
VICTORIA ~
UNIVERSITY

•
:
"
"' z
0

:
' ..

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

An Exchange Heuristic for the Bin Packing Problem

Lutfar R. Khan

(78 OR 5)

July, 1996

(AMS : 90C27, 90-04, 90-08)

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
P 0BOX14428

l\.ffiLBOURNE CITY MAIL CENTRE
IvffiLBOURNE, VICTORIA, 8001

AUSTRALIA

TELEPHONE (03) 9688 4492
FACSTh1ILE (03) 9688 4050

Footscray Campus

AN EXCHANGE HEURISTIC FOR
THE BIN PACKING PROBLEM

Lutfar R. Khan

Department of Computer & Mathematical Sciences
Victoria University of Technology, Footscray Campus

PO Box 14428 MCMC
Melbourne 800 I

AUSTRALIA

email: khan@matilda.vut.edu.au

Presented at the 14th Triennial Conference of The International Federation of
Operations Research Societies (IFORS), Vancouver, British Columbia, Canada

July 8 - 12, 1996

AVAl.DOC

mailto:khan@matilda.vut.edu.au

AN EXCHANGE HEURISTIC FOR
BIN PACKING PROBLEM THE

Lutfar R. Khan

Department of Computer & Mathematical Sciences
Victoria University of Technology, Footscray Campus

PO Box 14428 MCMC
Melbourne 8001

AUSTRALIA
email: khan@matilda.vut.edu.au

Abstract. For some instances of the bin packing problem, the FFD heuristic performs poorly
resulting in a set of near-full bins and one near-empty bin. An algorithm incorporating the
mutation operator of genetic algorithms is presented to solve these problems. It starts with an
FFD solution. Then one item is selected from the near-empty bin. This selected item and the
items from a subset of near-full bins are ordered randomly, and repacked. The process is
repeated until the selected item is accommodated in the repacked bins. Experimental
investigation suggests that the quality of solutions by an FFD like algorithm can be greatly
improved by rearranging the items randomly.

Keywords: bin packing, heuristics, genetic algorithm

1. Introduction.

A Bin Packing Problem (BPP) can be defined as follows:

Given a set of n items and n (possible) bins, with

Wj = weight of item j
and c = capacity of each bin,

assign each item to one bin such that the total weight of the items in each bin does not
exceed c and the number of bins used is minimum.

2

mailto:khan@matilda.vut.edu.au

2. Solution of BPP

BPP is an NP-complete problem. It can be formulated as an integer programming
problem, but the solution of this integer program would not be efficient. Among the
available exact algorithms, the branch and bound method of Martello and Toth (1990),
using a reduction procedure, is the most efficient. In this paper, only the simple one­
dimensional BPP as defined in Section 1 will be considered.

Excellent heuristic algorithms exist for BPP and its variants. An interesting study on
heuristics for BPP is Hall et al (1988), which describes many variants of heuristics and
their performance. Among the most efficient heuristic algorithms available in the
literature, First Fit Decreasing (FFD) and Best Fit Decreasing (BFD) are best for the
simple one-dimensional bin packing problem. It has been shown that asymptotically the
worst case solutions by either of the above algorithms is not more than: 1.22 times the
optimal solution (Johnson et al., 1974). Later absolute performance ratio for FFD has
been shown to be 1.5 (Shimchi-Levi (1993) and Anily et al. (1994)). As with most
other heuristic algorithms, the so-called pathological instances can always be
constructed to match the worst-case bound, but in general the performance of these
algorithms is much more encouraging. An experiment with 900 instances of BPP
generated according to the schemes followed by Martello & Toth (1990), shows that
in more than 90% of the instances, the FFD gives the optimal solution. These
instances will be further discussed in Section 4.

Evidently, FFD performs very well. For some instances, however, FFD fails to
produce an optimum solution. Usually, in these instances, the FFD solution consists of
a set of near-full bins and one near-empty bin. An example follows.

