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Abstract 

Non-stationary behaviour of recent climate increases concerns amongst hydrologists about 

the currently used design rainfall estimates. Therefore, it is necessary to perform analysis to 

confirm stationarity or detect non-stationarity of extreme rainfall data in order to derive 

accurate design rainfall estimates for infrastructure projects and flood mitigation works. 

Extreme rainfall non-stationarity analysis of the storm durations from 6 min to 72 hours was 

conducted in this study using data from the Melbourne Regional Office station in Melbourne 

(Australia) for the period of 1925-2010.  Stationary Generalized Extreme Value (GEV) 

models were constructed to obtain Intensity-Frequency-Duration relationships for the above 

storm durations using data of two time periods: 1925-1966 and 1967-2010 after identifying 

the year 1967 as the change point year. Design rainfall estimates of the stationary models for 

the two periods were compared to identify the possible changes. Non-stationary GEV models, 

which were developed for storm durations that showed statistically significant extreme 

rainfall trends, did not show advantage over stationary GEV models. There was no evidence 

of non-stationarity according to stationarity tests, despite the presence of statistically 

significant extreme rainfall trends. The developed methodology consisting of trend and non-

stationarity tests, change point analysis, and stationary and non-stationary GEV models was 

demonstrated successfully using the data of the selected station.  
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INTRODUCTION 

Approximately 0.75ᵒC global warming has been detected over the last 100 years. This 

warming cannot be explained by natural variability alone (Trenberth et al. 2007). The main 

reason for the current global warming is human activities resulting in extensive greenhouse 

gas emissions to the atmosphere (IPCC 2007). A major question, in the context of global 

warming, is related to the extreme rainfall events producing floods and droughts. Increases in 

frequency and magnitude of extreme precipitation events have already been observed in the 

rainfall records of many regions, irrespective of the mean precipitation trends. They have 

even occurred in some regions where the mean precipitation has shown decreasing trends 

(Tryhon and DeGaetano 2011).  

 

IPCC (2007) reported that the intensity and frequency of extreme rainfall events are very 

likely to increase in the future with the exception in the regions that show very significant 

decreases in rainfall. Increases in frequency and magnitude of extreme precipitation events 

questions the stationarity in climate, which is one of the main assumptions of frequency 

analysis of extreme rainfalls. Possible violation of stationarity in climate increases concerns 

amongst hydrologists and water engineers about the currently used design rainfall estimates 

in infrastructure projects and flood mitigation works. Therefore, it is essential to perform 

analysis to confirm stationarity (or detect non-stationarity) of extreme rainfall data. Extreme 

rainfall trend analysis and non-stationarity tests are commonly used for detection of non-

stationarity in hydrological studies (Wang et al. 2005; Rosenberg et al. 2010).  
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Several studies had been conducted to investigate extreme rainfall trends over different parts 

of the world (e.g. Goswami et al. 2006, Douglas and Fairbank 2011, Shang et al. 2011, 

Shahid 2011). Also, there had been many studies investigating rainfall trends in Australia 

(e.g. Collins and Della-Marta 2002; Smith 2004; Murphy and Timbal 2008; Barua et al. 

2013). However, studies focusing on extreme rainfall trends in Australia are relatively 

limited. Haylock and Nicholls (2000) analyzed stations over eastern and south western 

Australia to determine trends in extreme rainfall events for the period 1910-1998 using three 

extreme rainfall indices: the number of events above a certain extreme threshold (extreme 

frequency), extreme intensity, and the ratio of contribution of extreme events to total rainfall 

(extreme percent). They stated extreme percent increases in Eastern Australia, whereas 

decreases in frequency and intensity of extreme events were found in southwest Western 

Australia. Li et al. (2005) investigated extreme rainfall events in southwest Western Australia 

using daily rainfall data and reported decreases in frequency and intensity of extreme events, 

similar to Haylock and Nicholls (2000). Groisman et al. (2005) reported an increasing trend 

in number of days with heavy rainfalls (greater than 99.7 percentile) in south eastern 

Australia. Gallant et al. (2007) examined rainfall trends including extreme events (95th and 

99th
 
percentiles) over two periods (i.e. 1910-2005 and 1951-2005) using data from 95 

stations for six regions in southwest and east of Australia. They reported significant decrease 

in extreme rainfalls in the eastern cost in particular during summer and winter seasons after 

1950. 

  

Almost all above studies examined trends using daily rainfall data. However, extreme rainfall 

trends can show large variations over short durations (Bonaccorso et al. 2005). Therefore, it 

is essential to conduct extreme rainfall trend analysis at finer temporal scales, since urban 

flash flooding is the product of heavy rainfalls over short durations. Studies addressing non-
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stationarity in extreme rainfall events are very rare in the literature for sub-daily temporal 

scales (Bonaccorso et al. 2005, Rosenberg et al. 2010, Jacob et al. 2011 a,b).  

 

Extreme rainfalls are the essential inputs to develop Intensity-Frequency-Duration (IFD) 

curves, which are used to derive design rainfalls for infrastructure project designs and flood 

mitigation works (Rosenberg et al. 2010). The Australian Rainfall and Runoff (ARR) has 

been widely adopted as the guideline for design rainfall estimation in Australia (IEA 1987). 

The current IFD curves have not been updated in ARR since its 1987 edition. Data up to 1983 

have been employed in these IFD curves. Influence of the data for almost 3 decades since 

1983, in which effects of global warming has been discussed more intensively and justified 

by observed data (IPCC 2007), has not been taken into account in these IFD curves. 

Therefore, it is necessary to investigate the accuracy and reliability of current design rainfall 

estimates of ARR by developing methodologies using extended rainfall along with a much 

better understanding of climate and climatic influences. It should be noted that the Australian 

Bureau of Meteorology (BoM) is currently undertaking a project to update IFD information 

across Australia using also the most recent rainfall data (ARR 2012). However, no further 

information about the outputs of the project is publically available. Moreover, any 

information could not be found if this project assumes stationary climate, or non-stationarity 

tests will be applied to determine if climate is stationary or not.   

 

In this paper, it is aimed to investigate extreme rainfall non-stationarity through trend analysis 

and non-stationarity tests. The extreme rainfall trend analysis was performed first for storm 

durations of 6, 12, 18, and 30 minutes, and 1, 2, 3, 6, 12, 24, 48 and 72 hours considering a 

rainfall station in Melbourne, Australia. Then, non-stationarity analysis of the extreme 

rainfall data was carried out using statistical and graphical tests in order to check if the 
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detected trends may correspond to extreme rainfall non-stationarity. Thereafter, potential 

effects of the climate change and variability on the IFD relationship (curves) were 

investigated through Generalized Extreme Value (GEV) distribution models. Expected 

rainfall intensities for return periods of 2, 5, 10, 20, 50 and 100 years were derived and 

compared for two time slices: 1925-1966 and 1967-2010, after identifying 1967 as the change 

point for extreme rainfall data for majority of the storm durations. Developed IFD curves 

were compared with the currently used ARR curves to investigate the validity of the ARR 

design rainfall estimates. Moreover, for storm durations, which showed statistically 

significant extreme rainfall trends, non-stationary GEV distribution models were developed 

and superiority of non-stationary models over stationary models were examined.  

