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Lutfar R. Khan and Robert H. Hinterding 

Department of Computer and Mathematical Sciences 
Victoria University of Technology 

PO Box 14428 MMC, Melbourne 3000 
Australia 

ABSTRACT. In cutting stock problems, it is generally preferred that once a particular item size 
is produced, it should be present in all subsequent production runs until the demand is met. 
Ideally one can produce a perfectly contiguous schedule, but it will lead to unacceptable trim­
loss. It is difficult to handle the requirements of contiguity and other secondary objectives in 
mathematical programming frameworks. We show that genetic algorithms can successfully be 
used for these sort of problems and we report encouraging results. 

1. Introduction 

The cutting stock problem (CSP) is defined as: 

Minimise = L w1xj 
jeJ 

(1) 

subject to Lai1Xi = M for i = 1,2, .. ,n (2) 
jeJ 

Xj ~ 0,integer for) EJ (3) 

where, n = number of orders. 
w j = trim per run of pattern j. 
aij =number of pieces of item i in pattern}. 
xj = number of runs of pattern}. 
Ni= number of pieces of item i. 

If there is only one stock length L, and /i is the length of order i, then 
n 

L = Laili+Wi, for all} EJ 
i=I 

Then CSP can be written as: 

MinX= Lxj 
jeJ 

subject to (2) and (3). 

(4) 

The cutting stock problem is one of the first decision problems of Operations Research 
modelled in a mathematical programming framework. This model and its variants have 
been widely used in the paper industry; paper is produced in standard lengths and then cut 
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into appropriate sizes to meet customers' demands. Other application areas include steel 
mills and cable industries. When the items to be produced vary in one dimension (length), 
the problem is called I-dimensional CSP. Item sizes specified in two or more dimensions 
have similarly been modelled. If there is more than one stock length from which the orders 
are cut, the problem is called multiple stock length CSP. A general description and 
classification of cutting problems is given in Dyckhoff (1990). 

The pioneering work in solving a CSP was by Gilmore and Gomory (1963). They used a 
linear programming model; the integrality constraints were relaxed initially to x_;;;:::: 0, and 
the LP solution was obtained by a clever method of pattern (column) generation. To obtain 
an integer solution from the LP solution, usually simple rounding is used, although other 
techniques have also been suggested (e.g., Johnston, 1986). Recent work on the LP 
approaches indicate that most instances of CSP have the integer round-up property 
(Marcotte, 1985), that is, an integer solution is available for the rounded objective function 
value ( X ) of continuous LP. Although the continuous LP solution is often not 
implementable before being converted to an integer solution, the lower bound it provides 
for the integer solution facilitates the finding of an optimal integer solution. Recent results 
(Gau, 1995, private communication) provide optimal integer solutions. These were 
obtained through a decomposition heuristic (Wascher and Gau, 1993 ), and for numerous 
test problems from the literature all instances with rare exceptions have the integer round­
up property. It may be claimed that the solution procedure for a standard one-dimensional 
cutting stock problem of minimising trim loss has already been made efficient in a linear 
programming framework. 

When additional constraints like a limit on the maximum number of items in a pattern 
and/or a limit on the maximum number of distinct patterns (Haessler, 1971, 1975), range 
of demand instead of an exact demand and associated question of absolute and percentage 
trims (Johnston, 1986, Goulimis, 1990), localisation of the total trim in a few patterns 
(Roodman, 1986), maximisation of trim in the last pattern for subsequent reuse (Sinuany­
Stern and Weiner, 1994), are imposed on the CSP, the standard column generation 
procedure and consequent optimisation for integer solution may require substantial 
modifications. Approaches suggested in the literature include: repeated use of linear 
programming at various phases of the algorithm, branch and bound and cutting plane 
methods of integer programming, and heuristic generation and combination of patterns. 

Once the patterns have been identified, the question of sequencing them for actual 
production is important not only to keep the required number of pattern changes low, but 
also to provide a relatively contiguous production plan so that the number of part-finished 
sizes is relatively small to ensure quality consistency and ease of storage. A sequence of 
patterns is perfectly contiguous if a particular size of item once started to be produced is in 
all successive runs until the full demand for that size is met. However, perfect contiguity 
will seldom be the ultimate goal because it may raise the amount of wastage to an 
unacceptable level. The sequencing of patterns is generally done as a second phase of the 
problem -- the set of patterns is determined first and then sequenced in the best possible 
way. Usually this results in a less contiguous solution. 

