 1],

fQz+ (1 =XNy) <Af(x)+ 1= Nf(y) (2.38)

It is called strictly convex provided that the inequality in (2.38) is strict for
x # yand A € (0,1). If the sign of inequality in (2.38) is reversed, then the
function f is concave (strictly concave). In other words, we say f is concave
(strictly concave) if and only if —f is convex (strictly convex). If f is both

convex and concave, then f is said to be an affine function.

Geometrically, the property in (2.38) on the other hand, requires that the
entire secant line joining the points (z, f (x)) and (y, f (y)) on the graph of a
convex function f lie above (or on) the graph of function between z; and x5, if

A assumes all real values in [0, 1].

Remark 17 The definition of convexity of functions (Definition 16) has a nat-
ural generalization to the real-valued functions defined on arbitrary linear space
X, in which, it requires that the domain of f (x) be a convex and open set U. In

other words, we may define the function f (x) to be conver on U C X, then the
inequality (2.38) holds true for all x, y € U and X € [0, 1].
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Many convex functions are well-known in analysis. For instance, f(z) = 22,

f(z) =exp(z) and f (z) = |z|, are convex functions on any open interval I C R.
In elementary calculus, the following simple criteria are commonly used to verify
the convexity of a given function (see [104, p. 70], [318, p. 2], [375, p. 10-11]).

Theorem 18 ([375, p. 10-11]) (i) Suppose f(x) is differentiable on the in-
terval I. Then, the function f(x) is convex (strictly convex) on I if and only if
[’ (z) is increasing (strictly increasing). (ii) Suppose the second derivative f" (x)
exists on I. Then, f (z) is convex on I if and only if f" (x) >0 for each x € I,

and if f"(x) >0 on I, then f () is strictly convex on the interval.

These criteria give sufficient conditions that functions be convex on an inter-
val I, however such functions need to be continuous everywhere on this interval.
Checking that a given function is convex or not, is not an easy task, but there
are several useful criteria of convexity properties available in the literature. The
simplest one of the basic properties of convex functions in one dimensional case
is due to Jensen [223], see also ([79, p. 48], [318, p.3], [334, p. 14]).

Theorem 19 ([223]) Let f : I — R be a continuous real-valued function.
Then, f is convex if and only if [ is midpoint convex (or simply midconvez),

that is, for all points x, y € I, the inequality

p(2h2) < o210 239

1s valid.

The function f is said to be strictly midconvex, if for all pairs of points (z, y),
x # y, then the strict inequality holds in (2.39). If the sign of inequality in (2.39)
is reversed, then we shall say the function f is concave. The functions, which
fulfil the Jensen’s functional inequality (2.39), are also known as the Jensen-
convez or simply J-conver functions. The inequality in (2.39) is obviously the
special case of (2.38) for A = 1/2. In addition, Hardy, Littlewood and Polya

[185, p. 96] showed that every convex function is a Jensen-convex.

One of the most important aspects in the Theory of Inequalities is that,
the convexity inequalities have been generalized, extended and refined in several

ways. For instance, the following refinement of the inequality (2.39) was proved
by Hadamard in [176].
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Theorem 20 ([176]) Let f : I — R be a convex function, where I = [a,b].

Then, the inequalities

1(57) <y | o < L0 (240

are valid.

The inequality (2.40) is called the Hadamard’s inequality. Besides the mid-
convex, the other forms of convexity of functions are log-convex and quasi-
convex. We shall say that a positive function f : I — R™ is logarithmic convex,

or for short, log-conver, if log f is a convex function, or equivalently, if z, y €
and A € [0, 1], one has the inequality (see [79, p. 48], [318, p. 3], [352, p. 7])

fOz+1=Ny) < o) fy). (2.41)

It is said to be a positive log-concave if the sign of inequality in (2.41) is reversed.
Note that, if f and g are convex functions and g is increasing, then the convolu-
tion of f and g, i.e., f o g is convex. Moreover, since f = exp (log f), it follows
that a log-convex function is convex, but the converse may not necessarily be
true [352, p. 7].

The function f : I — R is said to be quasi-convex if for all z, y € I and all
A € [0,1], then (see [318, p. 3])

S+ (1= A)y) <max[f(z), f(y)]. (2.42)

Further, the concept of m-convezity was introduced by Toader [421] to provide
a generalization of the convexity of functions (2.38). It states that, a function

f:[0,b] — R is said to be m-convex if it satisfies the following condition:
F Az m (1= N)y) < Af(@) +m(1— (), (2.43)

where m € [0,1], z,y € [0,b] and X € [0, 1].

Another extension of the property in (2.39) was discovered by Jensen in his
work ([222], [223]), which is known in the literature as Jensen’s inequality. We

shall discuss this inequality in detail in Section 2.6).
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2.2.5 Normed, Linear and Inner Product Spaces

Suppose that X is a linear space over the real or complex number field K. The
inner product on X is a real-valued function (-,-)* : X x X — K, which satisfies
the following conditions (see [161, p. 14], [439, p. 3]). For all z,y,z € X and
a, f €K,

(i)  Positive definiteness: (z,x) > 0 and (z,z) =0 if
and Only if z = 0. (2.44)

(ii) Hermitian condition: (z,y) = (y, ).

(iii) Linearity: (ax + By,z) = a(x,z) + [ {y,2z) and
(w, 0y + Bz) =alz,y) + Bz, 2) .

The notation (z,y) is called the inner product of x and y. The linear space X
equipped with the inner product (-,-) defined on X, is called an inner product
space or pre-Hilbert space. The (X, (-,-)) is the standard notation for the inner

product spaces X.

One example of the inner product spaces is (C", (-,-)), with its usual inner
product defined by

n

(z,w) = szk, (2.45)

k=1

for any z,w € C" and Wy, k € {1,2,...,n} are the complex conjugate of wy.
For the real inner product space (R™, (-,-)), the inner product corresponds to the

standard dot product of the two vectors x, y € R", namely
n
y) = Z TrYk- (2.46)
k=1

Consider the complex-valued functions f,g : [a,b] — C C C, which are

continuous on the bounded interval [a, b]. Then, the expression

= / flz)g(z)dz, (2.47)

'In other disciplines, the notation (- | -) may be used for an inner product.
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defines the inner product on the complex function space C [a, b].

There are many examples of useful inner products that occur in a great
variety of mathematical contexts. For instance, if we fix a set of positive real
numbers gy > 0, k € {1,2,...,n}, then we can easily define an inner product on

C" with the weighted sums, i.e.,
(z,w) = Z%Zk@k- (2.48)
k=1

Also, if w : [a,b] — R is a real-valued continuous function such that w (z) > 0
for all z € [a, b], then we might define the weighted inner product on C'[a, b] as
well by setting

(f. ) = / f(@)g@w (z) da. (2.49)

The definitions of the weighted inner products given by (2.48) and (2.49), satisfy
all of the properties (i) - (iii) as mentioned in (2.44) that one requires for the

inner product.

Another family of the linear spaces, which is of great important in mathe-
matical analysis, is the family of normed space. Every inner product induces a

norm on X by the following identity:

Il = (z, )", (2.50)
for all z € X. We denote the above norm by ||-||. In general, a norm on a linear
space X is a function ||-|| : X — K satisfying the following properties:

(i) |lv|l > 0 for all nonzero v € X.
(ii) |lev|| = || ||v] for all ¢ € C and all v € X. (2.51)

(iii) v+ w| < ||v]| + ||Jw| for all v,w € X (the triangle inequality).

Consequently, from the above examples (2.45) - (2.49), thus we have

2 n 2 2 n 2
ol = S5l or el = 35 gl gy > 0 (25
k=1 k=1
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on the complex inner product space, and
b b
IFI1* = f, @) de, or [IfI* = [, /()] w(z) dz (2.53)

on the function space C [a, b].

It is called a normed linear space (X, ||-||) for a linear space X equipped with

the norm ||-|| and a normed space (V,||-||) is a vector space with a norm, where
V' is a real or complex vector space and ||-|| is a norm defined on V.
Let a = (a1, aq,. .., a,) be an n-tuple of real numbers and 1 < p < co. Then,

we can write
n 1/p
all, = (ZI%V’) , (2.54)
k=1

where for p = oo we simply set ||al| = ax lag|. The quantity ||al|, is called
n

the p-norm or the [P-norm of the n-tuple of real numbers.

The function a — ||al|,, where ||a||, is defined by (2.54) indeed satisfies the
properties required by the definition of the norm. Specifically, the function |a|| .
p > 1 needs to satisfy the following properties:

(i)  [lall, =0if and only if a =0,
(ii) [laall, = [af |al|, for all o € R, (2.55)

(iii) [la + 0, < [lall, + [[6]|,, for all real n-tuple a and b,

where the third property in (2.55) appears as Minkowski’s inequality.

Remark 21 The function (2.54) reduces to simple norm (2.52) for the case
p=2.

The following section discusses the classical Cauchy-Bunyakovsky-Schwarz

inequality that is one of the famous and important inequalities in analysis.
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2.3 The (CBS)-Type Inequalities

The (CBS)-inequality is a short-term of the Cauchy-Bunyakovsky-Schwarz in-
equality, is also known in the literature as Cauchy’s, Schwarz’s or Cauchy-
Schwarz’s inequality. For simplicity, we shall refer to it throughout this disserta-
tion as the (CBS)-inequality. This inequality plays an important role in different
branches of Modern Mathematics including Hilbert Spaces Theory, Probability
and Statistics Theory, Classical Real and Complex Analysis, Numerical Analy-
sis, Qualitative Theory of Differential Equations and their applications (see [63],
[66], [125], [135], [246], [270], [300], [302], [355], [380]).

Several versions of the classical (CBS)-inequality have been found in the
literature, starting from Cauchy [88], who published the (CBS)-inequality in
elementary form. Then, Bunyakovsky [81] derived the corresponding inequality
for integrals, and later, it was rediscovered by Schwarz [388]. Schwarz [389] also
discovered the corresponding version of the (CBS)-inequality in inner product
spaces. For more information about the name and history of these type of
inequalities, see ([387], [407]). In any case, the discrete version of the (CBS)-

inequality is stated in the following section.

2.3.1 (CBS)-Inequalities for Real and Complex Numbers

In the following, we state the elementary inequality of the (CBS)-inequality for
sequences of real numbers, which it is also known in the literature as Cauchy’s
inequality [318, p. 83] (see also [55, p. 66], [91, p. 13|, [117, p. 1]).

Theorem 22 ([318, p. 83]) Ifa = (ay,aq,...,a,) and b = (by, by, ..., b,) are

sequences of real numbers, then

(iakbk) < (i az> (i bi), (2.56)

with equality holding in (2.56) if and only if the sequences a and b are pro-

portional, i.e., there is a real number r € R such that a, = rby for each

ke{l,2,...,n}.
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The following version of the (CBS)-inequality for complex numbers also holds
(see [117, p. 2], [318, p. 84)).

Theorem 23 If a = (ay,as,...,a,) and b = (by,bs,...,b,) are sequences of

complex numbers, then

n

zi:akbk

k=1

< (ZW) <Z|bk|2>, (2.57)

with equality holding in (2.57) if and only if the sequences a and b are pro-
portional, i.e., there is a complex number ¢ € C such that a, = cby for any
ke{l,2,...,n}.

These types of the (CBS)-inequality have been proved in several ways, see
for instance the works of Mitrinovic et al. [318, p. 83], Dragomir [117, p. 1-2],
Cerone and Dragomir [91, p. 13-14], Bullen [79, p. 183] and Steele [407, p. 4-6].

An analogous statement of the (CBS)-inequality is the Cauchy-Schwarz in-

equality for convergent infinite series and integrals [77, p. 31], i.e.,
[e.e] 2 [e.e] o0
(Z akbk> < (Z a§> (Z bi) (2.58)
k=1 k=1 k=1

[/abf(:t)g(x) dmr < /ab If ()] da /ab g (2))? dz, (2.59)

and

for f and ¢ are square integrable functions on (a, b).

Let (p1,p2, ..., pn) be a sequence of nonnegative real numbers. Then, we can

state the weighted version of the (CBS)—inequality as follows:

2 n n
<> e lael* e lbil?, (2.60)
k=1 k=1

n
> pragby
k=1

for any ay, by € C, pr, > 0, k € {1,2,...,n}. Hence, if in (2.60) we choose p; = 1
for all k£ € {1,2,...,n}, then we recapture the inequality (2.57).
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Remark 24 By the (CBS)-inequality for real numbers (2.56) and the generalized

triangle inequality for complex numbers (2.25), we also have

2 n 2 n n
< () <Swryme e
k=1 k=1 k=1

n
E arby,
=1

forag, by € C, k€ {1,2,...,n}.

2.3.2 (CBS)-Inequalities in Inner Product Spaces

In 1885, Schwarz [389] gave another proof of the (CBS)-inequality for sums by
extending it to an inner product space. The result states that if  and y are
vectors in an inner product space (H, (-,-)) over a real or complex number K,
then

[z, y)* < (2,2) (1, 9) (2.62)

for any z,y € H, with the equality holding in (2.62) if and only if the vectors x
and y are linearly dependent, i.e., there exists a nonzero constant A € K such that
x = \y. The inequality (2.62) is mainly known in the literature as Schwarz’s or

Cauchy-Schwarz’s inequality (see [161, p. 15]).

We note that, if we consider the norm of z,y € H as defined by (2.50), then
the inequality (2.62) can be written in the form

[z, ) * < ) [lyl® (2.63)

or, equivalently,
[z, )] < =l Iyl , (2.64)

with the case of equality holding in (2.63) or (2.64) if and only if there exists a
scalar A € C such that y = Az. Also, we note that the inequality (2.62) reduces
to the elementary (CBS)-inequality (2.56) by considering the real inner product
space (R", (-,-)), with its usual inner product as defined by (2.46).
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2.3.3 (CBS)-Inequalities for Power Series

We now generalize the situation of the celebrated (CBS)-inequality for real or
complex numbers and sequences into the following case. Let f (z) be an analytic

function defined by the power series
f&) =Y (265)

which is convergent on the open disk D (0, R) C C, R > 0. If the coefficients
an, n € {1,2,...} in (2.65) are complex numbers and applying the well-known

(CBS)-inequality for complex numbers (2.57), then we can deduce that

2
00 . 0o 0o . 1 00
P =D anz"| < laal* Y [2f :1—\2\2§ |, (2.66)
n=0 n=0 n=0 n=0

for any z € D (0, R) N D (0,1), where R is the radius of convergence of f(z).
The above inequality (2.66) gives some information about the magnitude of the
function f (z) provided the numerical series 3.°° |a,|* is convergent and z is
not too close to the boundary of the open disk D (0, 1).

In practice, many usual fundamental complex functions can be represented by
the power series with real or nonnegative coefficients (see Section 1.3). Thus, if
we assume the coefficients in the power series (2.65) are nonnegative and utilizing
the weighted version of the (CBS)-inequality for complex numbers (2.60), then

we can state the following inequality:

) 2 ) )
[0 =Y anz"w"| <Y an |2 ) anlwl™ = f(|2°) f (jwl), (2.67)
n=0 n=0 n=0

for any z, w € C with zw, |z\2, |w\2 € D(0,R). In particular, if w = a € R,
then we get from (2.67)

f (a2)]” < f () £ (|2]), (2.68)

for any z € C with az, a2, |z|* € D (0, R).
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Specifically, for functions, which are defined by the power series (2.65) with
real coefficients a,, n € {0,1,2,...}, we can naturally construct another power
series, where the coefficients of the new series are given by the absolute values

of the coefficients of the original series, namely

= an| 2", (2.69)
n=0

for all z € D (0, R), where a,, = |a,|sgn (a,), n € {0,1,2,...}. The sgn (z) is
the real signum function defined by (2.11). It is obvious that the new power
series fa (2) given by (2.69) has the same radius of convergence as the original

power series f (z) given by (2.65).

As some natural examples of functions and their transformations that may
be useful for later applications, we can point out that if the functions g(z), h(z),
k(z) and [(z) are respectively given by (1.20), (1.30), (1.32) and (1.33), then
the corresponding functions constructed by the use of the absolute values of the

coefficients (2.69) are obviously

nE=1 =),

ka(z) =sinh(z), 1a(z) =cosh(z).

(2.70)

These functions are defined on the same domain as their generating functions

respectively.

In a similar way, the following inequality holds for any z, w € C such that zw,
1z]*, Jw|> € D (0, R), by utilising the weighted version of the (CBS)-inequality

for complex numbers (2.60):

o o [ee)

fw)]? = ) lan| sgn (an) 2w | < lan| |27 lan] [w]™
n=0 n=0 n=0
= fa(12[%) fa (lw]). (2.71)

In particular, if w = a € R, then we get from (2.71)
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1f(a2)? < fa(a®) fa (12 (2.72)

for all z € C with az,a?, |z|> € D (0, R).

2.3.4 Some Results Related to (CBS)-Type

It is well-known that the classical (CBS)-type inequalities have been improved,
generalized, refined and applied by a remarkable large number of researchers
in the last few decades. For the details, see particularly the survey paper of
Dragomir [127], the relevant chapters in the books of Dragomir ([117], [120,
Chapt. 1], [121, Chapt. 2]) and numerous references, which are cited therein.

In this section, we provide some of the results related to the (CBS)-type
inequalities as important tools for our investigation in the next chapters. First,
in 1960, N. G. de Bruijn [78] established the following refinement of the classical
(CBS)-inequality for a sequence of real numbers and the second sequence of
complex numbers (see also [117, p. 48], [121, p. 43], [318, p. 89]).

Theorem 25 (de Bruijn [78]) Let (aj,as,...,a,) be n—tuple of real numbers

) 073)

and (21, 29, . . ., 2,) an n—tuple of complex numbers. Then,

Zakzk < 52&% (Z‘Zk‘2+ Zzi
k=1 k=1 k=1 k=1

(g iai.é\m?) |

k=1

Equality holds in (2.73) if and only if , a, = Re (Az) for k € {1,2,...,n}, where
\ is a complex number such that the quantity A\ > oh_, 72 is a nonnegative real

number.

This inequality (2.73) is popularly known as the de Bruijn inequality. The
proof of Theorem 25 can also be found in the work of Mitrinovi¢, Pecari¢ and
Fink [318, p. 89] and Dragomir [117, p. 48]. The weighted version of the de

Bruijn inequality also holds, namely
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) : (2.74)

In [82], M. L. Buzano obtained the extension of the celebrated (CBS)-inequality
(2.63) for a real or complex inner product space (H, (-,-)). The result is stated

2
<

N =

n n n
S ] <23 (me%
k=1 k=1 k=1

where pr, >0, a; € R, 2, € C, k € {1,2,...,n}.

n
2
E DrZg
k=1

as follows:

Theorem 26 (Buzano [82]) Let H be a complete inner product space and let
x,a,b be elements of H with x # 0. Then,

(@, a) (@, )] < 5 (lall 6]l + [{a, 0)]) |z, (2.75)

N =

with equality holds in (2.75) if and only if there exists a scalar \ € K such that
T = Aa.

It is clear that for a = b, the above inequality (2.75) becomes the (CBS)-
inequality (2.62) in inner product spaces. A similar inequality to (2.75) has been
independently obtained by Richard [373] for H is a real inner product space (see
also [361]), namely

% lall” (I{a, )] = llall [1b]]) < (x, a) {z,b) < % l21* (I{a, )] = llall [Bl]) . (2.76)

Further, in 1985, Dragomir [118] proved the following refinement of the
(CBS)-inequality (2.63) in inner product space (H; (-, -)) over the real and com-
plex number field K.

Theorem 27 (Dragomir [118]) For any x, y € H and e € H with |e| = 1,
the following refinement of the (CBS)-inequality holds:

gl = |z, y) = (@, e) {e, )| + [(z, €) (e, y)| = [{z,m)] (2.77)

Remark 28 If in the first inequality of (2.77), we choose e = z/||z|, z €
H\ {0}, then we get

Izl il 1211 = 1z, 2) €2, 90] 2 (e, y) 1207 = (@, 2) (2, 9)] (2.78)

forany x, y, z € H.
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2.4 Young’s Inequality and Its Variants

In 1912, W. H. Young [440] presented the following integral inequality:

Theorem 29 ([440]) Let f : [0,c] — R be a real-valued, continuous and strictly
increasing function on [0, c] with ¢ > 0. If f(0) =0, x € [0,c] and y € [0, f (¢)],
then

ry < /Oxf(t) dt+/0y () at, (2.79)

where f~1(t) is the inverse function of f (t). Equality occurs in (2.79) if and if
y = f(x) or equivalently, v = =1 (y).

The above inequality (2.79) has an easy geometric interpretation shown in
[422], so that some monographs simply refer to it and omit the proof. The above
result also can be found in the work of Hardy, Littlewood and Pdélya [185, p.
111-113], but there was no analytic proof until Diaz and Metcalf [114] supplied
it in 1970. The complete proof is also given in [316, p. 48-50], [432] and for
more information on Young’s inequality, we may refer to [318, p. 379-389] and

the references which are cited therein.

The inequality (2.79) provides an important tool in deriving other classical
inequalities. For instance, we shall obtain the (AM-GM)-inequality given in
(2.18) by choosing the identity function f(z) = x in (2.79). The most useful

consequence of the Theorem 29 is the inequality

xy < — + =, (2.80)

for x, y are nonnegative numbers and p, ¢ > 1 with 1/p+ 1/q = 1, where it
can be easily derived from the inequality (2.79) by choosing the exponential
function f (t) = t*~! and ¢ = p/ (p — 1). The equality holds in (2.80) if and only
if 9 = yP. This classical inequality (2.80) is called Young’s inequality for the
scalar products of real numbers. It appears as Theorem 61 in the remarkable
work of Hardy, Littlewood and Polya [185, p. 61], but it is not credited to any

individual.
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This form of Young’s inequality (2.80) can be used to establish some impor-
tant inequalities such as the (CBS), Holder and Minkowski inequalities [422].
The inequality (2.80) is itself, a special case of the (AM-GM)-inequality (2.18)
when p = q = 2.

Now, let @ = 29, b = y?, v = 1/q and 1 — v = 1/p. Then, the inequality

(2.80) can be written in the form
a’b*™" < wa+ (1 —v)b, (2.81)

where a, b > 0 and v € [0, 1], with the equality holds in (2.81) if and only if a = b.
This inequality gives us another useful form of the classical Young’s inequality
for two scalar products. We note that, if v = 1/2, then we obtain from (2.81) the
basic result of the arithmetic-geometric mean inequality (2.18). This shows that,
the inequality (2.81) is the generalizations of the weighted (AM-GM)-inequality

(2.36), as it is mentioned earlier in Section 2.2.3.
In [250], Kittaneh and Manasrah defined the Heinz means as

avblfv + alf'ub'u
2 )

H,(a,b) = (2.82)

for a, b > 0, v € [0, 1] and showed from the inequalities (2.80), (2.81) and (2.18)

that the Heinz means interpolates between the arithmetic mean and geometric

mean as follows:

a+b
2 b

for a, b > 0 and v € [0,1]. Again, the equality holds in (2.81) if and only if

a=b.

Vab < H, (a,b) <

(2.83)

The famous Young’s inequality (2.81) has been studied by several authors, see
[10], [11], [157], [158], [198], [250] and the references cited therein. For instance,
Hirzallah and Kittaneh [198] obtained the refinement of the inequality (2.81) as

follows:

[va+ (1 —v)b)* — (a”bk”)2 >r?(a—b)?, (2.84)

for a,b > 0, v € [0,1] and r = min{v,1 —v}. Kittaneh and Manasrah [250]
provided the refinement of Young’s inequality (2.81) in the following form:
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va+ (1 —v)b—a’"™" >r <\/_ — \/5>2, (2.85)

for all a,b > 0, v € [0,1] and » = min {v,1 — v}. The following inequality has
been proved by Aldaz [10],

20

a;b—\/%) < Ua+(1—v)b—(a”bl_”)2

a+b
TR \/%) , (2.86)

< 2(1—v)(

for any a,b > 0 and v € [0,1/2], which provided a refinement and a reverse of
Young’s inequality as well. This inequality (2.86) has been further studied by
the same author in ([11], [12]) and Furuichi in [158].

A generalization of Young’s inequality (2.81) was given by Furuichi in [159],

namely

n

n n ; 1 n 1/n
E pja; — jl:[l a? = NPmin (5 E a;s — ]1:[1 aj/ ) ) (2.87)
j=1 - -

j=1

for a;,p; >0, j € {1,2,...,n} with Z?zl p; = 1 and ppin = min {py, p2, ..., pn}-
This inequality (2.87) becomes an equality if and only if a1 = as = --- = a,.
Note that, for n = 2, the inequality (2.87) reduces to Kittaneh and Manasrah’s
result (2.85).

Other generalizations of Young’s inequality can be found in [13] and [14]. See
also [21], [72, p. 205], [119], [160], [204], [259], [310], [335], [369], [423], [441] and
the references cited therein, for some improvements of Young’s inequality and

their recent advances.

2.5 Holder’s Inequality

The classical Holder’s inequality for sequences of real numbers was first derived
in 1888 by L. J. Rogers [378]. Then a year later, it was rediscovered in another
way by O. L. Holder [201] and named after him.
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Hélder’s inequality, which is also known is the literature as Rogers’s inequal-
ity, was built around the two real numbers p and ¢ that satisfy the conditions
p>1and 1/p+ 1/q = 1. This inequality asserts that for all nonnegative num-
bers ax, by € R, k € {1,2,...,n} and p > 1 with 1/p + 1/¢ = 1, one has the
bound [55, p. 68]

n n 1/p n l/q
San<(3a) (Xn) - 259
k=1 k=1 k=1

with the equality holding in (2.88) if and only if the sequences (af) and (b7) for
k € {1,2,...,n} are proportional, i.e., there exists a real number r € R such
that b,/ = ra,/? for all k € {1,2,...,n}. The inequality (2.88) is reversed if

p<1(p#0).

Holder’s inequality holds for complex numbers as well [318, p. 105], namely

n /p s n 1/q
s(kaV’) (Dw) , (2.89)

k=1 k=1

n
E arby
=1

for all ag, by, € C, k € {1,2,...,n}, p > 1 and ¢ satisfying 1/p+ 1/q = 1. The
equality occurs in (2.89) if and only if the sequences {|ax|"} and {|bx|?}, k €
{1,2,...,n} are proportional and the arg(axby) is independent of k.

The following inequality also holds, which is called the weighted version of

Holder’s inequality,

n /p s/ n 1/q
< (Z m yakyp) (Z m \b,f) : (2.90)
k=1 k=1

n
E myagby
=1

where my, > 0, ag, b, € C, k € {1,2,...,n} and p > 1 such that 1/p+1/q = 1.
Again, the equality occurs in (2.90) if and only if the sequences {|ax|"} and
{|bk|?} for k € {1,2,...,n} are proportional the arg(axby) is independent of k.
We note that, if all the weights my, for k € {1,2,...,n} are equal, then (2.90)
reduces to the inequality (2.89).

Several proofs of Holder’s inequality (2.88) can be found in the literature.
For instance, Tolsted in [422] (see also [301, p. 457], [381, p. 63-64]) showed that
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Holder’s inequality (2.88) can be easily proved by using the standard Young’s
inequality (2.80).

The above inequality (2.88) can be written in the simpler form as follows:

< [lall, lIoll , (2.91)

n
E arby
o1

where for 1 < p < oo, the pair (p, q) are the usual conjugate exponents and the

||, is the p-norm of n-tuple of real numbers x as defined by (2.54).

The inequality (2.88) also appears in ([4, p. 11], [565, p. 19-21], [185, p.
24, 26], [239, p. 67, 71], [318, p. 99]. One of the standard proofs of Holder’s
inequality is based on Young’s inequality (2.80) for the scalar products (see
[422]). Alternative proof is by utilising the Jensen type inequality for the convex
function f(x) = 2P, p > 1. We note that, the (CBS)-inequality (2.56), which
is established in the previous section, is the special case of Holder’s inequality
(2.88) with p = ¢ = 2. In other words, we have to remark that Holder’s inequality

is one of the remarkable extensions of the (CBS)-inequality.

The inequality (2.89) is also valid for countable infinite pairs of numbers,
where from the convergence of the series on the right-hand side > -, |axby]|, the

convergent of the left-hand side follows.

Remark 30 Holder’s inequality (2.89) is also valid for countable infinite pairs

o0 /P / « 1/q
s(kaP) (DW) , (2.92)

where from the convergence of the series on the right-hand side, the convergence

of the left-hand side follows [77, p. 32].

of numbers, i.e.,

o0
g arby,
=1

If now, we consider an analytic function f(z) defined by the real power
series (2.65) with real or nonnegative coefficients and convergent on the interval
(=R, R), R > 0, and applying the weighted version of the Holder inequality for
real numbers, then we can state that
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© 0 1/p 00 1/q
floy) = Zanw”y" < (Z anxp”) (Z anyqn>
n=0 n=0 n—0
= FrE Y (2.93)

for any =, y € R such as zy, 2P, y? < R. A similar result can be obtained by
applying the complex power series (2.65) with real coefficients for the weighted
version of the Holder inequality (2.90), namely

o o0 l/p o0 l/q
>_an"y"| < (Zranumr”“) (Z\anuyrqn>
n=0 n=0 n=0

= £ (=) £yl (2.94)

[f (zy)| =

for any z, y € C with xy, |z, |y|? € D(0,R) and f4 (z) is the power series
defined by (2.69).

Various extensions, generalizations, refinements, etc. of the Holder inequality
have been obtained by many authors, see for instance [3], [87], [112], [192], [248],
[271], [317], [365], [436], [437], [438] and the numerous references which are cited

therein.

2.6 Jensen Types Inequalities and Their Re-

verses

Many important classical inequalities depend upon convexity. One of them is
Jensen’s inequality. Jensen’s inequality, which was proved by Jensen ([222],
[223]), concerned with the bounding of convex functions of sums or integrals (see
also [79, p. 31], [91, p. 43], [317, p. |, [334, p. 12]). It is one of the most important
inequalities and has had a tremendous impact on many different fields such as
Probability and Statistics Theory, Information Theory, Control and Systems
Theory, etc. Since its discovery in 1906 [223], Jensen’s inequality has been

proven to be one of the most useful inequalities in mathematical analysis, because
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it implies many of other classical results in Inequalities Theory. The triangle,
(AM-GM), (CBS), Young, Holder, Minkowski, Schnnon, Ky Fan inequalities,
etc., can be obtained as particular cases of Jensen’s inequality. For classical and
contemporary developments related to Jensen’s inequality, we may refer to the
works of ([56], [101], [119], [140], [318, Chapt. I]) and the references, which are

cited therein.

There are several types of Jensen’s inequality that appear in the literature.
The classical form of Jensen’s inequality involving real numbers and weights is
stated as follows (see [79, p. 31], [317, p. 6]). Let f be a convex function
on an interval I C R and p;, j € {1,2,...,n} be nonnegative scalars with
P, = Z?:l p; >0, n > 2. Then,

f (Pin ZP;’%’) < L pif (z;), (2.95)

for x; € I such that x; > 0 for each j € {1,2,...,n}, with equality holds in
(2.95) if and only if x; = xy, for all j,k € {1,2,...,n}. If f(x) is strictly convex
for all the distinct points z; and all weights p;, j € {1,2,...,n} are positive,
then the strict inequality holds in (2.95). The above inequality (2.95) is known
as the weighted version of Jensen inequality with p;, j € {1,2,...,n} are called

the weights.

The reverse of the Jensen inequality holds, namely (see [79, p. 43], [318, p.
6], [427])

1 1 <
/ (E j;pj%’) > Fn;p;’f@j)a (2.96)

for a convex function f on I, z; € I, j € {1,2,...,n}, p1 > 0, p; < 0 for
2<j<nand P = Pin Z?:I p;x; € I. On the other hand, the inequality in
(2.96), which provides the lower bound instead of the upper bound, particularly

holds for concave functions f (z) on I.

We note that, if n = 2, then we have from (2.95) the inequality

F (pfv+qy) < Pf(@) +afy)
p+q )~ p+q

(2.97)
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for any x, y € I, where p, ¢ > 0 such that p + ¢ > 0. Thus, the inequality
in (2.39) as shown in the previous section, is the special case of (2.95) when
p = q = 1. Another remarkable particular case is obtained when p; = 1/n for
all j € {1,2,...,n}. That is, the inequality (2.95) becomes [79, p. 32

f (% ij) <31, (298)

holding for a convex function f on the interval [ and x; € I, j € {1,2,...,n}.
Again, the sign of inequality reverses in (2.98) for concave functions. Obviously,
the inequality (2.98) holds for every Jensen-convex function f on I. For an
analytic proof of the Jensen type inequalities, we may refer to the works of
([185, p. 71], [352, p. 53]).

Further, we have the following inequality
f (Z QjIj) < qu'f(l’j)a (2.99)
j=1 j=1

which holds for a convex function f: I — R, z; € I, j € {1,2,...,n} and ¢; are
probabilities, namely g; > 0 for j € {1,2,...,n} such that 7, ¢; = 1. The
equality holds in (2.99) if and only if all the z;, j € {1,2,...,n} are equal, or
if f(x) reduces to a linear function. In a real sense, the Jensen type inequality
given by (2.99) is the extended property of the inequality in (2.38), in which it

defines a convex function for the case n = 2.

