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                                      Futsal and Continuous Exercise Induce Similar 
Changes in Specifi c Skeletal Muscle Signalling Proteins

vation of a calcium-related protein, the Ca 2 +  /cal-
modulin-dependent protein kinase II (CaMKII) 
induces an increase in the expression of mito-
chondrial transcription factors and GLUT4 via a 
mechanism involving the repressor histone 
deacetylase 5 (HDAC5)   [ 33   ,  46 ]  . Additionally, the 
p38 mitogen-activated protein kinase (p38 
MAPK) is involved in liver gluconeogenesis and 
glucose transport in the skeletal muscle cell 
partly via the action of the activating transcrip-
tion factor 2 (ATF2)   [ 28   ,  32 ]  .
  These signalling proteins and their associated 
pathways are highly sensitive to both acute and 
chronic exercise   [ 11   ,  38   ,  40 ]  . Traditionally, 
research investigating skeletal-muscle molecular 
responses to exercise has employed continuous 
aerobic exercise as the experimental model, typi-
cally of 30–90 min in duration and with an inten-
sity of 60–80 % of V̇  O 2peak . These protocols 
increased the phosphorylation of AMPK 
  [ 24   ,  35   ,  44 ]  , p38 MAPK   [ 30 ]   and CaMKII   [ 36 ]  . 
More recently, focus has been directed toward 
low-volume, high-intensity protocols to establish 
whether an increased exercise intensity, together 

        Introduction
 ▼
   Exercise is a signifi cant lifestyle determinant to 
chronic disease risk   [ 39   ,  42 ]  . Exercise elicits 
numerous skeletal muscle adaptations, such as 
metabolic changes and glycaemic control, which 
contribute to improved health outcomes   [ 15   ,  26 ]  . 
Particular attention has been directed towards 
understanding the molecular mechanisms that 
are believed to be fundamental in obtaining such 
adaptations. In particular, the signalling path-
ways associated with mitochondrial biogenesis 
and exercise- or insulin-mediated glucose trans-
port have received considerable interest   [ 11 ]  .
  One pivotal pathway in metabolic responses to 
exercise is mediated by the activation of the 
5’AMP-activated protein kinase (AMPK), which in 
turn induces an up-regulation of mitochondrial 
transcription factors and an increased mRNA 
transcription of the glucose transporter 4 
(GLUT4)   [ 20   ,  21   ,  31 ]  . Within the AMPK signalling 
pathway, a putative role has been proposed for 
acetyl-CoA carboxylase (ACC) in the regulation of 
cellular lipid metabolism   [ 22 ]  . Similarly, the acti-

    Authors     F.     R.     Serpiello    1        ,     M.     J.     McKenna    1    ,     G.     Coratella    2    ,     J.     F.     Markworth    3    ,     C.     Tarperi    2    ,     D.     Bishop    1    ,     N.     K.     Stepto    1    ,     
D.     Cameron-Smith    3    ,     F.     Schena    2   

  Affi  liations     1       Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Australia 
     2       Department of Neurological, Neuropsychological, Morphological and  Movement Sciences, Faculty of Sport Sciences, 

University of Verona, Italy 
     3      The University of Auckland, Liggins Institute, Auckland, New Zealand 

                                      Abstract
 ▼
   Exercise elicits skeletal-muscle adaptations 
which are important for improved health out-
comes. We compared the eff ects of a futsal game 
(FUT) and moderate-intensity continuous exer-
cise (MOD), on the skeletal-muscle protein sig-
nalling responses in young, healthy individuals. 
16 men undertook an incremental exercise test 
and a resting muscle biopsy performed  > 48 h 
apart. They were then randomly allocated to 
either FUT (n = 12) consisting of 2 x 20 min halves, 
or MOD (n = 8) consisting of a work-matched 
running bout performed at an intensity corre-
sponding to the individual ventilatory threshold 
1. Work matching was achieved by means of tri-
axial accelerometers. Immediately after FUT and 