 

To the best knowledge of the authors, the studies by Jacob et al. (2011 a,b) are the only  

studies available in the literature investigating the potential effects of climate change and 

variability on rainfall IFD relationships in Australia, considering possible non-stationarity of 

extreme rainfall data in design rainfall estimates. However, Jacob et al. (2011 a,b) did not 

develop non-stationary extreme rainfall models and investigate their performances over 

stationary models, as it is done in this study.  Therefore, this study has a potential not only to 

increase the understanding of climate change and extreme rainfalls, but also provide a 

contribution to the policy makers and the practitioners for infrastructure project design and 

flood mitigation works through developed methodology to get more accurate IFD curves and 

design rainfall estimates.  
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STUDY AREA AND DATA 

 

The Melbourne City in Australia was selected as the study area. Data for the study was 

obtained from the Melbourne Regional Office rainfall station (Site no: 086071, Latitude: 

37.81 °S Longitude: 144.97 °E) due to availability of long rainfall records, which is essential 

for trend and extreme rainfall IFD analysis. The Melbourne Regional Office rainfall station is 

located in an urbanized area. Therefore, urban heat island effect may have some effect on 

rainfall records of this station. However, investigation of urban heat island effects on rainfall 

records is beyond the scope of this study. Location of the Melbourne Regional Office rainfall 

station is shown in Fig.1. 

 

Fig. 1. Location of the Melbourne Regional Office Station 

Six minutes pluviometer data were available from April 1873 to December 2010 at the 

Melbourne Regional Office rainfall station. These data were used to generate the annual 

maximum sub-daily and sub-hourly rainfall intensities for various durations (6, 12, 18 and 30 

minutes, and 1, 2, 3, 6 and 12 hours). Moreover, daily data were available since April 1855, 

which were employed in this study to compute 24, 48 and 72 hour annual maximum rainfall 

intensities.  Although there are no missing data in daily rainfall record, missing periods were 

found in 6 minutes data. There was a missing data period from January 1874 to July 1877 and 
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also from July 1914 to December 1924 during the World War I. Therefore, data between 

1925 and 2010 were used for the purposes of this study for all storm durations. All above data 

were obtained from BoM.  

 

METHODOLOGY 

 

The methodology of this study consists of three parts, and the followed procedure is defined 

below.  

(1) Trend analysis was first performed for various storm durations using non-parametric 

tests. Stationarity analysis was then carried out through statistical and graphical tests.  

(2) Stationary GEV (GEVS) models were developed, and design rainfall estimates were 

derived for standard return periods considering two time slices (1925-1966 and 1967-

2010) after identifying 1967 as the change point. These design rainfall estimates were 

compared with those obtained using IFD tool developed by BoM based on the ARR 

guidelines. 

(3) Non-stationary GEV (GEVNS) models were constructed for the storm durations, that 

showed statistically significant extreme rainfall trends, and the advantages of GEVNS 

models over GEVS models were evaluated.  

 

Trend Tests  

Statistical tools that are used to detect time series trends are broadly grouped into two 

categories: parametric and non-parametric methods. Non-parametric tests are more 

appropriate for hydro-meteorological time series data, which are generally non-normally 

distributed and censored (Bouza-Deano et al. 2008). Mann-Kendall (MK) and Spearman’s 
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rho (SR) are well-established non-parametric tests for trend detection (Yue et al. 2002), and 

were used to detect the trends of extreme rainfalls in this study.   

 

MK and SR tests are rank based tests which have been commonly applied to hydro-

meteorological time series data to detect trends (Tayanc et al. 2009; Mohsin and Gough 2009; 

Yue et al. 2002; Bouza-Deano et al. 2008). As they are non-parametric tests (i.e. distribution-

free tests), they do not need to satisfy the normal distribution assumption of data, which is a 

basic assumption for parametric tests (Kundzewicz and Robson 2000; Novotny and Stefan 

2007). Formulation and details of the MK and SR tests can be found in Kundzewicz and 

Robson (2000).  

 

Although MK and SR tests are free of normally distributed data assumption, data 

independency remains as an assumption of these tests. The presence of serial dependence 

increases the probability of rejecting the null hypothesis (no trend). Hence, it may result in 

detection of the trends with a higher significance level than it would be if the series are 

independent. Therefore, it is essential to remove autocorrelation from data before using them 

in MK and SR tests for detection of trends. Von Storch (1995) proposed a method named pre-

whitening to remove undesired influence of data dependence (Bayazit and Onoz 2007). 

Autocorrelated series in this study were pre-whitened using the method by von Storch 

(1995):  

1j j jy x x              (1)                                  

where jy  is the pre-whitened data series, and   is the lag-1 autocorrelation coefficient 

(Willems et al. 2012). Trend tests (i.e. MK and SR tests) were then applied to the modified 

time series data. 



9 
 

 

Non-Stationarity Analysis 

The purpose of a trend test is to determine if the time series has a general increase or 

decrease. However, increasing or decreasing behaviour of the series does not always indicate 

non-stationarity. When the purpose is to identify non-stationarity in time series, it is 

necessary to conduct further analysis. Therefore, three statistical tests, which are augmented 

Dickey-Fuller (ADF), Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and Phillips-Perron 

(PP), were adopted in this study to investigate non-stationarity in extreme rainfall time series 

data. These tests were selected due to their common use in hydrological studies (Wang et al. 

2005; Wang et al. 2006; Yoo 2007). The null hypothesis of ADF and PP tests is non-

stationarity of the time series data, whereas the null hypothesis of the KPSS test is stationarity 

of the data series. Tests were conducted at 0.05 confidence level. Whenever the p-value 

(probability) of the test statistic is lower than the confidence level, the null hypothesis is 

rejected. Details of these tests can be found in Sen and Niedzielski (2010) and van Gelder et 

al. (2007).  

In addition to these statistical tests, non-stationarity analysis was performed by 

autocorrelation coefficient function (ACF) plots. ACF plot consists of the pairs of 

autocorrelation coefficient (rk defined in Equation (2)) and time lags (in horizontal axis).  
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 In Equation (2), N corresponds to the total length of the record and k is the lag time. Xt is the 

observation at time t and   is mean of series. If aurocorrelation coefficient shows quick 

decay to zero in ACF plot, it indicates the stationarity in time series. If there is a slow decay 
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in ACF plot (strong dependence), the time series data set has an evidence of non-stationarity 

(Modarres and Dehkordi 2005). 

