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Abstract 

The main problem addressed in this article is the determination of an inspection 

interval T max' given the number of inspections m -1, which will result in the maximum 

reliability at some future point in time t = t * . The reliability model developed by Christer 

is used in which the notion of delay time is involved, representing the start to eventual 

failure of an item subject to a fault detectable on inspection. A numerical procedure is used 

to solve the model for general delay time density f(h) and time to failure from new density 

g(y). 

T max is shown to migrate towards the left hand side of the interv~ [. i_ . .i_] as 
, m m-1 

the number of inspections increase. If both densities are exponential then the optimal 

• 
. . . al' h beT t mspectton mterv 1s s own to max =iii. 
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1. INfRODUCTION 

Christer (1987) developed an expression for the reliability of a single component 

unit which is subject to a detectable fault. He utilises the notion of delay time which is the 

span of time from when a defect is first detectable upon inspection to when it is considered 

to have failed. If a defect is found at an inspection then the component is replaced or 

repaired to an as new condition and thus avoiding a failure. Inspections are assumed to be 

non-detrimental. The delay time h is governed by the probability density function f(h). 

The probability that a new component at time t = 0 has not failed by time t as a result of a 

defect at time y from new is subject to a probability density function g (y) . Both 

densities have been obtained experimentally and applied successfully by Christer and 

Waller (1984 a, b). 

The reliability RT (t) due to a periodic inspection every T time units is derived by 

Christer (1987) to be 

where, 

R,-(t) = r~m)(t) (m-1) TS t S mT 

m-1 

r~m)(t) = L ~(T) r~m-J) (t-jT) + BT(t) 
j=l 

(1) 



with, 

and M(x) = 
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Jl 

l)(T) = J g(y)M(jT-y)dy, 

(j-1 )T 

00 t 

BT(t) = J g(y)dy + J g(y)M(t-y)dy 

l (m-l)T 

00 

J f(h)dh= 1-F(x). 

x 

(2) 

It should be noted that m is a positive integer and throughout the paper the 

convention is used that when m = 1 the sum in equation (1), and similar expressions, is 

zero. 

The main problem to be addressed here is to determine, for fixed number of 

inspections m-1, the optimal inspection interval, T that will result in the maximum 

reliability at some future point in time t = t *. The type of problem envisaged is that of a 

mission starting at t = t* until which time the item may be inspected for a fault. 

Alternatively we may investigate the optimal inspection interval for a deteriorating item 

whose time of commencement of a mission has been delayed. 

2. 1HE CONVERSE PROBLEM 

Let us assume that it is advantageous for a deteriorating item to be as reliable as 

possible at some future point in time t = t *. We can inspect the item at periodic intervals of 

length T and the item is either renewed or repaired to an as good as new condition. The 

problem we wish to address here is to find the optimal inspection interval T max given a 

desired number of inspections m - 1. 
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Thus given t = t • in (1) we obtain 
m-1 • • 

=L 
j=l 

(m-j) • • • t t 
x:J.(f) rT (t - JT) + BT (t ) , - ST S -

1 m m-
(3) 

where x:j (T) and BT (t*) are as given in (2). 

The problem becomes that of finding for each number of inspections m-1, the optimal 

inspection interval, Tover the domain indicated in equation (3). We notice that as m 
• 

t 
increases then T will decrease since the interval of search is of length 

m (m-1) 

and the bounds on Twill become tighter. 

dr.(m)(i*) 
One way of obtaining the optimal inspection interval T would be to find TdT 

and determine where it becomes zero. Further investigation would be needed 

to be performed to determine whether this was indeed the point at which the global 
• • 

. t T t ed maximum over - S < -
1 

occurr . 
m m-

It is much easier and more practical to either evaluate r~>(i*) over the interval 

[ ~ · ~:.] or else use some interval bisection or refinement of mesh to find the 

maximum. It is felt that the most practical method would be to actually plot equation (3) 

and thus allowing the user the convenience of deciding on a suitable value ofT since there 

may be some flexibility if the reliability does not vary greatly about the maximum. 
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3. A SWPLE EXAMPLE 

It is instructive to consider a simple example of the problem. Let us examine the 

problem shown in the diagram of Figure 1. We wish to perform only one inspection so 

that we need to choose when this inspection is to occur given that the maximum reliability 

at t = t * is desired. 