The forms of Jensen’s discrete inequality given by (2.98), (2.95) and (2.99)
as well as their reverses (2.96) allow us to derive some other important classical
results in Inequalities Theory. Through judicious choice of convex (or concave)
functions f, we can derive, for instance, the generalized triangle inequality (2.25)
for real numbers, by choosing in (2.99) the convex function f (z) = |z|, x € R.
Jensen’s inequality (2.96) reduces to the celebrated (CBS)-inequality (2.56) for
the convex function f(z) = 2%, and noting that z; = b;/a; and p; = a7 for
j €{1,2,...,n}. Taking the function f(z) = 2?, ¢; = bj and x; = (a?/b?)l/p
with a;, b; > 0 for j € {1,2,...,n} and p,q > 0 such that 1/p+1/q = 1, we can

prove the famous Holder’s inequality.
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Some studies related to Jensen’s inequality concerning generalizations, exten-
sions, refinements, reverses, counterparts, etc., can be found in (see for example
[27], [56], [57], [80, p. 139-142], [101], [126], [129], [130], [139], [273], [318, p.
1-20]). Also, see [286], [322], [351] for further references.

2.7 Other Inequalities

In this section, we state some other important classical inequalities in analysis,
which are Minkowski’s and Cebysev’s inequalities. Minkowski’s inequality was
established in 1896 by Hermann Minkowski [313] in his book “Geometrie der
Zahlen” (Geometry of Numbers). It states that for p > 1, one has the bound

n 1/p n 1/p n 1/p
(Z \ak+bk\p> < (Z\ak\p> + (Z\bk\p> , (2.100)

k=t1 k=1 k=1

for any ay, by € C, k € {1,2,...,n}. Equality holds in (2.100) if and only if
there exist a constant A\ € R such that |bx| = Alay| for all &k € {1,2,...,n}. If
p < 1 (p+#0), then the inequality sign in (2.100) is reversed. This inequality
arises as Theorem 25 in the work of Hardy, Littlewood and Polya [185, p. 31],
see also [4, p. 11], [55, p. 69], [185, p. 31], [239, p. 69-70] and the references
cited therein. We note that the special case of (2.100) with p = 2 is the triangle

inequality for arbitrary complex numbers.

The inequality (2.100) can be generalized for their weighted version as follows,

n 1/p n 1/p n 1/p
(Z my |6Lk + bk|) S (Z my |ak|p) + (Z my |bk|p> s (2101)
k=1 k=1 k=1

for any ag, by € C,my > 0 for k € {1,2,...,n}, p > 1 and again the equality
holds in (2.101) if and only if the sequences {ay} and {b;} are proportional.

Cebysev’s inequality provides the lower bound of > p—; @by, which says that
ifag <ap <---<a,and by <by <---<b, be real numbers, then
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(i “k) (i bkr) <n i arbr, (2.102)
k=1 k=1 k=1

with equality occurring if and only if, either all the ax, k € {1,2,...,n} are equal
or all the b, are equal. It is important to order, either the ays and bys in both

descending and ascending order in the inequality (2.102).

Remark 31 The inequality (2.102) is also true in the case whena; > ag > -+ + >
an and by > by > - > by, but if ay <ag < -+~ <a, and by > by >--->b, (or

the reverse), then the sign in inequality (2.102) is reversed.

In terms of its weighted version, Cebysev’s inequality can be written as follow:

(i akmk) (i bkmk> < iakbkmk, (2.103)
k=1 k=1

k=1

for a; <as <--- <a,, by <by <--- <b, bereal numbers and my,ms, ..., m,
be nonnegative real numbers such that m; + my + ... +m,, = 1. The equality
occurs if and only if a; = as = ... =a, or by = by = ... = b,. Note that, if
in (2.103) we choose m; = mg = ... = m,, = 1/n, then we get the inequality
(2.102).



Chapter 3

Power Series and the
Cauchy-Bunyakovsky-Schwarz
Inequality

Chapter 3 is devoted to some inequalities concerning the power series that are
related to the (CBS)-type inequalities. It is well-known that the classical (CBS)-
type inequalities have been generalized, extended, refined and applied by a re-
markable large number of researchers for different and various motivations (see
for instance [117], [120, Chapt. 1], [121, Chapt. 2], [127]). In this chapter,
we provide some generalizations, improvements and refinements of the (CBS)-
inequality for functions defined by the power series with real or nonnegative

coefficients and convergent on an open disk.

We start this chapter with some known results on the power series inequalities
proved by Dragomir [122], Cerone and Dragomir [89]. In Section 3.2, we derive
new and better inequalities for functions defined by the power series with real
coefficients, by utilizing Buzano’s result in inner product spaces. Particular
inequalities are obtained by applying the results for some fundamental functions
of interest, such as the exponential, logarithm, trigonometric and hyperbolic

functions.

In Section 3.3, we utilize a refinement of the celebrated (CBS)-inequality in

inner product spaces established by Dragomir in [118], to develop some other
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inequalities for functions defined by the power series with real and nonnegative
coefficients. Some applications for elementary complex functions of interest are

also presented.

We end this chapter with some more inequalities involving the power series
functions that have been developed by utilising a different technique based on
the continuity properties of modulus. Those results have natural applications

for fundamental functions as well, which is a subsequent aim of this section.

All the results contained in this chapter, are mainly taken from the au-
thor’s research papers in collaboration with Dragomir and Darus (see [208], [209],
[214]). The same results can also be found in the survey research paper published
by the author and Dragomir (see [217]).

3.1 Introduction and Preliminary Results

The (CBS)-inequality is one of the most important inequalities in analysis.
Nowadays, a large number of results concerning new proofs, noteworthy exten-
sions, generalizations, refinements, etc., of the classical (CBS)-inequality have
been published in the literature. Most of the results are discrete and involve
finite sums. A few attempts to extend those results to the infinite series have
been considered by several authors (see [49], [51], [89], [122], [123], [173]). For
instance, in [122], Dragomir provided the generalization of the (CBS)-inequality
for functions defined by the real power series (2.65) with nonnegative coefficients
and convergent on the interval (—R, R), R > 0. The result is stated as follows
(see also [117, p. 19]):

Theorem 32 (Dragomir [122]) Let f : (—R,R) — R, f(z) = Y jo,opa”
with o, > 0, k € N. If a = (a1, as,...,a,) and b = (by, by, ..., b,) are sequences
of real numbers such that ayby, a3, b2 € (—R, R) for any j € {1,2,...,n}, then
one has the inequality

n n

(Zf(%%)) <> f(a) Zf (b%) - (3.1)

k=1 k=1
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We note that for f () = x, € R in (3.1), we simply recapture the classical
(CBS)-inequality for real numbers (2.56).

Particular inequalities of (3.1) for some fundamental functions are also given
in [122]. For instance, if a and b are sequences of real numbers, then one has the

inequality

" 2
(Z exp (a;b;) < Z exp Z exp b2
j=1

(Z sinh (a;b;) < Z sinh (a Z sinh 62 (3.2)
j=1

" 2
(Z cosh (a;b;) < Z cosh (a Z cosh (b7) .
j=1

Other inequalities concerning the power series (2.65) with real or nonnegative
coefficients, have been established by Cerone and Dragomir in [89]. On utilising
the known result that has been available in the literature, which is called the de
Bruijn inequality (2.73), they obtained some refinements of the (CBS)-inequality
for functions defined by the power series (2.68) and (2.72). The results are

summarized as follows:

Theorem 33 (Cerone and Dragomir [89]) Let f (z) = Y oo, arz" be an an-
alytic function defined by a power series with nonnegative coefficients ay, k > 0
and convergent on the open disk D (0, R) C C, R > 0. Ifa is a real number and
= a complex number such that az, a®, 22, |z|* € D (0, R), then

If (a2)]* < < f (a®) [f (121°) + | £ ()] - (3.3)

| =

Cerone and Dragomir [89] have also proved an analogous inequality of (3.3)

for functions defined by the complex power series with real coefficients.

Theorem 34 (Cerone and Dragomir [89]) Let f (z) = > .2, arz" be a func-

tion defined by a power series with real coefficients and convergent on the open
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disk D(0,R) € C, R > 0. Ifa € R and z € C are such that az, a®, 22,
|z|*> € D (0, R), then

Fa (@) [fa (121%) + £ (2%)]] - (3.4)

DN | —

|f (az)|” <

Particularly, the results given by (3.3) and (3.4) provide the improvements
of the de Bruijn inequality (2.73) as well as the refinements of the inequalities
(2.68) and (2.72) of the (CBS)-type for functions defined by the complex power

series with real or nonnegative coefficients and convergent on the open disk.

Particular inequalities for various examples of fundamental functions such
as the exponential, logarithm, trigonometric and hyperbolic functions are also

pointed out in [89]. For instance,

[1- 12> + 1 — 2] 11 —az|* > 2 (1-a*) (1— |z|2) 11— 22|,

In (1 —az)]? < %m (1%&) {m <1%‘Z|2) +|In (1 - 2% !} ,

sin”™' (a?) [sin”" (|z|2) + |sin”! (2%)|] . (3.5)
tanh™" (a®) [tanh™’ (|z|2) + |tanh " (2%)]],

for any a € (—1,1) and z € D (0,1). Applications for special function such as

polylogarithm, are given as well.

Motivated by the results given by (3.3), (3.4) and some other results es-
tablished in [89], we derive new and better inequalities for functions defined
by the power series with real or nonnegative coefficients, by utilising Buzano’s
and Schwarz’s result in complex inner product spaces, and a different technique
based on the continuity properties of modulus. Natural applications for funda-
mental functions of interest such as the exponential, logarithm, trigonometric

and hyperbolic are also provided.
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3.2 Power Series Inequalities Via Buzano’s Re-

sults

In [124], Dragomir has observed that from [78], on utilizing Buzano’s inequality
(2.75) in the complex inner product space (H; (-,-)), where the inner product is

defined by (2.48), one can obtain the following discrete inequality:

n n
§ :pjcjﬂf_j§ pjsb;
=1 =1

1/2
% (Zpy |C]| ij |b;] ) ijc] Zp] |x]| (3.6)

where p; > 0, z;,bj,¢; € C, j € {1,...,n}. If we take in (3.6) b, = ¢ for
j€{1,2,...,n}, then we get

n
TG Y DT
j=1

1| )
<3 LZIPHCH +

n
2
>_pic;
j=1

] > _pilzls 3T

for any p; > 0, z;, ¢; € C, j € {1,2,...,n}.

As pointed out in [124] and also in [120, p. 49], if z;, j € {1,2,...,n}, are
real numbers, then (3.6) generates the de Bruijn refinement of the celebrated

weighted (CBS)-inequality, namely

Z

iLj%j

zpj [zpj o

] (3.8)

where p; > 0, z; € R, z; € C, j € {1,2,...,n}. Therefore, the Buzano’s result
(3.6) may be regarded as a generalization of the de Bruijn inequality (2.73) as

well.

First, we prove the following result [208] that has been obtained on utilising
Buzano’s result (3.6), see also [217].
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Theorem 35 (Ibrahim and Dragomir [208]) Let f(z) = Y > a,2" be a
power series with nonnegative coefficients a, and convergent on the open disk

D(0,R). If z, a, B € C so that o, Bz, |a|, 3%, af, |x|* € D(0, R), then

([ (aP) F (8] + 17 @B £ (). (39)

N =

|/ (o) f (Bx)| <

Proof. On utilizing the inequality (3.6) for the choices p, = a,, ¢, = a",

x, = 2" and b, = 8", n > 0, we have

Z aa” ()" Z ap (B)n "
n=0 n=0

> ay |:U\2”, (3.10)

n=0

<

ﬁ:%o ana™(B)"

N —

m m 1/2
(zanwzanw%) +
n=0 n

=0

for any m > 0.

Since o, Bz, |af’, |6%, B, |z|* belong to the convergence disk D (0, R),
hence the series in (3.10) are convergent and letting m — oo, we deduce the
desired inequality (3.9). =

A particular case of interest is as follows:

Corollary 36 Let f (z) be as in Theorem 35 and z,x € C with 2T, zz, |z|2, 22,
lz|> € D (0, R). Then,

£ ) £ )l < 5 17 (1) +1F )] £ (o) (3.11)

Proof. This follows from Theorem 35 by choosing a =z and §=7%. =

Remark 37 In particular, if x = a € R, then from (3.11) we deduce the in-
equality (3.3) [89].

The above result (3.9) has some natural applications for particular complex
functions of interest as follows:
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(1) If we apply the inequality (3.9) for the function f (z) given by (1.19), then

we get

1 1
1—azx 1—31‘

S 2
2 (\1—]a® 1-8) 1—af

for any z, o, f € D (0,1). This is equivalent with

] ! (3.12)

L~ af”

2 (1~ [af?) 1 — ] / (1 [af?) (1 - |3))?

< |1 —aF|[1 - Be| {\1 — o +1/(L=JaP) (1- W} 1)

for x, o, B € D (0,1). In particular, if 5 = @, then we get from (3.13) that
2(1—|z[) (1 —|af?) |1 — &2
<|1—aZ| |1 — az| Hl—oﬂ—l—l—@ﬂ, (3.14)
for any z, « € D (0,1).

(2) If we apply (3.9) for the exponential function f (z) given by (1.25), then
we get the inequality

}exp (OE + Bw) }

< % [(exp (|oz|2 + |6|2))1/2 - }exp (QB) ‘] exp (|x|2) , (3.15)

for any a, 3, x € C. In particular, if o = 3, then we get from (3.15) that
1 21\ 1/2 2 2
lexp (2aRe (z))| < 3 [(exp(Z lal*)) " + |exp (a )}] exp (|z]%), (3.16)

for any «, x € C.
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(3) If we apply (3.9) for the Koebe function f (z) defined by (1.23), then we
get
af |z|*

(1—az)? (1- Bx)2

of |> s (3.17)

<1( ]
T2\ 1a’) 1= 18) (1 -aB)’]) (1)

for any z, o, f € D (0,1). If we simplify the above inequality (3.17), then

we have

L— |z

(1 —aZ) (1 - Bz

1 1 s
: 3.18
= (2(1— ERICSERRET _am?) (3.18)

for any «, 5, x € D (0,1). In particular if 5§ = @, then we get from (3.18)
that

1/2
el < ! 1 / (3.19)
(I—am) (I —ax)l = \2(1—|o?)* 201-f) '

for any a, x € D (0,1).

(4) If we apply the same inequality (3.9) for the hyperbolic function f (z) given
by (1.39), then we obtain

}cosh (OE + Bx) + cosh (af — Bw) ’
1/2

< (E (cosh (|a|* + |8]%) + cosh (|af* — |B[%))

+ |cosh (@B)|) cosh (|2]?) (3.20)

for any z, «, f € C. In particular, for 5 =@, we get that from (3.20)
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|cosh (2 Re (z)) + cosh (2ia Im (z))|
< [cosh (|a]?) + |cosh (@?)|] cosh (|z]?) , (3.21)

that holds for any «, x € C.

We also obtain the analogous result to (3.9), which connects the power series
f (2) with its transform f4 [208] (see also [217]).

Theorem 38 (Ibrahim and Dragomir [208]) Let f(z) = > .~ a,2z" be a
function defined by a power series with real coefficients and convergent on the
open disk D (0,R) C C, R > 0. If a, B, x are complex numbers such that o,
Bz, af, |al?*, |8, |#?| € D (0, R), then

7 07) f ()] < 5 ([fa (10P) £ (18] 4 74 (@B)]) £a (o). (3:22)

Proof. By choosing p,, = |a,|, ¢, = ", b, = " and x,, = sgn (a,) 2", n >0

in (3.6), where sgn (t) is a real sign function defined by (2.11), we have

m m

Z a, (aT)" Z an (Bx)n

n=0 n=0

m m

Z |an| sgn (a,) " (T)" Z |an| sgn (ay) =" (B)n

Y

1/2

< +

Z |an| (045)”

n=0

N | —

lzmj anl (o) o (18"

x> an| (J2*)", (3.23)

for any «, 3, x € C with o7, Bz, of, |a|?, |37, |z|> € D(0, R). Now, taking the
limit as m — oo in (3.23) and noticing that all the involved series in (3.23) are

convergent, then we deduce the desired inequality (3.22). m

Remark 39 Taking in (3.22) a =z € C, B =Z and x = a € R will produce the
inequality (3.4) [89].
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In what follows, we provide some applications of the inequality (3.22) for

particular functions of interest.

(1) If we take the function f(z) given by (1.20), then we have the transform
fa(z) given by (1.19).Applying Theorem 38, we get the following inequality

1/2

2[1—aB] (1= fal*) [(1 = laf) (1 = 16)]
< |1+ a7||1 + Bl (‘1 —aB|+ [(1—|af*) (1 - |5|2)]1/2) . (3.24)

for any «, 8,z € D(0,1). In particular, if o = 3, then from (3.24) we

obtain
2|1 —a? (1 —|af’) (1 - |zf)

<1+ az||1+a7| (1-|af +]1-a?), (3.25)

for any a,z € D (0,1).

(2) For the exponential function f (z) given by (1.26), we have the transform

o0 n

fa(z) = Z % =e*, zeC. (3.26)
n=0

Utilising the inequality (3.22) we obtain

1
‘exp (OE + Bx) }

< % <exp E (Ja? + 181%) + [[*] + exp (j]?) exp (@B)]) . (3.27)

for any «, 3,z € C. In particular, if o = 3 in (3.27), then we get

1
lexp (2aRe (z))|

< [exp (|a|2 + |B|2) + exp (|x|2) }exp (oz2) H , (3.28)

N =

for any a, x € C.
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(3) If in (3.22) we choose the trigonometric function f (z) given by (1.33), then
the transform f4(z) is given by (1.39). Applying the inequality (3.22) will

produce the following result:

|cos (o) cos (Bz)|

1

< 5 ([cosh (|a|2) cosh (|6|2)}1/2 + |cosh (af) }) cosh (|x|2) , (3.29)

for any «, 3, x € C. In particular, if we choose a = 3 in (3.29), then we
obtain the inequality

[cosh (|04|2) + |cosh (@?)]] cosh (|:U\2) ,  (3.30)

N | —

|cos () cos (ax)| <
for any «, z € C.

Next, we have proved the following result [208], which connects the two power

series, one having positive coefficients (see also [217]).

Theorem 40 (Ibrahim and Dragomir [208]) Let g (z) = >~ gn2" and
[(2) =300 s anz™ be two power series with g, € C and a, > 0 forn > 0. If f

and g are convergent on D (0, Ry) and D (0, Ry) respectively, and the numerical

‘gn‘Q

series Y o, - 45 convergent, then we have the inequality:

F(=P) + 17 ) (3.31)

’I’L

1 o0

lg (= <3 Z

n=0

for any z € C with z, 22, |z|> € D(0,Ry) N D (0, Ry).

n

Proof. On utilizing the inequality (3.7) for the choices p, = a,, ¢, = 2",

Ty, = gn/an, n > 0, we have

(3.32)

for any m > 0. We observe that
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S Gnz" = > g, ()" and then )" (3.33)
n=0 n=0

Replacing (3.33) into the inequality (3.32) we get

Zgnzn Z gn (2)"] < 22 9. [Zan 121" + Zan (22)n] . (3.34)

Since z, 22, |2z|* € D (0, R;) N D (0, Ry), hence the series in (3.34) are convergent
and letting m — oo, we deduce the desired inequality (3.31). =

Remark 41 If the coefficients g,, n > 0 are real, then by (3.31) we recapture

the result of Cerone and Dragomir in [89], namely

oo

<5 B () 1 (1] (339

=0

l\DI»—t

for any z, 22, |2|> € D (0, Ry) N D (0, Ry).

As natural consequence of Theorem 40, the following corollaries hold for

particular choices of functions f (z). First, we have

Corollary 42 Let g(z) =Y .~ gnz" be a power series with complex coefficients
and convergent on the open disk D (0, R). If the numerical series Y20 |gn|” is

convergent, then
1 — 1— 2" + |1 — 22|
| < = , 3.36
oI5 2 o [1—||)|1—22| 30

for any z € D(0,1) N D (0, R).

Proof. The proof simply follows from (3.31) for the function f (z) given by
(1.19). m

If we consider the series expansion

3

éln(l—gz) gn:_lzn;ZED(O?l)\{o}v (337)
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then, on utilising the inequality (3.36) for the choice g, = i"/ (n + 1) and taking
into account the identity (d) in (1.45), we can state the following inequality

1 1 w2 |z 1— 2?41 - 22
1 1 <= 3.38
n(l—z‘z)n(1—z’z)'—12 (1_\z|2 =27 - (3:38)

for all z € D (0,1).

Corollary 43 Let g (z) =Y .2, gn2" be a power series with complex coefficients
and convergent on the open disk D (0, R). If the numerical series 320 n!|gn|?

15 convergent, then

92903 < 5 gl fexp (1212) + [exp ()] (3.39)

n=0

(\V]

for any z € D (0, R).

Proof. The proof follows from Theorem 40 by choosing the exponential
function f (z) given by (1.25). m

Some applications of the inequality (3.39) are as follows.

(1) If we apply the inequality (3.39) for the function

sin ( Z 2n 1) 2t 2 e C, (3.40)

then, we obtain the inequality

l\DI»—t

|sin(iz) sin(iZ)

ZZH [exp (1217) + [exp (2)[],  (341)

:O

for any 2z € C.
(2) If we apply the inequality (3.39) for the function

sinh (iz2) Z B +1 22t 2 e C, (3.42)
n

n:O
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then, we obtain the inequality

oo

i 9 n! 9 9
sin(z)]” < 5 ;W [exp (|2]7) + Jexp ()], (3.43)

—_

for any z € C. Indeed, observing that

|sinh (iz) sinh (iZ)| = [isin(2)-isin(Z)| = |sin(z)sin (Z)| (3.44)

= |sin(2)[*,

and by (3.39) we have

|sinh (iz) sinh (iZ) %Z @n 1D [exp (2| ) + |exp (2%)]], (3.45)

ool
for any z € C, then we deduce the desired inequality (3.43).

Finally, we obtain the following result [208], which provides the connection
between three functions defined by the power series, one having positive coeffi-

cients, while the others have complex coefficients (see also [217]).

Theorem 44 (Ibrahim and Dragomir [208]) Let g (z) = > " gn2", h(2)
=Y ohn2" and f(z) = Y .2 a,2" be three power series with g, h, € C
and a, > 0 forn > 0. If f, g and h are convergent on D(O7 Ry), D (0, Rs)
and D (0, Rs) respectively, and the numerical series Y - |ga"| Sy % and

>, % are convergent, then we have the inequality

1/2

ih_

—0 TL

(Iz1%),  (3.46)

for any z € C with z, |z|> € D (0, R;) N D (0, Ry) N D (0, Ry).

Proof. Again, on utilising the Buzano inequality (3.6) for the choices p,, =

Uny Cp = Gn/0n, by = hyp/ay,, ©, = 2" n > 0, we can state that

S (t) e (2)

n=0

Y
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for any z € C with z, |2|> € D (0, R;) N D (0,Ry) N D(0,R3). m

Remark 45 In particular, if g, = h,,, then from (3.46) we have

o

l9(2)* < f (121" Z

n=0 n

(3.48)

for any z, |z|> € D(0,Ry) N D (0, Ry).

Remark 46 Also, if h, = Gn, then from (3.46) we get the following inequality

90902 < 5 (z IS : ) E) (3.49)

for any z,|z|> € D (0, R) N D (0, Ry).
For particular choices of function f (z) in (3.46), the following result holds.

Corollary 47 Let g(z) and h(z) be power series as in Theorem 44. If the nu-

merical series Y - ||?, - \hn|? and >0 o |gnhn| are convergent, then

1/2
. (3.50)

1 . 2 2
l9(2)h(2)] < W [; |G ;‘hn’

for any z € D(0,1) N D (0, Rs) N D (0, Rs3).
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Proof. This follows from (3.46) for the function f(z) given by (1.19). m

If we consider the series expansion given by (3.37) and the series

In < L ) = i (_i)nz”, e D(0,1), (3.51)

then on utilizing the inequality (3.50) for the choices g9 = hog = 0, g, =
i"/ (n+1), h, =(—41)" /n, n > 1, and taking into account that

o L oo 1

and the identity (d) as mentioned in (1.45), we obtain the following inequality

1 1 ™46 |2]
1 1 < .
n(l—z’z) n<1+iz)’_ 12 <1_|Z|2 ’ (3:53)

for any z € D (0,1).

In the next section, we establish some other inequalities for functions defined
by the power series with nonnegative coefficients and convergent on an open disk.
A refinement of the (CBS)-inequality in inner product spaces due to Dragomir
[118], is being an important tool for this investigations. Natural applications
for some fundamental functions of interest such as the exponential, logarithm,

trigonometric and hyperbolic functions are also pointed out.

3.3 Power Series Inequalities Via a Refinement

of the Schwarz Inequality

If we write the inequality (2.78) for the particular inner product space
(K™; (-,-)), where the weighted inner product is defined by (2.48), for = =

(x17:r27"'7xn)7 Yy = (917927---,?%) c K" and p = (pl7p27”'7pn) with Dj Z 07
Jj €{1,2,...,n}, then we get the following discrete inequality
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n 1/2 n /2 ,
2 2 2
(ij |51 ) (ij ;] ) > pilylt -
j=1 j=1 j=1

n n
E :pj%'z_jE D275
j=1 j=1

> (3.54)

n n n n
— 2 — —
D o Y opilal =D piwiE Y pia
j=1 j=1 j=1 j=1

where p; > 0, z;,y;,2; € K, j € {1,2,...,n}. In particular, if we take in (3.54)
y; =7; for j € {1,2,...,n}, then we obtain

n n n n

2 2 —
S pilil?> ol = D) opiiEm > piwsz
j=1 j=1 j=1 j=1

> (3.55)

n n n n
2 2 —_
> iy pilyl =) piaEm > iz
s j=1 j=1

for p; >0, z;,2; €K, j € {1,2,...,n}.

On applying the inequality (3.54) for functions defined by the power series
with nonnegative coefficients, we establish the following result [209] (see also
[217]).

Theorem 48 (Ibrahim and Dragomir [209]) Let f(z) = >~ a,2" be a
power series with monnegative coefficients a, and convergent on the open disk
D(0,R). If z, y, z € C, so that |x|?, |y*, |2°, 2%, 27, 27 € D (0, R), then

[F (1217) £ ()] £ (121%) = 1f 23) £ (27)]
> |f @) £ (1) — £ @2) f (7). (3.56)

Proof. If we choose p, = a,, ©, = 2", y, = y" and 2, = 2", n €
{0,1,2,...,m} in (3.54), then we have

Li; an (|:v|2)"] N Lﬁ; @ (\y|2)”] - i’; o (1)

Z Qn (mg)n Z Qn (Zy)n
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> D an (@)Y an (127)" =D an (22" an (27)"|. (3.57)

2

Since |z|?, |y|?, |2|°, 2%, 27, 27 belong to the convergence disk D (0, R) and

taking the limit as m — oo in (3.57), we deduce the desired inequality (3.56). m

Some examples for particular functions that are generated by the power series

with nonnegative coefficients, are as follows:

(1) If we choose in the above inequality (3.56) for the function f (z) given by
(1.19), then we have

(1 —2%2) (1 - 27)|
(1= J2?) (1= )] (1= [2P)

U-m2)d-4) 3.58
Z 0= (1= 1= ‘ 5%
for any z, y, z € D (0,1). In particular, for z = T in (3.58) we get
-yl |e-aeem | L
T I i (7 e R R

for any z, y € D (0,1). Also, if 2 =a € R and z, y € C, then from (3.58),

we obtain the following result:
(1 —ax) (1 — ay)
(1 —27) (1 —a?)
_ l-an)(1-ap)

TPy (- )] (- a2)

_1’

1, (3.60)

for any z, y € D(0,1) and a € (—1,1).

(2) If we apply (3.56) for the exponential function f (z) given by (1.25), then

we get
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|17|2+|?J|2 2 — _
exp T+\z\ — |exp (27 + 27)|

> |exp (27 + |2|*) — exp (2% + 27)| , (3.61)
for any z, y, z € C. In particular, for z =7 in (3.61), we obtain

’eXp (a:y + \3:]2) — exp (1’2 +m_y)’

< exp (M) — }exp (1’2 —i—ac_y)} ) (3.62)

for any x, y € C. Also, if z = a € R and z, y € C, then from (3.61) we get
}exp (3@ + a2) —expla(z + ?)H

o + 1y -
Sexp|—— —+a’ |- lexp [a (z +7)]], (3.63)

for any z, y € C and a € R.

(3) For the Koebe function defined by (1.23), we get from (3.56) the following

inequality:

1 1

1=z 1=y (1—]2)*  |[(1—22) (1 -z

> . 5~ - _2'> (3.64)
[(1—a2g) (1 -] [(1—2%)(1—27)]
for any z, y, z € D (0,1). In particular, for y = T in (3.64) we get
1 _ 1
[(1—12) (1= 7)) (1 —a2) (1 —22)P|
> 1 S - 1 -, (3.65)
(-2 (1— 2] [(1—22)(1—a2)]

for any =, z € D (0,1). Also, for z = T, we have from (3.64)
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1
(1122 (1) (=22 (1 -7p)]

1 1

[(1—27) (1 [)]"  [(1—-22) (1 -7y

>

, (3.66)

for any z, y € D(0,1). If z=a € R and z, y € C, then from (3.64)

1 1

(1—laf) (1=1yf*) 1 =a?)?®  |[(1-ax)(1-ap)]|

> ! - L (3.67)
[(1—2y) (1—-a®)]" [(1—ax)(l—ay)]

for any x, y € D (0,1) and a € (—1,1).
Remark 49 If z = 0, then from (8.56) we obtain
[ () £ ()] = 17 ) = |f («7) — £ O)]. (3.68)
where f(0) = ag > 0, |z|*, |y, 27 € D (0, R).

The above result (3.68) also has natural applications for particular functions

of interest, which are pointed out as follows:
(1) If we apply the inequality (3.68) for the exponential function f (z) given

by (1.25), then we obtain the inequality

[2” + Jy|*
exp | o | — 1> |exp (z7) — 1], (3.69)
for any z, y € C. Moreover, if y = 7, then from (3.69) we get

exp (\:U]Z) — 1> lexp (2%) — 1,

for any = € C.
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(2) If we apply the same inequality (3.68) for the trigonometric function f (z)
given by (1.33), then we get the following inequality

[cos (]:U]Z) cos (]y\2)] V2 > |cos (xy) — 1], (3.70)

for any =, y € C. Also, if y = T, then from (3.70) we get
cos (\:U|2) — 1> |cos (2%) — 1,
for any = € C.

(3) For the function f (z) given by (1.19) and applying the inequality (3.68)

we obtain
1

(1= J2?) (1= 1y%)]"

Yy
1—ay|’

1>'

(3.71)

for any z, y € C with |z|*, [y, 27 € D (0,1).

The following result also holds [209).

Remark 50 Ify =7 in (5.56), then we get

F(2?) £ (1217) = [f@2) f @2)] > | (22) £ (12) = fla2)f 23)].  (3.72)

forx, z € C with |x|2, |z|2, 2z, zx € D (0,R). Moreover, for z =a € R, from
(8.72) we deduce

f(12°) £ (a®) = |f () = | f (+%) f (a®) = f* (az)|, (3.73)
for any x € C, a € R. If we choose in (3.73) a = 1, then we have the inequality
F(l2P) F @) = 1f @) 2 [f (@) £ (1) = £ ()], (3.74)

for any x € C.

Remark 51 If z =7 in (3.56) then we get
7 (1af ) ()] 1 (1) = 1 (2%) f ()|
> |f (@) f (|=*) - f («%) f @D)], (3.75)

for z, y € C with 2*, zy, |x|2, ly|*> € D (0, R).
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For some application, we apply the inequality (3.74) for the exponential func-
tion f (z) given by (1.25), then we have

exp (\x!Q +1) — |exp (2z)| > |exp (2% + 1) — exp (22)|, (3.76)

for any x € C. Since |exp (22)| # 0, then the inequality (3.76) is equivalent with

exp (\:U|2 + 1)

— 1> lexp(z—1)*—1], 3.77
IO .10

for any x € C.

Also, if we apply the inequality (3.75) for the exponential function f (z) given
by (1.25), then we get

2 2
exp (—3 2] 2+ £l ) — }exp [m2 —l—x_yH

> |exp (27 + \m|2) — exp (¢* +77)| (3.78)

for any z, y € C. Moreover if x = a € R, then from (3.78) we obtain

exp (%) > lexplaa+v)]l, (3.79)

for any y € C and a € R.

The second result on the power series inequalities via a refinement of the
(CBS)-inequality in inner product spaces (3.54), is incorporated in the following
theorem [209] (see also [217]).

Theorem 52 (Ibrahim and Dragomir [209]) Let f(z) = > .~ a,2z" be a
power series with real coefficients a, and convergent on D (0,R) C C, R > 0. If
x,y, 2 € C, so that |z|°, |y|*, |2|%, 2%, 27, 27 € D (0, R), then

[ (2) £a (] 14 (2P) = 1 @) £ (27)]
> |fa (=) fa (121°) = £ (22) f (27)] - (3.80)
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Proof. By choosing p, = |a,| > 0, z, = 2", y, = y" and z, = sgn (a,) 2",
n >0 1in (3.54), we get

Z a, (£z)" Z a, (27)"
= Z |an| sgn (an) 2" (2)" Z |an| sgn (an) 2" ()",

m 1/2 m 1/2m

< (z ) |x|2”) (z ) |y|2”) S ] s (an) 7
n=0 n=0 n=0

y)" Z |an] [sgn (a,) 2"

—Z|an\x sgn (ay) xZ\an\ sgn (a,) 2" ()"

i} (i " <\x|2>") N (i o (W)") ol (:F)

Y

m

Z|an| Z| Zan )nzan (=)

" (3.81)

for any x, y, z € C with 27, 2%, 27, |z|%, |y|*, |2|> € D (0, R). Since all the series
involved in (3.81) are convergent, by taking the limit as m — oo in (3.81), we
deduce the desired inequality (3.80). m

In what follows, we provide some applications of the inequality (3.80) for

particular functions of interest.