 

Change Point Analysis 

 

Change point analysis was performed in this study to determine the time periods showing 

inhomogeneity (i.e. times of discontinuity in rainfall data), which might occur as a 

consequence of climate change, anthropogenic activities, and observational errors in 

monitoring, change in recording methodology or use of different equipment. It is possible to 

detect change point in a time series visually from time series graphs; however it is useful to 

employ a statistical approach for this purpose. The distribution free cumulative summation 

(CUSUM) test was recommended in many studies in literature to identify the change point in 

trend analysis (Kampata et al. 2008; Barua et al. 2013). Therefore, CUSUM test was adopted 

in this study for change point detection.  Formulation of CUSUM test can be seen in Chiew 

and Siriwardena (2005).   

 

Stationary and Non-Stationary Generalized Extreme Value Distribution Models  

There are two basic methods to derive extreme rainfall data: 1) Block maxima, 2) Peaks over 

threshold (POT). In the block maxima approach, extreme rainfall data are obtained by 

selecting the maximum values from equal length blocks such as a year. On the other hand, the 

POT approach samples data above a certain threshold. Hence, it yields a larger sample size, 

but the extraction of data is more difficult than in the block maxima approach. Furthermore, 

careful attention should be given to ensure that data are independent in the POT approach. 

Using only one value from each block (year in this study) will result in small sample sizes, 

which could affect the accuracy of the parameter estimation of the extreme value distribution, 
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especially if the data record is short (Begueria et al. 2011). However, enough data (86 years 

of data) is available in this study. Also, the block maxima approach is more suitable than the 

POT approach, when independent data assumption of the extreme value analysis is 

considered.  Therefore, the block maxima approach was employed to derive extreme rainfall 

data in this study.     

 

There are two common distributions to fit the extreme rainfalls for frequency analysis in 

literature: i) Generalized Extreme Value (GEV) distribution and ii) Generalized Pareto (GP) 

distribution (Cooley 2009; Begueira et al. 2011). If data are obtained by the block maxima 

approach, several researchers (e.g. Sugahara et al. 2009; Park et al. 2011) recommended 

Generalized Extreme Value (GEV) distribution for extreme rainfall frequency analysis for 

both stationary and non-stationary cases.    

 

The GEV distribution has three parameters including location (μ), scale (σ) and shape (ξ) 

parameters. The general form of the cumulative distribution function of the GEV distribution 

and detailed information on different types of GEV (i.e. Gumbel, Frechet and Weibull 

distributions) can be seen in Park et al. (2011).   

 

Different approaches such as maximum likelihood and L-moments can be used to estimate 

parameters of the extreme value distribution. The L-moments method had been employed for 

parameter estimation of the stationary GEV models in this study since it is less affected from 

data variability and outliers, and relatively unbiased for small samples (Borijeni and 

Sulaiman 2009).  Details of the L-moments method can be found in Yurekli et al. (2009).   
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Goodness of fit of the GEV models had been determined based on the graphical diagnostics 

and statistical tests.  Common diagnostic graphs that were used for goodness of fit are the 

probability and the quantile plots. In these plots, observed values are plotted against the 

predicted values by the fitted model. In case of a good fit, points of the probability and the 

quantile plots should lie close to the unit diagonal. Although probability and quantile plots 

explain the similar information, different pairs of data were used in probability and quantile 

plots. It is useful to adopt both plots, since one plot can show very good fit while the other 

can show a poor fit. In this case, statistical tests are very helpful to determine if the fit is 

adequate. Details of the diagnostic graphs can be found in Coles (2001).  

 

Kolmogorov-Simirnov (KS), Anderson-Darling (AD), and Chi-square (CS) statistical tests 

have been widely used in extreme value analysis studies in hydrological applications (Laio, 

2004; Salarpour et al., 2012). Di Baldassarre et al. (2009) and Salarpour et al. (2012) 

explained the details of these statistical tests. These tests are used to determine if a sample 

comes from a hypothesized continuous distribution. Null hypothesis (H0) is the data follow 

the specified distribution (which is GEV in this study). If the test statistic is larger than the 

critical value at the specified significance level, then the alternative hypothesis (HA) (which is 

the data do not follow GEV distribution) is accepted. Both diagnostic graphs (probability and 

quantile plots) and statistical tests (KS, AD and CS) were used in this study. 

 

It is useful to develop non-stationary GEV models, when there is evidence of statistically 

significant trends even if stationarity tests do not indicate non-stationarity. It is a common 

practice to incorporate time dependency into the location parameter of the GEV distribution 

in order to investigate how extremes are changing in time (Cooley 2009).  Non-stationarity 
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can also be expressed using time dependency into scale parameter. It is quite difficult to 

estimate the shape parameter of the extreme values distribution with precision when it is time 

dependent, thereby; it is not realistic to attempt to estimate the scale parameter as a smooth 

function of time (Coles 2001). 

In this study, three non-stationary models were developed with parameters as explained 

below: 

 Model GEVNS1  0 1t t    ,    (constant),   (constant) 

 Model GEVNS2   (constant),  0 1( ) exp( )t t    ,   (constant) 

 Model GEVNS3 0 1t t    ,  0 1( ) exp( )t t    ,   (constant). 

In the above models, 0 and 1   modify the location and scale parameters of non-stationary 

GEV models to account for trend. It should be noted that the exponential function has been 

used to introduce trend in scale parameter to ensure the positivity of σ. 

The maximum likelihood method was adopted for parameter estimation of GEVNS models 

due to its suitability for incorporating non-stationary features into the distribution parameters 

as covariates, such as annual cycle and long-term trend (Sugahara et al. 2009). Readers are 

advised to refer to Shang et al. (2011) for details of the maximum likelihood method.  

Superiority of GEVNS models over GEVS models were investigated through graphical tests:  

probability and quantile plots. In a non-stationary case, each data point has a different 

distribution associated with it; therefore it is essential to transform data in order to obtain the 

same distribution for each data point as explained in Coles (2001).  
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RESULTS AND DISCUSSION 

Trend and Non-Stationarity Analysis 

High lag-1 autocorrelation was detected for the data series of 6, 12 (0.05 significance level) 

and 18 minutes (0.1 significance level) storm durations, while the remaining storm durations 

did not show any statistically significant autocorrelation. Autocorrelated series (6, 12 and 18 

minutes) were pre-whitened using the method by von Storch (1995), which was explained in 

“Trend Tests” section. 

Trend tests (i.e. MK and SR tests) were then applied to the modified 6, 12, and 18 minutes 

time series data and the original data sets of the remaining storm durations, which are 

considered to be independent. Trends analysis results are shown in Table 1. 

