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This report arose from an article by Allison and Ude that appeared in the January 1991 edition of 

'Quality Australia'. My assessment of their article is that they have got it all wrong (I hasten to 

add, something that's happened to me on more than one occasion and perhaps even now!). 

Although the material in the report is flavoured to refute the substance of Allison and Ude's paper, 

it is none-the-less self contained. 

I'm indebted to Neil Diamond for his time, comment and reading of my script also to Peter Cerone 

and Len Armour for their interest and willingness to listen to my, at times, lengthy rhetoric on the 

material contained herein. 

The Validity of Sampling Theory ....... A Response. 

The article, The Validity of Sampling Theory' that appeared in 'Quality Australia' January 1991 

contains statements that are incorrect. Wrong inferences have been drawn from earlier work and 

comments made to point out supposed theoretical deficiencies. The material of this current article 

seeks to correct these errors. 

The substance of Allison and Ude's article, 'in a nut shell', is described by the following diagram 

Process 

Lot 

Remainder 

Figure I: Selection of samples from loc.s drawn from a process. 

It focuses on the reputed independence of the number of defectives found in a sample and the 

number of defectives found in the remainder. The proof of this independence has led to some bold 

assertions regarding the usefulness of sampling production 'lots'. 
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Although the bulk of the readership are not statisticians, since a statistical matter has been raised, it 

is necessary to deal with both the statistical and pragmatic issues in some detail. The typical 

practical situation is one of mass - production. A 'lot' is merely a sample produced by the process 

and invariably arises as a consequence of despatch quantities e.g. a 'lot' maybe a pallet of product 

or a standard truck load. The further sampling of 'lots' occurs in an attempt to re-assure the 

customer as to the quality of the product being consigned. This is a separate (but not independent) 

issue from the manufacturer wishing to sample the product produced by the process in order to 

monitor the proportion of defectives being made. He may know from past experience that a 

standard of say 3% defectives are produced and he wishes to have an early warning of a change in 

this proportion so that he may take appropriate action. These two situations are essentially 

examples of enumerative and analytic problems as defined by Deming in [1] (the terms themselves 

are not important but the types are). 

Perusing once again the diagram of figure 1, consider a single item produced by the process. 

Assuming that the process is in a stable mode of operation, then the assumed fixed proportion of 

defectives produced is merely the probability that this single item will be defective. Should we 

take, for example, four items directly from the process, each individual item has this same 

probability of being defective, which means that the probability of having a certain number 

defective in the four is given by the binomial distribution. 

A 'lot', as defined in figure l, is such a number of selected process individuals and therefore the 

number of defectives in it follows likewise a binomial distribution. It is as if the process-is a 

generator of items from an infinite source containing a fixed proportion of defectives. 

Taking a sample from a 'lot' however, is a different process - the 'lot' is of a clearly determined 

size. In considering samples from it we cannot assume that the 'lot' is a generator of items from an 

infinite source - it is clearly finite. The 'lot' contains a fixed number of defectives (whether we 

know this number or not). If we consider the items constituting the sample selected from the 'lot' 

one at a time, the probability of getting a defective at any selection is changing depending on the 

outcome of previous selections. The appropriate method for ascertaining the probability of the 

number of defectives in the sample is to use the so-called hypergeometric distribution which is 

pointedly dependent on the number of defectives in the 'lot'. The calculation consists of taking the 

ratio of the total number of different ways samples can be taken from the 1ot' of specified size 

having the specified number of defectives, to the total number of ways the samples of specified size 

can be taken from the 'lot'. The essential difference in a 'lot' and a 'sample', as defined in figure 

1, is that a 'lot' is a sample from an infinite population and a 'sample' is a sample from a finite 

population. 
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Returnin g to the two issues of process monitoring, as opposed to assessing the quality of 'lots', if 

process monitoring was the sole aim then 'lots' would not be sampled but examined in total as 

direct measures of process performance, and a conventional 'p' chart plotted (lot sizes would be 

chosen to satisfy the usual criteria). This is shown later. 