(1) If we take the function f (z) given by (1.20), then the transform f4 (2) is
given by (1.19). Applying the inequality (3.80), we can state that

: : }1/2< : ) ' :
2 2 2
L—|z|” 1—ly 1— |z 1+az 1—|—zy

1 1
[(1 - |17|2) (1 — |y|2)}1/2 (1 B |z|2) B (1 +2%) (1 + 27)|

fa(z2)
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(1 +22) (1 +29)| = [(1 = [*) (1= )] (1= |2)
(=) (1= yA)]"* (1= 1) |1 +22) (1 + 27)|

1 1 1 1
Z — 9 — —
1—ay 1—|z| 142z 142y

[(1+2%) (1+27) — (1 —2p) (1= |2[*)]

T a—aw) (- P10+ 23) 0+ )| (3.82)
Hence we have
(1 +2%) (1+29)] -
(1= Jaf?) (1= )] (1= 121?)
(1422 (1+27)
(1 —ay) (12 1' : (3.83)

for any z, y, z € D(0,1). In particular, if y =7, 2 = a € R, then from
(3.83) we get

(1+ az)®
(1—2%)(1—a?)

11+ ax|’ B
(I=lal’) @ =a?)

—1, (3.84)

for any z € D (0,1),a € R.

For the exponential function f (2) is given by (1.26), we have the transform
fa(z) given by (3.26). Utilising the inequality (3.80), we obtain

|$‘2 + \y|2 2 - -
exp | ————+ 12| | lexp (2Z + 27)| — 1

> |exp (27 + |2|* + 27 + 27) — 1], (3.85)

for any x, y, z € C. In particular, if y = 7, 2 = a € R, then from (3.85)

we get

exp (\m]Q + a®) |exp (2az)| — 1 > |exp (|:1c|2 +a+ 2azx) — 1], (3.86)

for any z € C, a € R.
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Similar result to (3.31) is also obtained that connects the two convergent
power series, one having positive coefficients, while the other has complex coef-
ficients [209] (see also [217]).

Theorem 53 (Ibrahim and Dragomir [209]) Let g(z) = > 2 9.2" and
f(z) = D207 panz" be two power series with g, € C and a,, > 0, n > 0. If f
and g are convergent on D (0, Ry) and D (0, Ry) respectively, and the numerical

series y -, ‘QQL 15 convergent, then we have the inequality

Z ‘9" e

z)| > , (3.87)

for any z € C with z, 22, |2|*> € D (0, R,) N D (0, Ry).

Proof. On utilizing the inequality (3.55) for the choices p, = a,, z, = 2"
and 2z, = gn/an, n € {0,1,2,...,m}, we have

n=0 n=0
m m 2 m n
— Z (|z|2)nz 90| — Zgnznzgnz
n=0 n=0 tn n=0 n=0

W,
]
$
N
¥
NE
£

: (3.88)

for any m > 0. Replacing the equation (3.33) in (3.88), we get

m

Z (121°)" ~

n=0

n

(3.89)

m m | |2 m n
NN LE ) = Syl
n=0 n=0 Qn n=0

n=0
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Since z, 22, |2|* € D (0, Ry) N D (0, Ry), the series in (3.89) are convergent, by
letting m — oo, we deduce the desired inequality (3.87). m

Remark 54 If the coefficients g,, n > 0 are real, then we have the inequality

S BE () @@ > S0 () -], (390)

Qn

for any z € C with z, 2%, |z|> € D (0, R) N D (0, Ry).

The following corollary is the natural consequence of Theorem 53 (see [209],
[217]).

Corollary 55 Let g(z) =Y 7, gn.2" be a power series with complex coefficients
and convergent on the open disk D (0, R). If the numerical series Y00 |gn|” is

convergent, then

. (3.91)

(=) Sl st 2

(17) Sl ot
for any z € D(0,1) N D (0, R).

Proof. It follows from (3.87) for the function f (z) given by (1.19). =

If we consider the series expansion given by (3.37), then on utilizing the
inequality (3.91) for the choice g, = i"/(n+ 1), and taking into account the
equality (d) in (1.45), we can state the following inequality

= () - o () (22)
%2(1%222)+1n(1—12’z)1n<1ii2)" (3.92)

>

for any z € D (0,1).
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Corollary 56 Let g(z) =Y. 2, gn.2" be a power series with complex coefficients
and convergent on the open disk D (0, R). If the numerical series .°° o n!|g|*

18 convergent, then

> nlgalexp (12°) = [9(2)g(Z) = > nllgal*exp (2°) — g(2)g Z)|, (3.93)

for any z € D (0, R).

Proof. It follows from Theorem 53 by choosing the exponential function
f(z) given by (1.25). m

If we apply the inequality (3.93) for the trigonometric function f (z) given
by (3.40), then we obtain the following inequality

Z (QnL—i'—l)' exp (]2\2) — |sin(iz) sin(iZ)|
> Z (2+_:_1)' exp (2%) — sin’(iz) |, (3.94)

for any z € C.

More results on the celebrated (CBS)-type inequalities for functions defined

by the power series with real coefficients, are discussed in the following section.

3.4 Other Refinements of the (CBS)-type

Utilising a different technique based on the continuity properties of modulus
(2.22), in this section, we develop some more inequalities for the power series
functions that are related to the (CBS)-type inequality (see [214], [217]). Appli-

cations for some fundamental functions are included as well.

We begin with the following result.
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Theorem 57 (Ibrahim, Dragomir and Darus [214]) Assume that the pow-
er series f(z) = Y o0 pnz" with real coefficients is convergent on the disk
D(0,R), R > 0. Ifz, z € C are such that z, zz, |z||z|*> € D(0,R), then
we have the inequality

fa(lzl12%) fa(2]) = |fa (j2] 2)[

> |f(@)f (x]2] 2) — f(@2)f(z|2])| = 0. (3.95)

Proof. For arbitrary complex number z with z € D (0, R), we have for n,
JeN,

|z — zj|2 = [" = 2| |" = 2| > | = & ‘|z|n - |z|J‘ , (3.96)
by utilising the continuity properties of modulus (2.22). We also have

|2 — 27‘2 =" = 2Re (2"%) + |2j|2 = |2[*" —2Re (2"%) +|2[¥, (3.97)

and
e B e o e P B e P T R X )
for any n, j € N. Utilizing (3.96) we get the inequality
|2[*" = 2Re (2"2) + |27 > |2" |2 + 27 |2 — |2 2" — |27 2], (3.99)

for any n, j € N. If we multiply the inequality (3.99) by nonnegative quantity,
i.e., [pn| 2" |p;| |z > 0, where 2 € D (0, R) and n, j € N, then we have

[pal 2" 121" j 2P + [pal 21" ;) |2

~2Re (|pul[al" 2" ;| |1 =)

> |ppa” |2|" z”pjmj +pnm"pjmj \2\3 2 — pnm”z"pjxj \z|3

—pu" ] pyat |, (3.100)

for any n, j € N. Summing over n and j from 0 to k, and utilizing the triangle
inequality for the modulus (2.25), we obtain from (3.100) that
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k k k k
) . .
S lpal lal” 1273 o o+ 3 Il la” 3 [yl
n=0 j=0 n=0 j=0
k k o

2o (Sl 3 bt 5

n=0 =0

k k k '
"2 z”ijx] + an:E”ijm] |27 27

j=0 n=0 7=0

k k k k
—anm"z”ijxj |2 — anm" |z\"2pjszj : (3.101)
n=0 j=0 n=0 j=0
Since
Z il |21 (2 Z [Pnl |2]" 2", (3.102)
then

(3.103)

Re(2|pn||x|"”2|pj||x|f ) Z|pn||fv|" g

Hence, we get the following inequality, by replacing the equality (3.103) into
(3.101),

[ J[" 2"

k k
> Ipal 2" 12 Ipal 2" —
n=0 n=0

(3.104)

k k k k
> n n | |n n _ n . n n | |n
Z PnX PnX |2 2 Pn 2 PnT |2
n=0 n=0 n=0 n=0

Since all the series whose partial sums are involved in (3.104), are convergent,
then by taking the limit as k& — oo in (3.104), we deduce the desired inequality
(3.95). m

The particular cases are as follows:

Corollary 58 If > 7 |pn| < oo, i.e., fa(l) < oo, then for any ¢ € C with
IC| = 1, we have

Fa(1217) Fa ) = 1fa () 2 [F(QF (€2l 2) = f(C2)f(C 2D 2 0. (3.105)
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In particular, for ( =1, we have

Fa(l21%) fa (V) = 1fa () = [ F Q1) f (12 2) = F(2)f(|zD] = 0, (3.106)
for any z,|z|* € D (0, R).

Some applications of the inequalities (3.95) and (3.106) for particular func-

tions of interest are pointed out as follows:

(1) If we apply the inequality (3.95) for the function f (2) given by (1.19), then
we get
-2
2 2
(1= J=[) (1= []]2%) 1 = |2] 2|

1—|z|
00—z ) (=22 %)

(3.107)

for any z, z € C with z, |z||z|> € D (0, 1).

(2) If we apply the inequality (3.95) for the function f (2) given by (1.20), then
we get the inequality

[1— 7]
2 2
(1= 1al) (1= lal12]°) |1 — |=| 2]

1— 2|

0029022 11212 2) (3-108)

for any x, z € C with =, zz, |z||2|* € D (0,1).

(3) If we apply the inequality (3.106) for the exponential function f (z) given
by (1.25), then we get the inequality

exp (|2|* + 1) — |exp (2)> > lexp (z]2| +1) —exp (z+ |2])]  (3.109)

for any 2z € C.
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Remark 59 The inequality (3.95) can be written in the form

fallzl[=%)  fa(lz]2) fx)  flzz)
det > |det (3.110)

fallzlz)  fa(lz)) flz]) f(z]z]2)
for any x, z € C with =, zz, |z||z|> € D (0, R).

The following result also holds.

Theorem 60 (Ibrahim, Dragomir and Darus [214]) Assume that the power
series f(z) =D o, pn2" with real coefficients is convergent on the disk D (0, R),
R > 0. Ifx, z € C are such that x, zz, |x||z|> € D(0,R), then we have the
inequality
fa () fa (2] 121%) = Re [f3 (2| 2)]

1 -
2 5 |f(@)f (@]z]2) + f(2)f (2 ]2]Z) = f(22) f(2]2])
—f(xlz]) f(2Z)] - (3.111)

Proof. If z € D (0, R), then

=@ = =@ =@ 2| = @ | =1
= ‘|Z|” A T ET AR ET R G (3.112)
for any n, j € N. We also have
2@ = P 2Re () + |
= |2]*" —2Re (2"27) + 2|7, (3.113)

for any n, j € N. Utilizing (3.112) we have the inequality
2" — 2Re (2"27) + |27 > ’|z\"z" + @) 2" = |2 2" = |2 () (3.114)

for any n, j € N. Now, on utilizing the similar argument to the one in the
proof of Theorem 57 above, we deduce the desired result (3.111). The details
are omitted. m
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Corollary 61 If z =7 in (3.111), then we have

Fal)) fa (l2) = Re [£2 (12| 7)]

> S |F@) () + F@)F (1214%) = F(2)(Jel )

—f (Jz]z) f («%)] (3.115)
for any x € C such that z, |z| z, || 2* € D (0, R).

In the following, we give some applications of above inequality (3.115) for

particular complex functions of interest.

(1) If we take the function f(z) given by (1.20), the we have the transform
fa (2) given by (1.19). Applying the inequality (3.115), we get the following

result

1

TR R (ﬁ)

2+ |z| 2% + |z|?

> 3
T 2(1+2) (1—|—|x\ )(1+\1’|1’2)

1
2

2+ 22 + |z
(I1+22) (1 + |z|x) (1 + |3:\2)

, (3.116)

for any x, |z|z, |z|2? € D (0,1).

(2) If we apply the inequality (3.115) for the function f(z) given by (1.25),
then we get

exp (|| + [2]*) — Re fexp (2] )
1
> = Jexp(a + [ol) + expla + [] %) — expfaf? + |2 )

—exp(|z| z + 2?)] (3.117)

for any = € C.
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Theorem 62 (Ibrahim, Dragomir and Darus [214]) Assume that the pow-
er series f(z) = Y o0 pnz" with real coefficients is convergent on the disk
D(0,R), R > 0. If =, y € C are such that |z|*, |y|*> < R, then we have the

inequality

Fa(121%) fa ([91*) = |fa (zy))?
> | f(lzl2) f (ly17) — |yl =) f(|z]7)] - (3.118)

Proof. If z, y € C, then we have

2

(G 2l (§)"| = 2 (G) — o (@)

@Y~ @)

> |o" @) =2 @] [lo]" Iyl [P (3.119)
for any n, j € N. We have upon simple calculations that
2" [y — 2Re (a"y" @) @) ) + Iyl 2]
> ||z 2" |y @) + |y @)" |2’ 27 — |y|" 2" |2 ()
—|z" @)" [yl :vj) : (3.120)

for any n, j € N.

If we multiply the inequality (3.120) with the positive quantity, i.e., |p,||p;| >

0, and summing over n and j from 0 to k, then we have

k o) k k
2 27 2 27
S lal 127 pil Wl > Il P> Ipsl 2
n=0 j=0 n=0 =0
k k ' '
—2Re (Z pal 2™y™ > |ps| () @)J>
n—0 =0

k
" @ Zpy\ylj +an|y\ 7)Y pilal @
j=0
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- an ly[" " Zp] 2l (7 an 2| ( Zp] lyl? 9. (3.121)
Due to the fact that
k oS k 2
oIl @y > ol @ @) = D Ipal "y (3.122)
n=0 Jj=0 n=0
then the inequality (3.121) is equivalent with
k k
Dol 2™ ) Ipal Iy — | 2"y"
n=0 n=0
an ] 2" an lyl" ( an ly[" 2" an 2™ ( (3.123)

Since all the series with the partial sums are involved in (3.123), are conver-
gent, then by taking the limit over k& — oo in (3.123), we deduce the desired
result (3.118). m

Remark 63 The inequality (3.118) is also equivalent to

fa(lzl?) fa(zy) f(zlz)  f(lylz)
det > |det (3.124)

fa@g)  fa(lyl) fl=lm) £ (lyl)
for any x, y € C with |z|?, |y|* < R.

The inequality (3.118) has some applications for particular complex functions

of interest, which will be pointed out as follows.

(1) If we apply the inequality (3.118) for the function f(z) given by (1.19),
then we get
1 _ 1
(=] (1=1y*)  [1—ayl”
1 1
-zl Tyl (@ —Ilylz) (1 ~|z[7)

(3.125)
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for any x, y € C. In particular, if in (3.125) we choose y = 0, then we

obtain the simpler inequality
1 ' 1

1> 1’ (3.126)
1— |z

1—xlz|

for any x € C.

If we apply the inequality (3.118) for the function f(z) given by (1.25),
then we have

exp (J” + [y[*) = lexp (wy)|”
> exp (z || + [y|y) — exp (|y| = + |2|7)| (3.127)
for any z, y € C. In particular, if in (3.127) we choose y = 0, then we get
exp (|x|2) — 1> |exp (z|z|) — 1] (3.128)

for any x € C.

If we take the trigonometric function f (z) given by (1.33) with its trans-
form fa (2) is given by (1.39), then utilizing the inequality (3.118) for f (z)

as above gives

cosh (|:U\2) cosh (|y\2) — |cosh (zy)|?

2> |cos(x |z]) cos (|y|Y) — cos(|y| z) cos(|z[ )| (3.129)
for any z, y € C. In particular, we have, with y = 0 in (3.129),
cosh (|x|2) — 1> |cos (z]z]) — 1] (3.130)

for any x € C.

We end this section by proving the following results.

Theorem 64 (Ibrahim, Dragomir and Darus [214]) Assume that the po-

wer series f(z) = Y 2 pp2™ with real coefficients is convergent on the disk
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D(0,R), R > 0. Ifz, y € C are such that |z|?, |y|> < R, then we have the

inequality
fa (121%) fa (IyI*) = Re [f3 (27)]
§| fal @) f (917 + (1B f (vl y) = F(|2]9) f(|y|T)
—(lyl o) F (| D) (3.131)

Proof. If z, y € D (0, R), then we have

@ - @y = | @ - @y @ - @

> 2" (7)) — @) y" — |z (3.132)
for any n, j € N. Doing simple calculations we get that
2" [y — 2Re [+ @) 27 (5)"] + |l [y
> )lenw” lyl @) + |2 @) [y y" = 2" y" [yl (@
—ly[" 2" |z (g (3.133)

for any n, j € N. If we multiply the inequality (3.133) with |p,||p;| > 0, and

summing over n and j from 0 to k, then we get

Z\anwIQnZ\ngyI”—?Re (Z\pn\x Z\pglﬂ )
+ ; [pal Ly Z s

> ipn\l’l Zp]\ylj +any ly|" ij o’ (T
—an 2"y Zp]\ylj an ly[" ”me\”

(3.134)

for any n, j € N.

Since all the series whose partial sums are involved in (3.134), are convergent,
then by taking the limit over & — oo in (3.134), we deduce the desired result
(3.131). m
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The inequality (3.131) is also a valuable source of particular inequalities for

complex functions of interest, that will be outlined in the following.

(1) In (3.131), we take the function f(z) given by (1.25), then we can state
that

exp (|z* + [y|*) — Re [exp (227)]
1 _ _
23 lexp (|z| z + |y|7) + exp (|2 T) + |y| v)

—exp ([z]y) + [y|7) — exp (ly| = + =] )], (3.135)

for any =, y € C. If in (3.135) we choose y = 0, then we obtain the simpler

result
1
exp (|:U\2) -1> 5 lexp (Jz| z) +exp (|z|T) — 2], (3.136)
for any = € C.

(2) If we apply the inequality (3.131) for the trigonometric function f (z) given
by (1.33) with its transform f4(z) is given by (1.39), then we get

cosh (|x|2) cosh (|y|2) — Re [cosh® (27)]
> Jeos(x| ) cos (Jy| ) + cos([a| %) cos (fy] )

— cos(|z] ) cos(ly| T) — cos(|y| ) cos(|z[ )], (3.137)

for any x, y € C. In particular, if in (3.137) we choose y = 0, then we
obtain that

1
cosh (\m|2) —-1> 3 |cos(|z| z) + cos(|z|Z) — 2], (3.138)

for any = € C.



Chapter 4

More Inequalities on Power

Series with Real Coeflicients

In the previous chapter, some inequalities concerning the power series have been
established by utilizing a different technique based on the continuity properties
of modulus, Buzano’s inequality and Schwarz’s result in inner product spaces.
In this chapter, we employ the similar method to develop some more inequalities
for functions defined by the power series in a real and complex variable, with the
crucial tools for these investigations being Young’s, Holder’s and Jensen’s type

inequalities, as well as their reverses and counterparts.

The main purpose of Chapter 4 is two-fold. The first aim is to derive some in-
equalities for the power series that are related to the classical Young’s inequality.
Motivated by the results established by Dragomir and Sandor [136], we derive
new and better inequalities for functions defined by the power series with real
coefficients via Young’s inequality for the product of two scalars. All the results
and their applications for some fundamental functions are presented in Section
4.1.2. More inequalities on the power series functions are obtained by utilis-
ing a refinement and a reverse of Young’s inequality, see Section 4.1.3. Natural

applications for some fundamental functions of interest are also included.

The second purpose of this chapter is discussed in Section 4.2: that is, to
develop some inequalities on the power series functions by making use the con-

vexity properties of certain underlying functions. The celebrated Jensen type

98
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inequalities and one of their reverses due to Dragomir and Ionescu [139], are
the useful tools that have been used in Section 4.2.3, in order to derive new in-
equalities for functions defined by the real power series with positive coefficients.
Applications for some fundamental functions such as the exponential, logarithm,

trigonometric and hyperbolic functions are provided as well.

All the results contained in this chapter are mainly taken from the several
research papers published by the author in collaboration with Dragomir, Darus
and Cerone (see [213], [215], [216]).

4.1 Some Results Related to Young’s Inequal-
ity

4.1.1 Introduction and Preliminary Results

It has been shown in the literature that the famous (CBS)-inequality and its
generalization, such as Holder’s inequality, can be derived by utilising Young’s
inequality for the product of two real numbers (see [422], [301, p. 457], [381,
p. 63-64]). Consequently, some results concerning the extensions, generaliza-
tions, refinements, etc., of the (CBS) or Holder’s inequality, are closely related

to Young’s inequality as well.

In [122], Dragomir provided the generalization of the (CBS)-inequality by
utilising Young’s inequality (2.80) as follows (see also [117, p. 11], [136]):

(me) S S 4 S S,
k=1 p k=1 k=1 q k=1 k=1

for xp,yr € C, k € {1,2,...,n} and p, ¢ > 1 with 1/p+1/qg = 1. Tt is
clearly seen that this result reduces to the (CBS)-inequality for complex numbers
when p = ¢ = 2. Further generalizations of the (CBS)-inequality via Young’s
inequality (2.80) have been obtained in [136] by Dragomir and Sandor (see also
[117, p. 10]), namely
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n n
Zpk |2k Yl ZQk |2k Yl
k=1 k=1

1 n n 1 n n
< —Zpk|$k|p2% |yk|p+—ZQk |Ik|q2pk lukl, (4.2)
P k=1 1= k=1

for any g, yx € C, pp, qr. > 0, k € {1,2,...,n} and p,¢ > 1 with 1/p+1/q = 1.
If we assume in (4.2) that p, = ¢, = 1 for all k € {1,2,...,n}, then it reduces
to the inequality (4.1).

Motivated by the result (4.2) and other results from [136], we derive some in-
equalities related to the Holder’s type (2.94) for functions defined by the real and
complex power series. The crucial tool that has been used for these investigations
is Young’s inequality (2.80), as well as a refinement and its reverse. Particular
inequalities are also obtained by applying the results for some fundamental real
and complex functions such as the exponential, logarithm, trigonometric and

hyperbolic functions.

4.1.2 Power Series Inequalities Via Young’s Inequality

On utilising Young’s inequality (2.80) for the power series, we establish the
following result, which improves the Holder’s type (2.94), as well as generalizes
the (CBS)-inequality (2.71) for the power series with real coefficients (see [215]).

Theorem 65 (Ibrahim, Dragomir and Darus [215]) Let f(z) = " pn2"
and g(z) = >~ qn2" be two power series with real coefficients and convergent
on the open disk D(0,R), R > 0. If p > 1 with 1/p+1/¢=1 and z, y € C, x,
y # 0 so that xy, |z|”, |2|?, |y”, |y|* € D(0, R), then

%gA (Iz[") fa (lyl") + éfA (121%) ga (lyl") = |f (xy) g (zy)] (4.3)

and

%gA(mp) fa(lyl) + ng (2" ga (") = [f (gl ) g (" )] (44)
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Proof. If we choose = = |z) [y|" and y = |z |y), j, k € {0,1,2,...,n} in
the inequality (2.80), then we have

N - -

ple [yl™ + qlz[™ [y” = pglzyl lzyl", (4.5)
for any j, k € {0,1,2,...,n}. Now, if we multiply the above inequality (4.5)
with the positive quantltles Ipj|lge|l > 0, for j, k € {0,1,2,...,n} and sum over

j and k from 0 to n, then we derive

n n n n
| . ) |
pY il 129> gkl (™ + > larl |27 Ipsl |yl
=0 k=0 k=0 =0
n ) n
q ij ($y)JZQk (xiy)k : (4.6)
7=0 k=0

Since all the series, whose the partial sums are involved in the inequality (4.6),
are convergent on the disk D(0, R) by taking the limit as n — oo in (4.6), we
deduce the desired result (4.3).

Further, if we choose in (2.80) z = |z /|y[’ and y = |z|* /|y|*, then we get

l‘j ! T k J
) (u) ra (u) > L e
vl vl lyl [yl

for any |y|j, |y|k # 0, j,k € {0,1,2,...,n}. Simplifying the above inequality
(4.7), then we obtain that

the inequality

e T T e e e i R

pq) ) ()"

, (4.8)

for any j,k € {0,1,2,...,n}. Multiplying the inequality (4.8) by |p;||qx| > 0,

for j,k € {0,1,2,...,n} and summing over j and k from 0 to n, we get

n n n n
| . ) |
DMAIEE ATERT) ALES A
=0 k=0 — =0
n
>pq |y pi (]yl"™") Zq zlyl"™)
=0

(4.9)
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Since all the series, whose the partial sums are involved in the inequality (4.9),
are convergent on the disk D(0, R) and letting n — oo in (4.9), we deduce the
desired result (4.4). =

The following result is the particular case of interest (see [215]).

Corollary 66 If g(z) = f(2) in (4.3) and (4.4), then

%fA (") fa (1y") + %fA (|217) fa (191") > |f (zy)? (4.10)

and
%fA(lep)fA(lqu)+$f,4(|:r| Y fa(lyP) = [f (2 ly") f (2wl (411)

respectively, where p > 1, 1/p+1/q = 1 and z, y # 0 with vy, |z|’, |z|?, |y|?,
ly|? € D (0, R). In particular, if y = z in (4.10) and (4.11), then we have

fA(\l'lp)Jr fA (1) = |f () (4.12)

and

fa(z”) fa(l2l?) 2 [f (sgn (z) |2]%) f (sgn () |2[")] (4.13)

respectively, for any x € C, x # 0 with 22, |z|’, |x|* € D (0, R) and sgn(z) is
the complex signum function defined by (2.13).

Remark 67 In the particular case p = q = 2 in (4.10), we recapture the (CBS)-
type inequality (2.71) for the power series, and we also have from (4.11) that

Fa(l21%) fa (l1*) = |f (2 [yl

for any x,y € C with z|y|, |z°, |y|* € D (0, R).

Some applications of the inequalities (4.10) and (4.11) for particular functions

of interest are as follows:

(1) If we apply the inequalities (4.10) and (4.11) for the function f(z) given
by (1.19), then we get
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1 1 1
PR P yeu T e Y B
and
1
11—yl |1 — [yl
! (4.15)

S AN A-h T - a -

respectively, for any x,y € C such that z, y # 0, xy, |z|", |z|%, |y|",
ly|” € D(0,1) and p > 1 with 1/p+1/¢ = 1.

If we apply the inequalities (4.10) and (4.11) for the exponential function
f (2) given by (1.25), then we can state that

1 1
lexp (zy)]* < 5 P (|z|” + [y|") + 7 &P (Jz* + |y|*) (4.16)
and
lexp (z [y|" ' + 2 [yl )|

1 1
< EeXp(|ﬂf\p+ \y\q)+aexp(|$\q+ lyl") (4.17)

respectively, for any z, y € C and p > 1 with 1/p+1/¢ = 1.

If we apply the logarithmic function f (z) given by (1.31), then from (4.10)
and (4.11) we have the inequalities

ln (1 — ay)|*

< Z—ljln (1= |2[")In (1 = [yl") + é In (1 —[f*) In (1 —[yl*) (4.18)
and

In (1 - = |y|q71) In(1—u2 |y|p71)|

<= laf) =)+ s (1= ) (1= [yf)  (419)

respectively, for any x, y € C with x, y # 0, |z[", |=|%, |y|*, |y|* € D(0,1)
and p>1,1/p+1/q=1.
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(4)

If we consider the trigonometric function f (z) given by (1.32), then we ob-
viously have the transform f4(z) given by (1.38). Applying the inequalities
(4.10) and (4.11) for these functions, we get

1 1
Isin(zy)|> < = sinh(|z|") sinh(|y|”) + - sinh(|z|%) sinh(|y|?) (4.20)
p q
and
}sin (:U |y|q71) sin (1’ \y\pil)’

1 1
< =sinh(|z|”) sinh(|y|?) + = sinh(|x|?) sinh(]y[") (4.21)
p q

respectively, for z, y € Cand p > 1 with 1/p+1/¢q = 1.

Similar results can be obtained for the cosine function f (2) given by (1.33)
as well, that is, from (4.10) and (4.11) we get

1 1
|cos(zy)|* < = cosh(|z|”) cosh(|y[") + = cosh(|z|?) cosh(|y|?) (4.22)
p q
and
‘cos (x |y|q_1) cos (x |y|p_1)‘

1 1
< p cosh(|z|") cosh(|y|?) + . cosh(|z|?) cosh(|y|?) (4.23)

respectively, for x, y € C and p > 1 with 1/p+1/q = 1.

The second improvement of Holder’s inequality (2.94) for the power series

via Young’s inequality is incorporated in the following theorem [215].

Theorem 68 (Ibrahim, Dragomir and Darus [215]) Let f(z) and g(z) be

as in Theorem 65. Then one has the inequality

%gA(kvlp) fa(yl) + %fA(IwV’) ga () = [f (" 1wl ) g (ay)]  (4.24)

and

() 9a (1) + 7o (1) £ (91 2 |1 (@) g (Jal7 o)

(4.25)
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Proof. If we choose in (2.80) z = [y|" / [yV, y = |=[" / |z, |2, [y}’ # 0, j,
ke€{0,1,2,--- ,n}, then we have

k j j —1)j —1)j k
ply™ |2 + gz lylY > pgla|®V |y |2yl
= pa (2 y") (ay)'| (4.26)

for any j, k € {0,1,2,--- ,n}. Multiplying the inequality (4.26) with |p;||gx| > 0,

and summing over j and k from 0 to n, we obtain that

n n n n

k j k j

Y arl ™Y lpil 27 + > lael 127 Ipjl [y|”
k=0 j=0 k=0 §=0

ij (2" ™) Y (xy)'“| : (4.27)

> pq

From (2.80), we also have the inequality

2k j j 2k
pY ol 2> il 1Y + ¢ > sl 1> lal 1yl
=1 =1 =1 k=1

> i (ey)’ e (| |y|2/”)k‘ , (4.28)
j=1 k=1

> pq

for any z, y € C, p > 1 with 1/p+ 1/q = 1, which was obtained from (2.80) by

choosing = = |z|* |y, y = |z} |y|*P*, and repeating the same method as

above.

Now, since all the series, whose the partial sums are involved in the inequal-
ities (4.27) and (4.28), are convergent on the disk D(0, R) and letting n — oo in
the both inequalities (4.27) and (4.28), we deduce the desired results (4.24) and
(4.25). m

The following corollary holds for the particular cases of interest (see [215]).

Corollary 69 If g(z) = f(2) in (4.24) and (4.25), then we get

Fa ) fa(lyl®) = | f Gey) f (2P~ yl*)] (4.29)
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and

o) Fa (101%) + < (1) £ () = | £ o) £ (o 027)| - (430)

respectively, where p > 1, 1/p+1/q =1 and x,y # 0 with zy, |x|2, |z, |x|2/q,

w2 [yl ly|*® € D(0,R). In particular, if y = in (4.29) and (4.30), then

we have
Fa () fa(lz)%) > |f (&%) f (JaP7)] (4.31)

and

fa(2l) ]éfmw) + ng<|x|q> S 17 @) f (2P|, (@32)
for x # 0 with 22, |z|?, |z|?, |z|?, € D (0, R).

Remark 70 In particular case p = q = 2 in (4.29) or (4.50), we get the in-
equality

Fa(12%) fa (lo1*) = 1f () | ()] (4.33)
for any x,y € C with zy, |zy|, |z, |y|* € D (0, R).

In what follows, we provide some applications of the inequalities (4.29) and

(4.30) for particular functions of interest:

(1) If we apply the inequalities (4.29) and (4.30) for the function f(z) given
by (1.19), then we get

(1= ) (L= |yl") < 1 —ay| |1 — |2 |y (4.34)

and

1

2/q |y|2/p

1= 2yl [1— Jal
1 1

< 2 + 2

S pA— P A— ) q(- 2P -y

(4.35)

respectively, where p > 1, 1/p+1/¢ = 1 and z,y # 0 with zy, \1’]2, |z|?,
7,y yl?, lyY? € D(0,1).
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(2)

If we apply the inequalities (4.29) and (4.30) for the exponential function
f (2) given by (1.25), then we can state that

lexp (zy + 2P [y|“ )| < exp (Jzf + |y|%) (4.36)
and

jexp (ay + a7 y*")

1 1
< Sexp (|al” + lyf") + exp (j2f + [yl") (437)
respectively, for any z, y € C with z, y # 0.

If we take the logarithmic function f (z) given by (1.31), then from (4.29)
and (4.30) we have

In (1 —2y)In (1= |7 [y )| <In (1= [2f) In (1= [y|")  (4.38)
and

‘ln (1—2y)ln (1 — \1’\2/‘1 \y|2/p>
1
b

<

n (1~ o) In (1 — [yf2) + é (1= |af)In(l—|y")  (439)

respectively, where p > 1, 1/p+1/g = 1 and z, y # 0 with zy, |x\2, |z|?,
M7, Jyl?, Jyl”, ly"'” € D(0,1).