Exact and heuristic algorithms based on mathematical programming have been successful 
in handling many instances and variants of cutting stock problems as evidenced in the above 
named references. One difficulty with these algorithms is the need to precisely define the 
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constraints and the objective function, which may contain conflicting goals, and the 
consequent increase in the complexity of solving them. Recently a number of innovative 
heuristic search techniques such as Genetic Algorithms, Simulated Annealing and Tahu 
Search have entered the area of combinatorial optimisation problems. Examples include 
Travelling Salesperson Problem (Goldberg, 1985) and Bin Packing Problem (Reeves, 1993; 
Falkenauer, 1994). For cutting stock problems, some relevant references using non­
traditional techniques am: Dagli (1990); Lirov (1992); Dincbas et al (1992); Lutfiyya et al 
{1992); and Hinterding and Khan (1994). 

In this paper we deal with the solutions of cutting stock problems using Genetic Algorithms 
(GA). In particular, the advantages of using GAs will be highlighted. In Section 2, a 
general introduction to GAs will be given and its application for solving CSP will be 
outlined. Experimental results for variants of the standard CSP will be discussed in 
Section 3 and Section 4 will summarise the findings and suggest possible avenues for 
improvements. 

2. Genetic Algorithm for CSP 

2.1. Introduction 

Genetic algorithms ( GAs) describe a relatively new class of optimisation methods, loosely 
based on Darwinian evolution. Suitable for finding optimal or near-optimal solutions from 
solutions scattered over a large search space, GAs sample areas of the search space by 
techniques based on natural selection, inheritance and adaptation. GAs are part of the area 
of Evolutionary Computation, and are typified by their use of encoded solutions and the 
importance they place on crossover. 

The earliest GAs were developed in the sixties and seventies (Holland, 197 5), in order to 
simulate genetic processes. Early applications were concerned solely with genetic functions, 
and it was not until later that the power of applying methods based on genetics to other 
problems was realised. 

The term genetic algorithms describes the class of optimisation methods whereby a 
population of encoded solutions (chromosomes) evolves with selection processes favouring 
the 'fittest' solutions. The solutions to problems are represented or encoded in finite length 
strings over some finite alphabet. Classical genetic algorithms use a binary representation 
and fixed length strings. However many applications and hybrid genetic algorithms use 
larger alphabets and variable length strings. These strings or chromosomes are evaluated 
according to fitness. Fitness is the cost of a solution subtracted from some ideal value 
(generally 1). 

An initial population is built by generating random permutations of a legal encoding. 
Populations reproduce, producing new generations. Reproduction is managed such that the 
fitter a solution, the more likely the chromosome representing it will reproduce. 
Reproduction takes place by the reproduction operators of mutation and crossover. 
Crossover involves creating an individual by combining features from both parents. 
Mutation involves randomly altering one or more genes. Crossover ensures (hopefully) 
that features of the parents will be inherited by the children, mutation ensures that all 
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combinations can exist. Ideally, the generations would continue to improv,e and the last 
generation should contain an optimal solution to the optimisation problem. 

The general steps of a GA are: 

• Initialise a population of random chromosomes 

Repeat until satisfied 

Evaluate each chromosome in terms of the individual it represents. 

Create a new generation with chromosomes produced by mating individuals 

from the preceding population. Some individuals from the preceding 

population may be copied into the new generation. 

Figure 1. Steps in the Genetic Algorithm. 

GAs are blind. Solutions are not generated with access to local knowledge, but as a result 
of "payoff' information from their own evaluation. The genetic search is guided by 
probabilistic transition rules. The decision of whether a solution should reproduce is a 
function of its fitness and pure chance. 

2.2. Representation of the Problem 

A Group based GA was used to solve the cutting stock problems. The Group based GA 
uses a direct representation. It uses a mapping which focuses on the groups in a solution. 
That is, it tries to find the best selection of the possible groups. A group is a selection of 
items which will be cut from a single stock length. Falkenauer (1991) developed the Group 
based GA for the bin packing and other grouping problems. Here the emphasis is changed 
from the traditional GA where genes represent a single value and its position or order in 
relation to other genes is significant, to the situation where genes represent a group of 
items, and neither the order nor the position of the genes in the chromosome or the items in 
the gene is significant. 