Table 1. Trend analysis results 

 Duration Test Statistics Result 

  Mann-Kendal Spearman's Rho   

6 min 1.636 1.487 NS 

12 min 2.486 2.277 S(0.05) 

18 min 2.403 2.282 S(0.05) 

30 min 2.641 2.501 S(0.01) [MK], S(0.05) [SR] 

1 hr 1.958 1.894 S(0.1) 

2 hr 0.884 0.923 NS 

3 hr 0.399 0.429 NS 

6 hr 0.168 0.146 NS 

12 hr -0.854 -0.791 NS 

24 hr -0.123 -0.13 NS 

48 hr -0.586 -0.588 NS 

72 hr -0.962 -0.923 NS 

Critical Values at 0.1, 0.05, and 0.01 significance levels are 1.645, 1.96, and 2.576 respectively.  

S = statistically significant trends at different significance levels shown within brackets. 

NS = statistically insignificant trends even at 0.1 significance level. 
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As can be seen from Table 1, MK and SR tests showed that extreme rainfall data for short 

storm durations of 12, 18, 30 minutes and 1hr exhibited statistically significant increasing 

trends at different significance levels. Although there is an increasing trend for the data sets 

of 6 min, 2, 3, and 6 hours, trends are not significant even at 0.1 significance level. The 12, 

24, 48, and 72 hours extreme rainfall data sets demonstrated statistically insignificant 

decreasing trends. Trends in short (in particular sub-hourly) and long storm durations were 

largely different in terms of direction (positive or negative) and statistical significance.  Time 

series plots of the data set of all storm durations are illustrated with linear trend lines in Fig. 

2. 
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Fig. 2. Time series graphs of all storm durations 
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Although detected statistically significant trends may be a sign of non-stationarity of extreme 

rainfalls, trends do not necessarily mean non-stationarity. Thus, non-stationarity of extreme 

rainfall data was further investigated using graphical method and statistical tests as explained 

in “Non-stationarity Analysis” section. The ACF plots demonstrated relatively quick decay to 

zero rather than a slow decay, which is an indicator of stationarity (Fig. 3). However, there is 

still a need for objective statistical tests in order to decide if the data is stationary or non-

stationary. All objective statistical tests (ADF, KPSS and PP) used in this study did not show 

any evidence of non-stationarity of extreme rainfalls. 

 

 Fig. 3. ACF plots for sub-hourly storm durations 
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Design Rainfall Estimates Based on GEVS Models and Comparison between Stationary 

and Non-stationary GEV Models 

GEVS models were constructed in order to derive IFD relationships for two time slices, 

which were determined based on change point analysis.  Table 2 shows the results of the 

change point analysis using the CUSUM test for all storm durations. As can be seen from 

Table 2, change point of the majority of the storm durations oscillated around late 1960s. The 

1967 year was selected as the change point year in this study based on the CUSUM results 

(Table 2). The IFD relationships were then derived for the two time slices: 1925-1966 and 

1967-2010. Jones (2012) stated the period 1910-1967 as stationary and 1968-2010 as non-

stationary according to the observed maximum and minimum temperature and rainfall data in 

south eastern Australia which includes the Melbourne region. Therefore, the findings of the 

change point analysis of this study are consistent with those of Jones (2012). However, the 

study did not show non-stationarity in extreme rainfalls for any time periods (i.e. 1925-2010, 

1925-1966 or 1967-2010) and for any storm durations according to single station data. 
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Table 2. Change point year based on the CUSUM test 

Storm 

Durations Change Point 

6 min 1977 

12 min 1970 

18 min 1967 

30 min 1967 

1 hr 1967 

2 hr 1968 

3 hr 1968 

6 hr 1968 

12 hr 1969 

24 hr 1960 

48 hr 1987 

72 hr 1960 

 

It should be noted that data independence is an assumption of GEV distribution. Therefore, 

the autocorrelation test was applied to the extreme rainfall data set of two periods: 1925-1966 

and 1967-2010 to check the presence of time dependency of data. The autocorrelation test 

results showed that data for both time periods are independent and suitable to be used in GEV 

analysis.  

 

The main purpose of developing stationary models was to compare expected rainfall 

intensities from GEVS with the currently used design rainfall estimates based on the ARR 

guideline (which were also calculated under the stationary climate assumption). Moreover, 

the comparison of the design rainfall intensities in 1925-1966 and 1967-2010 (warmer 

period) periods could show the likely effects of climate change and variability on extreme 
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rainfall IFD relationships. Table 3 demonstrates the expected design rainfall intensities of 

GEVS models for the two time slices and using the ARR guideline for return period of 2, 5, 

10, 20, 50 and 100 years, while Fig. 4 shows the same information graphically. Fig. 4 also 

shows 95% confidence limits of the design rainfall estimates corresponding to the two time 

slices. It should be noted that rainfall intensities in Fig.4 is shown in logarithmic scale to be 

able to detect differences more clearly. 
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Table 3. Expected rainfall intensities (mm/hr) of GEVS and ARR models 