Example of an instance of BPP:

Bin capacity = 150 Number of items = 20

Ordered set of items weights:

112 95 93 84
52 36 30 30

80 75 73
25 25 23

73 64
7 6

54
2

A Simple Lower Bound is: I (L item weights) I 150 l = 7

3

The FFD Solution is:

Bin No. t e m s Unfilled

1 112 36 2 0
2 95 54 1
3 93 52 5
4 84 64 2
5 80 30 30 7 3
6 75 73 2
7 73 25 25 23 4
8 6 144

This suboptimal FFD solution can be improved, if the item of the eighth bin (weight 6)
is selected and repacked with the items of a few other bins. In this instance, the third
and seventh bins, which have the largest unfilled capacities, are chosen and the items
are repa:cked to produce the following solution which is optimal.

Bin No. t e m s Unfilled

1 112 36 2 0
2 95 54 1
3 93 25 25 6 1
4 84 64 2
5 80 30 30 7 3
6 75 73 2
7 73 52 23 2

In this instance, an exchange of the items among a few bins, after a run of FFD, has
been sufficient to produce the optimal solution. While the rearrangement of the items
can be designed to be carried out in a deterministic way, a random method can be
much faster, albeit without a guarantee of finding an improved rearrangement even
though one exits. The idea of random search for improvement is explored in this study
in the proposed algorithm.

4

3. A Heuristic Algorithm

The steps of the proposed algorithm are as follows.

Step 1: Solve the given instance ofBPP by FFD. Let the number of required bins
bem.

Step 2: If mis equal to the lower bound LI (=IL Wj /cl), STOP. Otherwise
order the bins in a non-ascending order of unfilled capacities. Identify one
item Is from the bin B I at the head of this list.

Step 3: Let the number of bins selected for repacking be mm.

Step 4: Randomly reorder all the items of mm bins selected in Step 3 plus Is. After
reordering, pack them by Next Fit algorithm. If the number of bins
required is mm or fewer go to Step 5. Otherwise repeat this repacking a
specified number of times (Maxlteration). Ifno packing is possible to
accommodate all selected items using mm bins, let mm = mm + 1 (or any
other number if so desired, or even mm unchanged) and go to Step 3. If
repeated use of random reordering fails to improve the packing, STOP.

Step 5: Remove item Is from bin B 1 and update the items of other bins. If B 1 is
empty, set m = m - 1 and go to Step 2. If B 1 is not empty, select one item
(Is) from bin BI and go to Step 3.

This algorithm may be seen as an extension to the FFD heuristic, using random
reordering. For ease of description, let it be called FFDR algorithm. As is the case in
the given example, there are often a number of instances of BPP for which the FFD
algorithm produces a set of well-filled bins, and one bin with a few items and a large
remaining available capacity. A comparison of the contents of these FFD-produced
bins and those of the bins produced by an exact algorithm often shows that a slight
rearrangement of the items of some of the FFD bins can in fact produce an optimal
solution. Although a systematic procedure can be applied to identify the required
rearrangement by using an exhaustive search, a random technique seems more
promising in terms of computational effort. The recent success of the meta-heuristics
like Genetic Algorithm in solving problems involving combinatorial search provides an
incentive to carry out this study.

Genetic algorithms have been applied to various combinatorial problems including BPP
(Reeves, 1993; Falkenauer, 1994). A set of initial solutions are created by some
suitable algorithm and stored as members of current population. New solutions are
generated from which the better ones replace some older members of the population.
This process of reproduction continues until no appreciable improvement appears
likely.

