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Abstract 

Normally in Genetic Algorithms, mutation is considered a background 
operator and the genes are considered to be the binary bits of the chromo
some. In this paper we take a different viewpoint. We treat the variables 
of numerical functions as the genes, and consider the mutation of these 
genes . We also investigate the role of mutation as an independent repro
duction operator. Our results show the value of this view, and explain 
some previous comparisons with Evolutionary Strategies. 

1 Introduction 

In this paper we look at the nature of mutation in Genetic Algorithms ( GAs) 
used in optimisation of numerical functions. Current theory of GAs considers 
that mutation is a background operator and just used to provide bits lost by 
crossover (Holland, 1992). This relies on the view that the genes in a chromo
some are binary bits, and is supported via the current schema theory (Holland, 
1992; Goldberg, 1989). Further, current guidelines recommend using genes with 
a small alphabet so that the largest number of schema will exist . We however, 
find it is useful to view each complete variable in the objective function as a 
gene. 

Gray coding is frequently used in numerical optimisation GAs; the use is 
justified by the fact that in Gray code, successive numbers differ in only one 
bit. But is not understood why Gray coding is more effective than binary 
representation for some functions and not for others. 

Hoffmeister and Back (1992) compared GAs to Evolutionary Strategies(ESs) 
for a number of functions. However the GA parameter settings differed signif
icantly from the standard ones in that all variables were represented using 32 
bits. The reason these authors gave was to maintain the same resolution for 
the object variables as is used in ESs. We investigate the effect of the number 
of bits in the variable representation on the performance of GAs. 

2 Background 

Genetic Algorithms ( GAs) and Evolutionary Strategies (ESs) are the main areas 
of Evolutionary Computation that are used for numerical function optimisation. 
GAs were introduced in the USA by Holland (1992) in the framework of adap
tation in artificial systems. They are characterised by using a binary encoding, 
viewing crossover as the major reproduction operator, with mutation seen as 
a "background" operator used to replace allele values lost by crossover and se
lection. ESs were introduced in Germany by Rechenberg (1973) and were first 
applied to experimental optimisation problems with continuous parameters. 

De Jong (1975) implemented GAs for function optimisation using continuous 
variables, and constructed a testbed of five functions that included the most 
important characteristics of possible surfaces. Gray code was introduced by 
Hollstein (1971) to reduce the Hamming distance of adjacent values to 1, and 
Caruana & Schaffer (1988) concluded that Gray coding is often superior to 
binary coding. 
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Some of the differences between GAs and ESs are: the role of mutation; the 
representation of variables; and whether mutation works on the genotype or the 
phenotype. The issues we address in relation to GAs are those of representation 
and the role and function of mutation. In GAs , genes are normally considered to 
be the binary bits of the chromosome. We will consider the complete variables 
of the objective function as the genes and then look at the effect of bit flip 
mutation on these genes. We will investigate the role and function of mutation 
in GAs by considering it to be an independent reproduction operator. 

3 Representation of Genes and Mutation 

It is well known both in GA theory and in natural evolutionary theory that 
without mutation, evolution would stagnate. That is, once combinations of 
variants in the current population have explored, no new variations are possible. 
There is argument about what the unit of evolution is (Dawkins, 1982), but 
genes are considered to be the best bet. There is no rigid definition of what 
a gene is, it can be hundreds of nucleotides long, and the definition is really a 
functional one. That is, it should have a consistent phenotypic effect, although 
this effect is not completely independent of the other genes on the chromosome. 

When we consider genes as bits, there is very little consistency between 
the genotypic and phenotypic values. The effect of the gene is determined by 
the function variable it maps to and then its position within the gene. We 
argue this effect is more like that of a nucleotide within a gene, than a gene 
within a chromosome. When we consider the function variables as a genes, 
the phenotypic effect is then determined by the function variable it maps to. 
Further, mutation can now be viewed as a change to the function variable, and 
its effects can be quantified. · 

3.1 Function Variables as Genes 

By treating the function variables as genes, a GA can be more easily seen 
as searching for values of the function variables (genes) that will produce the 
optimum. 