From the diagram of Figure 1 it may be noticed that the earliest possible time the 
• 

inspection can be made is at T = ~ in which case another inspection is due at our time of 

interest t *. The latest the inspection can be made is at our point of interest T = t * resulting 

in no benefit Since the inspections are assumed to be benign and perfect it follows that 

r<;> (r*) > r<?> (i*) = r~~) (i*). Thus having one inspection is better than having none. 
t t -2 

We wish to find when the optimal inspection should occur. 

Consider equation (3) with m = 2 to give 
• 

r¥> (i*) = 1'i(1)r~> (i* -T) + BT(t•), ;. S T St. (4) 

Thus the problem becomes that of determining T such that r~> (i*) is a maximum. 

For definitiness we take the densities used by Christer (1987) with the delay time density 

f(h) = ae ·ah and g(y) as uniformly distributed on [0, 10]. 

From equations (1) - (3) we obtain 

-aT 
10 a Ki (T) = 1 - e 

• • • -a (t -T) • 
10 a BT (t ) = (10 - t ) a.+ 1 - e , t S 10 

0 
(1) -au 

1 ex rT (u) = (10 - u)cx + 1 - e 



1 

' ' I 
.I 

' 
' ' 

T * t 2T t 

Figure 1: Diagram showing R,-(t) for 0 St S 2T and the location oft• allowing for 

only one inspection. 
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so that equation ( 4) becomes 

• 
2 (2) • . - aT aT t • 

(lOcx) rT (t ) = A+ ex T - (b + ex T) e -Be , °2 ST St S 10 (5) 

where 

and 

• a= lOcx + 1 , b = a - ext 

• • 
- at ..at 

A = ab + e , B = ae . 

If we let y = (10cx)2 r~) ct> then we obtain from equation (5) 

1 dY -aT aT 
- dT = 1 + (b + cxT-1 )e - Be . 
ex 

Further, a maximum exists since 

• 
over the interval of interest namely, ~ s Ts t S 10. 

• 

(6) 

Consider specifically the situation when ex = 0.5 and t = 8 then, 4 S T S 8 

and, from (5) - (6), 

= To { 1 - 6e-4e T/2 + (1 + T/2)e -T/2}. 

The critical point is given by the intersection of the curves 
-4 T/2 -T/2 y1(T) = 6e e -landy2 (T)=(l+T/2)e for4STS8. (7) 

The diagram in Figure 2 shows a sketch of these curves and their intersection gives 

Tmax which is obtained by some root finding procedure as Tmax = 4.896. 

file:///l-6ee


0.5 

3e-2 

4 6 

= 4.896 

* t = 8 T 

Figure 2: Diagram showing y1 (T) and y2 (T) as given by equation (7). The location 

of T max is obtained at the intersection. 
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Substitution of T max= 4.896 into equation (5) gives (with ex =0.5) the maximum possible 

reliability at t* = 8 , given that only one inspection is performed, as ri
2
> (8) = 0.5124. 

max 

Similarly, r.T<
2
> (10) = 0.327 where T = 6.637 and we notice that the reliability is 
~x mu 

lower since it relates to a later time oft*= 10. 

4. NUMERICAL SOLUTION OF rr>(t) 

Before proceeding to the solution of the converse problem as represented by equation (3) 

we investigate the numerical solution of equation (1) for general densities f (h) and g (y). 

Christer (1987] solved equation (1) for f (h) = cxe-cxh and g (y) uniform on (0,10]. 

We may notice from equation (1) that the evaluation ofr~m)(t) at t = (m - 1 + A.)T where 

0 SA. s 1 requires all previous r~)(t) fork= (m-1), (m-2), ... , 1 as can be seen from 

m-1 

r¥11) ( (m-l+A.)T) = :2, Kj(T) r~m-j) ( (m-j-l+A.)T) +BT ( (m-l+A.)T), 0 SA.~ 1. (8) 
j=l 

The ri\t) should be evaluated in the order k = 1, 2, ... , (m-1) since successive terms 

depend on all previous tenns. It should further be noted that A = 0 represents the 

evaluation at the left of an inspection interval and A. = 1 corresponds to the right. 