5

Some of the factors that contribute to the success of a genetic algorithm are
reproductive operators (crossover, mutation), the fitness fanction, encoding and
decoding. Research on genetic algorithms and their applications looks at the suitability
of different types of crossover and mutation for combinatorial problems. Falkenauer
(1994) has been notably successful in using genetic algorithms for BPP. He has solved
some instances of BPP that are very difficult to be solved optimally by any
deterministic algorithm. Among the role of the operators for a genetic algorithm for
BPP, the most influential factors tum out to be the method of representing the items
and groups (encoding and decoding), the definition of the fitness function, and the type
of crossover. Mutation, which for BPP is equivalent to the dismantling of the groups
of items in one or more bins and subsequent regrouping, is not regarded very useful.
Falkenauer (1994) and Reeves (1993) found simple mutation largely ineffective or
very disruptive BPP. In this proposed algorithm, the method of dismantling the bins
and repacking is similar to the mutation operator. It may be noted that Falkenauer &
Delachambre (1992) used the bin with the largest unfilled capacity and a few other
randomly chosen bins for dismantling and repacking. The idea of mutation has been
used in this study in a very limited form, but the benefits appear substantial compared
to the effort. Also, the computer programming task is trivial compared to a full
genetic algorithm routine.

4. Experimental Results

For experimental investigation, as mentioned earlier, 900 problem instances have been
generated following the scheme used by Martello & Toth (1990). Three classes of
randomly generated item sizes have been considered:

Class 1: wj uniformly random in [1, 100]

Class 2: wj uniformly random in [20, 100]

Class 3: wj uniformly random in [50, 100]

For each class, three values of bin capacity c have been considered: c = 100, c =
120, and c = 150. For each pair (class, value of c) and for different values of the
number ofitems n (n = 50, 100, 120, 500, 1000), 20 instances have been generated.

FFDR has been coded in FORTRAN and run on selected instances ofBPP. The time
of computation has not initially been an important consideration and hence not
recorded. For the optimal solution, the FORTRAN code available in the book of
Martello & Toth (1990) has been used. In Tables 1 and 2, the overall results are
summarised. Z (FFD) is the number of bins in an FFD solution.

6

Table 1. Performance of FFDR Heuristic for Different n

n No. of Z (FFD) Z (FFD)
instances = Z(Opt)* * Z(Opt)

50 180 169 11

100 180 167 13

200 180 156 24

500 180 165 15

1000 180 166 14

TOTAL 900 823 77

FFDR Z (FFDR) Z (FFDR)
run on = Z(Opt) ::t; Z(Opt)

11 6 5

13 12 1

24 10 14

15 11 4

0 0 0

63 39 24

Note: * Z (Opt) represents the solution obtained by the exact algorithm of Martello­
Toth; in a few cases (68 out of900), when the algorithm failed to terminate
after 500,000 backtrackings, it was interrupted and the best solution so far
taken as Z (Opt); this may distort the results somewhat.

Table 2. Performance of FFDR Heuristic for Different Classes of Problems

Class No. of Z (FFD) Z (FFD)
instances = Z(Opt)* * Z(Opt)

1 300 275 25

2 300 248 52

3 300 300 0

TOTAL 900 823 77

7

FFDR Z (FFDR)
run on = Z(Opt)

17 10

46 29

0 0

63 39

Z (FFDR)

* Z(Opt)

7

17

0

24

Some very difficult instances ofBPP were suggested by Falkenhauer (1994), where the
items are generated randomly in such a manner that all the items can be perfectly
packed in a given number of bins, with three items in each bin. According to that
scheme twenty problem instances have been generated. FFD produces very poor
solutions for these problem instances. An experiment has been done with FFDR on
them. Of the 20 instances tried (ten 30-item problems and ten 60-item problems), in
each case the FFDR improves the FFD solution. Although an optimal solution has
never been found by the limited experiment that has been done, the number of bins
required by FFDR algorithm is only one more than the optimum, for each instance.
None of the popular deterministic heuristics achieve this result.

5. Conclusion

The performance ofFFD for most instances ofBPP is very good and often the
solutions are acceptable even if they are not proven optimal. The extensions to the
FFD algorithm suggested in this study can be useful in several ways.