There are several consequences of this view: 

• The number of genes in a numeric GA is now the number of variables in 
the objective function (see Fig 1). This is now much smaller. 

·• The size of the alphabet of a gene is 2n , where n is the length of the gene 
in bits. This is much larger than before. 

• We can now explore the effects of mutation on a gene. Before we could 
only flip a bit. 

A number of GAs with large or very large alphabets have been implemented, 
examples are: Order based GAs (Davis, 1985) and Group based GAs (Falke
nauer & Delchambre, 1992; Hinterding, 1994). These implementations have 
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Traditional GA: 

2 variables, each 4 bits; 8 genes 

I gl I gl I gl I gl I g2 I g2 I g2 I g2 I 
Variables as genes: 

2 variables, each 4 bits; 2 genes 

Figure 1: Gene Representation 

Table 1: Mutation statistics 

Decoding Mean Mean Dev. Std Dev. 
Binary 0 3.75 4.61 
Gray 0 3.75 5.29 

demonstrated that where large alphabet sizes are used for genes, the GAs still 
have very good performance. 

Another class of GAs which use function variables as genes are real coded 
GAs (Davis, 1985; Wright, 1991) as are most ESs. Our approach is different as 
we still use bit-flip mutation while viewing the function variables as genes. 

3.2 Effect of bit-flip mutation on a Gene 

We consider the changes in the value of a gene when one of the bits in the 
binary string representing that gene is flipped. Select one of the bits in the 
string, with all bits equally likely, and reverse the polarity of that bit . Both 
the original string and the new one are decoded and the change calculated. We 
are concerned with the probability distribution of these changes and how it is 
affected by the type of representation used. 

For the case of 4 bit strings, Table 1 compares statistics of the distribution 
for Gray decoding with that for fixed point decoding. As expected, the two 
representations give a mean of zero. They show identical mean deviations, but 
Gray code gives a larger standard deviation. 

The probability distributions of changes are shown in Figure 2. With bi
nary coding the allowed changes all have the same probability, but the interval 
between these values increases exponentially. With Gray code all odd values 
are possible and the probabilities decline with the absolute value of the change. 
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Figure 2: Prob. dist for binary and Gray encodings 

3.2.1 The General Case 

Now we consider the general case of a string of length n . We write the string as 
X1 x2 . •• Xn and the value represented as x. The change in x caused by changing 
one bit will be a random variable ~X. We need to consider only positive 
changes since the distributions are clearly symmetric. 

For binary coding, changing the kth bit from 0 to 1 increases the value by 
2n-k. So the distribution is 

1 
Pr(~X = p) = 

2
n for p = 2n-k, k = 1,2, . . . n. 

For the case of Gray coding, the probability distribution is 

1 ( 2n ) Pr(~X = p) = n 2n [[p]) - 1 for p = 1, 3, 5, ... , 2n - 1, 

where we use [[p]] to denote the largest power of 2 not exceeding positive p. 
This result is most easily proved by induction. It is clearly true for n = 1. 

Suppose it to be true for n = m; we consider the case n = m + 1. If the binary 
strings x1x 2 ... Xm+1 are in order of the numbers represented, then the first 2m 
have x 1 = 0 while the rest of the strings cycles through a Gray code on m bits. 
The remaining strings have x 1 = 1 and the rest of the strings again cycle through 
the Gray code, but in reverse order. So the changes in the values represented, 
caused by flipping xi, may take the values ±1, ±3, ±5, ... , ±(2m+l - 1), all 
being equally likely. On the other hand, if x 1 is unchanged then the changes 
follow the probability distribution for the case n = m. Thus, considering only 
the cases where p is positive, 