If we consider the trigonometric function f (z) given by (1.32), then the
transform f4(z) is given by (1.38). Applying the inequalities (4.29) and
(4.30) for these functions, we get

{sin (zy) sin (|x|p_1 |y|q_1) } < sinh (|z|”) sinh (|y|?) (4.40)

and

sin (y) sin (|2 Jy/*")

1 1
< = sinh (|2?) sinh (Jy|*) + = sinh (|z|?) sinh (|y|%) (4.41)
p q

respectively, where p > 1, 1/p+1/¢ =1 and x, y € C with z, y # 0.
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(5) A similar result can be obtained for the cosine function f(z) given by

(1.33) as well, namely
|cos (zy) cos (|z[P [y|*™") | < cosh (|z|”) cosh (|y|?) (4.42)

and
cos () cos ([o*7[y/*")

1 1
< p cosh (|z[") cosh (|y|*) + . cosh (|z|*) cosh (|y|) (4.43)

respectively, where p > 1, 1/p+1/¢ =1 and z, y € C with z, y # 0.

Further, the following result provides another improvement of Holder’s in-

equality via Young’s inequality [215].

Theorem 71 (Ibrahim, Dragomir and Darus [215]) Let f(z) and g(z) be

as in Theorem 65. Then one has the inequality

7 (2l lol) g (JP P

(l]
Lo (o) £a (91 + 2 £4.(27) 94 (10P) (4.44)
p q )

<

and

7 (127 5) g (1o 5) | < S0 () £ (o) + = () g0 (") (445)

Proof. This follows from the inequality (2.80) by choosing z = |y\(2/ Ok /lyl,
y = [2|®P* /|2 and @ = |2|¥ [y|*, y = |2|®P* |y, That is, for any j,k €

{0,1,2,...n}, we have the following inequalities

|(p—1)j |y|(q—1)j |$|(2/p)k |(2/q)k

|y
k
= o (e bl (1)’ | )

plel” [y + q o) |yY > pqlo

and

2%k j 2/q)j 1 17 2/p)k
|y|m (2/q9)j |y|J |x|( /p) |

V

k
Yl

= | (leP) (1e70) |

ple? |y ™ + ¢ || > pqlzl
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respectively. Repeating the same method as in Theorem 65 for the both inequal-
ities (4.46) and (4.47), we deduce the desired results (4.44) and (4.45). m

As a particular case of interest, we can state the following corollary:

Corollary 72 If g(z) = f(2) in (4.44) and (4.45), then

(2P ) o (1 1P
< L (1) £a 1) + = 1) S (1) (4.45)
and
(1) £ (1P 0)| < £ o) | 2a oy 2ia o] (a)

where p > 1, 1/p+1/q =1 and x, y # 0 with [o, 2", |2l", [yl*, ", [y]* €
D (0, R). In particular, if y = x in (4.48) and (4.49), then we have

(o) (oP2) < £ (o) [La ey + 20 a0
and
£ (1o 2) £ (1P 2)| < fa (al?) Bf (") + ¢ W)} (451)

forx #0, |z, |z, |z[* € D (0, R).

The inequalities (4.48) and (4.49) are also the valuable sources of particular

inequalities for some fundamental functions as will be outlined in the following:

(1) If we apply the inequalities (4.48) and (4.49) for the function f (z) given
by (1.19), then we get

1

(U= 2 1l (1= [P )
1 N 1
TP (=) g (= J2P) (1 [yP)

(4.52)
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and
1
(1= 1) (1= 1e7)]
1 1 1
< + (4.53)
1— |z (p(l — [yl q(1— \qu))
respectively, for any z, y € C, z, y # 0 with |z|°, [y%, ||, [y|*, |=|*7,

Y7 1y|"P, 1y € D(0,1).

If we apply the inequalities (4.48) and (4.49) for the exponential function
f (2) given by (1.25), then we can state that

fexp (Jal”™ g1+ a7 1y

1 1
< 56Xp(|$|2Jr [y%) +56Xp(|w|p+ ly[*) (4.54)

and
jexp [ (|2 + |27 o]
2y |1 P 1 q
< exp (|z[%) ]—QeXp(|y| )+EeXp(\y| ) (4.55)
respectively, for z, y € C, z, y # 0.

If we apply the logarithmic function f (z) given by (1.31), then from (4.48)
and (4.49) we have

i (1= Ja ) (1 Ja 7 )
1 1 ) )
—In (1= |2*) In (1= Jy|) + = In (1 = [«[") In (1 = |y[*) (4.56)
p q
and
)ln( — || )ln( — || ))
1 py 1 q
<In(1—|2) |- S = lyl) + Zn (= y[) (4.57)
respectively, for any z, y € C, z, y # 0 with |z[*, [y%, ||, |y|*, |=]"/7,

[, y|"7, 1y € D(0,1).
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(4)

If we consider the trigonometric function f (z) given by (1.32), then we
have fa(z) as given by (1.38). Applying the inequalities (4.48) and (4.49)

for these functions, we get

sin (|~ [y1) sin (|7 [y*7)

1 1
< = sinh (|z|*) sinh (Jy|?) + p sinh (|z[”) sinh (|y|?) (4.58)
p

and

sin <|m\2/q y) sin (\x|2/p y)’

< sinh (jz]?) B sinh () + é sinh(|y\q)} (4.59)

respectively, for any z, y € C, x, y # 0.

A similar result can be obtained for the hyperbolic function f (2) given by

(1.38) as well, namely

sinh (|3:|p*1 |y|q71) sinh (\3:|2/p |y\2/q>

1 1
< —sinh (|x|2) sinh (y|?) + = sinh (|z|") sinh (|y|2) (4.60)
p q

and

sinh (|3:\2/q y) sinh (\m|2/p y)‘

< sinh (|z|%) B sinh (Jy[*) + é sinh (|y\q)} (4.61)

respectively, for any z, y € C, x, y # 0.

More recent studies for different types of Young’s inequality can be found in
the literature (see for instance [24], [90], [157], [160], [203], [220], [250], [259],

[310],

[412], [432], [433], [448], [449)).

In the next section, we refine Young’s inequality of the form (2.81) and (2.85)

of Kittaneh and Manasrah’s result [250], then utilising these results, we obtain
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further improvements of the Holder’s type inequality (2.94) for function defined
by the real power series with real coefficients. In particular, we refine the Holder’s
type inequalities from Section 4.1.2. Natural examples for some fundamental real

functions are also presented.

4.1.3 Further Improvements of Hoélder’s Inequality for

Power Series

Before we state our results, we first prove the following lemma, which provides
the refinement and a reverse of the Young’s inequality (2.81) for real numbers
as follows (see [216]).

Lemma 73 For any a, b >0 and v € [0, 1], we have

a+b

2min{v,1—v}( —\/@)gva—k(l—v)b—a”bl_”

< 2max {v,1 — v} <a;b —\/E) . (4.62)

Proof. We recall the following result obtained by Dragomir in [119] that
provides a refinement and a reverse of the weighted Jensen’s discrete inequality
(2.95), namely

n

" {Iﬁéif.,n} {p;} [% d @ (z) - @ (% Z %)]

J=1

< —ij () — @ (;n Z%%)

3

1 1 ¢
< INew) e (LS )] 163
<n _max {p;} [n ] (n ;xg)] (4.63)

=1

where @ : C — R is a convex function defined on a convex subset C of the linear
space X, {z;}, j € {1,2,...,n} are vectors in C and {p,}, j € {1,2,...,n} are
nonnegative numbers with P, = > "7 | p; > 0.
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We notice that Furuichi’s result (2.87) is the particular case of (4.63), which
applied for the convex function f(t) = exp(t), and denoting the function exp(z;)
as a; for j € {1,...,n}. Also, for n = 2, we deduce from (4.63) that

2min {v, 1 — v} {M_@ <~T+y)}

2 2

<vd(z)+(1—0)®(y) — D vz + (1 —v)y]

< 2max {v,1 — v} {M-@(‘U;y)}, (4.64)

for any z,y € R and v € [0, 1]. If we take the function ® () = exp (z), then we
get from (4.64)

2min {v,1 — v} {eXp (z) J2r exp (y) exp <x J2r y)]

<wexp(z)+ (1 —v)exp(y) — exp [vr + (1 — v) y]

< 2max {v,1 — v} {eXp (z) ‘; D) <x ;F y)] , (4.65)

for any x,y € R and v € [0,1]. Further, we denote exp(z) = a, exp(y) = b with
a,b > 0, then from the (4.65) we obtain the desired result (4.62). m

From the refinement and its reverse of Young’s inequality (4.62), we have the

following corollary (see [216]).

Corollary 74 For any x, y > 0 and p > 1 with 1/p+1/q =1, we have

2 min {l’ l} <M _ xQ/Qyp/Q)
qp 2

<—+—=-uwy
q p

11 q 4 P
< 2max{—,—} (ZB Ty —xQ/Qyp/Q) . (4.66)
qp 2
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Proof. The proof follows by choosing a = 2%, b =y?, v =1/q, 1 —v =q/p

in Lemma 73. m

Remark 75 The first inequality in (4.62) provides Kittaneh and Manasrah’s
result (2.85) in [250] as well as a reverse of that result. One can also see that it
is equivalent with Aldaz’s result (2.86) [10].

First, utilizing the inequality (2.81) for functions defined by the real power

series with positive coefficients, we obtain the following result (see [216]).

Theorem 76 Let f(x) =~ p.a™ be a power series with positive coefficients
and convergent on (0, R). Then for v € [0,1], z, y > 0 such that y, xy, ="y,
7y € (0, R), we have

f@y) f (=) < flay) f(y). (4.67)

Proof. The proof follows by choosing in (2.81) a = 2/ and b = z* for
J,k € {0,1,...,n}. Thus, we have

2V 2% < g 4 (1 —v) 2k, (4.68)

for any x > 0 and v € [0, 1]. If now we multiply the inequality (4.68) with the
positive quantity, i.e., p;y'pry® > 0, j, k € {0,1,...,n}, y € (0,R), and sum

over j and k from 0 to n, then we get

S ) > e (2 )"

=0 k=0

<o pi (@) Y o+ (1 =0)> pi? Yk (ay)® (4.69)
=0 k=0 =0 k=0

Since all the series whose partial sums are involved in the inequality (4.69), are
convergent on the interval (0, R), by taking the limit as n — oo in (4.69), we
deduce the desired result (4.67). m

Remark 77 (i) If vy = 2z in (4.67), then we have
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P 2) (6 2) < FW)f(2), (4.70)
fory, z, y°2*", y* 2" € (0, R) and v € [0, 1].
(i) If y = x in (4.67), then we also have
F @) £ (27) < F@*) f(), (4.71)

for z, 2%, ', 227? € (0, R) and v € [0,1].

Some applications of the inequality (4.70) for particular functions of interest

are as follows:

(1) If we apply the inequality (4.70) for the function f(z) = 1/(1 —z), = €

(0,1), then we get
100 ),

for y, z, y'2'Y, y172¥ € (0,1) and v € [0, 1].

(4.72)

(2) If we consider the logarithm function f(z) =In[1/ (1 — )], x € (0,1), and

apply the inequality (4.70), then we get

In(1-y"2""")In(1-y""2") <In(l—-y)In(1-=2),

for y, z, y*217", y'7v2” € (0,1) and v € [0, 1].

(4.73)

Next, we prove the following inequality based on the refinement and the

reverse of Young’s inequality (4.62) (see [216]).

Theorem 78 (Ibrahim, Dragomir and Darus [216]) Let f(x) be asin The-

orem 76. Then, one has the inequality

2min {v, 1 — v} [f (zy) f(y) — f° (xlﬂy)]
< flay)fy) = f @) f (=)
< 2max{v,1 — v} [f (zy) f(y) — f? (xl/Qy)}

for x, y > 0 such that zy, y, /%y, 2%y, 21y € (0, R) and v € [0, 1].

(4.74)
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Proof. We use the inequality (4.62) for a = 27 and b = 2%, j, k €
{0,1,...,n} to get

J k ,
2min {v,1 — v} (I ;I - xj/ka/2)

<vad 4 (1 —v) ak — g1k

J k ,
< 2max{v,1 — v} (m _;T — mJ/Q:Uk/Q) (4.75)

for any x, y > 0 and v € [0,1]. Then, multiplying the inequality (4.75) with
piypey® >0, j, k € {0,1,...,n} and summing over j and k from 0 to n, we

have
j=0 k=0 j=0 k=0
—S pa 2 S pratlyt
§=0 k=0
<o) Pty )t + (=) ) piy’ ) paty”
j=0 k=0 j=0 k=0
n n
- Z pjzly’ Z pratt ™y
j=0 k=0
1 n n n n
1PSUD SIVED i Sy
§=0 k=0 §=0 k=0

zz] , w7
§=0 k=0

<2T

where ¢t = min {v,1 — v} and T'= max {v, 1 — v}.

Since all the series whose partial sums are involved in the inequality (4.76)
are convergent on the interval (0, R), by taking the limit as n — oo in (4.76),
we deduce the desired result (4.74). m

Remark 79 (o) If zy = 2z in (4.74), then we have
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2min {v,1—v} [f(y)f () — f* (Vy2)]
<fWf) = f =) f(y'2")
< 2max{v,1 v} [f(y)f (2) = f* (VyZ)] (4.77)

fory, z, 2°y*7Y, 2177y” € (0, R) and v € [0,1]. This result provides somehow a
symmetric form for the inequality (4.74) and has some nice applications as well,

see (4.79).
(b) If y =z in (4.74), then we also have

2min {v, 1 — U} [f(@)f («*) - (x3/2)]
< f@)f(@®) = £ (a) f (=)
<2max{v,1 —v} [f(z)f (%) — f* (2*?)] (4.78)

for x, 22, 232, 21 227V € (0, R) and v € [0,1].

Now, if we consider the exponential function f(z) = exp (z), € R and apply
the inequality (4.77), then we get

2min {v, 1 — v} [exp(y + 2) — exp (21/yz)]
<exp(y+z) —exp (y'z' 7" +y'7v2")
<2max{v,1 — v} [exp(y + z) — exp (24/yz)] (4.79)

for any y, 2z > 0 and v € [0, 1].

The second improvement of Holder’s inequality (2.94) via the refinement and

the reverse of Young’s inequality (4.66) is incorporated in the following theorem
(see [216]).

Theorem 80 (Ibrahim, Dragomir and Darus [216]) Let f(x) be asin The-
orem 76. If p > 1, 1/p+1/q =1 and x,y > 0 such that zy, 29, yP, v9?y?/? €
(0, R), then

2|3 [F (@) £ ()] f (27")
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<

£ (27) + %f ) — f (ay)

< |

<

[N}

T30 () + ()] -  (29%7) (4.80)

where t = min{1/q,1/p} and T = max{1/q,1/p}.

Proof. If we choose z = 27 and y = ¢/, j € {0,1,2,...,n}, then we have
from (4.66) that

i pJ , , qaj PJ .
o (% _ $<q/2>ay(p/2)a) < L ()
D
< 9T <M — x(q/2)jy(p/2)j) (4.81)

for any x, y > 0 and p > 1 with 1/p + 1/q = 1. If we multiply this inequality
(4.81) with the positive quantities p; > 0, j € {0,1,2,...,n}, and sum over j

from 0 to n, then we get
1 n n n .
| | ]
2t (5 [ZW” + ijy”] =i (#7%7) )
=0 =0 =0
<o pe 42D piy” = ) vy ()’
150 P =0
1 n n n .
<o (s Sor| - Swere). us
=0 =0 =0

Since all the series whose partial sums are involved in the inequality (4.82) are

convergent on the interval (0, R), by taking the limit as n — oo in (4.82), we
deduce the desired inequality (4.80). m

Corollary 81 Ify = x in (4.80), then for any 2%, 2%, 2P, %% € (0,R) and
p>1with1/p+1/q=1 we have

2t |2 [f (29) + f (a?)] — f (a7/2)

1 q 1 P — 2
ng( )+pf( )= f (%)

N}
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<OT | S1F (a9) + £ ()] — £ (#77)] (483)

In the following, we give some applications of the inequality (4.83) for par-

ticular functions of interest:

(1) If we apply the inequality (4.83) for the function f(x) = 1/(1 —x), = €
(0,1), then we get

; 1 1 2
[ i p——p

< 1 N 1 1
Sl - 1o

1 1 2
ST{l—xq—i_l—xp_l—xW/Q} (4.84)

for :U2, 29, 2P, rPa/? ¢ (0,1),p>1with1/p+1/q = 1.

(2) If we apply the inequality (4.83) for the function f(z) = In[1/(1 — z)],
x € (0,1), then we get

(1—ar2)® ' 5 1 42
(I—a)(X—ar) | = (1 —a9)/7(1 —ar)'/P

( (1 — are/2) )) | .

(I —29)(1—ar

IN

for .I‘2, zl, 2P, rPa/? ¢ (()71), p > 1 with 1/p+ 1/q =L

(3) If we consider the hyperbolic function f(x) = sinh (z), € R and apply
the inequality (4.83), then we get

t [sinh () + sinh (%) — 2sinh (279/2)]
1 |
< = sinh (o) + - sin (27) — sinh («?)

S q p
< T [sinh (29) 4 sinh (2?) — 2sinh (.TPQ/Q)] (4.86)

forany © >0, p> 1 with 1/p+1/g = 1.
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(4) A similar result can be obtained for the function f (x) = cosh(x), namely

t [cosh (z7) 4 cosh (27) — 2 cosh (mpq/Q)]
1 1
< = cosh (27) + = cosh (2*) — cosh (z?)
q p
< T [cosh f (27) + cosh (27) — 2 cosh (JJPQ/Q)] (4.87)

for any © >0, p > 1with 1/p+1/g = 1.

Further, we utilize the inequality (4.66) to improve the results from Section
4.1.2, giving the refinements and the reverses of Holder’s inequality for two func-
tions defined by the real power series with positive coefficients. First, we obtain
the following result (see [216]).

Theorem 82 (Ibrahim, Dragomir and Darus [216]) Let f(z) =Y p,a"”
and g(z) =Y 5 gux™ be two power series with positive coefficients and conver-
gent on (0, R). Ifp>1,1/p+1/q=1 and z,y > 0 such that xy, 2P, x%, y?, y4,
w2yl ap il (ey) " (g2, ayrt, eyt € (0, R), then

t[fa)g(y?) + g(a?) f(y?) — 2f (a2y"?) g (a?/y"/)]

1

f@)g(y") + ];g(wp)f (") = f (zy) g (zy)
[F()g(y?) + g(a®) f(yF) — 2f («22y??) g (a”/2y2/?)] (4.88)

and

t [F(x)g(yP) + g(a) f(y?) — 2f (z9/y /) g(aP/>yP/?)]

ﬂﬂmww+%mﬂﬁ@%—fuwlmmwl>

[F(@D)g(y) + g(2) f(y?) — 2f (x¥2y??)g(aP2yP/?)] . (4.89)

Proof. If we choose in (4.66) z = 2/y* and y = 2%y/, j, k € {0,1,2...,n},

then we have

49 ¢,k Pk pj ‘ .
o (:v y ;fv y _x(q/myy(p/mx(p/mky(q/m)
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< < (aWy™) + ]é (P y?) — (ay) (2y)*

| =

y(p/Q)jx(pﬂ)ky(Q/?)k) (4.90)

<or (wqj Yy A )
= 2

for any x, y > 0 and p > 1 with 1/p+1/q = 1. Multiplying this inequality (4.90)
with pqr > 0, j, k € {0,1,2...,n} and summing over j and k from 0 to n, we

get
(% [Z pjz® Z ary™ + qump Zp ym]

— pjz(qm)jy(p/?)j Z qu(pﬂ)ky(q/?)k)
=0 k=0

g (zp zqkqu) o3 (S S
k=0 =0
(y) qu wy)*

3

<.

7=0
1 ' n n ‘
- ( ZZZZ]
j=0 k=0 k=0 j=0
=3 pjal /iy 3 qkm(p/z)ky@/mk)’ (4.91)
=0 k=0

where p > 1, 1/p+1/q = 1.

Further, if we choose in (4.66) * = 27/y/ and y = 2*/y*, y # 0, j,k €
{0,1,2,...,n} and repeat the same method as above, then we get

( [Z pja® Z ary™ + Z g’ Zp yq]]
_prq/% (a/2)j qux(pﬂ (p/2) )
S Z p-m‘” q ypk + = q Pk p.yqj
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n n
— ijxjy(q—l)j Z gy
j=0 k=0
1 n n n n
<oT (5 > > gy > gt ijyq]]
=0 k=0 k=0 =0
n n
=3 pyaleiyai2i 3 qkm(p/mky(p/z)k:) (4.92)
=0 k=0

where p > 1, 1/p+1/q = 1.

Since all the series whose partial sums are involved in the inequalities (4.91)
and (4.92) are convergent on the interval (0, R), by taking the limit as n — oo
in the both inequalities (4.91) and (4.92), we deduce the desired results (4.88)
and (4.89). m

The natural consequence of Theorem 82 is as follows:
Corollary 83 If g(x) = f(x) in (4.88) and (4.89), then we have
ELF@N ) + F@) ) — 2F (a72772) f (272702)]
P+ F) ) = £ ()
[F@) f(y") + F@@) F(P) = 2f («2y7?) [ (aP2y"?)] (4.93)
and
ELF@O ) + F@) F(7) — 20 (@9/202) f(a?/2y)]
PP+ 2 @)1 = Flay™) ™)
[F@nF ) + F@)F(y) — 20 (@2/2/2) f(a?/2y)] (4.9

respectively, for any x, y > 0 such that xy, P, z9, y?, y? € (0,R) and p > 1
with 1/p+1/q = 1.

The above results (4.93) and (4.94) have some natural applications for some
particular functions of interest. For example, if we apply the inequalities (4.93)
and (4.94) for the exponential function f(z) given by (1.25), x € R, then we get

the following inequalities:
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t [exp(z? 4 y?) + exp(a? + y*) — 2exp (3:‘1/2yp/2 + xp/qu/Q)}

< Cexp(a! +4) + > expla? + ) — exp (2ay)

< T [exp(z? + y?) + exp(a? + y*) — 2exp (xq/2yp/2 + xp/QyQ/g)} (4.95)

and

t [exp(a? +y7) + exp(a? + y7) — 2exp(z?/?y1/? + 2P PyP/?)]

< é exp(z? +y") + % exp(a? +y?) — exp(zy’ + 2yP)

< T [exp(a? + yP) + exp(a? + y?) — 2 exp(z9/%y1/? + xp/Qyp/Q)] ) (4.96)

respectively, for any > 0,y > 0 and p > 1 with 1/p+1/¢ = 1.
We also obtain the following result (see [216]).

Theorem 84 (Ibrahim, Dragomir and Darus [216]) Let f(x) and g(x) be

as i Theorem 82. Then, one has the inequalities

t[f(aP)g(y?) + g(a?) f(y?) — 29 (aPPy?/?) f (aP?y?/?)]
P9 + o ") = £ (@) g o)
[£(2)g(y?) + g(2) f(y?) — 29 (a*y??) f (aP2y??)] (4.97)

and

[9 (%) £ (") + f (@) g (%) — 2f (a*y") g ()] - (4.98)

Proof. If we choose in (4.66) z = y*/y/, y = 2%/, x, y # 0 and z =
w@lDkyi g = pIy@Pk 5k € {0,1,2,...,n}, then we have the following in-

equalities:

t (l.pquk + xpkyqj _ Qx(p/2)ky(Q/Q)kx(pﬂ)jy(Q/?)j)
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Lopioak o L pkoai _(-1)j (=1 kK
< =yt + -yt —x Y ry
< T (Pt 4 Py 2 0/Dhy (a/Dk 0/ /20 (4.99)
and
" (x%yqj + xpjy% _ 2x(p/2)jy(Q/2)j$kyk)
< éiﬂ”“yqj + Z_lgit”jy% — @yl B/ Oky Ik

respectively, for any x, ¥y > 0 and p > 1 with 1/p+ 1/q = 1. Now, repeating the
same method as in Theorem 82, we obtain the desired inequalities (4.97) and
(4.98). =

Corollary 85 If g(x) = f(z) in (4.97) and (4.98), then we have

2t [f(2P) f(y?) — £2 (aPy?)] < f(@®) f(y?) — f (2" y* ) f (zy)
< 2T [f(a”) f(y?) — f2 (a?y??)]  (4.101)
and
tLF (@) f W)+ f @) f(6%) = 2f (zy) f (aPy"?)]
£ £+ 2 @) (0) = F ) ] (a7977)
L (2®) f %) + £ (") g (v°) = 2f (zy) f (a”2y?)] . (4.102)

The above inequalities also provide some natural applications for particular

functions of interest. We give some examples here as follows:
(1) If we apply the inequality (4.97) for the hyperbolic functions f(z) =
sinh (x) and g(x) = cosh (z), z € R, then we get
t [sinh(2? + y?) — sinh (227/2y%/?)]
< é sinh(2?) cosh(y?) + % cosh(z?) sinh(y?)
— sinh (2P~ 'y?"") cosh (zy)

< T [sinh(2” + y?) — sinh (227/y%/?)] , (4.103)
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for any z,y > 0 and p > 1 with 1/p+1/¢ = 1.

(2) Further, if we consider the exponential function f(x) = exp (z), z € R and

apply the inequality (4.101), then we get

2t [exp(a? + y) — exp (227/°y )]
< exp(a? +y?) —exp (a7 1y" ! +ay)

< 2T [exp(2® + y?) — exp (227/%y*/?)] (4.104)

for any z,y > 0 and p > 1 with 1/p+1/¢ = 1.

We end this section with the following result (see [216]).

Theorem 86 (Ibrahim, Dragomir and Darus [216]) Let f(x) and g(x) be

as in Theorem 82. Then one has the inequality

y
[f (@) g (%) + 9 (22) [ (y7) = 2f (a"2y"?) g (ay)] (4.105)
and

t1f (@) g (") + g (%) F () = 2f (ay”?) g (xy*?)]
P 90n + 79 () £07) = £ (%19) 9 (s)

[f (2%) g (") + g (2%) f (") — 2f (2y”"?) g (xy”?)] . (4.106)

VAN
N Q-

<

Proof. Again, the proof follows by using the same method as in Theorem 82,

on choosing in (4.66) as x = y#/Dk /yf o = g @/PF 37 g 9 £ 0 and 2 = 2/ DIyk,
y = x@MPhkyi 5 ke {0,1,2,...,n} respectively. The details are omitted. m

Corollary 87 If g(z) = f(x) in (4.105) and (4.106), then we have

LI @) () + (@) [ (") = 2f (ay) | (27y"?)]
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S H@)FOP) + 2 (&) 1) = F (@ 97) o (227)
ST () f () + F(2®) [ (y") = 2f (wy) £ (a"Py"?)] (4.107)
and
ELF (@) [F () + £ () = 2f (w9?'?) F (ay”?)]
<) |2 W+ 5 )| = 1 (1) £ (o)
ST [f (@) [f W)+ F @] = 2f (29”?) f (zy*?)] . (4.108)

4.2 Some Results Via Convexity and Jensen’s

Type Inequalities
4.2.1 Introduction and Preliminary Results

In 1989, Pecari¢ and Dragomir [351] established a refinement of Jensen’s inequal-
ity (2.95) as follows:

1 1 T+ x,,
f(Fn;prj) < Pl Z pj1'-'pjmf( 1

n

J1:J255Jm41
1 Ty + ..oty
S P—T:n ' Z p]lp]'lvzf( m
J1,J25e - Jm=1
1 n
< ...gp—zpjf(xj), (4.109)
noig

for a convex function f : I CR — R, z; € I, j € {1,2,...,n} and p; > 0
with B, = 377 p; > 0, where m > 1, m € N. The following refinement of the
weighted Jensen’s inequality was obtained by Dragomir and Scarmozzino [137]
based on the properties of modulus of differentiable convex functions. It states
that (see also [117, p. 204])
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1 & 1 &
p_nzlpjf(xj) -/ (Fn lejlvj)
Jj= j=
1 & 1"
> =Y [ ) = f | Y pa
Pn i—=1 Pn 1
J J
L O 1< 1 &
-/ szﬂj '?ij %‘—FZW@ > 0, (4.110)
=1 " oj=1 " =1

for any z; € I, j € {1,2,...,n} and p; > 0 with P, = >77 p; > 0. In

particular, we have from (4.110) the following result for unweighted means:

n

F @)+ f (@) _f(x1—|—~7~l-+xn)

1 n 1+ +z,
5 s ()
(T, 1 & 1 «
P gkt e o

forany z; € I, j € {1,2,...,n}. If we apply the inequality (4.110) for the convex
function f (z) = 2*, = € R, and choose z; = a;/b;, p; = b3, j € {1,2,...,n},

then we get a refinement of the classical (CBS)-inequality for real numbers.

Meanwhile, in 1994, Dragomir and Ionescu [139] proved the following reverse

of the Jensen’s type inequality for a differentiable convex function,

0< Z q;f () (Z qjxj)
< Z ¢, f' (25) = Z 4 Z g;f" (x;)
j=1 Jj=1 J=1

where ¢; > 0, j € {1,2,...,n} such that Z;LZI ¢; = 0, or in more general case,
they have

Z?:lpjf(l“j) B ZJ 1P
0= Z?:lpj f( Z] 1Pj )
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o Pl (wg) - Y X pif (@) (4.112)
T X Y Xwpy

provided that f : I — R is a differentiable convex function on the interval I C R,
zj € 1,p; > 0for j € {1,2,...,n} such that 3 7, p; > 0. If f is strictly convex

on I (i.e., the interior of I), then the equality holds in (4.112) if and only if

T1 =Ty ="+ "= Tp.

For other refinements, generalizations and applications of the Jensen’s type
inequalities, see for instance ([117, p. 190-213], [126], [129], [130], [132], [141])

and the references which are cited therein.

Utilising the celebrated Jensen’s discrete inequality (2.95) and its reverse
(4.112) for particular real convex functions, we establish in this section, some
new and interesting inequalities for functions defined by the real power series
(2.65) with real coefficients and convergent on the interval (—R,R), R > 0.

Applications for some fundamental functions of interest are also presented.

4.2.2 Power Series Inequalities Via Convexity

First, we state the following result that has been obtained on utilising the con-

vexity properties of certain underlying functions (see [213]).

Theorem 88 (Ibrahim, Dragomir, Cerone and Darus [213]) Assume that
[ (x) =300 o pua™ is a function with nonnegative coefficients defined on (—R, R) ,
R>0. Ifa,b,c > 0 are such that ac,bc € (0, R), then
(Ina — Inbd) acf’ (ac) > f (ac) — f (be)
> (Ina —Inb)bef’ (be). (4.113)

Proof. It is well known that if f : I C R — R is a differentiable convex

function on I, then for any .,y € I we have

W) y—x)>fy)—f(2). (4.114)
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Now, if we apply the property (4.114) for the function f (¢) = —Int, ¢ > 0, then

we get

L1 >Inz —Iny, (4.115)

Y

for any xz, y > 0. If in (4.115) we choose z = ", y = b", n > 0, then we obtain

a” —b" > nb"Ina —nb" Inb, (4.116)

for any a,b > 0, n > 0. If we multiply (4.116) by p,c"” > 0, n > 0 and sum over

n from 0 to k, then we derive

ipnc”a” — ipnb"c” >Ina i np,b"c" —Inb i np,b"c". (4.117)
n=0 n=0 n=0 n=0
Since
iopnc”a“ = f(ac), iopnc”b” = f(cb) (4.118)
and
i nppb"c" = bci np,b" 1"t = bef’ (be), (4.119)
n=0 n=1

then by letting k — oo in (4.117), we deduce

f(ac) — f(be) > (Ina —Ind) bef’ (be) . (4.120)
Now, replacing a with b in (4.120), we have

f(bc) — f(ac) > (Inb—1na)acf’ (ac), (4.121)
which is equivalent with

f(ac) — f(be) < (Ina —1Inbd) acf’ (ac). (4.122)

Thus, from the inequalities (4.120) and (4.122), we derive the desired result
(4.113). m

Corollary 89 With the assumptions of Theorem 88 and if a,b € (0, R), then

(Ina —Inb)af’ (a) > f(a) — f(b) > (Ina —Inb)bf’ (b). (4.123)



4. More Inequalities on Power Series with Real Coefficients 130

Corollary 90 With the assumptions of Theorem 88 and if a,c > 0 and a,ac €
(0, R), then

aclna f'(ac) > f(ac) — f(c) > clna f'(c). (4.124)

The above results (4.123) and (4.124) have some natural applications for

particular real functions of interest as follows:

(1) If we apply the inequality (4.123) for the function f(x) =1/(1 —z), z €
(—1,1), then for any a,b € (0,1) we get

a 1 1
(Ina —1nd) - A=) > T—a 1-0
b
> (lna —Inb) - a=ne (4.125)
Hence
% >Ina—Inb> (1;:1{“6; b, (4.126)

for any a,b € (0,1).

(2) If we apply the inequality (4.123) for the function f(z) = /(1 — )%,
€ (—1,1), then for any a,b € (0,1) we obtain

(lna—lnb)-a(1+ag,) > ¢ 7 ’ 2

(1—a) (1—a)” (1-0)

b(1+0)
> (Ina—1Inb)- o (4.127)

which implies that
(1—10)(1—ab)(a—Db) > lna—lnb
b(140)(1—a)®

(1—a)(1—ab)(a—b)’ (4.128)

a(l+a)(1—0b)°

for any a,b € (0,1).
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(3) If in (4.123), we choose the logarithm function f(z) = —In(1 —z), = €
(—1,1), then for any a,b € (0,1) we get the inequality
a\e/(1-a) 1-b a\b/(1-b)
1 (—) >1 >1 (—) . 4.12
n; _n<1_a)_n 2 (4.129)
Hence /1-a)  1—b b/(1-b)
a a —a — a/ —
— > > (= 4.130
G =) (4130

for any a,b € (0,1). In particular, if in (4.130) we choose b = 1 — a, then

we obtain the following result:

a/(1—a) (1-a)/a
a a a
> > 4.131
(1—@) _l—a_<1—a) ’ (4.131)

for any a € (0, 1).