The situation shown in figure 1 is, therefore, assumed to be a regime for assessing the quality of 

'lots' (the issue of being able to use the information obtained to also monitor the process is dealt 

with later). Let's now examine the mathematics discussed by Allison and Ude in their appendix 1 

using the same notation. As the authors point out, the fundamental definition of independence is 

that the joint probability of two events is the product of their unconditional probabilities. A 

definition of independence which is equivalent to this but which has much more intuitive appeal, is 

to say that two events are independent if the probability of one given that the other has occurred is 

the same as the probability of the one occurring irrespective of the others' occurrence. 

i.e. for events A and B 

if P (A!B) = P(A) and P(B/A) = P(B) then A and B are independent. 

Taking N and n to be 'lot' and 'sample' sizes respectively and X and r to be the corresponding 

number of defectives actually in each, it follows that r ~ X. This fact must 'flavour' the 

calculation of p(r), the probability that the sample (taken from a finite source) contains exactly r 

defectives. 

Elementary probability theory shows that:­
N 

p (r) = L p (r/X) p (X) 
X =r 

Because the N, constituting the 'lot', are selected from an infinite source, p(X) follows a binomial 

distribution. Because the r defectives in the sample are drawn from the finite number of defectives 

in the 'lot', X, p(r/X) follows the hypergeometric distribution and is equal to: 

(~) (~~~) 
(:) 

and by necessity, 

r ~ X and n - r ~ N - X. 

This latter expression can be written alternatively (see Allison and Ude) as: 

(~) (~~~) 
(~) 
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= In ( :)(~ ~:) (~) pXqN-X 

x" (~) 

= (~) (qtNI:l~~;)(tf 
X=r 

= (;) (q)N ( N ~ n) ( t)' + ( N;n) ( {jr+l 

+ ......... (~: :) ( *rN-n 
n r N-r N-n N-n p N - n p 

( ) [( ) ( ) ( ) ( )
N-n] 

= · r P (q) 0 + 1 q + .......... + N-n · q 

= (;) p' qN-r ( 1 + ~r 
= (;) p' qn-r 

which is ·binomial in form and is identical to the probability of the same, had the sample been taken 

directly from the process. This shows that there is no advantage, if our sole aim is to monitor p, to 

take lots and sample these; we may as well sample directly from the process. As the derivation 

shows however, this is indeed pertinent to the 'sample' coming from a 'lot', contrary to the 

comment made by Allison and Ude in the appendix to their article that this expression relates just to 

a sample taken from a process not from a 'lot'. The two probabilities just happen to be the same. 

Their further comment on the validity of p(X-r) is therefore, also invalid. 

Now p [ X "r] = P(X/r]. P[ r] = p [ r!X]. p [x] 

:. P(X!r] = I{ r/X] . p [ X] 
p[r] 
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:. P(X/r] 
(;) (~~;) 

= x 

(~) 

_ (N -n) 
- X-r 

X-r N-X-n+r 
p q ___ (*) 

X=r,r+l, ..... N-n+r 

which is also of binomial form. 

p[X!r] *P[x] 

this implies a dependency of X on r i.e. the number of defectives in the 'lot' is DEPENDENT on 

the number of defectives in the sample. The theory presented in Appendix 1 of Allison and Ude is 

in fact correct, contrary to their remarks; Mood's paper [2] is quite clear in this regard. It is thus 

fact, as the previous result shows, that the number of defectives in the sample and in the remainder 

are uncorrelated, yet there is a positive correlation between the number of defectives in the 'sample' 

and the number of defectives in the 'lot'! This at first seems strange since the 'lot' consists of a 

sum total of the sample and the remainder. Strange it may seem but fact it is and it is this subtlety 

that the authors' have missed. The fact that the sum total includes the known number of defectives 

in the sample induces this correlation. The conclusion that Allison and Ude make, that if the 

number of defectives in the sample and in the remainder are independent then this implies that the 

sample contains no information about the lot, is fallacious. Clearly the dependency of X on r 

implies that p(X/r) is a means of making inferences about X from knowledge of r. 