Pr(~X = p) 
1 

( ) Pr( ~X = p x 1 is flipped) 
2m+1 

m + Pr( ~X = p I x 1 is not flipped) 
m+l 

( m + ~ )2m+l + m: 1 { ';~m ( [~] - 1
) 

for p < 2m, 

(m + ~)2m+l (2[~~]
1 

-
1
) · 
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This completes the induction on n. 
The proof however, obscures the relationship with the distribution for fixed 

point code. If the kth bit of the n bit string is the one flipped, then for fixed 
point coding, the change in the decoded value is ±2n-k and there are 2n-I 
different numbers that may suffer each change. With Gray coding, changing 
the kth bit causes changes in the values with absolute size 1, 3, 5, ... , 2n-k+I - 1 
and there are 2k-I numbers that may undergo each change. It follows that the 
mean change is the same in each case. The second distribution can be obtained 
from the first by taking each probability peak and spreading it symmetrically. 
So the second distribution will have the same mean deviation and a greater 
standard deviation. 

3.2.2 Limiting Distributions 

We now consider the effect increasing n on the distribution of changes for the 
Gray coding case. Clearly, as n - oo, each Pr{ AX = p} - 0 while the total 
probabality is maintained at 1 by the creation of more possible values of p. A 
more relevant treatment supposes that all binary strings represent a variable, 
say z, in a fixed range; for convenience we assume [O, 1). Then increasing the 
string length produces a finer granularity in the representation. The question 
is how the choice of n effects the probability density. Is there a continuous 
distribution that can be used to represent the limiting case n - oo in the same 
way that a normal distribution is used as the limiting case of a binomial? 

We write AZ for the random variable representing the changes in z and Az 
for the values that it can take. Note that for a string of length n, the changes 
caused by a flipping a single bit may take only the dyadic values Az = ±p/2n 
where pis an odd integer in the range 1 to 2n -1. A particular value Az = p/2r 
may only occur when the string length n = r. For greater n the closest occuring 
changes are p/2r ± 1/2n. So we take the probability density at p/2r to be 

2 Pr{AZ = - + - + Pr{AZ = - - -n- I [ p 1 } p 1 }] 
2r 2n 2r 2n 

2n-I [Pr{ AX= p2n-r + 1} +Pr{ AX= p2n-r - 1}] 

1 { 2n 2n } 
2n [[p 2n-r + 1}} + [[p 2n-r _ 1}} - 2 · 

Since the terms inside the braces are independent of n > r this expression 
approaches 0. The one exception is for Az = 0 when the probability density is 
(2n - 1)/n and this - oo as n - oo. So the probability density distribution 
becomes more and more concentrated near Az = 0 as n increases. The limiting 
distribution exists only in the generalized sense of a Dirac delta located at the 
ongm. 

With the distribution for the fixed point coding, as n increases, the spacing 
between the possible changes allowed does not decrease, except between the 
changes ±1/2n. Again the distribution will become concentrated at the origin 

as n - oo. 
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3.3 Granularity of representation 

In the previous section we considered the binary strings to represent integers 
in the range 0 to 2n - 1. In numerical optimisation, the strings more typically 
represent fractions of the form p/2n where p is an integer. The choice of the 
number of bits per gene n, controls the spacing between adjacent values, known 
as the "granularity" of the representation. 

We show that, as n is increased, the probability distributions of the changes 
becomes more and more concentrated about zero. The practical significance 
of this is that for fine granularity, most mutation steps will be very small. If 
the utility of mutation is to directly advance toward the optimum, rather than 
just supply variation for crossover to work on, then fine granularity will slow 
convergence. 

The other effect of decreasing the granularity is to enlarge the search space. 

4 N urneric GA Test functions 

The test functions have· been taken from a number of sources, and more difficult 
functions have been included. Fl - F5 are from De Jong (1975), F6 - F8 are 
from Gordon & Whitley (1993), F9 is from Hoffmeister and Back (1992), and 
FlO is from Michalewicz (1994). The range, number of variables and number 
of bits used to represent each variable is summarised in Table 2. 

• Fl Sphere Model. This is a continuous, strictly convex, unimodal func
tion. The solution is at x* = (0, ... , o)T; fi(x*) = 0. This is a scalable 
problem, with n = 3 the problem is easy, Hoffmeister & Back (1992) use 
n = 30, which we call test function Fla. 