MOD, participants underwent a second biopsy 
to assess exercise-induced changes in protein 
signalling. Total and phosphorylated protein 
abundance was assessed via western blotting. 
Both FUT and MOD altered signalling responses 
in skeletal muscle. FUT increased total ATF2 
protein abundance (p = 0.048) and phosphor-
ylation (p = 0.029), while no changes occurred 
with MOD. Both exercise regimes increased ACC 
phosphorylation (p = 0.01) and returned a trend 
for increased p38MAPK phosphorylation. Futsal 
may be employed as an alternative to continuous 
exercise to elicit muscle adaptations which may 
be associated with improved health outcomes. 
As only FUT increased ATF2 activation, this pro-
tein might be a target of future investigation on 
exercise-induced signalling.
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with the intermittent nature of exercise, play an important role 
in skeletal-muscle molecular adaptations   [ 5   ,  27   ,  38 ]  . There is evi-
dence that low-volume, high-intensity intermittent exercise is 
at least as effi  cacious as continuous exercise in increasing the 
activation of several signalling proteins   [ 4   ,  16 ]  . We have also pre-
viously demonstrated that as little as 1 min of repeated-sprint 
exercise increases the phosphorylation of ACC, CaMKII and 
HDAC5   [ 38 ]  .
  However, outcomes originating from laboratory-based exercise 
research may have limited external validity. Some of these labo-
ratory exercise protocols are not always applicable to “real-life” 
conditions, as they may be poorly motivating   [ 43 ]   or too exhaust-
ing   [ 12 ]   for the general population. Team sports may be an 
appropriate alternative for studying the eff ect of physical activ-
ity on skeletal-muscle molecular adaptations. They generally 
comprise bouts of high-intensity intermittent exercise and pro-
vide higher motivation for the participants, due to the enhanced 
social context   [ 23 ]  . Futsal (5 a-side indoor football) is a high-
intensity intermittent activity, with approximately 70–85 % of a 
game being performed above 85 % of an individual’s maximal 
heart rate   [ 3   ,  9   ,  34 ]  . Approximately 50  % of the total distance cov-
ered during a game is achieved through moderate-intensity run-
ning, high-intensity running and sprinting   [ 3 ]  . Given the 
physiological characteristics of the game   [ 9 ]  , futsal might induce 
greater acute signalling responses compared to low-intensity 
continuous physical activity. Secondly, futsal is one of the indoor 
sports with the highest participation rate worldwide, especially 
from a recreational perspective. In 2006, 1.1 million individuals 

played futsal as registered players worldwide and it was esti-
mated that 12 million individuals played futsal at a recreational 
level   [ 41 ]  . Therefore, research involving futsal as the experimen-
tal model can provide a high external validity, as the outcomes 
can be applied to real-life physical activity contexts on a large 
scale.
  The aim of this study was to compare the eff ects of a futsal game 
and work-matched continuous running exercise on skeletal-
muscle signalling responses in young, healthy men. We hypoth-
esised that i) futsal would alter protein signalling in the skeletal 
muscle, and ii) futsal would induce greater signalling responses 
compared to continuous running exercise.

    Methods
 ▼
    Participants
  Twenty-one young, healthy men, were initially assessed as eligi-
ble to participate according to the following inclusion criteria: i) 
age 18–35 years; ii) absence of major cardiovascular patholo-
gies; iii) absence of major musculoskeletal injuries; iv) previous 
experience in futsal and running exercise. Following preliminary 
screening, 5 participants decided not to commence the testing 
phase for personal reasons and 16 individuals took part in the 
study, which was conducted following a randomised parallel-
group, pre-post design (     ●  ▶     Fig. 1  ). The study was approved by the 
Ethics Committee of the University of Verona and was per-
formed in accordance with recognised ethical standards   [ 17 ]  . 