In the Group based G~ each chromosome represents a number of groups of items such 
that all items to be cut are represented. Each gene represents a group of items, rather than a 
single item. Each group will be cut from a single stock length. This mapping is illustrated in 
Figure 2. The characteristics of this representation are that the number of genes is 
variable, the order of the genes in the chromosome has no significance, and the order of the 
items in each gene has no significance. These characteristics are compatible with the 
characteristics of the bin packing and cutting stock problems. 
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genotype 

chromosome 

11 o 16.5.21 15 16.5 I 7.6 11 o.51 

phenotype (solution) 
Items to be cut from stock length 

10 

6,5,2 

15 

6,5 

7,6 

10,5 

Figure 2. Representation of the Problem 

2.2.1. The encoder 

An intelligent encoder is used to build the initial population, and to build new groups for 
crossover and mutation operators. The program has been developed to solve cutting stock 
problems with multiple stock lengths. This encoder takes a list of stock lengths and a list of 
items in random order. Using a first fit algorithm it groups the items in the item list into 
groups to form genes. To build a group the encoder choses a stock length at random and 
then choses items without replacement from the list of items using a first fit algorithm. This 
study focuses on single stock length problems only. 

2.2.2. The reproduction operators 

2.2.2.1. Crossover. 

The crossover operator is a modification ofFalkenauer's Grouping Crossover (BPCX) 
(Falkenauer & Delchambre, 1992). This crossover (called the Grouping Crossover GCX) 
will work with chromosomes of different lengths, and does not depend on any ordering of 
the genes. It was designed so that the child can inherit meaningful information from both 
its parents. In this case it is the selection of genes (groups) the parents have. 

The grouping crossover works in the following way: We randomly choose an insertion 
point in parent 1 and a segment in parent2. The child is constructed by first copying into it 
the genes from parent 1 up to the insertion point. Then we copy the genes from the 
segment in parent2 into the child, and lastly we copy the genes from parent 1 after the 
insertion point into the child. We cannot blindly copy the genes into the child chromosome 
as a chromosome with duplicated items will result. A gene is only added to the child 
chromosome if all its items can be successfully subtracted from a list of items not yet 
included in the chromosome. At the end of crossover the list of items not yet included in 
the chromosome may not be empty, in this case the encoder is used to generate new genes 
(groups) from these items and the resulting gene(s) are added to the child chromosome. 
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Therefore, if two identical parents are chosen for crossover, an identical child may not 
always result. 

The Grouping crossover gives no significance to the order of the genes in the parents, so a 
new crossover was developed to give greater significance to the order of the genes for the 
CSP. This new crossover, the Uniform Grouping Crossover (UGCX) works as follows: 
we generate a template of randomly generated binary bits which has the same length as the 
first parent. We then copy for each position in parent! the gene from that position into the 
child chromosome, and then the gene from that position from parent2 is also copied into 
the child if its corresponding value in the template is a 1 only. Again the copy of a gene 
into the child chromosome is only carried out if the items from that genes can be 
successfully subtracted from a list of items not yet included in the child chromosome. 

2.2.2.2. Mutation. 

The mutation operator is based on Falkenauer's group mutation operator (Falkenauer & 
Delchambre, 1992). A number of genes are chosen and deleted. The items from the 
deleted genes are then used by the encoder to build new groups. These new groups are 
then added to the chromosome. The purpose of mutation in this case is to bring new 
groups into the chromosome. The genes to be deleted are chosen from those which do not 
cut exactly from the stock length (ie those with some trim), and then randomly if there are 
insufficient of these. Note that we must delete at least two genes, as deleting only one gene 
and then rebuilding the chromosome would result in exactly the same chromosome. Our 
group mutation operator is different from Falkenauer's as he deleted the gene with the 
greatest trim and then some others chosen at random. He adds the newly built genes to the 
end of the chromosome, while we insert them into the chromosome at a randomly chosen 
site. 

2.2.3. The Fitness Function 

The basic evaluation function for each solution of the cutting stock problem is calculated as 
the result of the following cost function subtracted from a fitness ceiling of 1.0. 