If in (4.123) we choose the function f(x) = fIn[(1+2)/(1—2)], v €

- 2
(—1,1), then for any a,b € (0,1) we get the following inequality:

a 1 1+a 140
— . > = — —_— .
(Ina —Inb) T2 2 3 {ln(l—a) ln(l—b)} (4.132)

b
-5

> (Ina —1Inb)

which is equivalent to

aya/(1-a?) (14a)(1—0)\"? a /(1)
In (- > 1 - 4.1
“(b) —-n<(—a 1+®) -—H(Q (4.133)
Hence
<a>mdu_ﬁ)2>(1‘%“)(1_’® > (G>QWO_H) (4.134)
b “M—a) 1+ =\ ! '

for any a,b € (0,1).

If we apply the same inequality (4.123) for the hyperbolic function f(x) =
cosh(z), € R,then we obtain that
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bsinh(b)
“) , (4.135)

a\ @sinh(a)
In <B> > cosh (a) — cosh (b) > In (B

for any a,b € (0, R), R > 0.

(6) Further, if we apply the inequality (4.124) for the function f(x) = cosh(z),
x € R, then for any a,b € R we have

In @) > cosh(ab) — cosh(b) > Ina”*™®), (4.136)

In particular, if in (4.136) we choose b = 1, then we obtain that

In g2eesimh(@) > ¢ cosh(a) —e? —1>1In a62—1, (4.137)
for any a € R.

Now, we prove the following reverse of the Jensen type inequality that has
been obtained by utilising the inequality (4.123) for a differentiable convex func-
tion (see [213]).

Theorem 91 (Ibrahim, Dragomir, Cerone and Darus [213]) Assume that
f is as in Theorem 88 and R = 1 or R = +o0. If a; € (0,R) and p;, > 0,
ke{l,...,n} with Y ",_, px =1, then we have the inequalities

HZ—I aikakfl(ak) n n v
In N ; ZLLlpkakf/(ak) Z Zpkf (ak) - f Haj] Z 0. (4138)
(Hj:l a/) k=1

J=1

Proof. We use the inequality (4.123) for the choices a = a; and b = []}_, at’

to get
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for any k£ € {1,...,n}. Now, if we multiply (4.139) by pr > 0 and sum over k

from 1 to n, then we get

In (Haﬁ’“akf (%) Zpkakf ag) - In (H )

k=1 j=1

> Zpk:f ax) (H ap]> >0, (4.140)

which is clearly equivalent with the desired result (4.138). m

Remark 92 The second inequality in (4.138) shows that

M @)+ (1 =X fy) = f (YY) (4.141)

forany A € [0,1] andx,y € (0,R) (R=1 or R= ), i.e., f is an GA—convex
function in the sense of terminology introduced by Anderson et al. in [22]. For

other similar results, see [25], [47], [79, p. ], [304], [333].

The following result is also established, which provides a refinement as well

as a reverse of the Jensen’s type for the power series.

Theorem 93 (Ibrahim, Dragomir, Cerone and Darus [213]) Assume that

f, ar and pi are as in Theorem 91. Then, we have the inequalities:

n > 1 prak f'(ax)
In (H prax f'(ax) ) (Z p])

k=1

= zn:pkf (ar) — f (i S_];)
. w17 ()
o|(fe) (2]

> 0. (4.142)
Proof. From the inequality (4.123), we have for the choices a = a, b =

-1
(Z;;I §—;) that
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llnak —111( nl &>] ar.f' (ax)
1
-+ (sg)
> [lnak —In (Z?: %>] Z?: %f' (Z?: %> : (4.143)

for any k € {1,...,n}. Now, if we multiply (4.143) by pr > 0 and sum over k

134

from 1 to n, then we deduce

Hk pkakf (ak)
1

Zk 1 Praxf'(ax)
( - ])

1
23 s f(Z?ZZ—;)
)

> In (’f——lpk_l >0 (4.144)
%)

giving the desired result (4.142). m

Finally, we establish the following result.

Theorem 94 (Ibrahim, Dragomir, Cerone and Darus [213]) With the as-

sumptions in Theorem 88, we have the inequality:

(H aikakf (ak)) > Zpkf (ak) . (4145)
k=1 k=1

Proof. From the inequality (4.123) we have

f(a)— f(ar) > (Ina —Inay) apf' (ag), (4.146)
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for any k£ € {1,...,n}. Now, if we multiply (4.146) by pr > 0 and sum over k

from 1 to n, then we get
Zpkf ay) > Ina- Zpkakf ay) Zpkakf (ar)Inap.  (4.147)

Now, if we choose a so that

1

g — Zk 1pk&kf (UJk: ln UJk: B H apkakf (@) S rrort (ar) (4 148)
Zk: 1pk:@k:f (ak: ’ ‘

then we get the desired result (4.145). m

4.2.3 Power Series Inequalities Via Jensen Type

In this section, we employ the inequality (2.95) and also the reverse of the Jensen
inequality (4.112) due to Dragomir and Ionescu [139], to derive some new and
interesting inequalities for functions defined by the real power series with positive

coefficients.

First, we get the following result by utilising Jensen’s inequality (2.95) for a

particular convex function.

Theorem 95 (Ibrahim, Dragomir, Cerone and Darus [213]) Assume that
the function f(z) = Y2 pnx™ is defined on the interval (—R,R), R > 0 and
po>0,p, >0 forn>1. Ifa,b> 0 are such that a,ab € (0, R), then

per @/ < L) oy sy (4.149)

Proof. If we apply Jensen’s inequality (2.95) for the convex function g () =

—Int, t > 0, then we have
k npn
l Zn:O Pna
L R
Zn:O Pna
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- ZZ:O ppa™ In ™ _ Inb Zﬁzo np,a” _a Inb Zﬁzl np,a™ !

> , (4.150)
ZZ:O pna™ Zﬁ:o Pna™ ZZ:O pna™

for any a,b > 0 with a,ab € (0, R). Taking the limit over £ — oo and since

i::opna%” ~ [ (ab), i::l npua™ = £ (a), i::o o = f(a),  (4151)
then from (4.150) we have
N f(ab)) alnbf’ (a)
n (56) > g (152

for a,b > 0 with a,ab € (0, R), which is equivalent with the first inequality in
(4.149).

Now, if we apply Jensen’s inequality (2.95) for the convex function g (t) =
tint, t > 0, then we can state that

> g Prd"b" n > g D"
ZZ:O pna™ Zﬁzo pra”

S peaInbt  nbYF | np,anh”
- k

IA

Zﬁ:o pnan Zn:O pna’n
k n—1gn—1
_ ablmbznkz1 np,a™ b 7 (4.153)
Zn:O pna’n
for a,b > 0 with a,ab € (0, R). Taking the limit over £ — oo and since
anna”_lb"_l = f'(ab), (4.154)
n=1
then from (4.153) we have
!
f (ab) o <f(ab)) < ablnbf (ab)’ (4.155)
[ (a) [ (a) [ (a)

which is clearly equivalent with the second inequality in (4.149). m
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Corollary 96 With the assumptions in Theorem 95, and if a,c € (0, R), then

(g)af/(a)/f(a) < }”53 < (g)Cf/(C)/f(C). (4.156)

Proof. It follows from Theorem 95 on choosing ¢ = ab. m

Some applications of the inequality (4.156) for particular functions of interest

are given in the following:

(1) If we apply the inequality (4.156) for the function f(z) = —In(1 — x),
z € (—1,1), then we get

: (4.157)

c\—o/0-a)ln(l-a) In(1—¢) _ /cy—¢/(1-0)n(1—0)
(2) < <(3)

a ~ In(l—a) a

for any a,c € (0,1).

(2) If in (4.156) we choose the function f(z) = exp(z), x € R, then we can

state that
c c

() <omie—a < (£ (1159

a
for any a,c € (0, R).

(3) If we apply the same inequality (4.156) for the function f(x) = sinh(z),
r € R, then we obtain

acoth(a 1 ccoth(c
(£)7H < S eyt (4.159)
a sinh (a) a

for any a,c € (0, R).
Next, we utilize the reverse of the Jensen type inequality (4.112) for a par-
ticular convex function to obtain the following result.

Theorem 97 (Ibrahim, Dragomir, Cerone and Darus [213]) Let f be as
in Theorem 95. If a, b > 0 are such that a, ab, ab € (0, R), then

F() _ par@/s@) . oy [%{;‘b) _ 1] , (4.160)
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Proof. Utilizing the inequality (4.112), for the convex function g (t) = — Int,

t > 0, we can write that

ZI:L:O pna™ 22:0 Pna™

In (Zizo pna”bn> B ZZ:O pra™ In b™

k E pna®
< ano pnanbn i Zn:() %
B Zfzzo Pna™ Zfzzo pna™

~1, (4.161)

for a,b > 0 with a,ab,..ab € (0, R). Taking the limit over kK — oo and since

S0 () -1 (3) 10

then by (4.161) we deduce

7@ @ < P@ - (4.163)

i (H) el (@) S ()

which is clearly equivalent with the desired result (4.160). =

The particular case of Theorem 97 can be stated as well.

Corollary 98 With the assumptions in Theorem 97 and if a, c € (0, R) with a*/c
€ (0, R), then we have the inequality

f(c)

<c>af’(a)/f(a) flo)f (—2) .

) < - exp 7 {a) (4.164)
If ®/a € (0, R), then we also have
e ef'(e)/f(c) fla) f (%) f ()
(5) e 1= — | < (4.165)

Some examples for particular inequalities that are generated by the real power

series with positive coefficients are as follows.
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(1) If we apply the inequality (4.164) for the function f(z) =1/(1 —x), x €
(—1,1), then for any a,c € (0,1) we get

1—c¢ a 1—c¢)(c—a?

1—a < <£>a/(la) exp [( C(l —&) ) . 1] . (4166)

(2) If in (4.164) we choose the function f(x) = exp(x), © € R, then for any
a,c € (0, R) we can state that

exp (¢ —a) < <§)aexp [exp <(C —Ca)2> — 1] ) (4.167)

The following result is also established.

Theorem 99 (Ibrahim, Dragomir, Cerone and Darus [213]) With the as-
sumptions of Theorem 4.149 for the function f and if ), € (0, R) and px > 0
with >, _, pr = 1, then we have the inequality

n ! n
Sp1piesd (Shoy pyes)

i Tk 5(h1pies)
Y ey —
=T\ 2o Py
2/ (2g)

< > e Pif (k) < - " (nL ) , (4.168)
f(ngzlpjﬂﬁj) k=1 Z

j=1DPjT;j

Proof. It is obvious by the inequality (4.156) on noticing that for ¢ = zj

and a = )", pjz;. Thus, we have

n ! n
Yoy pjzsf (2j=1 ijj)

( Tk 1(25-rie)

> i1 DT

o f (zg)

f () g\
) / (Zyzlpﬂj) - (Zyzlpjxj) ’ (4.169)
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for all £ € {1,...,n}. On multiplying the inequality (4.169) by pr > 0 and
summing over k from 1 to n, we get the desired result. m

A more natural result of the Jensen type inequality is incorporated in the

following theorem.

Theorem 100 (Ibrahim, Dragomir, Cerone and Darus [213]) With the as-

sumptions of Theorem 4.168, we have

(4.170)

where
Ay (h(x)) =" pih (x)) (4.171)
and

Gy (h(z)) = H hP7 (x;) , h: (0,00) — (0,00) . (4.172)

Proof. If we choose in (4.156) ¢ = z;, a = G, () = [[}_, %7, then we have

. 4—Gp(;c()g (Gf)(x))‘ F(z) . ij(l )j
<pr:c> Sf<GpZac>>§<prgc>) . (4.173)

which by taking the power p; gives us that

(G:ém))ij = [%r = <G:Ex)) R (4.174)

with

(4.175)

Now, multiplying the inequality (4.174) over j from 1 to n, we get
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Pj-”j(f'(;j)
I/ () e ™
L= S ) (4.176)
Gy () 7

and the proof is completed. =

For some other results related to the Jensen’s type inequalities and their
applications, see for instance [27], [57], [129], [130], [131], [132], [133], [134],
[139], [273], [303], [351], [421] and the references which are cited therein.



Chapter 5

Applications to Special Functions

Special functions are another important type of functions that are defined by
the power series. They arise in almost all areas of Modern Mathematics, with
physics, engineering, chemistry, statistics and computer science as the most well-
known application areas of these functions. In this chapter, we provide some in-
equalities involving the special functions, such as polylogarithm, hypergeometric,
Bessel and modified Bessel functions of the first kind, that have been obtained

on utilising the Buzano, Schwarz, Young, Holder and Jensen type inequalities.

Section 5.1 briefly introduces some general facts and basic concepts of the
special functions. We address some of their important relations to the fundamen-
tal functions. Some inequalities involving the polylogarithm, hypergeometric,
Bessel and modified Bessel functions of the first kind are presented subsequently
in Section 5.2, Section 5.3 and Section 5.4.

The author’s research papers in collaboration with Dragomir, Darus and
Cerone (see [208], [209], [213], [214], [215], [216]) are the main contributions to
this chapter. The survey research paper published by the author and Dragomir

[217], is also incorporated with some of the results.

5.1 Definitions and Basic Concepts

Before we state our results for the polylogarithm, hypergeometric, Bessel and

modified Bessel functions, we recall in this section, the definitions and some basic

142
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concepts of these functions. The details about these types of special functions
can be found in the work of (see for instance [4], [25], [102], [296], [342, Chapt.

60]), and numerous classical and modern texts devoted to the special functions.

We start by introducing the classical gamma, zeta and their related functions.

The gamma function is useful in defining some other types of special functions.

5.1.1 Gamma, Zeta and Related Functions

The gamma function, denoted by I'(z), is a function defined by the Euler’s
integral [102, p. 221], i.e.,

I'(z2)= /000 e tdt, (5.1)

for any z € C such that Re(z) > 0. It is clear that from (5.1) we have

and it also satisfies the following recurrent formulas:

i) T(14+2) = =2I'(2), (5.3)
i) T'(1—2) = —zI'(—2), (5.4)

for all z € C with Re (z) > 1. The gamma function (5.1) reduces to the factorial

function when its argument is a positive real integer, i.e.,
I'(n)=(n—1)! (5.5)

for n € N. For positive half-integer arguments, the gamma function has the

special form as follows:

r <n+ %) _ (2”_2# (5.6)

where n!! denotes the double factorial function' of integer n, n > —1. It can be
seen that the relations in (5.4), (5.5) and (5.6), define the gamma functions in
whole real numbers.

'For integers k > —1, the double factorial k!! are defined by (—1)!! = 0!Il = 1, (2k)!! =
H?Zl 25, k+ 1D = H?:O (27 + 1) and it is undefined for k < —2.
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Some common values of the gamma function are given in the following [4,

Chapt. 6]:
B ()

- ; (5.7)
r(2) =1, r<§)=Tﬂ,
ra)=2, '4)=6
The derivative of the gamma function is
I () = /O et og (1) di, (5.8)
and the n-th derivative is given by
) () = /O et og™ (1) di. (5.9)

These can be derived by differentiating the integral form of the gamma function
(5.1) with respect to z, and using the technique of differentiation under the
integral sign. Closely related to the derivative of the gamma function is the

digamma or psi function W (z), which is defined by

T(z) = L T (2) = =2

1,2,... . 1
P z#0,1,2, (5.10)

Further differentiations of (5.8) lead to the family of the polygamma functions
U, (2),
W, (z) =™ [log ' (2)], (5.11)

where Wq (z) = W (2). The incomplete gamma function v («, z) and the comple-

mentary incomplete gamma function T («, z), which are defined by
¥ () = / letdt Re(a) > 0 (5.12)
0

and
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['(a,2) = /00 t*e7tdt, Re(a)>0 (5.13)

respectively, have a relation to the gamma function as follows:
I'(a) =7v(a,2) + T (e, 2). (5.14)

Although, the gamma function does not have a power series representation, the

incomplete gamma functions can be represented by the following power series:

v(a,z) =2 Z (El_i);) Z—T (5.15)

n=0

Hence,

F(a,2) =T(a)— 23 (E:);) ;—T (5.16)

n=0

for all , z € C with Re () > 0.

Another important function related to the gamma function is the beta func-
tion B (z,y), where
I'(z)T (y)

B(l’,y): F(l‘—}-y),

(5.17)

for all z, y € R such that x, y > 0. The beta function is a real function of two

variables, and it is defined by the formula

1
B(z,y) = / e (1 —t) (5.18)
0
for x, y > 0.

The gamma function (5.5) with the natural extension of the factorial of an
integer was first introduced by Euler in 1930 (see [111]). It is of fundamental
importance to many areas of science including Probability Theory, Mathemat-
ical Physics, Number Theory and Special Functions Theory. For more on its
properties and some historical remarks, we may refer to [25, Chapt. 1], [34],
[102, Chapt. 12], [167], [296, Chapt. 2], [395] and the references which are cited

therein.

The Riemann zeta function or Euler-Riemann zeta function ¢ (z), is a func-
tion defined by [187, p. 60]
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()= Ez) /0 h ef: it (5.19)

for z € C with Re(z) > 1, where I' (z) is the gamma function defined by (5.1).

Another useful definition of the Riemann zeta function is given by the infinite

series [4, p. 807], namely

(=Y (5.20)
k=1

for any z € C such that Re(z) > 1. For even and negative integer arguments,

the Riemann zeta function can be expressed in terms of the Bernoulli numbers,

that is,

¢ Bl 2)*
2 (2k)!

and ¢ (—k) = — B (5.21)

¢(2k) = (1) o

for k € N.

Some common values of the Riemann zeta function are as follows:

-3 =5 (D=0, (D=
O)=-3 = (@=T (5.22)
(B=2  (W=g Clo)=1

where Z is known as the Apéry’s constant® (cf. Apéry [30]).

The Hurwitz zeta function C (s, q) is the generalization of the Riemann zeta

function, that is,

(o)=Y — (5.23)

“—~ (k+q)

which coincides with the Riemann zeta function (5.20) when ¢ = 1 (see [4, p.
807], [149, p. 24-27]). Some useful functions related to the Riemann zeta function
are the Dirichlet beta [ (s), Dirichlet eta n(s) and lambda X (s) functions, where

e}
2The Apéry’s constant Z = k—lg, = 1.20205690... . It appears in a number of phys-
k=0
ical problems, for instance, in the electron’s gyromagnetic ratio, computed using quantum
electrodynamics, Debye model, Stefen-Boltzman law, etc.
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¢(s) _nls) _ Als)

2s 25 -1 925 -9’

B(s)=2"% [g <s, i) —¢ (s, %)} : (5.25)

in which S (s), n(s) and A (s) are defined by the following series:

2M(s) =C(s)+n(s), (5.24)

and

o (=1)" oo (—1)"! > 1
) =% o 10 = 5 SE— A0 =S g 6

k=0

respectively, for Re (s) > 0. In the following, we give some special values of the
B (s), n(s) and A (s) functions.

50) =5, s="1. 5(2)=G.
sB=2.  atn=g  w0)=3
2 3 (5.27)
i =2, g@=T,  a@)=3Z
n) = -5  A0-I

where Z and G, respectively represent the Apéry’s constant and Catalan’s con-
stant® (see [59, p. 153)).

Similarly, the Riemann zeta function is also one of the most important clas-
sical functions in analysis. It is widely used in various areas such as asymptotic
series, definite integration, Number Theory, hypergeometric series, etc., and with
applications even in physics, Probability Theory and Applied Statistic. Further
reading on this subject can be found in the various textbooks devoted to the
Theory of Special Functions, see for instance [4, p. 807-808], [146], [218], [224,
Chapt. 9], [356] and the references which are cited therein.

3 o (=D
G = 7;0 G = 0.91596559%4 . .. .
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5.1.2 Polylogarithm Functions

The classical s-th polylogarithm function, or for short, the polylogarithms Lis (2)
is a function defined by the power series (see [281, p. 239])

o0 Zk
Liy(2) =) = (5.28)
k=1

This series (5.28) converges absolutely for all complex values of the order s and
the argument z, where Re (s) > 0 and z € D (0,1). The polylogarithm function,
which is also known in the literature as Jonquiére’s function (cf. Jonquiere
[225]), appears in many different branches of mathematics such as combinatorics,
Algebraic Number Theory and Knot Theory (see [1], [71], [272]). It also plays
an important role in physics and engineering including Quantum Field Theory,
dynamical system, Feynman integrals, thermodynamic, network analysis, etc.,
(see [48], [154], [311], [443, p. 497-512]).

The alternative definition of the polylogarithm function is given by the fol-
lowing integral representation [364, p. 762]:

= oo tsfl
Li = 2
i) = o [ A (529)

for all s, z € C such that Re(s) > 0 and |z| < 1, where I' (s) is the gamma
function defined by (5.1).

The polylogarithm functions (5.28) reduce to the elementary functions for
the orders s = 0 and 1, that is,

z
1—2

Lig (2) = (5.30)

and

Liy (2) = In <1 ! ) , (5.31)

—Z

respectively, for z € D (0, 1), while for n = 2, we have

2\ 2k In(l—t
Lis(z) =Y % = —/0 n(f)dt, 2] < 1, (5.32)
k=1

I
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which is called the dilogarithm or Spence’s function (cf. Spence [405, p. 24-36)).
The function (5.32) was first introduced by Leibniz (cf. Leibniz [280, p. 336-
339]) in 1696, and it has bee extensively studied in its own right, see for instance
(71, p. 103-104], [142], [196], [202], [267], [281, Chapt. 1 ], [306] and [442].
For the cases of the integer orders s = 3,4,..., they are known, respectively as
the trilogarithm, quadrilogarithm, and so on. However, for the higher of integer
orders s > 2, the functions Li, (z) cannot be expressed in terms of the simple

elementary functions.

The polylogarithm functions can also be defined through successive steps of

their integration by

Liy () = /0 ) Lis_—l(t)dt, (5.33)

t

for s = 1,2,3..., with Lig(z) is the well-known function as defined in (5.30).
Then, the differential relation follows from (5.33) that

d[Li, (2)] _ Lis1(2)

ds z

(5.34)

or, in general,
2Md™ [Lig (2)]
ds™

= Liy_p (2) (5.35)

for m = 1,2,... and d is denoted as the m-th of the derivative. Thus, by
applying the recurrence formulas given by (5.34) and the equation (5.30) for

s=...,—3,—2,—1,0, we have the following relations [277]:
. z . z(z+1)
Li_1(2)= , Li_5(2) = —=,
&) =Ty &) =5y

2 (14 4z + 2%) (5.36)

(1-2)"

2 (14 2) (1 + 102 + 2?)

L’i_g (Z) = (1 — Z)5

Li_4 (Z) =

and so on, for all z € C such that |z| < 1. It is clearly seen that for all nonnegative
integer order n, Li_, (z) is a rational function in z, whose the denominator is
(1-— z)"“. Hence, for any desired function of the lower orders n = 1,2,3,...

and |z| < 1, we have the following expression [99, p. 245]:

. 1 n—
szn (Z) = ﬁ Z En’kz k7 (5.37)
1-2"1=
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where the coefficients F, ., n € N, k € Ny are Fulerian number*, namely, we
recall that these numbers can be obtained by the following series (see [85], [99,
p. 243)):
k+1
, 1 o
Bup =3 (<1) <” - ) (k+1—3j) (5.38)

=0 J

for integers n > 1. Polylogarithms also arise in the sum of generalized harmonic

numbers H, , as

[ee) L'T
N H, = G <a (5.39)
~ 1—-=2
for z € D (0,1), where
Hyy = 50— d Hyi=Hoy= 5 -
= —_— 1N = n = _—
n,r = kr a n i1 = k (540)

There are some special cases of polylogarithms, with first remarkable values
(see [146, p. 11], [443, p. 497-512])

Lis (1) = ( (s), (5.41)

for Re(s) > 1 and
Lis(—1) = (27 = 1) ((s), (5.42)

for s # 1, where ( (s) is the Riemann zeta function defined by (5.20). Clearly,
from the equation (5.41), the polylogarithm function (5.28) can be viewed as
a generalization of the Riemann zeta function as well. Instead of (5.41), the
polylogarithm also has relationships to other functions for some special cases of

argument z. For instance:

Li, (-1) = —-n(n), (5.43)

Lin (i) = oon(n) %36 (n), (5.44)

where (3 (n) and 7 (n) are the Dirichlet beta and Dirichlet eta functions, which

4Some particular cases of Eulerian numbers are E1 o = Fag = F39 = FEi0 = 1, Fa1 =
1,E31 =4, B32 =1, =11, etc. Eulerian numbers can also be obtained by the recurrence
equation: E,, = (m+1—k)Epn_1 -1+ kEn_14.
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were introduced in the previous section in (5.26).

There are some numerical values of Lis (z) and Lig (z) for the special argu-
ments z, for instance [282, Chapt. 1, 13],

1 2
Liy (5) =In2, Lis(—1)= I3 Liy (0) =0,
Lo (3) =T 3w, Lam-T. Le@-T.
7 ™ 1
Liy (i) = T +1G, Lis (\/52*1) =53 In2 (\/5;1)7
Lis (i) = ——Z +im®,  Lis G) — 2—14 [41n* (2) — 27%1In (2) + 217],

where Z and G are the Apéry and Catalan constant, respectively. For similar

equations containing the sum of dilogarithms of other arguments, see [249, p.
69-74], and see also [143], [179], [281, Chapt. 7], [363, p. 762-763] for some other

formulae involving Lig (z).

Next, we shall introduce another important class of the special functions

called hypergeometric functions.

5.1.3 Hypergeometric Functions

There are varieties of the hypergeometric-type functions ,Fj(as,...,ay;b,. ..,
by; 2), where p and ¢ are nonnegative integers. However, the most important
are the functions of the form 2 Fy (a,b; ¢; 2) and 1 Fi (a; ¢; 2), which are called the
Gauss hypergeometric function and the confluent hypergeometric function of the
first kind. In this section, we shall discuss some basic properties of these types of
hypergeometric functions. For the details on this topic, we may refer to the work
of Erdélyi et al. [149], and some other well-known textbooks such as Abramowitz
and Stegun [4, p. 556-565], Andrews [26, p. 85-101] and Oldham et al. [342].
See also [25], [46], [186], [368] for some historical overview of hypergeometric

functions.
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First, we give the definition of the hypergeometric series with any positive
integer of parameters p and ¢, which is called the generalized hypergeometric
series pFy (a1, ..., ap; b1, ..., by; z). This series is defined by (see [368, p. 73])

S (ag, - ayi by, by 2) :ZH% (5.45)

n=0

for arbitrary z € C, a;, b; e R\Z;,1<i<p,1<j<gq,and (t),, n € Ny is the
Pochhammer symbol, which is defined by (2.4). The subscripts p and ¢ indicate
the number of parameters in numerator and denominator of the coefficients in
its power series expansion. The series (5.45) converges absolutely for all z € C
when p < ¢ + 1, and it converges only for 2 = 0 when p > ¢+ 1. If p = g+ 1,
then the series (5.45) converges absolutely for |z| < 1, and it diverges for |z| > 1,
while, for z = 1, it converges absolutely when the Re (>"7_, by, — > »_, ax) > 0.
If the hypergeometric series converges, then it corresponds to the hypergeometric

function.

The Gauss hypergeometric function or simply hypergeometric function, is the

special case of the series (5.45) in which p = 2 and ¢ = 1, that is,

2F1(a7b%6;2)22% n

n=0

(5.46)

z
n!

for any a,b,c € R, z € C such that |z| < 1 and ¢ ¢ {0,-1,-2,...}, n €
N (see [53], [162]). This series arises in many areas of mathematics, physics
and engineering with several notations, for instance F'(a,b;c;z), F (a’cb | z),

a, b T'(c) a—1,b—1
211 (", | 2) and F(a)lc"(b) [z Oe1 }

In general, the hypergeometric function defined by (5.46), is the solution of

the Euler’s hypergeometric differential equation, which is
z(1—2)w" (z)+[c—(a+b+1)2]w (2) —abw =0 (5.47)
with the initial conditions w (0) =1 and w’ (0) = ab/c.

It is obvious that o F; (a,b; ¢; 2) = oF (b, a;¢; 2). That is, the hypergeometric
function (5.46) is symmetrical with respect to the interchange of its two para-

meter of the numerators a and b. The function (5.46) is also an analytic and
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univalent in the unit disk D. For the fixed b, ¢ and z, it is an entire function of
a, while, if a, ¢ and z are fixed, then it is an entire function of b. If a or b are zero
or negative integers, then the series in (5.46) terminates after a finite number of
its terms, thus the power series reduces to a polynomial in z. For example, if
a=-m,me¢€{0,1,2,...} and ¢ ¢ {...,—2,—1,0}, then the functions

2Py (—m by z) =) %Z—n => (-1 <m) Oy (5.48)

— n)(e),

are the polynomials in z.

Some values of (5.46) for the special arguments z are given as follows:

gFl(leO) 1
oF (a,b;¢; —o0) =1,  for a or b= 0;

(
(
(5.49)
oF) (a,b;¢;—00) =0, fora <0 andb < 0;

(

oF (a,b; c; —o00) = 00, for a or b > 0.
Many fundamental functions in a real or complex variable can be expressed in

terms of the hypergeometric function as well, and some of their typical examples

are given in the following [4, p. 556]:

(142" = 2F(—p —2),0 & Zy ;
1-27" = 2F1(1pp, ),
(1_2)72 = 2F1 (1,2,1,2)
1
g = oF (a,b;b;2), a € Z™
1
zln(l_z) = oF (1,1;2;2), (5.50)
1
;ln(l—i—z) = 2F1 (17172a )

1 1+2 1.3
—In = oF (=152
22 (1_2) 2 1(27 7272)7
¢ = lim oF) (1,b;1;5>,
b—o0 b

I 11
cos(z) = oF (5, 35 :sin? (z)),
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1 113
2 arcsin (z) = oF) (5, Y 5;22) ,
13,
arccos (z) = oF) L 1; 374 ) (5.51)
1 1 3
Z arctan (z) = oF) (5, 1; Y —22) ,

The derivative of the hypergeometric function (5.46) is given by

d b
d—[gFl (a,b;¢;2)] = LR (a+1,b+1;¢4 1;2) (5.52)
2 c
or
d” b
e [ 2F] (a,b;¢;2)] = (a) (), oy (a+k, b+ Ek;e+k;2), (5.53)
2

()
for all k € {1,2,...,n}, a,b,c,z € Csuch as |z| < 1, ¢ ¢ Z,, while the integra-

tion is defined by

? c—1
/0 [2F} (a,b;c;t)] dt = R [oFi(a—1,b—1;¢c—1;2) — 1], (5.54)

for all a,b, ¢,z € C with |z] < 1, ¢ ¢ Z, and Re (a), Re (b), Re(c) # 1.

Like the polylogarithms, the hypergeometric functions (5.46) can also be
represented in terms of integrals by

P (a,b;c;z):% /0 LA (L) d, (555

where z € C\ [1,00), a € C,b,c —b € C\Z, and 0 < Re (b) < Re(c), as proved
by Euler in 1748 (see [46, p. 4-5]). Other integral representations and similar
formulas defining analytic functions can be found in (see for instance [25, p. 65],
[149, p. |, [268]). If the argument z = 1 and the Re (¢ —a —b) > 0, then we
have from (5.55) that

L) (c—a—0)
I'(c—a)T(c—a)

oF1 (a,b;e;1) = (5.56)

The functions of the form | F} (a; b; 2) are called the confluent hypergeometric

function of the first kind, which is corresponding to p = ¢ =1, i.e.,
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n

> (l
Vi (a;b; 2) :nz:% N (5.57)

N

where a,z € C, b € C\Z,. It can be derived from the Gauss hypergeometric
function (5.46) by taking the limit as follows:
lim oF; (a, b; c; E) = 1F1(b;c;2). (5.58)
a—00 a
This function 1F (a;b;z) or F (] z) is sometimes written as M (a,b, 2) or
® (a;b; z) with its corresponding second-order differential equation called the

confluent hypergeometric differential equation or Kummer’s differential equation

[4, p. 504], namely,

d*w dw
z@%—(b— )ﬂ—aw 0, (5.59)

for any a € C, b € C\Z; with w (0) = 0 and v’ (0) = a/b. The derivative of the
function (5.57) is given by [4, p. 507]

d
— 1Fi(a;bi2) = % Fr(a+Lb+1z2). (5.60)

There are many elementary functions connects to (5.57), for example,

VFi(asa;2) = e*, 1Fi(a;2;22) = Ssinh (2). (5.61)

The Kummer’s function U (a,b, z) or ¥ (a;b; z) is also related to the hyper-

geometric functions of type oFj (a, b; ; z), where
1
o Fy (a, l4+a—0; ; ——) = 2U (a,b,2) . (5.62)
2

Many relations of more complicated hypergeometric functions can be found in
(see for example [4, Chapt. 15], [149, p. 686-706], [298, Chapt. II ]).