Assessed for
eligibility
(n=21)

Excluded (n=5)
•
•

Declined (n=2)
Other reasons (n=3)

Incremental
exercise test &
muscle biopsy

(n=16)

Allocated to FUT (n=8) Allocated to MOD (n=8)

Completed FUT
intervention & biopsy (n=8)

Completed MOD
intervention & biopsy (n=8)

Analysed (n=8) Analysed (n=8)

Randomised
(n=16)

    Fig. 1    Participant assessment and group alloca-
tion fl ow chart. 
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Participants’ physical characteristics were (Mean ± SD): age 
21.4 ± 1.7 years, height 179.2 ± 6.0 cm, body mass 74.8 ± 5.9 kg, 
and V̇  O 2peak  52.0 ± 6.3 mL kg  − 1  min  − 1 .

     Experimental overview
  For the baseline testing, participants visited the laboratory on 2 
occasions. During the fi rst visit, participants performed an 
incremental test to exhaustion. At least 48 h after the incremen-
tal test participants underwent a resting muscle biopsy. One 
week after the completion of baseline testing, participants were 
randomly assigned (randomly-permuted blocks, http://www.
randomization.com) to either a futsal (FUT) or a moderate-
intensity running group (MOD). The FUT group performed a sin-
gle futsal game, while MOD performed a work-matched running 
exercise bout on a treadmill. Immediately after the acute exer-
cise, another muscle biopsy was taken. Participants were asked 
to refrain from alcohol, caff eine intake and physical exercise for 
the 48 h preceding all visits. Participants were also asked to 
accurately report the 3 meals preceding the resting biopsy and 
to exactly replicate the same diet before the main exercise trial.

    Incremental exercise test
  The test was performed on a motorised treadmill (RUNRACE TM , 
Technogym, Italy) and consisted of an initial 3-min stage at 8 km 
h  − 1 , with the intensity thereafter increased by 1 km h  − 1  every 
minute until exhaustion, defi ned as the subject’s inability to 
maintain the required intensity. During the test, expired gases 
were analysed breath-by-breath using a metabolic cart (Quark 
PFT, COSMED srl, Italy) with the data averaged to obtain 10-s 
periods. Peak O 2  uptake was calculated as the average of the 2 
highest values in 2 consecutive 10-s periods. Ventilatory thresh-
old 1 (VT1) was calculated as an increase in V̇  E/V̇  O 2 without a 
concurrent increase in V̇  E/V̇  CO 2    [ 8 ]  . During the test, participants 
wore a triaxial accelerometer (X6-2; 160 Hz, ± 6 g, 16-bit; Gulf 
Coast Data Concepts, USA) placed in a dedicated vest between 
the scapulae. The changes in acceleration on the 3 anatomical 
axes were used to calculate a scaled vector magnitude (hereafter 
defi ned as ‘work’) corresponding to each stage of the incremen-
tal test, according to the following equation [7]: 

  work AU( )=
− + − + −(( ) ( ) ( ) )x x y y z z1 0 1 0 1 02 2 2

100   

 Where  x  represents vertical accelerations,  y  represents lateral 
accelerations,  z  represents frontal accelerations and the value 
‘100’ represents a scaling factor.

    Exercise trials
  One week after the completion of baseline testing, participants 
performed the main exercise trial. The FUT group performed a 
game consisting of a standardised 5-min warm-up, followed by 
two 20-min (uninterrupted time) halves with 5 min of rest. To 
standardise the time between the end of the game and the 
biopsy, and due to the inability to perform multiple post-exer-
cise biopsies at the same time, participants commenced and fi n-
ished the game with a 10-min delay between one another. To 
achieve this, the missing players were temporarily substituted 
by players who did not participate in the study.
  The MOD group performed a continuous exercise on a treadmill 
(RUNRACE TM , Technogym, Italy) at an intensity corresponding to 
the speed at VT1 measured during the incremental test. The 
duration of exercise for each participant was calculated based on 

the total work performed by FUT and matched according to their 
individual work performed at VT1. In summary, participants 
wore an accelerometer during the futsal game, and the total 
work for the game (including warm-up) was recorded. The dura-
tion of exercise required for MOD to match FUT was then calcu-
lated by dividing the average FUT work by the work 
corresponding to 1 min of exercise at VT1. Assessments of phys-
ical activity loads with triaxial accelerometers are widely used 
in research and an acceptable validity has been found on the 
comparison of work measured during treadmill- and ground-
based physical activity   [ 18 ]  .