= (i - L ) p ( open ) (i -L + maxwaste - minwaste) cost a. ( ) + . + z. 
L +wastage ordsize 2 * L 

where, 
m = number of groups (pattern runs) 
L = the stock length 
wastage = L ( L- sum of lengths of items in group J 

i=l,m 

open = number of unfinished items at the present run 
ordsize = number of distinct orders 
maxwaste =maximum of the trims (wastages) in the patterns 
minwaste = minimum of the trims in the patterns 
a., p and x are weights chosen between 0 and 1 (a+ p + z ~ ) 
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The fitness function contains three terms, each having values between 0 and I. The first is 
to enforce the reduction of trim. The second term encourages the sequencing of patterns in 
such a manner that there are few open items. The third term is provided to generate 
patterns with either very high or very low trim. The concentration of trim leads to better 
solutions, as new patterns are generated by combining small and large trim patterns so that 
fewer stock lengths are needed. 

The basic Genetic Algorithm used is a steady-state GA based on the description of OOGA 
in Davis (1991). It was developed using Smalltalk/V for Windows, for running on PCs. It 
is written in a flexible manner that permits changes in parameter during the search. The 
running time was not a priority, and it was observed that reasonable solutions were always 
found in a few minutes of running time. The following parameters for this GA can be set: 

• Population Size - set the size of the population. 

• Allow Duplicates - set a flag to allow or disallow duplicates to exist in the population. 
If duplicates are not allowed, any duplicates produced by reproduction are discarded 
while they still count as an evaluation. We determine whether two chromosomes are 
the same by comparing their genotypes. 

• Number of Evaluations - set the number of evaluations for the run. We use evaluations 
rather than generations so that we can compare between runs where the population size 
and replacement rate are different. 

• Replacement Rate - set the percentage of the population that will be replaced by 
reproduction in one generation. The rate can be set from 0 to 100%. 

• Crossover Rate - set the percentage of the replacement population that will be replaced 
by crossover in one generation. The remainder of the replacement population will be 
produced by mutation. The rate can be set from 0 to 100%. 

• Poisson Mutation - use a Poisson distributed random variable to determine how many 
genes to mutate in a chromosome. 

• Poisson Mean - set the mean (A.) for the Poisson distributed random variable. 

In the Genetic Algorithm used, a new chromosome is produced either by crossover or 
mutation but not both. The mutation rate for the GA is (100 - crossover rate). The 
mutation rate is the percentage of chromosomes of the current population that will undergo 
mutation. If Poisson Mutation is false, then mutation of one gene is generally carried out. 
If Poisson Mutation is true, then the number of genes to be mutated in a chromosome is 
determined by sampling a Poisson distributed random variable with mean A. 
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3. Results 

The results of this study will be illustrated using two small problems from Hinterding & 
Juliff (1993). The experience with some large data sets will then be discussed. The first 
version of the GA was presented by Hinterding & Juliff (1993), and it has been enhanced 
a number of times since then. Hinterding & Khan (1994) presented results on cutting 
stock problem using an earlier enhanced version. 

This study is of exploratory nature. The basic form of the fitness function used in the runs 
of the GA is given in Section 2.2.3, although the relative weights a, f3 and x shown were 
not always used. In some cases, different values of the parameters were used as it is not 
possible to specify a particular set of parameters which will be the best for all instances of a 
problem. However, the general range of parameter values that work for particular problem 
types can be estimated empirically. For this study, we found the following parameters 
values generally effective: 

Population size: 50 
Crossover rate: 60% 
Mutation: Poisson , mean 3 
Duplicates in population: No 
Replacement rate: 50% 
a = 0.5 to 0.9 
f3 = 0.01 
x = 0.001 

Problem 1: Stock length 14 
20 items 

I~ I~ I~ 
A minimum trim solution, as found by the GA in first generation, is as follows : 

Solution 1 <Problem 1) 
run pattern trim open items 

1 3+4+7 0 3 
1 3 + 10 1 4 
1 3+3+7 1 4 
1 3 + 10 1 3 
1 4+ 10 0 1 
1 6+8 0 3 
1 5+9 0 3 
1 6+8 0 1 
1 7+7 0 0 

Open item means an item has been started, but not finished in the current run. 