5.1.4 Bessel and Modified Bessel Functions

The Bessel functions of the first kind J, (z), are defined as the solutions to the

Bessel’s differential equation, i.e.,
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d’y  dy

2 2 2\, _

z@—l—z%—i—(z — o)y =0, Re(a) >0, (5.63)
for an arbitrary real or complex order . The solution of (5.63) is an analytic
function of z in C, except for a point z = 0 when « is not an integer. The
solutions, denoted by J, (z) are defined by Taylor series expansion around the

origin (see [4, p. 360], [26, p. 57]), i.e.,

s —1)k o\ 2k+a
Ja2) = ; T (k ( @)+ 1) &l (5) ’ (5.64)

o

for any «, z € C with Re (o) > 0 and I'(2) is the gamma function.

The most common of the Bessel functions that occur in practice are those of

the integer orders a« = n € N. For such functions, we have

e 2k+n
Z) (5.65)

nio =30
2) =) ———|=
" k!
= (k+n)lk! \2
For a non-integer order «, J, (z) and J_, (z) are linearly independent, and there-
fore the two solutions of the differential equation (5.63). On the other hand, for
an integer order «, the J, (z) and J_, (z) are linearly dependent solutions of
(5.63), hence the following relationship is valid [4, p. 358]:

Toa(2) = (=1)* Ja (2). (5.66)

The Bessel functions satisfy a large number of identities and integral relations,

some of which are provided below [26, p. 58]:

Jo(0) = 1, (5.67)
Jo(0) = 0, a>0, (5.68)
%Ja (1) = Jur (@) 4+ Juss (@) (5.69)
20 () = Jac1 () = Jap (), (5.70)
Jo(z) = % :ﬂeﬂmsede, (5.71)

27
In () = ! /0 cos (nf — xsinf) df, n € Ny, (5.72)

™
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T(x) = 1/ Zsin(@), 20 (5.73)
3 N T ’ ’ ’
2
J 1 (x) = — cos (x), x>0. (5.74)

If the argument z in (5.63) is replaced by iz, then the solutions of the second
order differential equations are called the modified Bessel functions of the first
kind. We denoted these functions by I, (z). It is easy to verify from (5.64) that
the modified Bessel functions I, (z) are defined by the following power series [4,
p. 375]:

s 1 2\ 2k+a
la(z) = ; T (k+a+1)k (5) ’ (5:75)

for all a, z € C such as Re (o) > 0. We observe that the function [, (z) has all

the nonnegative coefficients. If & = n € Ny, then we have

I, (z) = Z m (g)2k+a

k=0

Similar to the Bessel functions, the modified Bessel functions of the first kind

(5.75) also satisfy the following relations,
I,(=2) = (=1)"1,(2) and [I_,(2)=1,(2) (5.76)

holding for all @ € Z, z € C such as |z| < 1. The modified Bessel functions of
the first kind of order «, I, (2), can be expressed by Bessel functions of the first

kind as follows:

T (iz) = I, (). (5.77)

Most of the properties of the modified Bessel functions are analogous to the

ordinary Bessel functions, some of which are provided below [26, p. 62]:
L) = 1, I,(0)=0, a>0, (5.78)
—la(x) = a1 (x) = Lo (2), (5.79)

o (z) = Iy (2)+ oy (7), (5.80)
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1 2w

Iy(z) = o ), exreostqg, (5.81)

I, () = \/gcosh (), x>0, (5.82)

Iy (z) = \/%sinh (z), x>0. (5.83)

In the following section, we provide some results involving the special func-

tions. We start by presenting some inequalities for the polylogarithm functions.

5.2 Inequalities for Polylogarithm Functions

It is clearly seen that the polylogarithm function (5.28) is the power series with
nonnegative coefficients and convergent on the open disk D (0, 1), so that all the
results established in Section 3.2 - Section 3.4 of Chapter 3, and Section 4.1.2,
Section 4.1.3, Section 4.2.2, Section 4.2.3 of Chapter 4 hold true. Therefore,
for the examples, and for the main purpose of this section, we derive some
inequalities involving the polylogarithm functions by considering the inequalities
(3.9), (3.56), (3.95), (3.118), (4.29), (4.70) and (4.156).

First, we give the following result proved by Cerone and Dragomir [89].
Corollary 101 If Li, (2) is the polylogarithm function, then we have

|Li, (az)|* < =Li, (a®) [Liy (]21?) + |[Lin(Y)]] (5.84)

| =

fora € (=1,1), z € C with z, az, a?, 22, |z|2 € D(0,1) and n is a negative or

positive integer.

Utilising the inequalities (3.9) and (3.56) for the polylogarithm functions
(5.28), we obtain the following results (see [208], [209], [217]).

Corollary 102 If Li, (2) is the polylogarithm function, then we have



5. Applications to Special Functions 159

|Liy, (o) Liy, (Bz)|
< 2 [[in (o) Lin (8] + | Lin @B L (o). (6:55)
fO?“ any O‘aﬁam € C with ‘04‘2: ‘5’27 "T‘2: O‘B: OCT: B«T €D (0, 1) andn is a negative

or positive integer.

Corollary 103 If Li, (z) is the polylogarithm function, then we have

[Lin (1212) Lin (Jy)]"* Lin (12?) = |Lin (2%) Li, (7))
> |Lin (2) Lin (|2[%) = Lin (2%) Lin (27)], (5.86)

2"

for any x, y, z € C such that |z|°, |y*, |2°, 2Z, 27, 27 € D(0,1) and n is a

negative or a positive integer.

We also obtain the following results from (3.95) and (3.118), see [214], [217].
Corollary 104 If Li, (2) is the polylogarithm function, then we have
Liy (|| |21*) Liy (|2]) — | Lin (|2] 2)|?
> |Liy(z)Li, (z|2| 2) — Lin(x2) Liy(x |2])] , (5.87)

for any x, z € C such that x, xz, |z||z|* € D (0,1) and n is a negative or positive

integer.

Corollary 105 If Li, (2) is the polylogarithm function, then we have

Liy (|2) Lin (|y]?) — | Lin (zy)?

> | Lin (|| ) Lin (|y|7) — Lin(ly| z) Lin (2] )], (5.88)

for any x, y € C with |z|*, |y|> < R and n is a negative or positive integer.

As a consequence of the above results, we get the following inequalities, which

incorporate the Riemann zeta function ( (z), see ([214],
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Corollary 106 (i) If we choose © = 1 in (5.87), then we get the following

inequality, which incorporates the zeta function, i.e.,

¢ (n) Lin (|2I) = | Lin (2)*
> [¢ (n) Lin (|2] 2) = Lin (2) Lin (|2])], (5.89)

for any z € D(0,1), where n is a positive or negative integer. In particular, if
n = 2, then by the inequality (5.89) we get

7T2

ELz'2(|z|2) — |Lisy (2)]* > %Li2(|z|z)—Li2 (z) Liy (|2])] (5.90)

for any z € D(0,1) and the Liy (z) is the dilogarithm or Spence’s function which
is defined in (5.32).

(i1) If we choose x =i in (5.87), then we have
¢(n)Liy (|2I*) = |Lin ()|

> '(%n (n) +1iB (n)) Liy, (i]2] 2) — Lin (i) Lin (i]2]) |, (5.91)

for any z € D(0,1) and n is a positive or negative integer. In particular, for
n = 2, we have from (5.91) that

. 9 . 2
ELZQ (127) = |Lia (2)]

> ‘ (Z—; + z’G) Lis (i |2] 2) — Lis (i2) Lis (i]2])| . (5.92)

for any z € D(0,1), where G is the Catalan’s constant.
Corollary 107 (i) If we choose x =1 in (5.88), then we have
¢ (n) Lin (|y1°) = |Lin (9)* > ¢ (n) Lin (ly|9) = Lin(ly) Lin @) (5.93)

for any z € D (0, 1), where n is a positive or negative integer. In particular, for

n =2, we get from the inequality (5.93)

T Lia (Iy1%) = |Liz ()* > | T-Lia (191 7) — Lia(ly]) Lia(5) (5.94)
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for any z € D(0,1).
(i1) If we choose x =i in (5.88), then we have
C(n) Lin (Jyl*) = |Lin (i)
> |(gn )+ i800)) Lia (ol) - LinGi DL (599

for anyy € D (0,1), where n is a positive or negative integer. In particular, we

get the following inequality by choosing n = 2 in (5.95),

2

& L (1yf?) = Lz (iy)
> '(2—8 N iG) Lia (1919) = Lis(i lyl) Lis(@)] (5.96)

for any z € D(0,1).

Similarly, if we apply the inequalities (4.29), (4.70) and (4.156) for the poly-
logarithm functions (5.28) for, then we get the following results (see [213], [215],
[216], [217]).

Corollary 108 Let Li, (z) be the polylogarithm function. Then, we have
Liy (|2]) Lin (Iy|") > | Lin (2y) Lin (|2 [y (5.97)

for any z, y € C, 2,y £ 0 with zy, |al?, |yl” € D(0,1) andp, ¢ > 1, 1/p+1/q =
1. In particular, if n = 0 in (5.97), then we get the following inequality:

1=yl |1 = [ [y = (1= [2”) (1= [y]), (5.98)

forany x, y #0, zy, |z|°, ly|* € D(0,1) and p, ¢ > 1 with 1/p+1/q = 1. If we
take n =1 in (5.97), then we get the inequality (4.38) for all z, y # 0 with xy,
|z, |y € D(0,1) and p, ¢ > 1, 1/p+1/q = 1. Also, if we choose in (5.97)

n = 2, then we obtain

Liz (|2]") Liz (|y|*) > |Liz (xy) Liz (|~ [y* )], (5.99)

for any x, y #0, zy, |z, |y € D(0,1) and p > 1 with 1/p+1/q = 1.
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Corollary 109 If Li, (x) is the polylogarithm function, then we have
Lin (v'2*7™) Li,, (y*72") < Lin(y)Lin(2), (5.100)

for any y, z, y'277, y*v2¥ € (0,1), v € [0,1] and n € Z. In particular, if
n =0 1in (5.100), then we get the inequality (4.72). Also, if n = 1, then we get
from (5.100) the inequality (4.73). Further, we obtain the following inequality
by choosing n =2 in (5.100):

Liy (z"y"™") Liy (2'"y") < Lis(z)Lis(y), (5.101)
fory, z, y'2'7", y*7v2¥ € (0,1) and v € [0, 1].

Corollary 110 If Li,(x) is the polylogarithm function, then we have

Lip—1(c)

C Lin(c)
< (= 5.102
- (a) ’ ( )

(c) a1l - Lin ()

a ~ Liy (a)

for any a, c € (0,1) and n is positive or negative integer. In particular, if n =0

in (5.102), then we have the simpler inequality

(E)T clza_ (f) = (5.103)

a —1—c ™ \a

for any a, ¢ € (0,1). Also, if we take n =1 in (5.102), then we get

R Y S (5104)

a “In(1—a) = \a

for any a, ¢ € (0,1). Further, we obtain the following inequality by choosing
n=21in (5.102):

71n.1—a . 7%};«@1
(E) Tig(a) < L?2 (c) < (E) Liz() ’ (5.105)
a Liy (a) a

for any a, c € (0,1).

Further, we establish some inequalities involving the polylogarithms for dif-
ferent order of integers p, ¢ and r. In [89], Cerone and Dragomir proved the

following result via the de Bruijn inequality.
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Theorem 111 (Cerone and Dragomir [89]) Li, (2) is the polylogarithm func-
tion, a € (—1,1), z € D(0,1) and p, q, r integers such that the following series

exist. Then

| Lirtptq (az)|2 1LZT+2P ( 2) [Lir+2q (|Z|2) + }Lir+2q(22)u : (5.106)

(\V]

We obtain the similar inequality to (5.106), by utilizing the Buzano’s result
(3.6) in inner product spaces (see [208], [217]). The result is given as follows:

Theorem 112 (Ibrahim and Dragomir [208]) Let o, 3, v € C with o, B,
|a|2, |B|2, af, |x|2 € D(0,1) and p, q, r integers such that the following series
exist. Then

| Lirtpq (O) Lipspiq (B)|

< % ([Lmzq (10?) Ligyaq (18] + | Livyg (@B)}) Liyiap (121°) . (5.107)

Proof. Utilising the Buzano inequality (3.6) for p, = 1/k", ¢, = o /K4,
b = (7/k9 and z;, = 2 /k?, we have
}Lir+p+q (Oﬁ) Lir+p+q (Bx) }
)k:
k”" k:q kp k”" kq kp

1/2
<1 =1 (187"
Lz_:k_ k24 kz_:k_ k24 ]

k
1
L) s
k=1

([Lzmq (10?) Zirsa (1812)] 7
+ }Lir+2q (043) }) Liyyap (\1’|2) . .

IA

ﬁ-Mg N

8

QI

1 (
k_2q

DN | —

Thus, the desired inequality (5.107) is proved. m

Also, on utilising the refinement of the Schwarz inequality (3.54) in inner

product spaces, we obtain the following result (see [209], [217]).
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Theorem 113 (Ibrahim and Dragomir [209]) Let z, y, z € C with |z|?,

|y|2, |z|2, 2z, 2y, xy € D (0,1) and p, q, r integers such that the following series
exist. Then

[Lirsag (12%) Lirvag (19°)]""* Livsay (|2P)

= |Liriprq (2Z) Ligspiq (27)]

> }Lir+2q (2Y) Liri2p (’212) — Liriprq (4Z) Liriprg (Z@)} : (5.109)

Proof. Utilising the discrete inequality (3.54) for pp = 1/k", z), = a*/kq,
yr = yF k2 = 2% /kP k€ {1,2,...,m}, we have

2 1/2 m 1
) (Z

Z 1z (y)k
krkq kp = 1]{7’"]{31’ ka

k 2

ka
k=1

Zk:

v G
k kP

21/2m1
) or

k=1

(5.110)

"1k ()" 1
;?F?;?

Hence

NS @R () S @) S G 5111
- Z kr+2q Z kr+2p N Z kr+p+q Z k»r+p+q7 ( ) )

k=1 k=1 k=1 k=1

for m > 0. Taking the limit as m — oo in the inequality (5.111), then we deduce
the desired result (5.109). m

On making use of the results (5.107) and (5.109), we obtain some more sim-

pler inequalities as follows:
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(a) If @« = z, f =Z, then from (5.107) we can state that
Lir gt (57) Livspiq (20)]
< 5 [Lirang (12) + [Livsag (2)[] Zivaoy () (5.112)

Further, if z = a € R, then from (5.112) we deduce the inequality (5.106).
(b) If y =7, then from (5.109) we can state that

Liy 12 (|I|2) Lirygp (|Z|2) = |Liriprq (22) Liyipiq (2Z))]

> }Lir+2q (12) Lyjop (‘212) — Liriprq (22) Liripiq (1’3)} ’ (5.113)

for x, z € C. Moreover, if z = a € R, then from (5.113) we deduce the

inequality

Liyyaq (|x|2) Liryap (QQ) = | Liriprq (am)|2
> |Liyi2q (27) Livyop (a®) — LiZy ., (az)] (5.114)

for any v € C and a € R.

In particular, we can state the following inequalities, which incorporate the

Riemann zeta function ¢ (z) :

Corollary 114 Let z € D (0,1) and p, q, r integer such that r = 2p > 1. Then

| Lipqr (Z)|2 < 5¢(r+2p) [Lir+2q (|Z|2) + |Lir+2q (22) H : (5.115)

1
2
Proof. The proof follows by Theorem 111 fora=1. m

Corollary 115 Let o, § € D(0,1) and p, q, r integers such that r + 2p > 1.
Then

’Lirﬂﬂrq (=) Liripiq (BZ) }

< %c (r+2p) ([Lirsag (1) Lipsag (18] + |Livsag (0B)]) . (5.116)

Proof. The proof follows by Theorem 112 for x =i. m
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Corollary 116 Let o, 5 € D(0,1) and p, q, r integers such that r + 2p > 1.
Then

C (7 + 2q) Lirsaq (121%) = [Liripeq (@)
> K (r + 2q) Liroq (5172) - Li72“+p+q ($)| ) (5.117)

for any x € C.

Proof. The proof follows by utilising the inequality (5.114) fora =1. m

Next, on utilising the inequalities given by (5.115), (5.116) and (5.117), and
taking into account that some particular values of  (n) are known such as ¢ (2)
and ¢ (4) as mentioned in (5.22), we derive some particular inequalities involving

the polylogarithm functions. The results are summarized as follows:

7.{.2

(2) [Lign (2)]" < 5 iz (121*) + |Lizg(%)]] ,

’/T4

T [y (12P) + 1Liag ()]

(b) | Ligez (2)] <
(c) }Liqﬂ (i) Ligi (BZ)‘

< T ([ (10P) £y (15)] ™ + iy (3)])

(d) |Ligya (—ai) Ligya (i)

2

< oo ([ing () Liag (57)] + | iz (oB)])
(5.118)
(e) }Liq+3 (—ai) Ligys (BZ) ‘
4 —

< 7= ([Linsn) (1) Linsny (18F)]"* + |Liagsn) (aB)])

w2 9 2 2 . 2 . 2
(£) |5 Lizg (2°) = Ligra ()| < - Lizg (121°) = [Lig1 ()],

RN 2 Tt 9 .
(8)  |ggLiza (z°) = Ligra ()] < g5 Lizg (121°) = [Ligs2 ()],

. 9 2 . 2 , 2
(h) | gg Ltz (27) = Ligrs ()] < g5 Liag (121°) = [Ligta ()],




5. Applications to Special Functions 167

for any «, 8, z, z € D (0,1) and ¢ is an integer.

Other studies related to the polylogarithm functions for further reading can
be found in the literature, see for example ([1], [89], [105], [143], [295], [312],
[391]) and the references cited therein.

5.3 Inequalities for Hypergeometric Functions

Since, the hypergeometric function (5.46) is a power series with nonnegative
coefficients and convergent on the open disk D (0,1), then all the results, which
are established in Section 3.2 - Section 3.4 of Chapter 3, and Section 4.1.2,
Section 4.1.3, Section 4.2.2 and Section 4.2.3 of Chapter 4 hold true. Therefore,
for instance and thus, for the purpose of this section, we present some inequalities
involving the hypergeometric functions by applying some of those results such
as (3.118), (4.29), (4.70) and (4.156) for this function.

First, we obtain the following result by applying the inequality (3.118) for
the hypergeometric functions (5.46), see ([214], [217]).

Corollary 117 Let oF} (a,b;c; z) be the hypergeometric function. Then

oI (a,b565|2)%) oFy (a,b5650y[°) = [oF (a, b5 ¢;2y)]?
> o F1 (a,b;¢; x| @) 27 (a,b; ¢ |y|Y)
—2F1 (a, b5yl z) 2F1 (a,b;¢; || )], (5.119)

foranya, b, c € R, withc ¢ {...,—2,—1,0} and z, y € C such that |z|, |y| < 1.

As a natural consequence, the following result holds:

Corollary 118 (i) If in (5.119), we choose ¢ = b, then we have

1 1

(=2l (L =19)]" 1—ayl™
1 1
> -0 -l (- d==5 (5.120)
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for any a € R, x, y € C such that |x|, |y| < 1.
i1) Also, if in (5.119), we choose a = b =1, ¢ = 2, then we get
(ii) 9
1 1 1\
w(=) e (=) 1o (75)
1— |z] 1— [yl 1=y
1 1
o))
1—[zf 1—lyly
1 1
I (——— ) (———)], (5.121)
1—lylz 1|2y

for x, y € C with |x|, |y| < 1.
Remark 119 For a =1, the inequality (5.120) reduces to (3.125).

On applying the inequality (4.29) for the hypergeometric function (5.46), we
also have (see [215]):

Corollary 120 If oF) (a,b;c; 2) is a hypergeometric function, then for any a, b,
c € R we have

2F1 (a, ;¢ [2[") oF (a, b c;|y[?)

> |2F1 (a,b;¢;2y) 2F (a,b; ¢ 2P )|, (5.122)
where x, y # 0 with xy, |z|’, |y|* € D(0,1) andp > 1, 1/p+1/q = 1. In

particular, if we choose a = 1, ¢ = b in (5.122), then we get the inequality

(4.34). Also, if we choose a = b =1 and ¢ = 2, then the inequality (5.122)
reduces to (4.38).

Next, from the inequality (4.70) we obtain (see [216]):

Corollary 121 If oF; (a,b; c; x) is the hypergeometric function, then we have

2Fy (a,b;0;072" ") oFy (a,b; ¢y 7V 2Y)
< o (abicy) o (a,bic2), (5.123)
fory, z, y* 247, yt="2¥ € (0,1) and v € [0,1]. In particular, if we choose a =

b= c =1, then the inequality (5.123) reduces to (4.72). In fact, the inequality
(5.123) reduces to (4.72) for any a, b, ¢ € R such that c =b ¢ {0,—1,-2,...}.
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Finally, we get from (4.156) the following result (see [213]):

Corollary 122 If o F (a,b; c; x) is the hypergeometric function, then for any a,
b,c€ R and x, y € (0,1) we have

aby o Fy(a+1,b4+15¢41;y) abx 9 Fy(a+1,b+15¢41;2)

y T oFi(abey) T \y

In particular, if we choose b= c in (5.124), then we obtain that

wi) v/(1-)
(f) <Y< <f) , (5.125)
Y -z Y

for any a € R, z,y € (0,1).

For other results devoted to the hypergeometric functions, see for example
([51], [86], [191], [260], [263], [366], [396]) and the references which are cited
therein.

5.4 Inequalities for Bessel Functions

Similar to the polylogarithm and hypergeometric functions, the modified Bessel
functions of the first kind (5.75) are also defined by the power series with nonneg-
ative coefficients and convergent on the open disk D (0, 1), so that all the results
in Section 3.2 - Section 3.4 of Chapter 3, and Section 4.1.2, Section 4.1.3, Sec-
tion 4.2.2 and Section 4.2.3 of Chapter 4 hold true. Therefore, for instance from
(3.118), (4.29), (4.70) and (4.156), we have the following inequalities involving
the Bessel and modified Bessel functions of the first kind (see [213], [214], [215],
[216]).

Corollary 123 If J, (z) and I, (z) are the Bessel and modified Bessel functions
of the first kind respectively, then we have

Lo (|2%) Lo (|y)*) = Lo (zy)|?
> |Jallz] 7)Ja (ly]9) — Jally| 2) Ja (2| )] (5.126)
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fora € R, z, y € C with |x|, ly| < 1. In particular, if y = o = 0, then we obtain
from (5.126) that

Iy (Jz) = 1> |Jo(|z|z) — 1)|, (5.127)
where
o (—1)" /z\2F o ] 2\ 2k
Jo(:)= 3 T (5) and Io(2) = 3 o (5) (5.128)
for|z| < 1.

Corollary 124 If J, (z) and I, (z) are the Bessel and modified Bessel functions
of the first kind respectively, then for any o, x, y € C, we have

Lo (J”) Lo (191") = | Ja (29) Ja (J" 91" (5.129)

where x, y # 0, xy, |z|", ly|* € D(0,1) and p > 1 with 1/p+1/q = 1. In
particular, if o« =0 in (5.129), then for p, ¢ > 1 with 1/p+1/q =1, we get

Jo (i|21") Jo (i yl") = [Jo (xy) Jo (Jal”" |y1*)] - (5.130)

Corollary 125 If I, (x) is the modified Bessel function of the first kind, then

we have

L (472" 7)1 (y'772") < La(y)la(2), (5.131)

fory, z, y*27", y17v2z¥ € (0,1) and v € [0, 1]. In particular, if « = 0, then from
(5.131) we get

Io (v ") Io (y'772") < Io(y)Io(z), (5.132)

fory, z, y*27", yt=2" € (0,1) and v € [0, 1], where

Iy (z) = g:o 4k36('k!)2. (5.133)

If in (5.181) we choose a = 5, then we we obtain

sinh (y”2'7") sinh (y'~2") < sinh (y)sinh (2), (5.134)
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fory, z, yz'7", y*72¥ € (0,1) and v € [0,1]. If we take o = 3/2, then we get
from (5.131) that

[y”zlf” cosh (y”zlf”) — sinh (y”zl’”)]
X [yl_”z” cosh (yl_”z”) — sinh (yl_”z”)]

< [y cosh (y) — sinh (y)] [z cosh (z) — sinh (z)], (5.135)

fory, z, y*27", yt=2 € (0,1) and v € [0, 1].

Remark 126 For o = —1/2 and —3/2 in (5.131), we get the dual results,
namely

cosh (y”2"7") cosh (y"2") < cosh (y) cosh (z) (5.136)
and

[y”zl_” sinh (y”zl_”) — cosh (y”zl_”)]
X [ylf”z” sinh (ylf”z”) — cosh (ylf”z”)]

< [ysinh (y) — cosh (y)] [z sinh (z) — cosh (2)] (5.137)
respectively, fory, z, y*2'7, y*=z¥ € (0,1) and v € [0,1].

Corollary 127 If I, (x) is the modified Bessel function of the first kind, then

for any a, ¢, a € R we have

a[lg_1(a)+1ny1(a)] I (C) e[la—1(a)+1n11(0)]
a

C 21 (a) (C) 2Ia/(c)
— < < (- . 5.138
(a) ~ Iy(a) T \a ( )

In particular, if « =0 in (5.138), then for any a, ¢ € R, we get

(Eﬁ% Do) _ (g)?ﬁ% (5.139)
a B IO (a) - \a

where

1 2\ 2k+1
I (2) = ;m (§> . (5.140)
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If in (5.138), we choose o = 1/2, then we obtain
(E>acoth(a)% < S'il’lh (C) < (£>ccoth(c)% ’ (5141)
a sinh (a) a
for any a, c € R.
Remark 128 For a = —1/2 in (5.138), we get the dual result, namely
atanh(a)—% ctanh c)—%
(5) < SOl () (5.142)
a cosh (a) a

for any a, c € R.

Other inequalities related to the Bessel and Modified Bessel functions of the
first kind for further reading can be found in the literature, see for example ([50],
[227], [331], [447]) and the references which are cited therein.



Part 11

SOME INEQUALITIES
INVOLVING ANALYTIC AND
UNIVALENT FUNCTIONS
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Chapter 6

Elementary Theory of Univalent

Functions

This chapter is of an introductory nature and gives the necessary background to
Univalent Function Theory. Univalent functions are studied by many, not only
in the area of Geometric Function Theory, but also in the classical studies of

Complex Analysis as a whole.

Some fundamental concepts in the field of Univalent Function Theory, such
as a simply connected domain, analyticity, conformality property, normalization
conditions of analytic functions, and the Riemann Mapping Theorem, are given
in Section 6.1. In Section 6.2, we introduce one of the most important subclasses
of analytic functions, which is called the class P of all analytic functions with
a positive real part. Some important and useful results related to this class
are also given. The class S of analytic, univalent and normalized functions in a
unit disk, and some of its well-known subclasses such as starlike, convex, close-to-
convex, etc., are briefly discussed in Section 6.3 and Section 6.4. Some important

properties of functions in these classes are given for completeness.

In Section 6.5, we state some of the classical results related to the class S. One
of the famous differential operators, which is known as the Sildgean differential
operator, is mentioned at the end of this chapter. Several subclasses of S, which

are characterized by this operator, are mentioned as well.

Some of the well-known results are mostly adopted from the standard texts

174
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of Ahlfors [6], Duren [144], Pommerenke [357], Graham and Kohr [170], Kiihnau
([265], [266]) and other references, which are cited therein. Further reading and
some additional results on this subject can also be found in the wide variety of

classical and modern textbooks devoted to the Univalent Functions Theory and
related topics, including ([5], [74], [169], [221], [262], [330], [386], [406]).

6.1 Basic Concepts

In a complex plane, an open set is said to be connected if every two points
in the set can be joined by a continuous piecewise smooth curve (or polygonal
path) that lies entirely in the set. An open connected set is a domain, while, a
domain together with some, none or all of its boundary points, is often called
a region. A domain F is said to be simply connected if it has the property
U~ (or Jordan curve), which is parametrized by
2(t) =z (t) +iy(t) for t € [a,b], z € F, lies completely in E. This means that
the domain interior to ~ lies wholly in F [5, p. 77-80]. In a simple language, a

that any simple closed curve

simply connected domain is one which is free of holes or cuts in its interior.

The open unit disk D, which is defined by (2.3), is one of the most important
examples of a simply connected domain in C. It plays an important role in the
study of Univalent Function Theory, which is primarily concerned with analytic

and univalent functions on this domain.

A set Ay in a complex plane is called starlike (star domain or star-shaped)
with respect to the fixed point z¢ € Ay, for every € Ag, the line segment joining
the point zy to x lies entirely in the set Ag. Geometrically, for any xq,z € Ay
with z is a fixed point, then tx + (1 — t) 2o € Ao, for every ¢t € [0, 1]. In the case
if o = 0, then we say that the set Ag is a starlike with respect to the origin. The
convex set can be described in a similar way. A set A; € C is said to be convex
if it is starlike with respect to each of its points; that is, the line segment joining

any two points x,y € A;.

A complex-valued function f : A — C of a complex variable is differentiable

LA curve is said to be simple if it does not cross itself. It is called a simple closed curve if
it closed and it does not cross itself except at the end points.
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at a point zg € A C C if it has a derivative at z, i.e.,

F () = tim 2 = f(20). (6.1)

z—20 zZ— 20
A function f (2) is said to be analytic at the point zy € A if it is differentiable
at every point in some neighborhood of zy € A. The function f (z) is to be said
analytic on the domain A provided that it is analytic at every point of z € A.

We say that f (z) is an entire function if is analytic on the whole complex plane.

One of the most important facts of complex analysis is that, if f(z) is an
analytic function on a certain domain in a complex plane, then it must have
derivatives of all orders at zp in its domain, and f (2) has a Taylor series expan-
sion, which converges in an open disk centered at zy (see [144, p. 2], [166, p.
33)).

Theorem 129 ([166, p. 33]) Suppose that the power series Y -, axz" has ra-
dius of convergence R, R > 0. For |z| < R, let f(z) = > ooy arz™. Then, the
power series Y p o karz® has radius of convergence R and f'(z) = oo, kagz"
for all |z| < R. Thus, a power series defines a function, which is analytic in its

disk of convergence.

This means that every analytic function is locally represented by its conver-

gent power series in an open disk. Explicitly, we have [144, p. 2]

f(z)= Z an (z —29)", (6.2)

n=0

which converges for all z sufficiently close to zo. More precisely, if f (z) is analytic
in the disk D (zp, R), then the Taylor series expansion (6.2) converges to f (2)
for all z € D (zy, R). Conversely, if the power series defined in (6.2) converges for
every z € D (2, R), then the series (6.2) represents a function that is analytic
on D (2o, R).

Besides the analyticity, the conformality of functions is another remarkable
geometric property that must be possessed by the analytic complex-valued func-

tions. A function f, which is analytic and univalent on D, also maps conformally
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the unit disk D onto the another domain in C. In the other words, a complex-
valued function is conformal if and only if it is analytic, and it has everywhere

nonzero derivative on its domain. In particular, we have the following theorem
[5, p. 259] (see also [44, p. 170]).

Theorem 130 ([5, p. 259]) If the function f(z) is analytic at zo € D and
f'(z0) # 0, then f(z) is conformal at zy. If f(2) is analytic in D, then f(z) is

conformal at every point in D. The converse is also valid.

The conformal mapping, which preserves the magnitude and the orientation
of the angles, is also called the conformal transformation, angle-preserving trans-
formation or biholomorphic maps, with its applications found in many areas of
physics and engineering, electronics, medicines and other branches of applied
mathematics (see for instance [153], [238], [245], [402]).

Riemann Mapping Theorem is one of the remarkable results in the Geometric
Function Theory, which asserts that any simply connected domain in C can be
mapped conformally onto the unit disk D (see [144, p. 11], [170, p. 5], [357, p.
10] ). More precisely, we have (see also [6, p. 222])

Theorem 131 ([144, p. 11]) Let U be a simply connected domain, which is
a proper subset of a complex plane. Let (, be a given point in U. Then, there
exists a unique analytic and one-to-one function f : U — D, which maps U
conformally onto the unit disk D, and has the properties f (C,) =0, f' (¢y) > 0.

This theorem guarantees the existence of a conformal mapping, which maps
the simply connected domain D onto any simply connected domain in C. We
note that since the inverse image of a conformal mapping is also conformal, then
the Riemann Mapping Theorem implies that any two simply connected domains
are conformally equivalent. That is, if D ¢ C and U ¢ C are simply connected
with z € D and w € U, then there exists a unique conformal transformation
f:D — U with f(z) =w and f'(2) > 0.

An analytic function w = f(z) that maps conformally a simply connected
domain onto another domain in C is not unique. In view of the Riemman Map-
ping Theorem, the function f(z) needs to be unique. Therefore, such functions

need to satisfy the conditions for uniqueness, which are called normalization.
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The standard normalization conditions of analytic functions in a complex plane
are that, for f : Dy — Dy, where D; and D, are simply connected domains in
C, then the function f (z) is called normalized such that [5, p. 261]

£(0)=0 and f'(0) = 1. (6.3)

Other normalizations are possible, but the conditions in (6.3) are the most usual

and the ones that we will be used throughout this study.

The next section discusses one of the important classes of analytic functions,
which is called the class P consisting of all analytic functions with a positive real

part.