    Muscle biopsy
  A muscle biopsy was performed at rest and immediately after 
exercise on the  vastus lateralis  muscle of the participants’ domi-
nant leg. In short, following injection of a local anaesthetic (lido-
caine hydrochloride 2  %, Monico SpA Italy) a muscle sample was 
collected using a semi-automatic biopsy needle (Vantage 13G, 
ZAMAR srl, Italy). Following collection, the samples (~60 mg) 
were immediately blotted on a fi lter paper to remove excess 
blood and quickly frozen in liquid N 2  before being stored at 
−80  °C for subsequent analysis. The time elapsed between the 
end of exercise and the post-exercise biopsy was between 4 and 
6 min.

    Immunoblotting
  Approximately 50 mg of frozen muscle samples were analysed as 
previously published   [ 29 ]  . Membranes were incubated with the 
following primary antibodies (all from Cell Signalling Technol-
ogy unless otherwise reported): ATF2 (#9226), phospho-ATF2 
Thr 71  (#5112), phospho-ACC Ser 79  (#3662), AMPKα (#2603), 
phospho-AMPKα Thr 172  (#2535), CaMKII (Santa Cruz Biotech-
nology, #SC-13082), phospho-CaMK II Thr 286  (#3361), p38 
MAPK (#9212), phospho-p38 MAPK Thr 180 /Tyr 182  (#9211), 
phospho-HDAC4/5/7 (#3443). Individual blots were normalised 
for loading with GAPDH (Abcam, #ab8245). A dilution of 1:1 000 
was used for all antibodies, with the exception of CaMKII (1:200) 
and GAPDH (1:10 000). Representative western blotting images 
are presented in      ●  ▶     Fig. 2  .

     Statistical analysis
  Data are presented as mean ± SD. Scores were tested for normal 
distribution using a Shapiro-Wilk W test and, when the assump-
tion of normality was not met, data were natural log-trans-
formed. An analysis of covariance (ANCOVA) was used to assess 
group diff erences post-exercise, using the baseline values as a 
covariate for each variable. The magnitude of the changes was 
assessed using eff ect size (ES) statistic with 90  % confi dence 
intervals, adjusted for the baseline values for each variable. ES 
were defi ned as a follows:  < 0.2 = trivial, 0.2–0.6 = small, 0.6–
1.2 = moderate, 1.2–2.0 = large,  > 2.0 = very large   [ 19 ]  .

     Results
 ▼
    Baseline characteristic
  At baseline, there was a strong trend towards a diff erence 
between FUT and MOD for V̇  O 2peak  (49.1 ± 6.2 and 55.0 ± 5.2 mL 
kg  − 1  min  − 1 , respectively; p = 0.057, ES 0.95 ± 0.83), and V̇  O 2  at 
VT1 (37.5 ± 5.0 and 42.9 ± 5.6 mL kg  − 1  min  − 1 , respectively; 
p = 0.061, ES 0.92 ± 0.84). However, when expressed as relative to 
V̇  O 2peak , there were no diff erences in VT1 between FUT 
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(76.7 ± 7.8  %) and MOD (78.1 ± 6.1  %). There was a signifi cant dif-
ference between FUT and MOD for the running velocity at VT1 
(10.0 ± 1.1 and 12.1 ± 1.0 km h  − 1 , respectively; p = 0.001, ES 
1.88 ± 0.84), and height (175.1 ± 4.8 and 183.3 ± 4.1 cm, respec-
tively; p = 0.003, ES 1.71 ± 0.83). There was no diff erence between 
FUT and MOD for age (22.0 ± 2.2 and 20.9 ± 0.8 years, respec-
tively; p = 0.198, ES 0.61 ± 0.84) and body mass (74.4 ± 6.5 and 
75.1 ± 5.7 kg, respectively; p = 0.809, ES 0.13 ± 0.84).