The expression for BT ((m-1 + A ) 1) needed in (8) and given in (2) 

may be written in the following form: 

m-1 

BT ( (m-l+A.)T) = 1- :2, 
j=l 

JT (m-l+A)T 

f g(y)dy- f g(y)F ( (m-l+A.)T-y)dy. 

(j-l)T (m-l)T 

(9) 
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Thus the numerical evaluation of (8) with (9) involves the evaluation of integrals over an 

interval of at most of length T. This gives the ability to control the accuracy of integration. 

It may further be observed that A. = 0 corresponding to the evaluation on the left hand side of an 

inspection interval, eliminates the second integral tenn in (9) and simplifies the working. This 

fact allows for a fast determination of the behaviour of the reliability by evaluation at an 

inspection point 

Figures 3, 4 and 5 show the numerical solution of r~m)(t) for 0 St S 20 with T = 10, 5 

and 2.5 using a variety of densities as indicated in the captions. Equispaced points with 

A.= 0.5 were taken to produce the.figures however a variable A. to take into account the 

behaviour of r~m)(t) could possibly be used. 

Figure 3 uses the densities f (h) =a e -ah, a= 0.5 and g(y) is uniform on [0,10] for 

which a closed form expression was obtained by Christer [1987] which has enabled a 

comparison with the numerical procedure. 

The behaviourofr~\t) for (m-l)T St S mT shown in Figures 3-5 may be expected intuitively. 

The monotonic behaviour may also be shown from the differentiation of equation (1) to 

obtain 
m-1 

r~m)(t) = L ~(T) r~M·J\t-jT) - b,-(t) ' (m-1) St S mT, (10) 
j=l 

where 
t 

b.r(t) = - BT (t) = J g(y) f (t-y) dy . 
(m-l)T 
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Figure 3: The figure shows RT (t), as defined in equations (1) - (2), for 0 St S 20 

and T = 10 (- -), T =5 (- - -) and T = 2.5 ( _ ). The densities are 

f(h) = 0.5e-0.5 hand g (y) is uniform on [0, 10]. 
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Figure 4: The figure shows RT (t) for 0 St S 20 and T = 10 ( - - ), T = 5 (- - -) and 

1 1. 
3 - 2 

T = 2.5 ( __ ) . The densities are f(h) = '2 h 2 e - h and g(y) is uniform on [O, 10] . 
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Fieure 5. The graphs depict R,-(t) for _Ost s 20 and T = 10 ( - - ), T = 5 (- - -) and 

T = 2.5 ( __ ). The densities are f(h) = 0.5 e • O.Sh and 

g(y) = 0.25e..0.2Sh. 
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We may deduce from equation (10) that r~m)(t) is a continuous monotonically 

decreasing function oft with a zero right hand slope at t = (m-1) T with possible discontinuities 

of derivatives at multiples of T. 

We may notice that the graphs in Figure 4 decrease at a faster rate than those in Figure 3 

since it takes on average shorter delay time for a fault to become serious enough for action 

to be taken on the unit. The delay time density f(h) in Figure 4 is Weibull with the shape 

parameter~= 1.5 and the characteristic life T\ = 1.0 rather that f (h) = 0.5e· 0.5h used to 

produce Figure 3. Further, the graphs is Figure 5 also decrease at a faster rate than those in 

Figure 3 where the delay time density is the same but g(y) = 0.25e -0.25y rather than uniform on 

[0, 10] so that failures are occuring more frequently on average. 

5. SOLUTION OF THE GENERAL CONVERSE PROBLEM 

Returning now to the solution of equation (3) we note that in order to evaluate 
• • 

(m) • t t 
rT (t ) for 'iii .s T < m-l we need r~k) (t • - (m - k)T) 

fork= l, 2, ..... , m-1. 

Thus we may use the procedure outlined in the previous section to evaluate. 

r~l (t) = ~ 1) (T) r~·J) (t - jT) + B,-(t) (11) 
j=l 

• . • (m) • 
at t = t - (m-k)T for k = 1,2, ..... m to give rT (t ). 

Here in equation (11 ), ~(T) and BT(t) are given by equation (2). 
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Figure 6 - 8 are based on the exponential delay time density f(h) = cxe-<Xh, ex= 0.5 and 

g (y) is uniform on [0, 10]. The three figures show the reliability at t• = 8, 10, 12 

respectively with varying inspection interval T for one inspection (A) through to four inspections 

(D). The possible range of T clearly depends upon t• and m. In each of the sections of the 

graphs A-D we notice that there is a point T max• depending on the number of inspections, which 

results in the maximum reliability at= t•. 