6.2 Functions With a Positive Real Part

The analytic functions, which map the open unit disk D onto the right half-
plane, are of particular interest in the study of Univalent Function Theory. In
this section, we introduce the class P of analytic functions in the open unit disk
D having a positive real part. Let us denote H (D), the class of all analytic

functions in the unit disk D.

Definition 132 Let P be the family of all analytic functions. Then,

P={peH(D):Relp(2)] >0,p(0) =1, z€ D}. (6.4)

The function in the class P is often called the Carathédory function [84]. It
can be noted that all functions in the class P can be represented by the following

power series:
[e.e]
p(z) =1+> ", (6.5)
k=1

for all z € D, which is obviously that p(0) = 1. Due to Herglots [194], the family
P is characterized by the set of functions p (z), where they are represented by

the Herglotz formula as follows:

pe) = | <M) au(t) (6.6)

o0 \1 —ez
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for z € D, p(t) is a real-valued nondecreasing function on [0, 27] and u (27) —
1(0) = 1. The most important example of a function in the class P is called the

Mobius transform, which is of the form

mo(z) = =1+ 222". (6.7)

The function (6.7), which maps the unit disk D one-to-one onto the right half-

plane, also provides one of the extremal functions of this class.

The following properties might be useful in the subsequent chapters (see [84],
[144, p. 41], [240], [284], [357, p. 41]), with the first lemma due to Carathéodory
[84]:

Lemma 133 ([84]) If p(z) € P and p(z) is defined by the series (6.5), then
Ipn| < 2 forn € {1,2,3,...}. Equality is attained if and only if p (2) is the Mobius
function (6.7).

Lemma 134 Let p(z) € P and be of the form (6.5). Then,

2
<2-— M. (6.8)

2
p
'p2——1_ 5

2

This result is sharp, with equality holding for the function

(p1+ &p1) 2 + €27
(pl —@)Z —522’

+

p(:) =1 =1 (6.9

N [= o=

Lemma 135 (see [180]) Let p(z) € P and be of the form (6.5). Then,

(i) Ipnl <2, forn =1,

(i) |ps — pp?| < 2max {1,|1 — 2u|}, for any p € C. (6.10)
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6.3 Analytic and Univalent Functions

A single-valued function f : D — C is said to be univalent?® in a domain D C C if
it never takes the same value twice: that is, f (21) # f (22) for all pairs of distinct
points z; and z3 in D. In other words, f (z) is one-to-one (or injective) mapping
of D onto another domain in a complex plane [144, p. 26]. A function f (z) is
called locally univalent at a point zy € D, if it is univalent in some neighborhood
of zg € D. For an analytic function f (z), the condition f’(zy) # 0 is equivalent
to the local univalence at zo [6, p. 131]. The locally univalent function is also
known as conformal mapping because of its angle and sense preserving property
(see [6, p. 10]).

As mentioned in the previous section, an analytic function f(z) defined on
the unit disk D has a Taylor series representation given by (6.2). Thus, we
may assume without loss of generality that the series (6.2) is centered at the
origin, and has been normalized by the conditions (6.3). Hence, each an analytic

function has the power series of the form

f(z) = z+2akzk, (6.11)
k=2
for z€ Dand a, € C, k € {2,3,...}.

Let A denote the subclass of H (D) consisting of all analytic functions of
the form (6.11), which are analytic and normalized by the conditions (6.3). We
denote by S, the subclass of A consisting of all analytic, univalent and normalized
functions in the unit disk D, and f (z) has the form (6.11), i.e.,

S:{feA:f(z):szianz", zeD}.

n=2

Remark 136 Throughout this study, we shall be primarily concerned with the
function f(z) in the class A and S, and of the form (6.11), which are analytic

and univalent in the unit disk D, and normalized by the conditions (6.3).

Example 137 The leading example of a function in the class S is called the

Koebe function, which is given by

2The terminologies such as ‘simple’ or ‘Schlicht’ are also used for univalent.
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2 1/14+2\2 1 &
(2 — _ 2 - n D. 12
0= 4(1_2) 1Y s 6.12)

This function (6.12) maps the unit disk D, one-to-one and conformally onto
the entire complex plane except for the negative real axis from —1/4 to co. The
functions

z

—if3 i _ _ i(n—1)8 .n
e Pky(eP2) = —— = ne 2", 6.13
0 ( ) (1 . €iBZ)2 ; ( )

also belong to S and they are referred to as the rotations of Koebe function.
Example 138 Other examples of functions belonging to the class S include
(a) The identity map, f(z) = z .

(b) f(2) = z/(1 — 2), which maps the unit disk D conformally onto the half-
plane, Re (z) > —1/2.

(c) f(z) = Llog[(1+ 2)/(1 — 2)], which maps the unit disk D onto the hori-

-2
zontal strip, —m/4 <Im(z) < 7/4.

6.4 Subclasses of Analytic and Univalent Func-

tions

In this section, we briefly discuss some of the well-known subclasses S, namely
the starlike, convex and close-to-convex functions. These functions are defined by
geometrical considerations, but they are very useful for analytic characterizations
as well. The first subclass of S that is worthy in the study, is the class of starlike

functions.

The class of starlike and convex functions: A function f (z) € S is said
to be starlike in D with respect to origin if the image of D under f, i.e., f (D)
with w = 0 € f (D), is a starlike domain: that is, the line segment connecting

the point w = 0 to any point of f (D) lies entirely in f(D). Similarly, a function
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f(z) € S is said to be convexr in D if the image f (D) is a convex domain
(see [357, p. 44]). We shall denote these classes of functions by S* and C,
which are starlike with respect to the origin and convex in the unit disk D,
respectively. The class S* was first studied by Alexander [15], later by Gronwall
[174], Nevanlinna [332] and others (see [376], [319]).

The necessary and sufficient conditions for functions f € S to be starlike and
convex have been given by Robertson [376] as follows (see also [144, p. 41], [319],
[357, p. 42]):

Theorem 139 ([376]) A function f € S of the form (6.11) is starlike in the
unit disk D if and only if it satisfies

f'(2)
f(2)

f'(2)
f(2)

2z eP,ie., Re{z } >0,z€D. (6.14)

Theorem 140 ([376]) A function f € S of the form (6.11) is convex in the
unit disk D if and only if it satisfies

f(2)
f'(2)

f(2)
f'(2)

142 eP, e, Re{1+z }>O,z€D. (6.15)
The representation formula for functions in the class of starlike, f(z) € S*

of the form (6.11) is given by

£(2) = zexp UO% log (1——22) du (T)} seD, (6.16)

for some increasing function u (7) with u (27) — u (0) = 1 [357, p. 43].

Alexander [15] observed that there exists a close connection between the
convex and starlike functions: that is, a function f € S maps the unit disk D
onto a convex domain if and only if z f’(z) maps the unit disk D onto a starlike
domain: i.e., f(z) € C if and only if zf'(z) € S*, z € D. Thus, we have the
inclusion C' C S* C S. Note that the Koebe function defined by (6.12) is starlike
with respect to origin but not convex. The function f (z) given by (1.21) is one
of the examples of the convex functions, which maps the unit disk D onto a half

plane, and it plays a central role in the class C.
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In [376], Robertson also introduced the classes S* (o)) and C () of starlike
functions of order @ and convex functions of order «, for some a (0 < a < 0),
which are defined by

S* (o) = {fES:Re{z?((;)}>a,0§a<l,zED}, (6.17)

[ (2)
f(2)

Cla) = {fES:Re{l—l—z }>04,0§04<1,26D}. (6.18)

In particular, we have S* (o) C S*(0) = S* C S and C (o) C C(0) =C C S.

Strochhécker [411] proved that every convex function is starlike of order 1/2.

Further, an interesting unification of functions in the classes S* and C was
provided by Miller, Mocannu and Reade in [309]. They introduced the class C)
of A—convex functions (or A—starlike functions) via the linear combinations of
the representations of starlike and convex functions studied by Moccanu [319].
In [309], Miller, Mocannu and Reade showed that if f(z) is an analytic function
in the unit disk D with f(2)f'(2)/z # 0, and A is a real number, then f(z) is
said to be in the class C, if and only if

Re {(1 Y ’Z}f(g) +A <1 + Z;(ij)) } >0, (6.19)

for z € D. This more general class C'\ reduces to the standard starlike functions

S* and convex functions C' when A = 0 and 1, respectively.

Meanwhile, in [328], Nasr and Aouf introduced the class of starlike and convex
functions of complex order b (b # 0). Such classes of functions are denoted by

Sy and Cp, and they are defined as follows:

Sy, = {feS:Re{1+%(Z}f;i§)—l)}>O(zGU)}, (6.20)

C, = {feS:Re{1+%(ZJ£I;iZ)))}>O (zeU)}, (6.21)

where f(z) /z # 0.
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The class of close-to-convex functions: Another important subclass of S
is the class of close-to-convex functions, which was introduced by Kaplan [235] in
1952. The necessary and sufficient condition of functions in this class is stated
in the following. A function f(z) € S and of the form (6.11) is said to be
close-to-convex in D if and only if there exists a convex function ¢ (z) in D such
that

Re { 5((2} >0, z€D. (6.22)

Since h (z) = z¢'(2) € S* with g € S, then (6.22) is equivalent with

Re { Z}{(S)} >0, z€ D. (6.23)

We shall denote by IC, the class of all functions, which are close-to-convex in
D. 1t is clear that every convex function is close-to-convex, and every starlike
function is close-to-convex as well. In [357, p. 51], Pommerenke showed that
every close-to-convex function is univalent in D. Therefore, it can be seen that
the proper inclusions C C S* C K C S hold.

The more general class K («, ) of close-to-convex functions of order o and
type 3 are characterized as follows. A function f (z) € S is in the class K (a, 5)
if and only if

Re{z}{éi';)} >3, zeD, (6.24)

for h(z) € S* (), 0<a<1,0< 3 < 1.

The class K and its generalizations have been studied by numerous researchers
(see for instance [108], [109], [110], [164], [165], [206], [219], [292]) and recently
by ([233], [261], [300], [430], [434], [446]).

The class of Bazilevi¢ functions: A more general class of analytic functions
was introduced by Bazilevi¢ [54] in 1955, which is called the class of Bazilevi¢
functions of type a, and is denoted by B («), @ > 0. The functions in this class

are characterized by
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Re <%(j)a_l) >0 (z€ D), (6.25)

for f(2) € A and of the form (6.11), where g(z) € S* in D, « > 0. The
class of Bazilevi¢ functions has been studied by many authors with Thomas (see
[418], [419]), Halim [182], Noor [336], Singh [400], Keogh and Miller [241] among
others. We note that with specific choices of the associated parameter, the class
B («) reduces to the well-known classes of starlike, convex and close-to-convex
functions. Furthermore, if in (6.25) we choose the starlike function g(z) = z,

then we have the family B; («) of function satisfying [400]

Re (M) >0, z€D. (6.26)

ZOC

A more general class B («, 3) of Bazilevi¢ functions of order § and type « is
defined by

B(a,ﬁ):{feA:Re(%)>6 (zeD)}, (6.27)

for some v (> 0) and 8 (0 < 8 < 1), where ¢g(z) € S*. In particular, if 5 =0
and 1, then we have B (a,0) = B(a) and B(1,0) = B(1) = K. In particular, we
denote by Bj(«, 8) the subclass of B («, 5) for which ¢g(z) = z € S*, namely

Bl(a,ﬁ):{feA:Re(M)>6, zeD}, (6.28)

ZOé

for some a (a > 0) and 5 (0 < 5 < 1). Also, we note that B(0,0) = B; (0,0) =
S*, B(0,5) = By (0,8) = S* () and that B;(1, /) is a subclass of A consisting
of all functions for which Re {f'(2)} > 3, for z € D.

Other Subclasses: Some other well-known subclasses of analytic and univa-
lent functions that have been studied repeatedly by many authors, are given in

the following:

Soz{f(z)eA:Re{@}>0,zeD}, (6.29)
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B(8) = {f(z)eA:Re{@}>5,035<1,zeD}, (6.30)

§(B) = {f(z)e A:Re{f'(2)} >B,0<8<1, z€ D}. (6.31)

6.5 Some Classical Results

One of the most classical results in the Theory of Univalent Functions is Bieber-
bach Conjecture, proposed by Bieberbach [67] in 1961. This conjecture states the
upper bounds for the coefficients of functions in the class S. Bieberbach was the
first who established the bound for the second coefficient of functions in the class
S: that is, |ag| < 2 for f(z) € S and of the form (6.11). He conjectured that if
f(z) € S, then the coefficients a,, of f (2) satisfied |a,| < n, for all n > 2, with
the equality holding if and only if f (2) is the Koebe function (6.12) or one of
its rotations (6.13). For many years, this conjecture has stood as a challenge to
many mathematicians and has inspired the development of important new meth-
ods in complex analysis. However, the Bieberbach Conjecture was completely
proved by de Brange [75] in 1985.

Since then, the estimation of the coefficients |a,|, for n € {2,3,4, ...} have
been investigated for various subclasses of S, in order to provide some basic
properties of univalent functions (see [18], [58], [83], [115], [236], [294], [357, p.
53], [371], [379]). For instance, the following results showed that the Bieberbach

conjecture also holds for functions in the subclass of S.

Theorem 141 ([357, p. 46]) If f € S* of the form (6.11), then |a,| < n.
Equality occurs if and only if f (z) is the rotation of Koebe function.

Theorem 142 ([371]) If f € K of the form (6.11), then a,, < n.

The necessary and sufficient condition for functions in the starlike and convex

classes that has been proved by Alexander [15], is given as follows (see also [372]):

Theorem 143 ([15]) Let f(z) be of the form (6.11). If > > ,nla,| <1, then

f(2) is univalent in |z| < 1 and maps that region onto a region that is starlike
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with respect to the origin. If Y o, n?|a,| < 1, then f(z) is univalent in |z| < 1

and maps that region onto a convex region.

Silverman [398] provided the following properties of the starlikeness and con-

vexity of functions in the class S* () and C («).

Theorem 144 ([398]) Let f(z) be of the form (6.11). If Y2, (n — ) |a,| <
l—a, 0<a<l,then feS(a). IfY 7, n(n—a)la,| <1—0a,0<a<]l,
then f € C ().

Another closely related problem in the Theory of Univalent Functions is the
determination of the sharp upper bounds for the nonlinear functional |as — ua3|,
for both real and complex values of the parameter u. It is popularly known as
the Fekete-Szegd problem, and also arise in the investigation of univalency of the
analytic functions. The Fekete-Szegd problem has its origin in a conjecture of
Littlewood and Parley [289] in 1932 that the bound on the coefficients |az — a2
of an odd univalent function is 1. However, this result was disproved by Fekete
and Szegd [152] (see also [144, p. 104]). Since them, the Fekete-Szeg problem
has continued to receive attention of large number of researchers in Geometric

Function Theory.

In 1933, Fekete and Szeg [152] first obtained the sharp upper bounds of the
functional |az — a2| for f € S, for each fixed u in the interval 0 < X\ < 1. The

result is stated as follows:

Theorem 145 ([152]) If f(z) in S and of the form (6.11), then

3 — 4u, foru <0;
—2u
as — ual| < 14 2exp (fu) , Jor 0 <wu < 1; (6.32)
du — 3, foru>1.
\

This bound is sharp when u s real.

Pfluger (see [353], [354]) has considered the Fekete-Szeg6 problems for f € S
when v is complex numbers. In the cases of functions in the classes S*, C' and
IC of starlike, convex and close-to-convex functions, the above inequality (6.32)
has been improved by several researchers. For instance, Keogh and Merker [240]

proved the Fekete-Szeg6 problem for the close-to-convex functions as follows:
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Theorem 146 ([240]) For f (z) € K and of the form (6.11), we have
(3— du, if u< %,
1 4 1 9
) 3T 0w if 3<u<jg,
az —uay| < (6.33)
1, if 2<u<l,
du — 3, if u>1,

\

where for each u real, there is a function in K such that the equality holds.

They also proved the Fekete-Szegt problem for functions in the class of star-

like of order « as follows:

Theorem 147 ([240]) Let f € S*(a),0 < a <1 and of the form (6.11), then
for u real

lag — uaj| < (1 —a)max {1,[3 — 20 — 4u (1 — @)} . (6.34)

The study of the Fekete-Szeg6 functional has continued to receive attention
from many researchers for more general classes of functions with varied success.
For instance, Koepf (see [254], [255]) established the Fekete-Szegd inequalities for
the class K («), while London [292] extended the results of Koepf to the strongly
class of close-to-convex functions of order a. Meanwhile, Darus and Thomas
(see [108], [109], [110]) solved the Fekete-Szegd problems for the strongly class
of close-to-convex functions and the class M“ of a-logarithmic convex functions.
A similar result for the close-to-convex functions of order o and type [ has been
proved by Ibrahim and Darus [206]. For other results related to the Fekete-Szeg®
problem, see ([63], [155], [234], [314], [347], [370], [392]) and the references which
are cited therein.

The remainder of this chapter discusses the Saldgean differential operator

and its related subclasses of functions defined involving this operator.
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6.6 Salagean Differential Operator and Related

Subclasses

For functions f (z) belonging to the class A of analytic functions in the unit disk
D, Sildgean [383] was introduced the differential operator D" f, n € Ny, which
is popularly known as Sdalagean differential operator. In this section, we discuss
this well-known differential operator and its generalization, and provide some

subclasses of analytic functions that are characterized involving this operator.

Definition 148 ([383]) For a function f(z) € A, n € Ny, the Salagean differ-
ential operator D™ : A — A, is defined by

D'f(2) =D [D"f(2)] == [D"'f ()], (6.35)
where

D°f(z) = f(2) and D'f(2)==2f"(2). (6.36)

The operator D™ has been employed by various authors to defined several
subclasses of analytic and univalent functions (see for instance [41], [69], [180],
[232], [339], [383], [343]).

The following operator was introduced by Al-Oboudi [17], which generalized

the Saldgean differential operator.

Definition 149 ([17]) For a function f (2) € A, n € Ny and A > 1, the gener-
alized Sdldgean operator DY : A — A, is defined by

Dyf(z) = D\[DY'f(2)]
= (L=NDy'f(2) + Az [Dy 1 (2)], (6.37)
where

DYf(2) = [(2), (6.38)
Dyf(z) = Daf(z) =1 =) f(2)+Azf (2). (6.39)
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We note that D} f (z) = D"f (z). Some properties of these operators have
been investigated by several authors (see for instance [207], [228], [243]).

We observe that for f(z) € A and of the form (6.11), and applying the
operator (6.35) for (6.11), we have

D"f(z)=z+ Z ka2, (6.40)
k=2

for z € D, n € Ny. Also, suppose that a > 0, then form (6.11) we can write

k=2

f(2)* = <z + > akzk) . (6.41)
Using binomial expansion for the function (6.41), we get

F)" =224 3 Ay (@) 201, (6.42)

k=2

where the coefficients Ay (o), k € {2,3,...} with A, (1) = ax, depend on the
coefficients ay, of f (z) and the parameter o > 0. Now, if we apply the operator
(6.35) for the function (6.42), then we obtain

D f(2)" = a2+ 3 (a4 k—1)" Ag (a) 221, (6.43)
k=2

for € D, a > 0, n € Ny, where D°f (2)* = f (2)* and D'f (2)* = z[f (2)*]".

Similarly, for f (z) € A and of the form (6.11), we observe that from (6.37) -
(6.39)

DYf(z) =2+ i [1+ (k— 1) \" 2", (6.44)
k=2

for z € D, A > 1, n € Ny. Also, on utilizing the differential operator (6.37) for

the function (6.42), we get

DYf(2)* =14+ (a—1)\]" 2"

+ 3 14 (a+k=2)N" Ag (o) 227, (6.45)
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fora>0,A>1,neNy, z€D.

Many subclasses of analytic functions, which are characterized involving
the Sildgean differential operator (6.35), have been explored by numerous re-
searchers. Sildgean [383] used the operator introduced the class S,,, n € Ny,
which generalized the convexity and starlikeness of analytic and univalent func-
tions in the unit disk. He defined that a function f (z) € A belongs to the class
Sn, n € Ny if and only if it satisfies the condition

Re <%JZS)) >0, (6.46)

for z € D. We note that Sg = S* and S; = C' , that is the standard class of
starlike and convex functions, respectively. The class S, of order «, i.e., S, (a),
0 < a < 1, has been studied by Owa et al. ([349], [350]), Lin and Owa [285] and

others.

In 2005, Oros [348] defined the class M,, («) consisting of all analytic functions
in D and satisfying the inequality

Re[D"f(2)] > a, (6.47)

for some o (0 < <1), z € D, n € Ny. This class has been further studied by
T#ut, Oros and Sendrutiu [415]. Halim in [180] introduced and studied the a

generalization of analytic functions satisfying (6.26) as follows:

Re <M) >0, (6.48)

ZOé

for « > 0, z € D. He denoted this class of functions by B, (a). Obviously,
this class reduces to the class of the Bazilevi¢ functions (6.26) with logarithmic
growth studied in ([338], [400], [418], [419]), when n = 1. The class By (a) was
initiated by Yamaguchi [435].

Opoola [343] further generalized functions defined by geometric condition
(6.48) by choosing a real number 3 for 0 < § < 1 that will be discussed in

details in the following chapter.



Chapter 7

Properties for Certain Subclasses

of Analytic Functions

Chapter 7 is devoted to some results concerning analytic, univalent and normal-
ized functions on a unit disk. The class 7% (8), a > 0, 0 < 8 < 1, n € Ny,
of analytic and univalent functions, which was introduced by Opoola [343] in
1994, is one of the interested subclasses of functions throughout this chapter.
The properties of functions in the class T/ () have been explored by numerous
researchers in the last few decades. In this chapter, we present further properties

of functions in this class.

Section 7.1 discusses some known results concerning the class 7, (/) that have
been proved by Opoola [343], Opoola et al. [344], Babalola and Opoola [42] and
others. In Section 7.2, we provide some other properties of functions in the this
class. The properties of functions in the classes T () and T (3, A), A > 1 are
also investigated. The coefficient bounds for functions in the strongly class of
Opoola’s functions, Tf: (B), a>0,0< <1, n € Ny, have been presented in
Section 7.3. Finally, we end this chapter by providing some results on Fekete-

Szeg® problem for a certain subclass of analytic and univalent functions.

All the results presented in this chapter, are mainly taken from the author’s
research papers in collaboration with Darus, Dragomir and Joseph (see [210],
[211], [212]).

192
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7.1 Introduction

In [343], Opoola introduced the subclass T/ (3) of analytic functions, which are
defined involving the Sildgean differential operator (6.35) as follows (see also
[39], [40], [42]):

Definition 150 ([343]) A function f (z) € T} (5) if and only if it satisfies the

condition
Re {M} > f3, (7.1)

anz®

fora>0isreal, 0 < 5 <1, z € D, where D", n € Ny is the Sdlagean differential

operator and the powers in (7.1) meaning principal determinations only.

The geometric condition (7.1) slightly modifies the one given originally in
[343] (see also [41], [345]) with the number o™ is considered. The class 7% (3)
was studied by Opoola [343] as well as by Babalola [39], Babalola and Opoola
(see [40], [41]), Halim [181], Oladipo et al. [341] and others (see [344], [345],
[346]). Some interesting properties of functions in this class were established in
the literature. For instance, Opoola [343] proved that the class T, is a subclass of
univalent functions, and the members of the family 7, () satisfied the inclusion
relations, 7)., (8) C T3 (B8), o > 0, n € Ny. In [344], Opoola et al. showed that
if f(z) belongs to the class T (3), then the coefficient bounds are given by

] < % for a > 0, (7.2)
(201-g)am [resTe
(a+2)
n—1
—(&_1) (21_6) , for0<a<l,
las] < (a+1)" (7.3)
%, for o > 1.

The coefficient bounds for |as| and |as| are investigated as well. Earlier results,
Halim [180] provided the coefficient bounds for |a,|, n = 2,3,4 for the class
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T2 (0) = B, (). Recently, Babalola and Opoola [42] obtained certain coefficient
inequalities and solved the Fekete-Szeg6 problem for functions in the class T (3)

as well.

One of the aims of this chapter is to establish some other properties concern-
ing functions in the class 7% (). Instead of this class, in this chapter, we also

studied the subclasses of analytic functions, which are defined as follows.

Definition 151 Let Tg (B) denote the subclass of A consisting of analytic func-

tions, which satisfy the condition

g{M}' <o (7.4

amze

forsomea >0,0< <1, z€ D, where D", n € Ny is the Salagean differential

operator, and all the index in (7.4) meant principal determination only.

Using the Al-Oboudi differential operator (6.37), we give the definition of a

more general class of Opoola’s functions.

Definition 152 Let T% (3, \) denote the subclass of A consisting of analytic
functions, which satisfy the inequality

Re {M} > f3, (7.5)

amze

for some a > 0,0< 3 <1, z€ D and DY, A > 1, n € Ny is the Al-Oboudi

differential operator.

The class T (5, A) serves as a new generalization of many known subclasses of
analytic functions in the direction by means of various choices of the parameters
involved. For instance, several subclasses of functions are given in the following

remark.

Remark 153 (a) We note that T® (1) := T2 (0).

(ii) For A = 1 in (7.5), we have T (5,1) := T (B8), which is the class of
functions studied by Opoola [343] and others (see [41], [341], [345]).

(iii) For A =1, 3 =0 in (7.5), we have T (0,1) := T (0) = B, («), which
is the class of functions studied by Halim in [180].
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(iv) For A\ =1, $=0,n=11n (7.5), we have T{ (0,1) := 17 (0) = B; («),
which is the class of functions studied by Bazilevié¢ [54] and Singh [400].

(v) Forao =1, A=1,=0,n=0in (7.5), we have T§ (0,1) := T (0) = Sy,
which is the class of functions studied by Yamaguchi in [435].

In order to prove the main results, we shall need the following well-known

lemma due to Hayami et al. [188].

Lemma 154 A function p(z) € P satisfies the condition
Re[p(z)] >0, z€ D (7.6)

if and only if

p(z) # 2

¢—+i, 2eD, peC, ] =1. (7.7)

The following result is well-known as Schwarz Lemma (see [6, p. 135], [144,
p. 3)).

Lemma 155 Let f (2) be an analytic function in the unit disk D, with f(0) =0
and |f (2)] < 1. Then, |f(0)] < 1 and |f(2)| < |z| in D. Strict inequality
holds in both estimates unless f (z) is a rotation of the disk: f(z) = 2. If

|f (2)| = |z| for some z # 0, then f (2) = cz, with a constant ¢ of absolute value
1.

7.2 The Properties

In this section, we establish some other properties of functions in the class 7% (3).
The properties of functions in the class T (3) and T (3, ) are also presented.

First, we prove a sufficient condition for functions in the class 7% (5).

Theorem 156 (Ibrahim, Darus, Dragomir and Joseph [212]) A function
f(2) € A isin the class T (8) if and only if

1+ i Qrz"1 £ 0, (7.8)
k=2



7. Properties for Certain Subclasses of Analytic Functions 106

where

Qr =

(w+1)<a+k—1

for some a > 0,0 < <1, ¢ € C with || = 1.

Proof. From Definition 150, it suggests that there exists a function p(z) € P
such that
D" f(2)*
ZOC

=a"[B+(1=P)p(2)], (7.10)

forze D, a>0,0<<1,n¢eNy Upon setting

p(2) = —F—— T (7.11)
then from Lemma 154, we have
Drfz)* 8 w1
anz® —
Sl et (7.12)
for z € D, ¢ € C with |[¢| = 1, which is equivalent with
W +1)D"f(2)* = [(+1) B+ (1= B) (¢ —1)]a"2" #0. (7.13)
Substituting (6.43) into (7.13), we get
(v +1) [a"za + io: (a+k—1)"Ag (o) z0TF1
h= (7.14)
—[(W+1)B+(1-5) (¥ —1)]a" #0,
which gives us that
2(1-B)a"z"+ Y _ (% +1) (a+k—1)" A () 2T £ 0. (7.15)

k=2

Now, dividing both side of (7.15) by 2 (1 — ) a™z* # 0, we obtain
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”,;ﬁﬁ% <O‘+§_1)nAk (a) 271 £ 0, (7.16)

for any ¢» € C such that || =1,a>0,0<p<1,z€ D, neN;. =

Corollary 157 A function f (z) € A is in the class B, () := T2 (0) if and only

if
L+ Q" #0,
k=2
where

CE) <@+k_1

. - ) Ay (a) (7.17)

for any ¢ € C with |¢| =1, « >0, z € D, n € Ny.
Remark 158 The Corollary 157 has been proved by Singh et al. [401].

The following property of functions in the class T/ () is also established.

Theorem 159 (Ibrahim, Darus, Dragomir and Joseph [212]) Let f(z) be-
longs to the class T2 (B). Then, there exists an analytic function ¢(z) with
lp(2)| <1, z € D such that

DU o, 200
S _gs-1+ 220 (7.18)

forze D, a>0,0<F<1,néeN.

Proof. Let us define the functions A(z) and B(z) as follows:

A(z) = Diite) B (7.19)

aze

B(z) = - <A(Z) — (1 - 5)) , (7.20)

and
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fora >0,0<p <1, 2z€ D,n € Ny Substituting the equation (7.19) into
(7.20), we get
DGy

B(z) ==z an((;)az_ 251 , (7.21)

amz®

for any z € D. B(z) is an analytic function for z € D. Also, since f(0) — 0
and f'(0) = 1, we have that B(0) = 0 and |B(z)| < 1, for z € D. Hence, by
Schwarz’s Lemma (Lemma 155), |B(z)| < |z| for z € D, which gives that

Dn{(z)a B 1
s <lz|, z € D, (7.22)
DU 95 1)

amz%

or equivalently,
LG
amze _
Dz s = z2¢(2), (7.23)

amz%

where ¢(z) is analytic, and |¢(z)| < 1 for z € D. Therefore

%iz)a —1= z¢(z)%§3a — (28 —1) z¢(2). (7.24)
Solving for D™ f(z)*/a"z%, we get
Drflz)* 1-128-1)z0(2) . 2(1-p)
anze 1 — z¢(2) =@-1+ 1—2¢(2) (7.25)

Thus, we obtain the desired result (7.18). m

The following result is called the integral representation theorem for functions

in the class T (5), which provides further property of functions in this class.

Theorem 160 (Ibrahim, Darus, Dragomir and Joseph [212]) Let f(z) be-
longs to the class T (B). Then, there exists an analytic function ¢(z), with
|p(2)| <1, z € D such that
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199
Drf(z) 1 :
a;f ii) = ——exp /0 (F-cm)a, (7.26)
fora>0,0<p<1,né€Ny, where
__ 2[B 1[4 () + ¢(1)]
O =T 2800 + 05 - 1) P 720
Proof. Let f(z) € T2 (8). Then, from Theorem 159, we have
D" f(z)* _ 20-p8) _1-(28-1)z2¢(2)
anze (26 -1)+ 1—z2¢(2) 1—z¢(2) ’ (7:28)
Taking the logarithmic differentiation, we get from (7.28)
DT o 28— 1[0 + o) 729)
Drf(z2) 2z 1-2B20(2) + (26 — 1) 22¢%(2) '

Now, integrating both sides of (7.29) along the line segment from 0 to z, we

obtain

e [Ffa 208 1[0 + o(0)
I [D"f(2) ]_/0 (t 1—26t¢(t)+(26—1)t2¢2(t))dt' (7.30)

This gives us that

Drfzr 1 exp /0 (g B C(t)) dt, (7.31)

amz® amz®
forze D, a>0,0<p3<1, néeNy where

2[8 - 1[t¢'(t) + o(t)]

=T mem + i )

(7.32)

for an analytic function ¢ (z) with |¢(2)] < 1, 2 € D. Thus, the proof of

Theorem 160 is completed. m
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Theorem 161 (Ibrahim, Darus and Dragomir [211]) A function f(z) €
A is in the class Tff (B) if and only if

L+ ) Qb #0, (7.33)
k=2

where

Q1 = (v +1)° <a+k—1
=

nAkCY, 7.34
W+ - @-17 ]\ e ) “ o

for some a (a>0),0< <1, ¢veC, |y =1.

Proof. From (7.4), it suggests that there exists a function p(z) € P such

that
D f(2)*

ZOé

=a"[p(2)]", (7.35)

forz€ D,a>1,0< <1. Upon setting

p(z) = <M) " , (7.36)

amz®

then from Lemma 154, we have

D" f(=)* , (¥ —1)°
a7 G 1P (7.37)
for z € D, ¢ € C with |[¢| = 1. It is equivalent with
(W + 1) D f(2)* = (p — 1) a2 £0. (7.38)
Substituting (6.43) into (7.38) yields
W+ D7 [a"2* + ) (a+k—1)" Ay () 2| = (¢ = 1) a"2" £0, (7.39)
k=2

which give us that



7. Properties for Certain Subclasses of Analytic Functions 201

(¥ +1) = (@ —1)°] anz

B (7.40)
W+, (a+ k= 1)" Ay (@) 201 £ 0.

Now, dividing both sides of (7.40) by [(1/} +1)7 = (¢ — 1)/3] a"z* # 0, we obtain

1+

. (¢ +1)° (a+k5—1

Slwry —w-]\ e )A““)Z’“‘l%o, (7.41)

for all z € D, ¢ € C such that |[¢)| = 1. Thus, the proof of Theorem 161 is
completed. m

The similar results to (7.9), (7.18) and (7.26) for more general class 7% (3, \)

also have been obtained.