    Skeletal muscle protein signalling
  An acute futsal game was associated with a signifi cant, 50  % 
increase in ATF2 phosphorylation (p = 0.029,      ●  ▶     Fig. 3  ), while no 
change was detected in response to MOD. Similarly, FUT 
increased total ATF2 protein abundance, while no change was 
obtained with MOD (p = 0.048). Both FUT and MOD signifi cantly 
increased ACC phosphorylation by 119 and 75  %, respectively 
(p = 0.01 for time factor,      ●  ▶     Fig. 4  ). There was also a trend towards 
an increased p38 MAPK in both groups after exercise. A sum-
mary of the changes in protein abundance and phosphorylation 
in response to FUT and MOD is presented in      ●  ▶     Table 1  .

         Workloads and MOD exercise duration
  The average work during the FUT game was 621 ± 69 arbitrary 
units. The average work for 1 min of running exercise at a speed 
corresponding to VT1 for the MOD group was 27.7 ± 2.4 arbitrary 
units. The average duration of the experimental exercise for the 
participants in the MOD group was 23.1 ± 1.9 min. This is similar 
to the average percentage of eff ective playing time (55 %, 
~22 min) compared to uninterrupted time in futsal games.

     Discussion
 ▼
   There were 3 main fi ndings in this study. Firstly, ATF2 protein 
phosphorylation was increased only after FUT, despite no diff er-
ences between groups in the regulation of its upstream p38 
MAPK. Secondly, both FUT and MOD increased the phosphoryla-
tion of ACC. Finally, there were no diff erences between groups in 
the regulation of CaMKII and HDAC.
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    Fig. 3    Skeletal muscle ATF2  a  and p38 MAPK  b  protein phosphorylation 
at rest ( fi lled bars ) and immediately after ( open bars ) an acute game of fut-
sal (FUT) and a work-matched running exercise performed at a moderate 
intensity (MOD). *, signifi cantly diff erent from pre-exercise, main factor 
for both groups combined (p < 0.05); **, signifi cantly diff erent between 
FUT and MOD at post-exercise compared to pre (p  <  0.05). Data are 
presented as Mean ± SD; n = 8 for both groups. 

p38 MAPK

p-p38 MAPK

ATF2

p-ATF2

p-HDAC

p-CaMK II

CaMK II

p-ACC

p-AMPK

AMPK

GAPDH

FUT

REST END REST END

MOD FUT

REST END REST END

MOD

    Fig. 2    Representative western blot images from 
one individual of each experimental group. FUT, 
futsal game; MOD, moderate-intensity continuous 
exercise. 
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   ATF2 phosphorylation may depend on exercise 
intensity
  We found that ATF2 phosphorylation was increased in response 
to FUT, while no change was detected with MOD. The increase in 
ATF2 phosphorylation appears to be the result of an increase in 
total ATF2 abundance. This transcription factor has received 
recent attention as an important downstream signalling protein 
of p38 MAPK   [ 14 ]  . Thorough investigations in rodent and in vitro 
models have revealed a double role for ATF2, as an important 
transcription factor of genes such as PGC-1α, TNF-α and IL-6, 
but also as a DNA-damage response protein   [ 6 ]  . The diff erential 
increase of ATF2 in response to FUT and MOD is of interest, con-
sidering that phosphorylation of p38 MAPK, which is the direct 
upstream of ATF2, was not diff erent between the two exercise 
regimes. The role of ATF2 in the regulation of gene expression in 
response to exercise has received little attention. It has been 
demonstrated that exercise-induced PGC-1α mRNA expression 
was increased via a mechanism involving p38 MAPK, ATF2, and 
the cAMP response element (CRE)   [ 1 ]  , which is the main tran-
scription factor implicated in PGC-1α gene expression. In this 
proposed mechanism, upon contraction-induced phosphoryla-
tion of ATF2 by p38 MAPK, ATF2 binds to CRE, which in turn 
increases PGC-1α mRNA expression. However, the results of our 
study suggest a diff erential response to work-matched intermit-
tent or continuous exercise for ATF2 and p38 MAPK. This is con-
sistent with previous research showing that ATF2 
phosphorylation was increased only in response to exercise per-
formed at 80 % V̇  O 2peak  but not to an isocaloric exercise at 40 % 
V̇  O 2peak , despite an almost identical increase in p38 MAPK phos-
phorylation   [ 14 ]  . There is thus emerging evidence pointing to 
the diff erential response of ATF2 and its upstream regulator p38 
MAPK in skeletal muscle. This suggests that ATF2 might be regu-
lated by kinases other than p38 MAPK. Despite mechanistic 
research on this topic lacking in human skeletal muscle experi-
ments, it has been shown that ATF2 can be activated by signal-
ling pathways involving the extracellular signal-regulated kinase 
(ERK) and c-Jun N-terminal kinase (JNK) in human cancer cells 
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    Fig. 4    Skeletal muscle ACC  a  and AMPKα  b  protein phosphorylation at 
rest ( fi lled bars ) and immediately after ( open bars ) an acute game of futsal 
(FUT) and a work-matched running exercise performed at a moderate 
intensity (MOD). *, signifi cantly diff erent from pre-exercise, main factor 
for both groups combined (p < 0.05). Data are presented as Mean ± SD; 
n = 8 for both groups. 