There are a number of observations that can be made from Figures 6-8. We may notice 

the effect of the uniform density on [0, 10] coming through in Figure 8 in which a defect 

exisiting in an original component will lead to a renewal if it has not caused a component failure. 

This effect does not manifest itself in either Figure 6 or 7 since t• < 10. 

Further, it is interesting to note that the inspection pericxl Tmax occurs closer to the left of the 

interval [ i_, i__] the smaller t• is. We may also observe that T migrates towards 
m ~1 mu 

• 
the left hand side of the interval of interest, namely towards ~ , which increasing m. 

m 

This observation begs the question as to how many inspections are needed prior to 

4.m) ct> being as close as we wish to r<r:> ci*>. 
max t 

m 

We use two measures Lm and ~ to demonstrate the approach of T max towards 

• t 
Lm shows the relative difference between these values and Rm shows -· m 

• the relative effect on the reliability at t=t if the inspection period was taken 
• t 

as - rather than T . m mu 
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and g(y) is uniform on [0,10]. 
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m-1 = 1 (A), 2(B), 3(C), 4(0) inspections where f(h) = ae -ah , ex = 0.5 

and g(y) is uniform on [0, 10]. . 
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m-1 = 1 (A), 2(B), 3(C), 4(0) inspections where f(h) = a = 0.5 and 

g(y) is uniform on [0, 10]. 
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Table 1 shows Lm the ratio of the distance between Tmax and t*/m to the total 

length of the interval of observation D viz m 

• 
Tmax 

t 

m 
L = m D 

m 

• 
where 

t 

m(m-1) · 

The table also shows 

~ = m 

• demonstrating that the maximum reliability at t = t very quickly approaches from 
• 

the right T = ~ the smaller t is and the greater the number of inspections m-1. 
m 

(12) 

(13) 

Dete~g the value ofTmax is more crucial the larger t• and the fewer number 

of inspections required. 

It is interesting to observe the effect of inspections on r~m> ct) from Table 1 
mu 

fort*= 8, 10 and 12. These may be compared with the reliability values of 0.3963, 0.1986 

and 0.0731 respectively when no inspection takes place. These values correspond to the 

rightmost points in Figure 6,7 and 8 respectively. 



• 
t m 

8 2 

3 

4 

5 

10 2 

3 

4 

5 

12 2 

3 

4 

5 

Table 1: 
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• 
t 

r.(m) (t•) r(~) ct) T - L R max m m Tmu m t -m 

4.8960 4 0.224 0.5124 0.5066 0.011 
2.9397 2.66° 0.051 0.5902 0.5865 0.006 
2.1344 2 0.022 0.6476 0.6450 0.004 
1.6640 1.6 0.010 0.6912 0.6894 0.003 

6.6368 5 0.327 0.3221 0.3091 0.0404 

3.7973 3.33. 0.070 0.4072 0.3989 0.0204 

2.7133 2.5 0.028 0.4757 0.4699 0.0122 

2.1280 2 0.016 0.5309 0.5266 0.0081 

8.5056 6 0.418 0.1995 0.1757 0.119 

4.6880 4 0.086 0.2834 0.2678 0.055 

3.3507 3 0.037 0.3588 0.3457 0.036 

2.5098 2.4 0.011 0.4199 0.4113 0.020 

• 
The table shows the approach of T . towards !_ for increasing number of 

max m 

inspection (m-1) as signified by Lm • Rm shows the approach of the 

• 
reliability at T towards that at !_ . L and R are as defined in equations 

max m m m 

(12) and (13) respectively. The densities are f(h) = ae-Oh, a= 0.5 

and g(y) is uniform on [0, 10]. 
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It may further be observed from Figures 6 on, that: 

(i) 

• • 
(ii) (m) • (m) • t t 

rT ( t ) = r..:.. ( t ) for some - ~ T1, T2, ~ - , 
i -r2 m m-1 

• • 
(iii) r(m: ct) < r~m) (t.) for some .!_. 