· The algorithm aims to minimise total absolute trim and also to minimise the number of open 
items. The weight on the first objective is high, so the initial solutions pay little attention to 
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other factors as is evidenced by the staggered patterns and a large number of open items. 
Continuing the search, the algorithm found alternative solutions. The best solution after 
500 evaluations is as follows: 

Solution 2 (Problem 1) 
run pattern trim open items 

2 7+7 0 0 
1 3+3+3+3 2 1 
1 3+10 1 1 
2 . 4+10 0 0 
1 I 5+91 0 0 
2 6+8 0 0 

This solution has the same trim, but it has a fully contiguous sequence; there is no 
interruption in the production. 

Problem 2: stock length 25 
60 items 

Item Length 5 6 
No. req. 7 12 

Solution 1 rProblem 2) 

7 
15 

run pattern trim 

1 7+8+10 
1 6+6+6+7 
1 6+7+12 
2 7+8+10 
2 5+5+6+9 
2 5+9+11 
3 6+8+11 
1 7+8+10 
1 6+6+6+7 
2 7+7+11 
1 5+10 
1 7+7+10 
1 7+7+11 

8 9 10 11 12 
7 4 6 8 1 

open items 
0 3 
0 4 
0 4 
0 4 
0 6 
0 7 
0 6 
0 5 
0 4 
0 4 

10 3 
1 2 
0 0 

The above solution, obtained in under 200 evaluations, is trim-optimal but includes a poorly 
selected and sequenced set of patterns. Continuing the search for 1000 evaluations, the 
following solution was obtained: 
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Solution 2 rProblem 2) 
run pattern trim ' openitems 

4 6+6+6+7 0 1 
5 7+7+11 0 2 
1 11+12 2 2 
1 11+11 3 1 
2 8+8+8 1 2 
1 . 5+5+7+8 0 1 
2 5+9+9 2 1 
3 5+10+10 0 0 

This solution has one interruption in production (item size 7); apart from that the sequence 
is contiguous. 

For relatively large problems, the performance of the GA was encouraging. A number of 
test problems were taken from literature (Wascher and Gau, 1993). While the GA was 
able to find the optimal trim solution to most of the problems, in some cases it took more 
than 20000 evaluations. The primary purpose of this study was not to discover an optimal 
(integer) trim solutions, and the effort was directed towards applying the GA to find 
alternative solutions to the same problem based on the secondary objectives. Some such 
situations will be described in the following. 

Contiguous Solution. As stat~d earlier, the measure for contiguity for the GA is taken as 
"maximum number of open items" . It turned out to be an effective measure for small 
problems. For large problems with large stock lengths, the contribution of the first term of 
the fitness function, i.e., the objective of trim minimisation, was very high and the algorithm 
failed to identify highly contiguous solutions. Some computational results are given below, 
the problem names refer to Wascher and Gau (1993): 

Problem No. Distinct Stock length Optimal Evaluations No. Stock Max. Open 
Orders Solution * 

BAR861 19 315 34 750 34 16 
4,000 34 13 

20,000 34 5 
GOU902 22 4300 59 10,000 60 13 

15,000 60 12 
JOH862 7 4734 200 600 200 7 

I 2,500 200 5 
6,000 200 6 

JOH864 17 1344 84 2,500 84 16 
25,000 84 4 

I 
50,000 84 5 

WAE841 5 1520 I 89 10,000 89 5 
15,000 89 4 

* Each row represents a separate run of the algorithm. 

Different problems were run for differnnt numbers of evaluations, as when there was no 
improvement in the fitness function for a large number of evaluations, the algorithm was 
terminated. 
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For the five examples shown, optimal solutions in terms of total trim were obtained in four 
of them, and for the fifth it was within one stock length of optimum. In terms of 
contiguity, it can be seen that in general when the algorithm is allowed to run for longer 
periods, fewer items remain open. If the weight for contiguity ~ is increased, the algorithm 
fails to find the optimal solution. One advantage of using the GA is that a fully sequenced 
set of patterns is obtained as a solution. 

On the whole, the performance of the GA in maintaining contiguity needs improvement as 
sometimes simple manual rescheduling of the results would give improved contiguity. As 
can be expected, higher number of evaluations does not guarantee better results. 