 

    FUT      MOD      FUT-MOD Δ  

  Protein    Pre    Post    Pre    Post    ES ± CI  

  AMPKα    1.2 ± 0.5    1.0 ± 0.4    1.0 ± 0.4    0.8 ± 0.3    0.34 ± 0.73  
  p-AMPKα    1.0 ± 0.5    0.9 ± 0.3    1.3 ± 0.5    1.5 ± 0.6     − 0.72 ± 0.71  
   p-AMPK  α  /AMPK  α     1.1 ± 0.7    1.1 ± 0.5    1.1 ± 0.2    2.2 ± 1.4     − 0.57 ± 1.02  
  p-ACC    6.1 ± 6.2    13.4 ± 6.9*    9.8 ± 9.0    17.2 ± 18.6*    0.19 ± 0.79  
  CaMKII    1.7 ± 1.2    1.6 ± 0.9    1.1 ± 0.4    1.3 ± 0.8    0.08 ± 0.57  
  p-CaMKII    2.5 ± 2.7    1.9 ± 1.3*    2.5 ± 1.7    2.9 ± 3.0*     − 0.22 ± 0.61  
   p-CaMKII/CaMKII     1.7 ± 2.0    1.3 ± 0.7*    2.8 ± 2.0    3.6 ± 3.8*     − 0.18 ± 0.81  
  p38 MAPK    1.8 ± 0.5    1.4 ± 0.6    1.9 ± 0.7    1.4 ± 0.6     − 0.03 ± 0.94  
  p-p38 MAPK    8.6 ± 4.0    15.9 ± 8.8    10.1 ± 2.1    13.7 ± 2.7    0.10 ± 0.77  
   p-p38/p38 MAPK     0.45 ± 0.21    1.44 ± 1.30    0.64 ± 0.34    1.22 ± 0.62     − 0.20 ± 0.93  
  ATF2    6.0 ± 2.6    11.1 ± 4.4**    8.0 ± 2.5    8.2 ± 2.9    1.09 ± 0.78  
  p-ATF2    1.0 ± 0.6    1.4 ± 0.8**    1.1 ± 0.7    1.1 ± 1.0    0.62 ± 0.48  
   p-ATF2/ATF2     0.17 ± 0.08    0.15 ± 0.09    0.15 ± 0.09    0.14 ± 0.08     − 0.17 ± 0.45  
  p-HDAC4/5/7    1.0 ± 0.5    1.2 ± 0.5    1.3 ± 0.7    1.3 ± 0.3     − 0.09 ± 0.61  
  GAPDH    1.1 ± 0.1    1.1 ± 0.1    1.0 ± 0.2    1.0 ± 0.1    0.28 ± 0.65  
 Data are presented as mean ± SD and expressed as arbitrary units normalised for GAPDH; n = 8 for each group 
 FUT, futsal group; MOD, moderate-intensity continuous exercise group; FUT-MOD Δ, outcome of the diff erence between groups post-
exercise, adjusted for baseline values; ES, eff ect size; CI, confi dence interval; *, signifi cantly diff erent from pre-exercise, main factor for 
both groups combined (p < 0.05); **, signifi cantly diff erent between FUT-MOD at post-exercise compared to pre (p < 0.05) 
 AMPKα, 5’AMP-activated protein kinase α; ACC, Acetyl-CoA carboxylase; CaMKII, Ca 2 +  /CaM-dependent protein kinase II; p38 MAPK, 
p38 mitogen-activated protein kinase; ATF2, Activating transcription factor 2, HDAC, Histone deacetylase; GAPDH, Glyceraldehyde-3-
phosphate dehydrogenase. FUT, futsal group; MOD, moderate-intensity continuous exercise group 