t m 
t 

<T< 
m-1 ' -m-1 

• • 
(iv) r;m+l\t•) ~ r.T(m) (t•) for some B > 0, !._ - 5 S 't S !._ 

- m m m m 

The first observation states that if the best possible inspection period is chosen then 

increasing the number of inspections improves the reliability. Increasing the number of 

inspections in itself, is not reasonably enough to guarantee an improvement in the 

reliability as demonstrated by obervation (iv). Point (ii) follows immediately from the fact 

that since there is an optimal impection interval Tmax then there are points T1 and T2 with 

which the reliability at t * is equal. This point only holds provided T max does not occur at 

an end point. (It will be shown subsequently that this situation arises when both densities 

are exponential). Observation (iii) results from the fact that the last inspection is made at 

the time of interest t•. It represents the worst case situation. 
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We now return to looking at the converse problem corresponding to the densities 

used to produce Figures 4 and 5. The future point of interest t• = 10 is used to produce 

Figure 9 demonstrating when compared with Figure 7, the effect of a change to a Weibull 

delay time density which has a shortening of the average delay time when compared to the 

exponential density with ex=0.5. The optimal inspection intervals Tmax are further to the right in 

[ f . ~:1] . 
• 

Figure 10 shows the graph of r~m) (t) for t 
m 

• t • 
S T S -

1 
with t =10 

m-

and m = 2, 3, 4, 5 where both densities are exponential. We notice that the optimal 

inspection interval occurs at the left hand limit, namely 
• 

t 
(14) -- . m 

That is, the maximum reliability is obtained if we choose T in such a way that an 

inspection is due at our point of interest t = t• but is not carried out. This is due to the 

memoryless property of the exponential. 

It is interesting to demonstrate equation (14) analytically when the densities are both 

exponential. This is done in the Appendix. 
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6. CONCLUSION 

The paper has addressed the problem of detenning the optimal regular inspection 

period for maximum reliability at some future point in time for a given number of 

inspections. The general reliability model developed by Christer, which includes the 

notion of delay time, has been solved in principle for any two densities of delay time and 

time to failure from new. The numerical method used has been further developed to allow 

a solution of the converse problem stated above and the approach of Tmax towards t• /m for 

increasing number of inspections m-1 has been demonstrated. 

The work may be developed to take into account the use of cost models giving a 

trade-off between cost of mission failure and inspection cost. Such a cost model may be to 

determine m • and ~ such that 

K • • 
m ,T 

min = K m, T m,T 

with c being the inspection cost and C the cost of mission failure. 

(15) 

Equation (15) may be written in a slightly different form from which a number of 

observations may be made easily. 

Viz, 

(16) 
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Firstly, we note that (m-l)c < C so that the cost of m-1 inspections is less than the 

cost of mission failure making the term in the square brackets negative. This observation 

gives us a bound on the number of inspections and so 

m-1=I,2, ·····{;]. (17) 

with [ ; ] meaning the smallest integer part of ; . 

A second observation which may be made is that since the term in square brackets in 

equation (16) is negative, then for fixed m we have that ~Tis minimal 

(m) • • • • (m) • • 
where rT (t ) 1s maximal. That 1s at r.T (t ) so that T = T . 

mu max 

A search through m as given by equation ( 17) into equation (16) with T = T* = 

T max will give m •. T max does of course change with m even though it is not explicity 

shown. 

Thus the problem of solving (15) becomes that of finding m • in 

~ { c+[Cm-l)c-C] r~':<t'>}, m=2,3, ..... [~] +I. (18) 

As a simple example consider the problem with t• =12, c =1 and C = 3.5 then, using 

the data in Table 1, m• = 2 and T* (corresponding to m=2) = 8.5056. H C=4.5 then, 

m*=3 and~= 4.6880. 
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APPENQIX: The Double Exponential Problem 

• 
We wish to show that r~m) (t) is maximal when T =-in if both densities are exponential. 

Suppose the delay time density to be f(h) = ae -Oh and the time to the appearance 

of a fault from new to be governed by g(y) = ~e ·PY then, from (1), (2) 

with 

and 

B ( ) _ 1 [ -p t A. - a t (a-P) (m-l)T] 
T t - - cx.e - ..,e • e . 

cx.-f3 
. 1 

1C(1) = lCBJ­
J 

1C = 1C (T) = _JL (B-A] 
1 cx.-f3 
-aT -~T A=e , B=e . 