Durations/Return 

Periods 

2 year 5 year 10 year 

  1925-1966 1967-2010 ARR 1925-1966 1967-2010 ARR 1925-1966 1967-2010 ARR 

6 min 49.4 57.9 59.2 71.9 87.9 81.3 89.8 114.5 96.7 

12 min 35.5 47.6 45.3 52.9 67.7 61.8 68.1 83.5 73.1 

18 min 28.8 38.8 37.2 43.4 53.8 50.5 56.4 65.0 59.5 

30 min 21.2 28.2 27.8 31.8 40.1 37.4 41.5 48.6 43.8 

1 hr 13.0 16.1 18.5 19.2 22.6 24.7 24.9 27.4 28.8 

2 hr 9.4 10.4 12 13.3 14.9 15.8 16.7 18.5 18.3 

3 hr 7.6 8.2 9.23 10.3 11.4 12 12.4 13.8 13.9 

6 hr 5.0 5.3 5.9 6.7 7.4 7.6 7.9 8.9 8.7 

12 hr 3.0 3.1 3.8 4.1 4.3 4.8 5.0 5.2 5.5 

24 hr 1.8 1.8 2.4 2.6 2.5 3.1 3.1 3.0 3.5 

48 hr 1.3 1.2 1.5 1.8 1.6 1.9 2.2 1.9 2.3 

72 hr 0.9 0.8 1.1 1.3 1.2 1.5 1.6 1.4 1.7 

Durations/Return 

Periods 

20 year 50 year 100 year 

  1925-1966 1967-2010 ARR 1925-1966 1967-2010 ARR 1925-1966 1967-2010 ARR 

6 min 109.4 146.8 117 139.1 201.1 147 164.9 253.7 171 

12 min 85.9 100.8 88.1 115.4 126.8 109.9 143.2 149.4 132.2 

18 min 72.2 76.9 71.5 98.9 94.0 88.8 124.9 108.3 103.0 

30 min 53.7 57.1 52.5 74.9 69.0 64.8 96.2 78.5 75 

1 hr 31.8 32.4 34.3 43.8 39.6 42.1 55.7 45.6 48.5 

2 hr 20.6 22.7 21.6 26.8 29.0 26.4 32.5 34.7 30.2 

3 hr 14.7 16.4 16.4 18.1 20.3 19.9 21.0 23.7 22.7 

6 hr 9.3 10.4 10.1 11.0 12.4 12.2 12.4 14.1 13.9 

12 hr 5.9 6.1 6.4 7.4 7.2 7.7 8.7 8.2 8.7 

24 hr 3.7 3.5 4.1 4.6 4.1 4.9 5.3 4.6 5.6 

48 hr 2.6 2.3 2.6 3.3 2.7 3.2 3.9 3.1 3.6 

72 hr 1.9 1.7 1.9 2.4 2.1 2.4 2.8 2.4 2.7 
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Fig. 4. Design rainfall estimates of GEVS models and ARR (mm/h) for standard return 

periods 

The ARR estimates fall between 1925-1966 and 1967-2010 GEVS model estimates for all 

sub-hourly storm durations (except 6 min storm duration estimate for 2 years return period) 

for the return periods less than 20 years. For all return periods and sub-hourly storm durations 
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(again except 6 min storm duration estimate for 2 years return period), the ARR estimates 

were less than 1967-2010 GEVS model estimates. Moreover, the ARR estimates were less 

than 1967-2010 GEVS model estimates of  2, 3, and 6 hours storm durations for 20, 50, and 

100 years return periods. For almost all the remaining return periods and the remaining storm 

durations, the ARR estimates are larger than those corresponding to 1967-2010 period.  

Design rainfall estimates of the GEVS models corresponding to the 1967-2010 period are 

larger than those corresponding to the 1925-1966 period for the durations from 6 min to 12 hr 

for the return periods less than 50 years (Table 3 and Fig. 4). This difference was clearer for 

sub-hourly estimates. The largest intensity differences between two periods of the GEVS 

models were observed for the sub-hourly durations of the 2 and 5 year return periods (Fig. 4). 

The rainfall intensity estimates of the 1925-1966 GEVS models were larger than of those 

corresponding to the 1967-2010 period for the durations 18 and 30 minutes, and 1, 12, 24, 48 

and 72 hours in 50 and 100 year return periods conversely to the other return periods. The 

1925-1966 model estimates were also slightly larger than those of the 1967-2010 period for 

24, 48 and 72 hours storm durations of all return periods.  

 

There can be two main factors for the large differences in design rainfall estimates and 

extreme rainfall trends corresponding to the above two time periods: (1) natural variability, 

and (2) climate change. Moreover, sampling error due to using data of only one station could 

be another reason. The El Nino-Southern Oscillation (ENSO) with El Nino and La Lina 

phases (Verdon et al. 2004), Indian Ocean Dipole (IOD) (Ashok et al. 2003), and the 

Southern Annual Mode (SAM) (Meneghini et al. 2007) were pointed as influential climate 

modes on the precipitation variability in Victoria (Australia), which includes the Melbourne 

region. However, Verdon-Kidd and Kiem (2009) explained that Inter-decadal Pacific 
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Oscillation (IPO) has a strong impact on the climate pattern change in Victoria. Moreover, 

Power et al. (1999) and Kiem et al. (2003) expressed that association between ENSO and 

Australian climate is modulated by IPO (Micevski et al. 2006). In particular, the relationship 

was strong during the IPO negative phases (i.e associated with wetter conditions). Kiem et al. 

(2003) showed La Lina events, which were enhanced during the negative IPO phases, as a 

primary driver for the flood risk.  

 

Above studies suggest the need to investigate IPO effects on extreme rainfalls due to its 

direct effects on Australian climate as well as effects of IPO on ENSO, which has a strong 

link to Australian rainfall. The effects of IPO on extreme rainfalls were investigated in this 

study through average annual maximum rainfall intensity and extreme rainfall IFD 

relationship analysis during IPO negative and positive phases. Salinger (2005) and Dai 

(2012) expressed that 1947-1976 time period corresponds to the IPO negative phase, whereas 

1977-1998 time period corresponds to the IPO positive phase. Therefore, extreme rainfall 

data set corresponding to these time periods (i.e. 1947-1976 and 1977-1998) were used for 

the analysis of IPO effects on extreme rainfalls. Table 4 shows the average annual maximum 

rainfall intensities during IPO negative and positive phases. As can be seen from Table 4, 

average annual maximum rainfall intensities of storm durations above 3 hr (i.e. 6, 12, 24, 48 

and 72 hours) during the IPO negative phase were larger than those average annual maximum 

rainfall intensities for the IPO positive phase, and vice versa for the remaining storm 

durations.   
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Table 4. Average annual maximum rainfall intensities during IPO negative and positive 

phases 

Storm 

Duration 

Average Annual Maximum Rainfall 

Intensity (mm/hr) 

  

IPO Negative 

Phase (1947-1976) 

IPO Positive 

Phase (1977-1998) 

6 min 55.3 67.8 

12 min 43.2 53.9 

18 min 36.1 43.1 

30 min 27.8 30.6 

1 hr 17.0 18.1 

2 hr 12.0 12.3 

3 hr 9.1 9.3 

6 hr 5.9 5.8 

12 hr 3.6 3.4 

24 hr 2.1 2.0 

48 hr 1.4 1.2 

72 hr 1.1 0.9 

 

 

Fig. 5 shows the findings of the extreme rainfall IFD relationship analysis during the IPO 

negative and positive phases.  The design rainfall intensities of daily storm durations (24, 48 

and 72 hr) for all return periods during the IPO negative phase were larger than those rainfall 

intensities during IPO positive phase. Moreover, the design rainfall intensities of all storm 

durations for the return periods equal to 20 yr and above (i.e. 20, 50 and 100 yr) during the 

IPO negative phase exhibited larger values relative to those rainfall intensities for the IPO 

positive phase as can be seen Fig. 5 (a). However, design rainfall intensities of sub-hourly 

storm durations for the return period less than 20 yr (i.e. 2, 5 and 10 yr) during IPO negative 

phase were lower than those design rainfall intensities for the positive phase as shown in 

Fig.5 (b).  
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Fig. 5. IPO effects on design rainfall intensities during IPO negative and positive phases 

In summary, as explained in literature, increases in extreme rainfalls were observed during 

the IPO negative phase for long storm durations and high return periods. However, extreme 

rainfall increases and differences in design rainfalls for short storm durations (in particular 

sub-hourly storm durations for short return periods) cannot be explained with the IPO 

influence only.     
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Anthropogenic climate change has a potential to affect not only extreme rainfalls directly but 

also the dynamics of key climate modes. A few studies (e.g. Murphy and Timbal 2008; 

CSIRO 2010) investigating rainfall changes in south eastern Australia mentioned that 

although there is no clear evidence to attribute rainfall change  directly to the anthropogenic 

climate change, it still cannot be neglected. Change in rainfalls is linked at least in part to the 

climate change in south eastern Australia. However, it is very difficult to address 

anthropogenic climate change effects on possible shifts in the extreme rainfalls and climate 

modes due to the limited historical record and strong effects of natural climate variability 

(Westra et al. 2010). Further analysis to investigate the reasons of the rainfall trends and 

design rainfall differences is beyond the scope of this paper.  