 Table 1    Skeletal muscle protein 
abundance and phosphorylation 
following an acute futsal game 
and work-matched continuous 
exercise.
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  [ 25 ]  . Therefore, ATF2 may be identifi ed as a more suitable target 
within the MAPK pathway to be measured when comparing dif-
ferent exercise characteristics on molecular responses in skeletal 
muscle, as ATF2 appears to be more sensitive to high-intensity 
intermittent exercise than p38 MAPK. However, mechanistic 
research in a more controlled environment must be conducted 
to support this hypothesis. Additionally, measurements of p38 
MAPK and ATF2 should be integrated with a wider array of 
upstream and downstream measures to better understand the 
importance of MAPKs in exercise-induced signalling.

    Diff erential responses of ACC and AMPK to acute 
exercise
  In the present study we found a signifi cant increase in ACC phos-
phorylation in response to both FUT (119 %) and MOD (75 %). As 
the biochemical function of ACC is to catalyse the formation of 
malonyl CoA from acetyl CoA, and considering that one of the 
mechanisms of activation of ACC is via direct phosphorylation 
by AMPK, considerable focus has been directed towards the 
eff ects of contraction on ACC responses   [ 22 ]  . The magnitude of 
the increases in ACC phosphorylation observed in our study was 
consistent with those measured in response to a single bout of 
repeated-sprint exercise   [ 38 ]  . On one hand, this is a confi rma-
tion of the intense nature of futsal. On the other hand, the 
increase in ACC phosphorylation in response to FUT was similar 
to the increase with MOD. This is in contrast to the hypothesis 
that the AMPK pathway is sensitive to exercise intensity   [ 10 ]  . 
The discrepancy is more evident when ACC phosphorylation is 
compared to the activation of its direct upstream kinase, AMPK 
(     ●  ▶     Fig. 4  ). Neither FUT nor MOD increased AMPK phosphoryla-
tion immediately after exercise. However, when considering the 
ratio between the abundance of the phosphorylated and total 
AMPK protein, there was a small eff ect for the diff erence 
between the two groups (ES 0.57 ± 1.02), with the ratio being 
increased by approximately 100  % in MOD and no change in FUT 
(     ●  ▶     Table 1  ). This may signify that continuous, moderate-inten-
sity running exercise is more eff ective than futsal in inducing 
AMPK phosphorylation, though the 2 protocols are similar in 
promoting ACC phosphorylation. It has been previously demon-
strated that the activation of ACC might be independent of AMPK 
  [ 13 ]  , this also being supported by the altered chronological 
sequence in the phosphorylation of the two proteins   [ 38 ]  . It is 
evident that further research is required to defi ne the role of 
AMPK and ACC in skeletal-muscle signalling, and that these two 
proteins might not be optimal markers for diff erentiating 
between high- and moderate-intensity exercises, or between 
continuous and intermittent exercises, when these are matched 
by total volume. It must also be acknowledged that the delay 
between the end of exercise and the muscle sampling in this 
study may have not allowed detection of the peak of exercise-
induced AMPK phosphorylation.