Now from (3) and (Al) we obtain 

• 
( 1) 

R .. -at (a-~) (m-l)T 
- m- I-"" e , 

• • 
t t 
-ST S­
m m-1 

where u = t* - jT. 
• 

T 
t . 

Evaluation of (A2) at = - gtves 
m 

dr~) ct> - ~ [lC·. (T) tT(m-j) ({m-j) ~)) - j lC. (T) f.T(m-J) ((m-j) {__)]. 
dT £.J J m J m . 

j=l 

R m-1 - (m-1) .., a B 

(Al) 

(A2) 

(A3) 



-18-

ex B - AA where a = ___ ..,_ 
ex-~ 

' j-1 • 
Kj (T) = ~ B [A - J x:) 

• 
and A, B and Kare given in (Al) with T = !.. . 

m 

We now notice that to evaluate (A3) we need 

• • 
r<!) ( k !__) and r~) ( k !__) for k = 1,2, .... , m-l. 

t m t m 
m m 

• 

(A4) 

To this end putting T = ~ in equation (3) and using (Al) we obtain the recurrence 
m 

relation 

• 

Bj-l u . + a Bm-l 
m-J 

where u = r<r:> (m.!._) = r(~) (t•). 
m t m t 

m m 

Equation (A5) can be shown to have a solution given by 
m 

u = a m 

with a= K + B from (Al) and (A4). 

(A5) 

(A6) 

Further, differentiating equation (1) with respect tot, using equation (Al) and putting 

• t • . 
T = - and t=t weobtam 

m 

m-1 
v = 1' ~ Bj-l v . - ex KBm-l 

m ~ m-J 
j=l 



which has solution 

m-1 v = - ex Ka m 

• 
with v = r (~) ( m. ~) = r(~) (t.) . 

m t m t 

m m 
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(A7) 

Substitution of (A4), (A6) and (A7) into equation (A3) gives after some algebra 

__..!._ (t > = J3A L Bj-l am-j-l [a - j (a-B)] - (m-1) Bm-l 
dr.(m) • { m-1 } 

dT j=l 

-o - . 
dr.(m) • • 

Thus __..!._ (t > = O when T = ~ and so is a critical point. It remains to show 
dT m 

that it is maximal. To this end, we need to show that 

r<~> ct> > r<m} ct>. 
t t 

m m-1 

Now, from (A6) and using (Al) and (A4) we obtain 

(m) • m r. (t) = a = 
t 

m 
ex- J3 

(A8) 

(A9) 
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• 
Frth . . t 

u er, usmg equation (3) and (Al) with T = - results in 
m-1 

satisfying 

which has solution 

w = r(m) 
m • 

t -m-1 

m-1 

Wm= 1C L 
j=l 

• . t 
((m-1). -) 

m-1 

B
j-1 Bm-1 w.+ 

m-J 

m-1 w =a m 

• 
t• t 

-a- -~-
with a given by (A4) and A = e m-l , B = e m-l 

Thus, 

(m) 
r • 

t 

m-1 

• (t) = 
cx-(3 

(AlO) 

The inequality given by (A8) can be shown to hold since from equation (A9) and (AlO) we 
• • 

have with D = e -p t and C = e -at 

1 1 - -
cxD m - f3 Cm 

1 1 - -a 0 m-1 _ f3 Cm-1 

1 1 -

• 
t 

Hence the maximum occurs when T = - if both densities are exponential. 
m 



-21-

REFERENCES 

Birolini, A., (1985), "On the Use of Stochastic Processes in Modelling Reliability 

Problems", Springer - Verlag. 

Christer, A.H., (1987) "Delay Time Model of Reliability of Equipment Subject to 

lmspection Monitoring", J. Opl. Res. Soc. 33, 723 - 732. 

Christer, A.H., and Waller, W.M., (1984a) "Reducing Production Downtime Using 

Delay Time Analysis" J. Op/. Res. Soc. 35, 6, 499 - 512. 

Christer, A.H., and Waller, W.M., (1984b), "An O.R. Approach to Planned Maintenance: 

Modelling P.M.for a Vehicle Fleet", J. Opl. Res. Soc. 35, 10, 967 - 984. 