Firstly, in the design of an exact solution algorithm for BPP, an FFDR solution can
serve as a better upper bound than an FFD solution, and a possible saving of
computation time.

Secondly, the FFDR algorithm can be modified to be used to provide multiple
solutions for an instance ofBPP. A deterministic procedure like FFD will always
produce identical solutions to a problem instance. However, if the random reordering
is repeated, a set of different solutions can be obtained by FFDR. In fact one strong
argument for using genetic algorithms is its capacity to provide multiple solutions at
any stage of the algorithm, although their quality may not all be acceptable.

The computer code for FFDR is still under development. Initially it has been writt,en in
an interactive manner so that the user can conduct the search in a controlled way for
experimentation. In the computations described above a maximum of five attempts
have been made to eliminate an item from the near-empty bin, and a maximum of 5000
random reorderings has been allowed. In most cases however, when a repacking of
the items has been possible, it has been achieved in well within 1000 reorderings.
Further experimental study is required to characterize the search in terms of a) the
optimal number of bins or items for selection for reordering, b) the determination of
whether a relatively large or small item from the near-empty bin should be selected
first, and c) the characterization of the problem structures for which this type of
algorithm works well. Early indications are that four to six bins should be selected,
fewer bins may fail if there are not enough combinations, and more bins will fail if there
are too many combinations of items. The influence of the sequence of items selected
from the near-empty bins does not seem to have much effect on the final solution. As
regards problem structures, problems that are hard to be solved optimally by an exact
algorithm (e.g., Class 2 types), are also hard to be improved by FFDR.

As discussed in a recent paper by Dowsland (1995), genetic algorithms are gradually
being applied to OR problems, despite having a relatively slow start when compared

8

with simulated annealing and tabu search. She points out that one of the obstacles to
its use is the programming task of the algorithm. Indeed the initial set up for a genetic
algorithm code is relatively difficult; the idea of mutation used here in a simple setting
can demonstrate the benefits of random search and shed some light on the potential of
the genetic algorithms as well.

6. References

Anily, S., J. Bramel and D. Shimchi-Levi (1994), "Worse-Case Analysis of Heuristics
for the Bin Packing Problem with General Cost Structures", Operations Research,
Vol. 42(2), pp. 287-298.

Dowsland, K. A. (1996), "Genetic Algorithms -- a Tool for OR?", Journal of the
Operational Research Society, Vol. 47, pp. 550-561.

Falkenauer, E. and A. Delachambre (1992), "A Genetic Algorithmfor Binpacking and
Line Balancing", Proceedings of 1992 IEEE International Conference on Robotics and
Automation (RA92), pp. 1186-1193, Nice 1992.

Falkenauer, E. (1994), "Setting New Limits in Bin Packing with a Grouping GA Using
Reduction", Technical Report R0108, Department of Industrial Automation,
Research Centre for the Belgium Metalworking Industry, Brussels, Belgium, 1994.

Hall, N., S. Ghosh, R. Kankey, S. Narasimhan, and W.-S. Rhee, (1988), "Bin Packing
Problems in One Dimension: Heuristic Solutions and Confidence Intervals",
Computers and Operations Research, Vol. 15(2), pp. 171-177.

Johnson. D., A. Demers, J. Ullman, M. Garey and R. Graham," Worst Case
Performance Bounds for Simple One-Dimensional Packing Algorithms", SIAM
Journal of Computing, Vol. 3, pp. 299-325.

Martello, S. and P. Toth (1990), "Knapsack problems: Algorithms and Computer
Implementations'', John Wiley & Sons, NY.

Reeves, C. (1993), "Hybrid Genetic Algorithms for Bin-Packing and Related
Problems'', in Proceedings of Annual Conference of Operational Research Society,
September, 1993, York.

Shimchi-Levi, D. (1994), "New Worst Case Results for the Bin-Packing Problem",
Naval Research Logistics, Vol. 41, pp. 579-585.

9