 

Table 5 demonstrates the KS, AD, and chi-square test statistics of the GEVS models for both 

1925-1966 and 1967-2010 periods along with critical values of the tests for the 0.05 

significance level.  
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Table 5: KS, AD, and chi-square test statistics of the GEVS models 

  1925-1966 1967-2010 

  KS  AD 

Chi-

Square KS  AD 

Chi-

Square 

Critical Values α(0.05)  0.20517 2.5018 9.4877 0.20056 2.5018 11.07 

  Test Statistics 

Storm Durations KS  AD 

Chi-

Square KS  AD 

Chi-

Square 

6 min 0.10372 0.34758 1.6904 0.06869 0.3022 3.8134 

12 min 0.0895 0.44909 1.4106 0.07931 0.22656 1.4045 

18 min 0.11472 0.72368 6.3524 0.05393 0.10776 0.23279 

30 min 0.12311 0.54914 4.9254 0.091 0.37404 2.08 

1 hr 0.1223 0.45773 0.5604 0.07692 0.27875 1.6087 

2 hr 0.07806 0.23473 1.9473 0.1295 0.56989 3.5116 

3 hr 0.09801 0.2368 8.8276 0.09546 0.44889 0.91735 

6 hr 0.09487 0.2313 2.9333 0.06563 0.18716 2.667 

12 hr 0.10241 0.38756 0.0907 0.0706 0.21466 0.89586 

24 hr 0.09385 0.39002 1.8626 0.07754 0.25058 1.8309 

48 hr 0.07859 0.28037 1.3606 0.09516 0.33122 3.4862 

72 hr 0.07154 0.24746 1.7567 0.08847 0.46112 2.2291 

 

As explained earlier, null hypothesis (i.e. the sample comes from the GEV distribution) is 

rejected if the test statistics are larger than the critical values. Smaller test statistics in Table 5 

compared to the critical values, show that GEV distribution fits these data successfully.   

Diagnostic graphs also showed the successful fit for all storm durations. As an example, Fig. 

6 illustrates the P-P and Q-Q plots for 72 hr duration GEVS model for the 1925-1966 period.  
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Fig. 6. Diagnostic graphs for 72-h duration GEVS model 

Non-stationary models (GEVNS1, GEVNS2, GEVNS3) for the data showing statistically 

significant trends (from 12 min to 1 hr ) were developed for the same time slices (1925-1966 

and 1967-2010) as GEVS models. Diagnostic graphs showed that there is no evidence to 

prefer non-stationary models over stationary models since the non-stationary models did not 

result in better fit (lying close to the unit diagonal) than stationary models (Fig. 7). Fig. 7 

shows the comparison of stationary and non-stationary GEV models in terms of diagnostic 

plots for 30 min storm duration of the 1967-2010 time period. Fig. 7 demonstrates that 

stationary model (a) and non-stationary models (b,c,d) performances were very similar.  
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Fig. 7. 30-min stationary and non-stationary GEV model diagnostic graphs 

CONCLUSIONS 

A methodology consisting of trend and non-stationarity tests, change point analysis, and 

stationary and non-stationary Generalized Extreme Value (GEV) models was developed in 
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this paper to investigate the potential effects of climate change on extreme rainfalls and 

Intensity-Frequency-Duration (IFD) relationships. The developed methodology was 

successfully applied using extreme rainfall data of a single observation station in Melbourne 

(Australia). Same methodology can be used for other stations to develop larger spatial scale 

studies (using multiple stations’ data). Followings are the major findings and conclusions of 

this study:  

- Statistically significant extreme rainfall trends were detected for storm durations of 

12, 18, and 30 minutes, and 1 hr, considering the data from 1925 to 2010.  

- Despite to the presence of trends in extreme rainfall data for sub-hourly (except 6 

min) and 1 hr storm durations, there was no evidence of non-stationarity according to 

graphical and statistical non-stationarity tests. 

- The stationary GEV models were capable of fitting extreme rainfall data for all 

durations.  

- Stationary GEV models’ design rainfall estimates of 6 min to 12 hr storm durations 

for the return periods of 2, 5, 10, and 20 years over 1967-2010 period were larger than 

those estimates corresponding to the 1925-1966 period. The design rainfall estimates 

of the storm durations including 18, 30 minutes, and 1, 12, 24, 48, 72 hours for the 50 

and 100 years return periods over the 1925-1966 period were larger than those 

estimates corresponding to the 1967- 2010 period.  

- The design rainfall estimates derived based on the ARR were lower than the estimates 

of 1967-2010 models for sub-hourly durations in particular for 5, 10, and 20 years 

return periods.   

- The developed non-stationary GEV models did not show any advantage over the 

stationary models. 
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- The above differences in design rainfall estimates between ARR and GEV models 

support the need to update the current Australian practice of estimating IFD 

information, including the most recent data. 

- The above differences also suggest the need to conduct future Intensity-Frequency-

Duration relationship studies using future climate data.  

 

It should be noted that the findings of this study are based on data from a single station.  

One station was used in this study to demonstrate the methodology in this paper. It is not 

realistic to extrapolate the findings of this paper for larger spatial scales without further 

analysis using rainfall data from multiple observation stations.  

 

ACKNOWLEDGMENTS 

The authors would like to thank Dr. Fuchun Huang for his valuable comments on statistical 

tests, and Mr. Safaet Hossain for his work on data organization. The authors also would like 

to thank the two anonymous reviewers for their constructive comments, which have 

improved the content and clarity of the paper.   

REFERENCES 

Ashok, K., Guan, Z., and Yamagata, T. (2003), “Influence of the Indian Ocean Dipole on the 

Australian winter rainfall.” Geophysical Research Letters,30 (15),  doi: 

10.1029/2003GL017926. 



33 
 

Australian Rainfall & Runoff (ARR), (2012). “Revision projects and document updating, 

Project 1 – Development of Intensity, Frequency and Duration information accross 

Australia.” <http://www.arr.org.au> (Nov. 5, 2012). 

Barua, S., Muttil, N., Ng, A. W. M., and Perera, B. J. C. (2013). “Rainfall trend and its 

implications for water resource management within the Yarra River catchment, Australia.” 