Theorem 162 (Ibrahim, Darus, Dragomir and Joseph [212]) A function
f(z) € A isin the class T (B, \) if and only if

14 Qe #0, (7.42)
k=2

where

W+ +(a+k—2)A"

= T DL (e DN - (¢ Dar

Ap (), (7.43)

for somea >0, A>1,0<p<1,¢ e C with || = 1.

Proof. From Definition 152, it suggests that there exists a function p(z) € P
such that
DY f(z)°

amze

=8+ (1 —8)p(2)], (7.44)
forzeD,a>0,A>1,0<3<1,néeNy Upon setting
DY f(2)*

p(z) = = —F— . (7.45)
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Hence from Lemma 154, we have
% Py
TS (7.46)
for = € D, ¥ € C with [¢}] = 1, which is equivalent with
(b +1)DYf(2)* = [(¥+1) B+ (= 1) (1 = B)]a"2" #0. (7.47)
Substituting (6.45) into (7.47), we get
W+ 1) |[14 (a— 1)A]"za+é[1+ (a+ k= 2)\" Ay () 20+
— (2841 —1)amz* #0. (7.48)
Hence, it gives us that
(b + D1+ (@=1A" = (28+¢ —1)a"]2*
(7.49)

ES (DI (o k— 2) A" Ay (o) 221 £ 0.

k=2

Now, dividing both side of (7.49) by

[+ DI+ (a=1DN" = (28+¢—1)a"] 2% #0,
we obtain

s W1+ (atk—2)A"

LT Dl @D @t _Dar r@z 70 (750)

for all » € C such that || =1, a>0,A>1,0<p<1,2z€D,neN;. =

Remark 163 In particular, if A = 1 in Theorem 162, then it reduce to the result
as shown in Theorem 156. Also, we have Corollary 157 for A\ =1 and 5 = 0.

The following corollaries also hold for some particular values of the parame-

ters involved in Theorem 162.
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Corollary 164 A function f (2) € A is in the class By () if and only if
14 ) Qe #0,
k=2
where (6 + 1)+ k—1]
& R—
PR URR ICRLES VNN (751
«
for any ¢ € C with |¢| =1, « >0, z € D.
Corollary 165 A function f (2) € A is in the class Sy if and only if
L+ Q" #0,
k=2
where (6 +1)
-0 4, ), (752

for any ¢ € C with || =1, « >0, z € D, n € Ny.

Theorem 166 (Ibrahim, Darus, Dragomir and Joseph [212]) If f(z) be-

long to the class T (5,)\), then there exists an analytic function ¢(z) with
lp(2)] <1, z € D such that

DY) 951y 20=8)
= (28— 4 FEL (7.53)

forze D, a>0,A>1,0<p8<1,neN,.

Proof. Define the functions F'(z) and G(z) as follows:

F(z) = % —- B (7.54)

and

_ _(Fx-(0-7)
G(z) ==z (F(z) T _5)) : (7.55)
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Substituting the equation (7.54) into (7.55), we get
Dy
G(z) =z Dgfé‘;;”j 251 , 2€D. (7.56)
Aanze

G(z) is an analytic function for z € D. Also, since f(0) — 0 and f'(0) = 1, we
have that G(0) = 0 and |G(z)| < 1 for z € D. Hence, by Schwarz’s Lemma
(Lemma 155), |G(2)| < |2|, z € D, gives us that

Dy
Aanz®
DT 51

Qnze

<l|z|, ze€ D, (7.57)

or equivalently,
Dy
Aa” 2t — 7.58
D;\Lf(z)a . (26 . 1) z¢(2)’ ( )

YU

where ¢(z) is analytic, and |¢(z)| < 1 for z € D. Therefore

Dyf(z)*  [1=(26-1)2¢(2)]

Aanze 1 —z¢(2)
_oq_ 1. 2(L=0)
=20 - 14—, (7.59)

which completes the proof of Theorem 166. =

Theorem 167 (Ibrahim, Darus, Dragomir and Joseph [212]) If f(z) be-
longs to the class T (B, \), then there exists an analytic function ¢(z) with
lp(2)| <1, z € D such that

DRf) _ 1 o /O ’ <0‘_A _ E(t)) dt, (7.60)

anz® anz®

fora>0, A>1,0<3<1, néeNy, where
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_ 20t () + )] 18— 1]
PO = T 500 + 2 - DEw) ihe
Proof. Let f(z) € T (5,\). Then, from Theorem 166, we have
Dyf()* _1-(26-1)2¢(2)
Aamnze 1—z2¢(2) ' (7.:62)
Taking the logarithmic differentiation, we get from (7.62)
DUCYY _od _ [26() +6(2)) 28 ) 76

Drf(z) 2 1-2820(2) + (28 — 1) 22¢°(2)

Integrating the both sides of (7.29) along the line segment from 0 to z, we obtain

D ;{ Z S _ anlza exp /0 i (% - E(t)) dt, (7.64)
where

1—2Btg(t) + (28 — 1) £2¢*(t)

Thus, the proof of Theorem 167 is completed. =

7.3 Coefficient Bounds

In this section, we establish certain coefficient bounds for functions in the Class

T2 (B).

Theorem 168 (Ibrahim, Darus and Dragomir [211]) Let f(z) given by
(6.11) belongs to the class T:Ef (B),a>0,0<5<1,ne{0,1,2,..}. Then, the

following inequalities hold



7. Properties for Certain Subclasses of Analytic Functions

206
26an—1
az| < m; for >0, (7.66)
/ 2605”71
(a+2)"
(a+2)" e
las| < x(l—l—m(l—a)a 18); for0<a<l, (7.67)
Qﬂan—l
m, fOT (6] 2 1,
([ + F5 + F3; for0 < a<1,
lag] < Fy+ F> + Fy + F5; Jorl<a<2, (7.68)
F1+F2+F4; fO?“O[Z2,
\
where
2Bam !
Fi=——3+2(—-1 -5 7.69
= e B2 - D (65 (7.69)
482 (1 — a)? o33
= e — (7.70)
48% (1 — a) a®"2
= 7.71
3 (Oé—}—l)n (a+2)n7 ( )
42 (B —=1)(1 —a)a®?
Fy, = 72
4 (a+1)n(a+2)n ) (77 )
4 3 1 — ) 3n—3
_ 40 —a)(a—2)a™" (7.73)

3(a+1)"

Proof. From Definition 151, for f € Tf: (B), it suggests that there exists an

analytic function p (z) € P such that

PR o ppeayy,

(7.74)

fora>0,0< 8 <1, z¢€ D, née Nyg. Making use the Sdldgean differential
operator (6.35), i.e., D" f(2)* as z [D"~' f(2)*]" and p () given by the series (6.5),

we get
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[anlf(z)a}' — Oénzafl

00 B
1+ Z cizi]
i=1

=a" [zafl +ulza —|—/,L22a+1 +u32a+2 +,U4Za+3 + ] , (775)

where
= B, (7-76)
fy = P2+ Bapi, (7.77)
s = B3+ 2Byp1p2 + Bapi, (7.78)
fy = B1pa+2Bypip3 + 52]73 + 353]9%172 + 6417‘117 (7.79)

and
B B! .

5.:(, T ie1,2,3.). 7.80
o\J/) B =) { s (7.80)

Integrating both sides of (7.75) along the line segment from 0 to z, we obtain

anlf(z)a B

=«

2z +

2@ (a+1) (a+2)

n—1 {1+ o Ho&x 52
Hs& 3 Hqac¥

w13’ + (a+4)z4+... : (7.81)

where f(0) = 0.

Noting that D" 'f (2)* = z[D"2f(2)*] and so on, and repeating the
process as above, we are able to produce the following relation, which holds
in general for any k € {0,1,2,...}, that is,

Dn_kf(z)a — ok Mlak . M204k 2
2 (a+ D" (a+2)f
Lot s et |
(o +3)" (a+4)F

In particular, for n = k, we have the following equation:



7. Properties for Certain Subclasses of Analytic Functions

208
<f(2))a:1+ Mlannz+ N204nnz2 Ngannzzs
2 (a+1) (a+2) (a+3)
e )
Comparing the coefficients of z, 2% and 22 in (7.82), we get

ajag = %, (7.83)
ajag = % — apal, (7.84)
oy = % — 20aa3 — Qi3a3, (7.85)

where

o = <O‘) :#'_j), jef1,2,3,..}). (7.86)

Since |p1| < 2 from Lemma 133, thus it follows from (7.83) that

2Bt
< 7.87
|a2| = (1+a)n7 ( )
fora>0,0<p5<1.
Next, we eliminate as in (7.84) to get
Bam! BB—1)a"! , (1—a)fa™? ,
as = —Dy + — . 7.88
ST a2 T2ar2r M (a+1™ 0 (7.88)
Again, from Lemma 133 with |p;] <2 and 0 < 8 <1, we have
2Bamt < 211 —af (a+2)" Ba”l)
as] < 22X (14 (8-1)+ . 7.89

Considering the cases of « in the intervals 0 < o < 1 and a > 1, then the both

desired inequalities in (7.67) are easily obtained.
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Now, we prove the inequalities in (7.68). Substituting the equalities (7.83)
and (7.84) into (7.85), gives us that

Bant B(B—-1)a"!
) A P

BB-1B-2a"" 4
6 (a + 3)71 p1

F-)o?? B 1)(1-a)a

@+ 1) (a2 ua+nw@+m"1ﬁ

Bl-aPa™? , Fl-a)a=2a"?
2(+1)% ! 6(a+1)" Pr- (7.90)

Qg = bip2

+

+

Hence, for a > 0, 0 < 5 < 1, we obtain
< 26an—1n
~— 3(a+3)

A (P S | 451 — o)
1+a)™ (a+1)" (a+2)"

B+2(8-1)(8-5)

|a|

(7.91)

by applying the well-known inequality |px| < 2, k € {1,2,...} from Lemma 133.
Thus, the coefficient bounds |a4| depends on the parameter « in the intervals
(0,1), [1,2) and [2, 00). Let us denote

250&”71
3(a+3)"
B 432 (1-— oz)2 a3
- (1 + a)Sn
B 468% (1 — a) a®"2
T la+ )" (a+2)"

AP (B -1 (1 —a)a®?
N (a+1D)"(a+2)"

B+2(F -1 (6 -5),

=

2

)

Fy
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_ 48° (1 — a) (o — 2) a3
3(a+1)""

Fs

Then, from (7.91) we get the desired inequalities (7.68), and the proof of Theorem
168 is completed. m

Remark 169 If we choose 3 =1 in Theorem 168, we deduce the result proved
by Halim in [181].

7.4 Fekete-Szeg6 Inequalities
7.4.1 Introduction and Preliminary results

In this section, we consider functions f : D — G C C that are univalent in
D, analytic at zero and have the expansion given by (6.11). The class of those
functions, which map D into the domain whose complement with respect to G is
convex, is denoted by Cj and we call it the class of concave univalent functions.
Since G is a curve, the function f (z) has continuous extension to D onto G,
which is infinite at exactly one point on 7' = dD. We can choose the map such
that f (1) = co. The class Cj (1) consists of all concave univalent functions of
the form (6.11) and normalized such that f (1) = occ.

Another case of interest is when C\G is a bounded convex set. Then, the
conformal map f (z) of D onto G has a pole in D. The class Cy (p) consists of
all such functions of the form (6.11) and f (p) = oo, where 0 < p < 1. For the
details discussion about this class of functions, we refer to the works of ([35],
[36], [103], [291], [431]) and the references which are cited therein. In a recent
work by Avkhadiev and Wirths [37] (see also [36], [64]), they consider a concave
domain G with given angle ma at oo, where a € [1,2], and if &« = 1, then G is a

halfplane.

To be precise, we say that a function f : D — C belongs to the family Cj (),
a > 1if f (2) satisfies the following conditions: (a) f (z) is analytic in D with the
standard normalization conditions (6.3). In addition, it satisfies f (1) = oo; (b)

f () maps conformally onto a set whose complement with respect to C is convex;
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(¢) The opening angle of f (D) at oo is less than or equal to wa, o € (1,2]. We
observe that Cj (2) contains the classes Cy (a), a € (1,2].

In [36], Avkhadiev and Wirths showed that an analytic function in the class
Co (@), a € (1,2] if and only if it satisfies the following condition

Re(ail {(&;1)i2_1_szlfl((§))b > 0. (7.92)

The class Cy (o) was recently studied by Bhowmik, Ponnusamy and Wirths (see
[64], [65]). In [65], they have used the above characterization (7.92) and proved

the following theorem.

Theorem 170 ([65]) Let o € (1,2]. A function f(z) € Cy () if and only if
there exists a starlike function ¢ € S* such that f (2) = Ay (2) where

and S* denote the family of starlike functions g € S* satisfying (6.14).

Theorem 171 ([65]) Let o € (1,2]. A function f(z) € Cy(«) if and only if
there exists a function s € 11,1 such that

7 s
) = /O e (7.94)

In this section, we introduce the class Cy (a,n) , o € (1,2], n € Ny consisting
of all the concave univalent functions, which are defined as follows. A function
f(z) € Cy(a,n) if and only if there exists a function ¢ € S,, such that f (z) =
Ay (z) where

and S, denote the family of functions g € S,,, which satisfy the condition (6.46).
We note that Cy («,0) = Cp ().

The purpose of this section is to determine the sharp upper bounds of the
Fekete-Szegd functional |as — ua3|, for functions in the class Cy (o, n). In partic-

ular, we extend the result of the Fekete-Szegé problem established by Bhowmik
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et al. in [64], for a real and complex parameter p. In order to prove our main

results, we need to recall the following results.
Corollary 172 (See [207]) Let g(z) = 2+ > oo biz" € S,. Then
bp| < K™ fork=2,3,... (7.96)

and
|b3 — pub3| < max {1, |3 — 4p|} . (7.97)

7.4.2 Main Results and Their Proofs

The Fekete-Szegd inequalities |az — Aa3| for a real and complex parameter \ are

incorporated in the following theorems. First for a real A, we have

Theorem 173 (Ibrahim, Darus and Dragomir [210]) Let f € Cj(a,n),
a € (1,2], n € {0,1,2,...}, have the expansion given by (6.11). If X is a real

number, then we have
12 }ag — )\a§|

([ (3+22)(2—-3)\)a?
+3 (1 —2%) (1 —2a) A if A< Ao;
+6(1—3") a+ 23" — 221,

2

4[(2-3N)a*+1], if Aog)\g%(@—l);

41(10 —9\) a+ (2 — 3))] L, 2 2

—(a—1) <A< =

32— —(2-3Na fagla-lsAss;

= 12(1-)) 2 (7.98)

12(1_)‘)Oé\/(4_3)\)2_(3)\_2)2a27 Zf §§>\§>\2,

: 2(a+2)

— a2 — < <= Te

4[(BA —2)a* — 1], if )\2_)\_3(a+1),

(3+227) (31 — 2) a? ,
+3(220 — 1) (1 — 2a) A if A2 5
+6(3" — 1) o + 2 (227 — 37H1) |
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where

- 2212 (g 4 1) — 3"
7 3 (22 3) (a— 1)

2
and Ny = 5+ (\/8@2 T1- 1) . (7.99)

6a2
The inequalities are sharp.

We have the following result for the complex parameter \.

Theorem 174 (Ibrahim, Darus and Dragomir [210]) Let f € Cy(«, n) have
the expansion given by (6.11), o € (1,2], n € {0,1,2,...}. If X is a complex num-

ber, then we have
|lag — Aa3| < max {1, 1—12 (a+1)v(a, ) } , (7.100)
where
v(ia,\)=1(2=3N) (a+1)+2[+2(a—1)3X—2|
+ (Z—;D 64 12— 3(a—1) . (7.101)

Proof. We recall that for f € Cy (o, n) if and only if there exist a function
V(z)=2z+> 00 ,2" €5, ne{0,1,2,..} such that

o PN
f(z) = " <w(z)) : (7.102)

where f (z) has the form given by (6.11). Comparing the coefficients of z and 22

on the both sides of the series expansion (7.102), we obtain

ap = (a ;L D _ 2" 2 (a — 1) 4, (7.103)
and
1 n—1
a3:6(a+1)(o¢+2)— 3 (0[2—1)77&2
n—1 2n—3
- (@a—=1)¢s + (= 1) 93, (7.104)

2
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respectively. A computation yields that

vt - B fed
+2"7% (a® — 1) <>\—§) ¢2—3n71(a—1)

o (ZRE=E ) i

Hence, for a@ > 1, we get

ag—)\ag} < (

a+1)7[2(a+2) _A
4 3(a+1)

3n71
2

v (2%2 (@+1)— ;’))\ (2273 (o — 1)) r

w20 @ =) p- 2wl - L -

X

. (7.106)

Now, we need to investigate the maximum values of the functional |az — Aa2| by

considering several cases of A real.

2202 (q 4 1) — 3"

3(2273) (e — 1)
the assumption on A is seen to be equivalent to

. We observe that

Case 1: First, consider the case for all A <

2" (a+1) = 3X(2"7%) (a—1) > 1, (7.107)

and the first term in the right hand-side of (7.105) is nonnegative. Hence, from
(7.97) we have that

371
2@t =A@ Y (a—1)
< o

b (2%2 (@+1)—3)(223) (a — 1)) r

3, (7.108)

and also, noticing that from (7.96), for ¢ (2) € S, [1,| < k'™ for k € {2,3,...}.
Hence we have from (7.106) that
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o (@+ 1) 12(a+2) n—2( 2 2
az — Aaj| < 1 {3(a+1)_)\}+2 (v —1)(§—A)’¢2’
n—l 222 (a0 + 1) = 3N (22 ) (a— 1)\ ,
+ 5 (@_1)¢3—< 3 )1%
(a+1)(a+2) A s (a?—1) (2
= 6 —Z(Oé—i-l) +T(§_>\)
. 3"21 (a—1) (22” (a+1)— 3;(22"1) (-1 3) . (7.109)
It can be simplified to
az — Aaz| < 1—12 [(B+2"") (2-3)N)a®+3(1—2%") (1 —2a) A
46 (1 o 371) a2 (3n+1 o 22n)} ’ (7‘110)

22n72 1) — 37
for any \ € <oo, (et 1) -3 )

3(29) (a—1)

Case 2: Let A > M.
3(a+1)

(7.105) is nonnegative. The condition on A in particular, gives A > 2/3, and

For this case, the first term of right hand-side of

therefore, our assumption on \ implies that

222 (a+1) = 3N (2" 3) (a—1) 22" (1
< —1(=]. A11
: <5 () ow
Again, it follows from (7.97) that
2202 (o +1) = 3X (22" 3) (e — 1
y — ( (a+1) i (2% ( )) 2
§3_2 (a+1) 3;\”(2 ) (« 1). (7.112)

In view of these observation and the use of the inequality that |t),| < 217%, the
inequality (7.106) gives
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+1)° 2 (a+2) _ 2\ 1o
a2l < L@ Ao T on2 (g2 ) (A= 2 ) (2t
as a2|_ 1 { S+ + (a ) 3 ( )
n—1 22n 1) — 3\ 227171 -1
L3 ey (3o Elat D=3 ) (@ Z DY g
2 3n
Thus, simplifying the right hand-side expression in (7.113), we obtain
1
|las — Aaj| < 5 [(B3+2°) (BN =2)a® +3 (2" —1) (1 —2a) A
+6 (3" — 1) v — 2 (3" — 2°™)] | (7.114)
for any A € 2(a+2) /3 (a+1), 00).
22n—2 1)—3" 2 2
Case 3: Consider A, where A € < 5 (2275?3;(04)— 1?; ) 3 EZ i 13) Now we

deal with the case by using the formulas (7.102) and (7.105) together with the
representation formula for ¢ (2) € S,,. Let us define the function w (z) by

Dl (2) _ltew (2)
D™y (2) 1—zw(z)’

(w(z) #1), (7.115)

where w : D — D is a function analytic in D with the Taylor series

w(z) = Z 2", (7.116)

and D™, n € Ny is the Sildgean differential operator defined by (6.35). Compar-

ing the coefficients of z and 2? in the series expansion (7.115), we get

Py =2""co (7.117)

and )
V=5 (c1+3c)). (7.118)

Inserting these resulting formulas (7.117) and (7.118), into (7.105) yields
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5 (()M—l)2 2(a+2)
a3 = Ay < = [3(a+1) _A}
2 2 2 1-n
L2 (a2 - 1) (A _ g) (2"cy)
+ n2 (v —1) [3—171 (c1 4 3c))
222 (a4 1) =30 (2% (e = 1) 2-2n\ 2

(Fe e ) e

= A+ Bey+ Cci + Dey, (7.119)
where

A = %(a+2)(a+1)—%(a+1)2, (7.120)

B = % (a®=1)(3A—2), (7.121)

C = —%(a—l) 4—20+3\(a—1), (7.122)

D - —é (a—1). (7.123)

Hence, by using the well-known inequalities that |co| < 1 and || < 1—|co|?, we
obtain from (7.119) that

lag — Aa3| < |A+ Beg + Ccf| + é (a—1)(1- |co\2) . (7.124)

To find the maximum value of |az — Aa3| in (7.124), we let co = 7¢', and consider
the following quadratic expression:
f(r,0) = }A + Bco + 003’2
= (A= Cr?)® + B 4 2Br (A + Cr?) cos § + 4ACT cos® 0, (7.125)
where cosf € [—1,1], r € (0,1]. For getting the upper bounds of |az — Aa3|,

we have to find the maximum value of f (r,6) for r in the interval (0, 1]. So, let

x = cosf, then from (7.125) we have
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h(z) = (A= Cr?)* + B2 + 2Br (A + Cr?) x + 4ACT22. (7.126)

In order to determine the maximum value of h(zx) for = € [—1,1], we need to

consider several subintervals of A\, where

222 (4 1) — 3" 2(a+2)
AE < 3(27) (0 1) ’3(%1))' (7.127)

2202 (o 4+ 1) — 3" 2 (v — 2)

. b that
52 %) (a—1) 3(a_ 1)) We observe tha
for A in this interval, we have A > 0, B < 0, C > 0 and A + Cr? > 0 for

r € (0,1], and (7.126) attains its maximum value at © = —1. Therefore, it gives
that

Case 3A.: First, consider \ € (

las — Aaj| < g(r) =A—Br+Cr* + % (a—1)(1—1%). (7.128)

By a simple calculation, we show that the maximum value of (7.128) attains at

the boundary of r, i.e., » = 1. Thus, we have

gr)<g(l)=A-B+C==[2-3)N)a’+1]. (7.129)

Wl

Case 3B: Let A = 2(a —2) /3 (o — 1). In this case, we have C' = 0, therefore

from (7.126), h(x) becomes a linear function as follows,
h(z) = A® + B*r® + 2BrAw. (7.130)

It is easy to show that the maximum value of (7.130) occurs at = —1 and

r = 1. Again we get the maximum value of |az — Aa3| as given in the previous

case.

2(a—2) 2(a—1)
3(a—1)" 3«
tion (7.126) has the maximum value at

Case 3C: Let )\ € ) In this interval, the quadratic func-
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() = _% <é + %) , (7.131)

where x (r) is a monotonic increasing function in r € (0,1], and z (1) < —1.
Hence we get the upper bound of |az — Aa3| as given in Cases 3A and 3B. As
conclusion, Cases 3A, 3B and 3C give

laz — Aa3| < % [(2—3)\)a*+1], (7.132)

2n—2 __n _
fora,ll)\e(2 (a+1)—3" 2(e 1))

30223 (a—1) ' 3a

2(a—1) 2

Case 3D: Let \ € [ 3 , g) From the Case 3C, the inequality z (1) < —1
o

gives us that

2 (3X + 402 — 122X + 9a%\* — 4)

<0 7.133
(B —4) +aBr—2)][aBr—2) - Br—4)] (7.133)
hence it shows that
p(N) = 902N + (3 — 120%)A + 4(a® — 1) <0, (7.134)
where \ < 2/3. Factorizing p(\) in (7.134), we have
2 1
_ - — 2
M=o (1+vBaZ 1) (7.135)
and 5 )
—_——_— e — _ 2
=3 - (1 8a? + 1) . (7.136)

It is clear that A\; < Ay. Therefore, for A € [2(aw—1) /3a, A1), the functions
(7.126) and (7.128) have their maximum values at
—-3B

— landr, = ——22  €(0,1], 1
x and r —6C’—|—a—1€(0 ] (7.137)
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respectively. Hence the upper bound of the Fekete-Szegt functional is given by

1
az — Aaj| §g(rm):A—Brm+Crfn+§(04—1) (1—r2)

4[(10 — 9X) a + (2 — 3)\)]
32-N)-(2-3\a

(7.138)

Next, we consider A € [A\1,2/3). In this interval, the quadratic equation (7.126)

attains its maximum value at

—B(A+Cr?
z(r) = EIACT )’

with

h(z(r)) = —& (B* — 4AC) (A - Cr)?.

Hence, the Fekete-Szegt functional satisfies the following inequality

(@gl) (1 —7‘2)

= (A—Cr) 1—4i2+(&g1) (1—=r%) =k(r).

|as = Aas| < v/ (@ (r)) +

The maximum value of g(r), where

g(T)ZA—Br+Or2+$(1—r2)

and the function (7.141) occur at

-B B

rm=——"—andr;= ,
BQ
20—}-\/1—%

- 2042l

(7.139)

(7.140)

(7.141)

(7.142)

(7.143)

respectively. It is easy to show that (7.141) is a monotonic decreasing function

for r > ry. Hence, the maximum value of |a3 — Aa3| is also given by (7.138).

For A =2/3, we get B =0 and C' = (1 — «) /6. Thus, the maximum value
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Jag — Aa3| = 3, (7.144)

occurs at x = cosf = 0 and r € (0,1]. Therefore, from (7.138) and (7.144) we

conclude that
4[(10 —9\) a + (2 — 3))]
32-N)—-(2-3))a ’

|ag — Aa3| < (7.145)

for all A € 2 (o — 1) /3, 2/3].

Case 3E: Let A\ € (2/3, \3], where ), is given by (7.136). In this interval, we
have B > 0. So that the function (7.126) attains its maximum value at x = 1.

Then, we have

Z(r):h(1)=A+Br+Or2+%(1—r2). (7.146)

Again, by a simple calculation shows that the maximum value of [ (r) occurs at

B
Tn = m. (7147)
—2C + 2l

Hence the maximum of the function (7.141) is attained at

B

—2C (1 +4/1— fjfc)

€ (0,1]. (7.148)

r =

It is easily to prove that r; < 1, < 1. Since k(r) is monotonic increasing function,
then

k() < k(1) = (A—C) 1—%, (7.149)
which gives that
) (1N 12(1— )
az — Aaz| < k(1) =(1—X) \/(4 TV Gr o (7.150)
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for A € (2/3, Aal.

Case 3F: Finally, we consider the case for A € (A\2,2 (o +2) /3 (a+ 1)). For A
in this interval, we see that A < 0, B > 0, C' < 0, A+C7r? < 0 and the maximum

value of function (7.124) is attained for z = —1, i.e.,
>, (a—1) 2
n(z)=—-A+Br—Cr +T(1—T). (7.151)
We get 7 (r) < n (1) for all A in these interval, and hence

as — Xa3| < —A+B—-C =2 [BA—2)a* —1]. (7.152)

Wl

Thus, the proof of Theorem 173 is completed.
Further, substituting (7.117) and (7.118) into (7.105), we get

12 (a3 — Aa3) = (@ +1)[(2 = 3)\) (a + 1) + 2]
+2(?=1)Br=2)cp+2(1—a)a
+(a—=1)6+[2-3(a—1)A)c. (7.153)

Hence for A complex numbers, we have

12 ag — Aaj| < (@ +1)](2 = 3\) (@ + 1) + 2|
+2(1—a)lal+2(a®—1)[3X = 2| |c|
+(a=1)]64[2—=3(a—1)N||co|. (7.154)

Using the well-known inequality that |c| < 1 and || < 1 — |¢o*, then from
(7.154) we get

1
12 as — Aa3| < T (a+1)v(a ), (7.155)

for Re{v (a, \)} > 0, where

v\ =[(2=3)\) (a+1)+2[+2(1—a)|3)—2|
LD

— [6+2=3( -1 (7.156)
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Thus, the proof of Theorem 174 is completed. =

Remark 175 Takingn =0 and X is a real numbers in Theorem 173, we deduce
a result of Bhowmik et al. [64)..

Other problems related to the Fekete-Szeg6 functional for further reading can
be found in (see for instance [107], [148], [151], [206], [234], [244], [321], [347],
[393], [394]).



Chapter 8

Summary and Conclusion

This dissertation is composed of eight chapters in which the research has been
carried out. This work and the main achievements throughout this study are

summarized in this chapter.

8.1 Summary

The power series f (z) in a complex variable with real or complex coefficients is
defined by

f2) =) at, (8.1)

k=1

which is convergent on the open disk D (0, R) = {z € C: |z| < R}, R > 0, where
R is called the radius of convergence of the series (8.1). If an analytic function,
which is defined by the convergent power series (8.1), is univalent on the open
unit disk D (0,1) and normalized by the conditions f (0) = 0 and f'(0) = 1,

then we have the power series of the form

fF)=2+)> at (8.2)
k=2

for any z € D (0,1).

224
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The classical Cauchy-Bunyakovsky-Schwarz (CBS) inequality for two sequences

of complex numbers states that

EA (8.3)
1

2
<
k k=1

n
g arby
=1

for ay, by € C, k € {1,2,...,n}, with equality holds in (8.3) if and only if there
is a complex number ¢ € C such that a, = cby for any k € {1,2,...,n}. A direct
generalization of the (CBS)-inequality (8.3) provided by Hélder [201] in 1889, is

n Up s n 1/p
S(Z\&k\p> (Z\bk\q) ; (8.4)

where p and ¢ satisfy the equation 1/p + 1/¢ = 1 with p > 1. The equality
occurs in (8.4) if and only if the sequences {|ax|"} and {|bx|?}, k € {1,2,...,n}

are proportional. This inequality is well-known as the Holder inequality.

n
E arby,
=1

In the real case, the (CBS) and Holder inequalities can be derived by utilising
the Jensen inequality for certain underlying convex functions (see [422], [301, p.
457], [381, p. 63-64]). The Jensen inequality, which connects with the notion of

convexity of functions, asserts that
1 < 1 <
& > iz | < 2 > pif (x)) (8.5)
ni ni

provided that f: I C R — R is a convex function on I, z; € I such that x; > 0,
j€A{L,2,...,n}, pj > 0 with P, := 37", p; >0, n > 2. The equality holds in
(8.5) if and only if z; = x, for all j,k € {1,2,...,n}.

The (CBS)-inequality has been generalized to integrals and inner product
spaces. It can be generalized for functions defined by the power series as well.

These analogous inequalities are highlighted in the following:

[fw)l” < f (121°) f (Jwl?) (8.6)

for zw, |z)*, |w|* € D (0, R), where f is a function defined by the power series
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(8.1) with nonnegative coefficients, and

[f0)” < fa (12°) fa (Jul’) (8.7)

for zw, |z)*, |w|* € D (0, R), where f is a function defined by the power series

(8.1) with real coefficients. Similarly, the analogous versions of the Holder in-

equality for functions defined by the power series (8.1) can be stated as follows:

f(zw) = FY2(12)7) £ () (8.8)

and
f(zw) = £ (127) £4 (o)), (8.9)
for zw, |z|°, |w|> € D (0, R).

In the literature, many results concerning generalizations, extensions, refine-
ments, etc., of the classical (CBS), Holder and Jensen type inequalities, have
been established by a number of remarkable researchers over the years. How-
ever, most of the established results are discrete and involve finite sums. In this
study, we derive some inequalities related to the (CBS), Holder and Jensen type
for the power series. In particular, some refinements, improvements, etc., of the
inequalities (8.6) - (8.9) have been developed by utilising some tools that have

been available in the literature.

8.2 Main Achievements

The main contributions of this dissertation are in Inequalities Theory and Univa-
lent Function Theory: that is, to develop some inequalities involving the power
series functions (8.1) and to investigate some properties of functions (8.2) in

certain subclasses of analytic and univalent functions.

In the Theory of Inequalities, this dissertation contributes, firstly, in the im-
provements, as well as the refinements of the (CBS)-type inequality for functions
defined by the power series with real or nonnegative coefficients. Applications
for some fundamental functions such as exponential, logarithm, trigonometric

and hyperbolic functions are highlighted. Some of the refinements, which are
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contained in Chapter 3, generalize the results by Cerone and Dragomir [89].
The results in the first part of Chapter 4 also contribute to the improvements of
the (CBS)-type inequality for the power series. Particularly, the results that are
related to classical Young’s inequality provide an improvement of the Holder’s
type inequality for the power series with real coefficient. Whereas the results in
the second part of Chapter 4 contribute to the Jensen type inequalities through
their improvements and refinements, as well as their reverses of the Jensen type
inequalities for the real power series with positive coefficients. Lastly, the results
in Chapter 5 give some particular inequalities involving special functions such as
polylogarithm, hypergeometric, Bessel and Modified Bessel functions of the first
kind, that have been derived from some of the results in Chapter 3 and Chapter
4.

This dissertation has also contributed in the study of Univalent Function
Theory. The results in Chapter 7 give some new properties of functions which are
analytic and univalent in the unit disk. The coefficients inequalities and Fekete-
Szeg® theorem, which provide the univalence properties of certain subclasses of

analytic and univalent functions, have been investigated.

In addition, the results established in this dissertation will contribute to the
development of the new problems of these areas and the related topics, and will

explore further applications in various fields of pure and applied mathematics.
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