    Neither FUT nor MOD increases CaMKII 
phosphorylation
  An interesting fi nding was that CaMKII total protein abundance 
and phosphorylation were not changed in response to either 
FUT or MOD. One of the elements behind the hypothesis that 
FUT may induce large adaptations in the skeletal muscle was 
that the activation of CaMKII plays a major role in the molecular 
adaptations induced by high-intensity intermittent exercise. 
This is supported by evidence that higher intracellular Ca 2 +   con-
centrations are recorded in response to muscle fi bre stimula-

tions at high frequencies compared to low frequencies   [ 2   ,  45 ]  . It 
was demonstrated that the phosphorylation of both CaMKII and 
its downstream target phospholamban were increased after 
exercise performed at a higher, but not a lower intensity   [ 14   ,  37 ]  . 
We have also previously demonstrated that an acute exercise 
comprising only 60 s of sprinting was capable of increasing CaM-
KII phosphorylation by approximately 70 %   [ 38 ]  . Therefore, the 
results of the present study are surprising. A possible explana-
tion might be found in the observation that both CaMKII autono-
mous activity and phosphorylation at Thr 287  were initially 
increased after 1 min of continuous exercise at 67 % V̇  O 2peak , then 
reduced by 100–200 % during the following 90 min   [ 37 ]  . This 
might suggest a very short-term response of CaMKII to exercise. 
However, this is in contrast to the results presented above show-
ing a detectable increase in CaMKII phosphorylation 1 h after 
the conclusion of repeated sprint-exercise   [ 38 ]  . Therefore, it is 
not possible to conclude that the activation of CaMKII is depend-
ent on exercise intensity or exercise characteristics when two dif-
ferent exercise protocols are matched by total work performed.
  The lack of a clear diff erence in CaMKII phosphorylation between 
groups, together with the unclear results about AMPK, may also 
explain the absence of an increased HDAC phosphorylation after 
exercise in FUT and MOD. We have previously shown that as lit-
tle as 1 min of high-intensity intermittent exercise increased 
HDAC5 phosphorylation by approximately 90 %   [ 38 ]  . Addition-
ally, 36 min of cycling at 80 % V̇  O 2peak  induced a phosphorylation 
of HDAC that was almost double that following a 70-min isoca-
loric exercise performed at 40 % V̇  O 2peak    [ 14 ]  . However, the eff ec-
tiveness of low-volume, high-intensity intermittent exercise to 
increase HDAC phosphorylation could not be replicated in the 
present study. We acknowledge that a limitation of the present 
study was that the randomisation process resulted in a diff er-
ence between groups for V̇  O 2peak  and VT1, though not statisti-
cally signifi cant. As this physiological diff erence between FUT 
and MOD may play an important role in the skeletal muscle sig-
nalling responses to acute exercise, we determined whether 
V̇  O 2peak , and V̇  O 2  and running speed at VT1 showed patterns of 
covariation with our main outcomes. There was no correlation 
between any of the physiological variables and the resting abun-
dance/phosphorylation of the main signalling protein variables, 
or with the pre-post changes. Similarly, the inclusion of the 
physiological variables in the ANCOVA model did not produce 
any alteration of the statistical outcomes.

     Conclusions
 ▼
   This study was the fi rst ever to examine the eff ects of an acute 
game of futsal on skeletal muscle protein signalling in young 
healthy adults. The eff ects of futsal were compared to a work-
matched exercise consisting of continuous running performed 
at an intensity corresponding to VT1. The results indicate that 
FUT was comparable to MOD with respect to inducing protein-
signalling in skeletal muscle. As these molecular responses have 
been linked to skeletal muscle adaptations important for the 
reduction of risk factors for chronic diseases, futsal might be 
employed as an alternative to traditional aerobic exercise as a 
lifestyle modifi cation intervention. This is of particular interest, 
considering that team sports can be more motivating to some 
individuals than individual exercise   [ 23 ]  . From a more mecha-
nistic perspective, this study also suggests that the activating 
transcription factor 2 (ATF2) might represent an appropriate tar-
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get for investigating the eff ects of acute exercise of diff erent 
characteristics (e. g., intensity) on protein-signalling in skeletal 
muscle.   
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