Hydrol. Processes., 27 (12), 1727-1738.Bayazit, M., and Onoz, B. (2007). “To prewhiten or 

not to prewhiten in trend analysis?.” Hydrological Sciences Journal, 52(4),611-624. 

Begueria, S., Angulo-Martinez, M. ,Vicente-Serrano, S.M., Lopez-Moreno, J.I.,  and El-

Kenawy, A. (2011). “Assessing trends in extreme precipitation events intensity and 

magnitude using non-stationary peaks-over-threshold analysis: a case study in northeast 

Spain from 1930 to 2006.”  International Journal of Climatology, 31, 2102–2114.  

Bonaccorso, B., Cancelliere, A., and Rossi, G. (2005). “Detecting trends of extreme rainfall 

series in Sicily.” Advances in Geosciences, 2, 7-11, doi:10.5194/adgeo-2-7-2005. 

Borujeni, S.C. and Sulaiman, W.N.A. (2009). “Development of L-moment based models for 

extreme flood events.” Malaysian Journal of Mathematical Sciences, 3 (2), 281-296. 

Bouza-Deano,R., Ternero-Rodriguez, M., and Fernandez-Espinosa, A.J. (2008).”Trend study 

and assessment of surface water quality in the Ebro River (Spain).” Journal of Hydrology, 

361(3-4), 227-239. 

Chiew, F., and Siriwardena, L. (2005). “Trend.” CRC for Catchment Hydrology, Australia. 

Coles, S. (2001). An introduction to statistical modeling of extreme values, Springer-Verlag, 

London, UK. 



34 
 

Collins, D.A., and Della-Marta, P.M. (2002). “Atmospheric indicators for the State of the 

Environment Report 2001. “Technical Report No. 74, Bureau of Meteorology, Australia, 25 

pp. 

Cooley, D. (2009). “Extreme Value Analysis and the Study of Climate Change.” Climatic 

Change, 97, 77-83. 

CSIRO (2010). “Climate variability and change in south-eastern Australia: A synthesis of 

findings from Phase 1 of the South Eastern Australian Climate Initiative (SEACI)”, Sydney, 

Australia. 

Di Baldassarre, G., Laio, F., and Montanari, A. (2009).” Design flood estimation using model 

selection criteria.” Physics and Chemistry of the Earth, 34, 606–611. 

Douglas, E. M., and Fairbank, C. A. (2011). “Is precipitation in Northern New England 

becoming more extreme? Statistical analysis of extreme rainfall in Massachusetts, New 

Hampshire, and Maine and updated estimates of the 100-year storm.” J. Hydrol. Eng., 16(3), 

203–217. 

Dai, A. (2013). “The influence of the inter-decadal Pacific oscillation on US precipitation 

during 1923–2010”, Climate Dynamics, 41 (3-4), 633-646. 

Gallant, A. J. E., Hennessy, K. J., and Risbey, J.S. (2007). “Trends in rainfall indices for six 

Australian regions: 1910–2005.” Aust. Meteorol. Mag., 56 (4), 223–239. 

Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., and Xavier, P. K. 

(2006). “Increasing Trend of Extreme Rain Events over India in a Warming Environment.” 

Science, 314, 1442–1445. 

Groisman, P. Y., Knight, R.W., Easterling, D.R., Karl, T.R., Hegerl, G.C., and Razuvaev, 

V.N. (2005). “Trends in intense precipitation in the climate record.”  Journal of Climate, 18 

(9), 1326-1350. 



35 
 

Haylock, M., and Nicholls, N. (2000). “Trends in Extreme Rainfall Indices for an Updated 

High Quality Data set for Australia, 1910–1998.” International Journal of Climatology, 20 

(13), 1533–1541.   

Institution of Engineers, Australia (IEA), (1987). “Australian Rainfall and Runoff: A Guide 

to Flood Estimation , Vol. 1.” Editor-in-chief D.H. Pilgrim, Revised Edition 1987 (Reprinted 

edition 1998), Barton, ACT. 

IPCC, (2007). “Climate Change 2007: The Physical Science Basis, Contribution of Working 

Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate 

Change.” edited by:Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. 

B., Tignor, M., and Miller, H. L., Cambridge, United Kingdom and New York, USA, 996 

pp., 2007. 

Jakob, D., Karoly, D.J., and Seed, A. (2011a). “Non-stationarity in daily and sub-daily 

intense rainfall – Part 1: Sydney, Australia.” Natural Hazards and Earth System Sciences, 11, 

2263–2271.  

Jakob, D., Karoly, D.J., and Seed, A. (2011b). “Non-stationarity in daily and sub-daily 

intense rainfall – Part 2: Regional Assessment for sites in south-east Australia.” Natural 

Hazards and Earth System Sciences, 11, 2273–2284.  

Jones, R. N. (2012). “Detecting and attributing nonlinear anthropogenic regional warming in 

southeastern Australia.” J. Geophys. Res., 117 (D4), doi:10.1029/2011JD016328. 

Kampata, J.M., Parida, B.P., and Moalafhi, D.B. (2008). “Trend analysis of rainfall in the 

headstreams of the Zambezi River Basin in Zambia.” Physics and Chemistry of the Earth, 33, 

621–625. 

Kiem, A.S., Franks, S.W., and Kuczera, G. (2003), “Multi-decadal variability of flood risk”, 

Geophysical Research Letters, 30 (2), 1035, doi:10.1029/2002GL015992. 

 



36 
 

Kundzewicz, Z.W., and Robson, A. (2000). “Detecting trend and other changes in 

hydrological data.”, WCDMP, no. 45; WMO-TD, no. 1013, World Meteorological 

Organization, Geneva, Switzerland. 

Laio, F. (2004). “Cramer–von Mises and Anderson-Darling goodness of fit tests for extreme 

value distributions with unknown parameters.” Water Resources Research, 40, W09308, 

doi:10.1029/2004WR003204. 

Li ,Y., Cai, W., and Campbell, E.P. (2005). “Statistical modeling of extreme rainfall in 

southwest Western Australia.” Journal of Climate, 18, 852–863. 

Meneghini, B., Simmonds, I., and Smith, I. N. (2007). “Association between Australian 

rainfall and the Southern Annular Mode.” International Journal of Climatology, 27 (1), 109–

121. 

Micevski, T., Franks, S. W., and Kuczera, K. (2006). “Multidecadal variability in coastal 

eastern Australian flood data.” Journal of Hydrology, 327,1-2, 219-225.  

Modarres, R., and Dehkordi, A.K. (2005). “Daily air pollution time series analysis of Isfahan 

City.” International Journal of Environmental Science and Technology, 2 (3), 259-267.  