Maximise Trim in Last Pattern. Sinuany-Stern & Weiner (1994) reported a problem 
instance where it is required that the trim in the last pattern is as large as possible, so that 
the leftover trim can be a reusable stock. For a stock length of 600 cm, and a demand for 
150 pieces of 123 cm, 60 pieces of 103 cm, 60 of 3 0 cm and 60 of 17 cm, the optimal 
solution is to use 46 stocks having a total trim of 150 cm, which was easily found by the 
GA. The authors did not attempt to find this optimal solution because they later imposed 
an additional condition that each item should have an allowance of 0. 5 cm for cutting 
operation by disc saw. Using increased sizes ofitems (i.e., 123.5 cm in place of 123 cm), 
the optimal solution turns out to be 47 stocks. Using an integer programming model 
Sinuany-Stern & Weiner did find a solution with 47 stocks and with a trim in the last 
pattern of 3 54 cm. Using our GA, several solutions were found that allowed for cutting 
by disc saw (adding 0. 5 to item size) and a large trim in the last pattern. The best one 
found in 100 generations (around 2500 evaluations) is given below: 

run pattern trim 

11 3 * 17.5 + 3 * 30.5 + 2 * 103. 5 + 2 * 123. 5 20 
2 2 * 30.5 + 4 * 103 .5 + 1 * 123. 5 15 
3 2 * 17.5 + 7 * 30.5 + 1 * 103 .5 + 2 * 123. 5 20 

27 1 * 103.5 + 4 * 123.5 25 
3 6 * 17.5 + 4 * 123.5 10 
1 3 * 17.5 + 2 * 30.5 486.5 

Although this solution has a relatively large trim in the last pattern as desired, it is not the 
best possible solution. Redistributing item size 17. 5 from the last pattern to the third 
pattern would leave even larger trim in the last pattern. If the GA were run sufficiently 
long, that solution (or even a better one) would most likely be found by it; of course there 
is no guarantee because of the stochastic nature of the search algorithm. 

Roodman (1986) discussed cutting stock problems where the emphasis is on having few 
patterns with large cuts or trims. A problem instance (BAR86 l from Washer and Gau, 
1993) was solved with an emphasis on localising the trim in as few patterns as possible. 
The GA found a solution which is optimal in terms of total trim (34 stocks) and had trims 
in only two of the patterns. These examples illustrate the usefulness of GA in handling 
auxiliary objectives. 
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4. Summary and Conclusion. 

The GA as presented in this study can be expected to give optimal solutions to most one­
dimensional cutting stock problems, where the objective is to minimise the total trim. The 
number of evaluations required, and thus the running time, may be very high compared to 
standard LP based algorithms, particularly for large problem instances. The real strength of 
GA lies in not finding an optimal solution to standard CSP, but in its ability to deal with 
problems with secondary objectives. 

From our experience, a comparison of LP based algorithms and GAs can be done as 
follows: 

• For standard CSP, the LP based algorithms are efficient, but cannot easily incorporate 
secondary objectives. GAs do not appear to be as efficient as LP based algorithms for 
standard problems, but is more versatile in dealing with secondary objectives. 

• LP based algorithms usually start with very poor or incomplete solutions and good 
solutions are only obtained at the end. A GA always starts with workable solutions 
and steadily improves on these. 

• There is some performance guarantee in LP based algorithms (because of available 
bounds), but GAs have no such guarantee. They are governed by rules of probability 
and may at times perform poorly. 

• We can produce sequenced solutions using a GA in a single stage; this is an advantage 
over standard LP techniques which usually require a second stage for sequencing. 

The contiguity results in this study have not been as good as expected, although some 
solutions are quite good. Two areas need further investigation : firstly, the type of 
crossover used should be explored further so that the ordering of the groups (patterns) is 
given more significance and secondly the term in the fitness function reflecting the 
contiguity factor may have to be improved. 

The objective of concentrating trim to a few patterns can be very efficiently handled by the 
GA. In fact, this requirement reinforces the search for better solutions in the population, 
and facilitates the finding of least-trim solutions. 

Estimating the best parameter values for the GA to solve the different problem types is an 
area for further research. Apart from improving upon the contiguity aspect of the 
algorithm, some other objectives we intend to study include: minimising the number of 
distinct patterns, controlling the number of items in a pattern, and the location of particular 
item sizes in preferred positions in the sequence of patterns. 

Acknowledgement: The authors thank T. Gau for providing test problems with optimal 
solutions. 
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