It can easily be shown that 

E [X/r] = (N - n) p + r , 

V [X/r] = (N - n) pq , 

and that the correlation between rand Xis ft · Without sampling the lot, the number of 

defectives contained in it can be estimated using the distribution p (X) = ( ~) p qN-X' 

the variance being Npq. 
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The proportional decrease in estimation variance, induced by adopting a routine of sampling the 

Npq - (N - n) pq n 
lots, can be seen to be = - which is the square of the correlation or the 

Npq N 

ratio of the sample size to the batch size. 

Mood [2] concludes correctly that the independence of rand X-r makes nonsense of the practice of 

sampling and inspecting the remainder on the basis of the number of defectives found in the 

sample. Nowhere does he conclude that sample information tells nothing about the 'lot'. Deming 

[3] similarly addresses the issue of justification for further inspection of the remainder on the 

strength of sample findings. 

The distribution of X given r shown in (*) is appropriate for use if we wish to have a basis for 

discussion of the quality of the whole 'lot'. It should be noted that it is a function of (X - r) which 

is the number of defectives in the remainder. 

Allison and Ude point out that the customer purchases 'lots' not remainders. It is because of this 

that the above distribution is pertinent. Calculations of course need to allow for the replacement of 

any defectives found in the sample. It is assumed that this would be normal practice. In 

considering replacement when sampling preceding despatch detects defectives, there are three 

obvious procedures:-

(i) The defectives are not replaced but are included when the 'sample' is returned to 

the 'lot'. 

(ii) The defectives are replaced by others (untested) from the process before returning 

the 'sample' to the 'lot'. 

(iii) The defectives are replaced by non-defective (tested) items from the process before 

returning the 'sample' to the 'lot'. 

Following procedure (i), although an unlikely practical occurrence, the situation after sampling is 

the same as before. Following (iii) implies additional sampling and testing, the end result being 

that the number of defectives in the 'lot' is reduced by the number found in the 'sample' once 

sampling and replacement are complete. Under such circumstances the number of defectives in the 

'lot' following sampling and replacement is merely the number of defectives in the remainder (that 

part of the 'lot' not tested). As has been seen this number is independent of the number of 

defectives orginally found in the 'sample' and is thus no basis for inference. Hence if procedure 

(iii) is adopted, although the same sample information is available as for (i) and (ii) the replacement 

strategy adopted renders the original sample information ineffective as a basis for inference of the 

number of defectives in the 'lot'. As previously pointed out, the procedure itself implies additional 

sampling which destroys the original sampling strategy as the sole basis for inference. The most 

likely strategy to adopt would be (ii). At the conclusion of sampling and replacement the inferential 

probabilities would be 
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P[Lot contains X defectives/original sample contains r defectives] 

= ! p (X+r-s/r) ( :) p'q,_, 
s=O 

= x N-n-X+r ~(N -n) (r) 
P q L..J X-s s 

s==O 

Should it be required to monitor the stability of the process with respect top then 

since p (r) = ( ~) p' q._, is binomial, a standard p or np chart could be plotted based on the 

number of defectives found in samples which, it has been shown, could be taken directly from the 

process. 

The illustration given on page 12 of Allison and Ude's article when Xis known shows numerically 

the dependency of the number of defectives in the sample on the number of defectives in the 

remainder. This, however, does not relate to the issue raised in their paper, since in practice, as 

they point out, X is unknown. 

When X is known the situation is different because 

Clearly, under such circumstances 

and the dependency that the authors illustrate numerically is seen to be theoretically correct 

( p [ (r n X-r)/X] "# p [ r/X] . p [X-r!XJ) . 

The issue, however, is nQt the dependency of the number of defectives in the sample and the 

number of defectives in the remainder when X is known, it is their independence when 

X is unknown. 
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Mood' s result is correct and it in no-way confronts or seeks to discredit standard sampling theory. 

What it does do is say that for an in control process an acceptance sampling procedure that tests lot 

remainders on the basis of the number of defectives found in the sample, is unsound. The sample 

findings already contain information that can be used directly to assess the quality of the lot. 
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