Mohsin, T., and Gough,W. A. (2010). “Trend analysis of long-term temper ature time series 

in the Greater Toronto Area (GTA).” Theor. Appl. Climatol, 101(3-4), 311-327. 

Murphy, B.F., and Timbal, B. (2008). “A review of recent climate variability and climate 

change in southeastern Australia.” International Journal of Climatology, 28 (7), 859–879. 

Novotny, E.V, and Stefan, H.G. (2007).”Stream flow in Minnesota: Indicator of Climate 

Change.” Journal of Hydrology,  334, 319-333. 

Park, J-S., Kang, H-S., Lee, Y.S., and Kim, M-K. (2011). “Changes in the extreme daily 

rainfall in South Korea.” International Journal of Climatology, 31, 2290–2299. 

Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V. (1999). “Interdecadal 

modulation of the impact of ENSO on Australia.” Climate Dynamics, 15, 319–324. 

http://ogma.newcastle.edu.au:8080/vital/access/manager/Repository?exact=creator%3A%22Franks%2C+Stewart+W.%22


37 
 

Rosenberg, E.A., Keys, P.W., Booth, D.B., Hartley, D., Burkey, J., Steinemann, A.C., and 

Lettenmaier, D.P. (2010). “Precipitation extremes and the impacts of climate change on 

stormwater infrastructure in Washington State.” Climatic Change, 102 (1-2), 319-349. 

Salarpour, M., Yusop, Z., and Yusof, F. (2012). “Modeling the Distributions of Flood 

Characteristics for a Tropical River Basin.” Journal of Environmental Science and 

Technology, 5(6), 419-429. 

Salinger, M.J. (2005). “Climate variability and change: past, present and future – an 

overview.” Climatic Change, 70 (1-2), 9–29. 

Sen, A.K., and Niedzielski, T. (2010). “Statistical Characteristics of River flow Variability in 

the Odra River Basin, Southwestern Poland.” Polish Journal of Environmental Studies, 19, 2, 

387-397. 

Shahid, S. (2011). “Trends in extreme rainfall events of Bangladesh.” Theoretical Applied 

Climatology, 104, 489–499. 

Shang, H., Yan, J., Gebremichael, M., and Ayalew, S.M. (2011). “Trend analysis of extreme 

precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre Markos.” 

Hydrology and Earth System Sciences, 15, 1937–1944.  

Smith, I. (2004). “An assessment of recent trends in Australian rainfall.” Australian 

Meteorological Magazine, 53 (3), 163–173. 

Sugahara, S., da Rocha, R.P., and Silveira, R. (2009). “Non-stationary frequency analysis of 

extreme daily rainfall in Sao Paulo, Brazil.” International Journal of Climatology, 29 (9), 

1339-1349. 

Tayanc, M., Im, U., Dogruel, M., and Karaca, M. (2009). “Climate change in Turkey for the 

last half century.” Clim. Change. 94 (3-4), 483-502. 

http://link.springer.com/search?facet-author=%22Eric+A.+Rosenberg%22
http://link.springer.com/search?facet-author=%22Patrick+W.+Keys%22
http://link.springer.com/search?facet-author=%22Derek+B.+Booth%22
http://link.springer.com/search?facet-author=%22David+Hartley%22
http://link.springer.com/search?facet-author=%22Jeff+Burkey%22
http://link.springer.com/search?facet-author=%22Anne+C.+Steinemann%22
http://link.springer.com/search?facet-author=%22Dennis+P.+Lettenmaier%22


38 
 

Trenberth, K.E et al. (2007). “Observations: surface and atmospheric climate change”. In: S. 

Solomon et al., eds. Climate change 2007: The physical science basis. Contribution of 

Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change. Cambridge: Cambridge University Press. 

Tryhorn, L., and DeGaetano, A. (2011). “A comparison of techniques for downscaling 

extreme precipitation over the Northeastern United States.” International Journal of 

Climatology, 31 (13), 1975-1989. 

van Gelder, P.H.A.J.M., Wang, W., and Vrijling, J.K. (2007). “Statistical Estimation 

Methods for Extreme Hydrological Events.” Extreme Hydrological Events: New Concepts for 

Security, O.F. Vasiliev et al. (eds.), 199–252, Springer, Netherlands. 

Verdon, D. C., Wyatt, A. M., Kiem, A. S., and Franks, S. W. (2004). “Multi-decadal 

variability of rainfall and streamflow– Eastern Australia.” Water Resources Research, 40, 

W10201,doi:10210.11029/12004WR003234. 

Verdon-Kidd, D.C., and Kiem, A.S. (2009). “On the relationship between large-scale climate 

modes and regional synoptic patterns that drive Victorian rainfall.” Hydrology Earth System 

Sciences, 13, 467–479, doi:10.5194/hess-13-467-2009. 

von Storch, V.H. (1995). “Misuses of statistical analysis in climate research.” In: Analysis of 

Climate Variability: Applications of Statistical Techniques, H. von Storch and A. Navarra 

(eds.), Springer-Verlag, Berlin, pp. 11-26.  

Wang, W.,Van Gelder, P.H.A.J.M., and Vrijling, J.K. (2005). “Trend and Stationarity 

Analysis for Streamflow Processes of Rivers in Western Europe in the 20
th

 Century.” IWA 

International Conference on Water Economics, Statistics, and Finance, London, UK. 



39 
 

Wang, W., Vrijling, J.K., Van Gelder, P.H.A.J.M., and Ma, J. (2006). “Testing for 

nonlinearity of streamflow processes at different timescales.” Journal of Hydrology, 322 (1–

4), 247–268. 

Westra, S., Varley, I., Sharma, A., Hill, P., Jordan, P., Nathan, R. and Ladson, A. (2010). 

“Addressing Climatic Non-stationarity in the Assessment of Flood Risk.” Australian Journal 

of Water Resources, 14 (1), 1-16. 

Willems, P.,  Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Gregersen, I.B., 

Madsen, H. and Nguyen, V-T-V. (2012). “Impacts of Climate Change on Rainfall Extremes 

and Urban Drainage Systems.” IWA Publishing, London, UK, 238 pages. 

Yoo, S-H. (2007). “Urban Water Consumption and Regional Economic Growth: The Case of 

Taejeon, Korea.” Water Resources Management, 21, 1353–1361. 

Yue,S. Pilon, P., and Cavadias, G. (2002). “Power of the Mann Kendall and Spearman’s rho 

tests for detecting monotonic trends in hydrological series.” Journal of Hydrology, 259 (1-4), 

254-271. 

Yurekli, K., Modarres, R., and Ozturk, F. (2009). “Regional daily maximum rainfall 

estimation for Cekerek Watershed by L-moments.” Meteorological Applications, 16, 435–

444. 

 

http://www.sciencedirect.com/science/journal/00221694/322/1
http://www.sciencedirect.com/science/journal/00221694/322/1