• F2 Rosenbrock's Function. This is a continuous, unimodal, bi-quadratic 
function of two variables. It is a standard test function in optimisa
tion which was proposed by Rosenbrock (1960). The solution is at x* = 
(1, l)T; fi(x*) = 0. 

• F3 De Jong Step Function. This is a simple linear but discontinuous func
tion, which consists of many small plateaus. Due to this characteristic f3 
has a lot oflocal optima. The solution is at Xi E [-5.12, ... , -5); h( x*) = 
0. 

• F5, Shekel's Foxholes. This is a continuous, non-linear, multimodal func
tion proposed by Shekel (1971). It is a difficult problem as it consists of a 
large plateau with some holes in it which have different objective values 
at their bottoms, while the plateau is made up of equal objective values. 
The solution is at xi= (-32, -32f; fs(x*) ~ 1. 

• F6, Generalised Rastrigin's Function. This function is a scalable, con
tinuous, mulitmodal test function which is made from Fl by modulating 
it with Acos(21rxi)· It was first proposed by Rastigin as a 2-dimensional 
problem (Torn, A. & Zilinskas, 1989), and has been generalised by Rudolf 
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Table 2: Function Characteristics 

Fn. Range No. Vars Bits/Var. Tot . Len. 
Fl ±5.12 3 10 30 
Fla ±5.12 30 10 300 
F2 ±2.028 2 12 24 
F3 ±5.12 5 10 50 
F5 ±65.536 2 17 34 
F6 ±5.12 20 10 200 
F7 ±512 10 10 100 
F8 ±512 10 10 100 
F9 ±65.536 20 17 340 
FlO ±200.0 45 12 540 

(1990) as a test function for distributed parallel ESs. The solution is at 
x* = (0, ... , O)T; f6(x*) = 0. 

• F7, Schwefel's Function. This is a multimodal function characterised by 
a second-best minimum which is far away from the global optimum. The 
solution is at x* = (421, ... ,42l)T; h(x*) = 0. 

• F8, Griewangk's Function. This function is difficult for GAs because the 
product term causes the 10 variables to be strongly independent. The 
solution is at x* = (0, . .. ,o)T;f8(x*) = 0. 

• F9, Schwefel's Problem 1.2. This is a continuous, unimodal function which 
comes from the set of test functions that Schwefel (1977) once used to 
compare the performance of several optimisation methods. The difficulty 
of this function results from the fact that searching along the coordinate 
axes only gives a poor rate of convergence. The solution is at x* = 
(0, .. . ,o)T;fg(x*) = o. 

• FlO, Michalewicz's dynamic control problem. The range of x is (-200, 
200), the function has a minimum at 16,180.4. 

5 The GA 

The Genetic Algorithm used is a steady-state GA based on the description of 
OOGA in Davis (1991). Tournament selection is used with a tournament size 
of 2 as this was faster and gave comparable results to roulette wheel selection 
with linear normalisation. It was developed using Smalltalk/V for Windows. 
The following parameters can be set: 

• Population Size - set the size of the population. 
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• Allow Duplicates - set a flag to allow or disallow duplicates to exist in 
the population. If duplicates are not allowed, any duplicates produced by 
reproduction are discarded while they still count as an evaluation. We 
determine whether two chromosomes are the same by comparing their 
genotypes. 

• Number of Evaluations - set the number of evaluations for the run. We 
use evaluations rather than generations so that we can compare between 
runs where the population size and replacement rate are different. 

• Replacement Rate - set the percentage of the population that will be 
replaced by reproduction in one generation. The rate can be set from O 
to 1003. 

• Crossover Rate - set the percentage of the replacement population that 
will be replaced by crossover in one generation. The remainder of the 
replacement population will be produced by mutation. The rate can be 
set from 0 to 100%. 

• Poisson Mutation - use a Poisson distributed random variable to deter
mine how many genes to mutate in a chromosome. 

• Poisson Mean - set the mean ( .X) for the Poisson distributed random 
variable. 

Two point crossover was used for all the experiments, although others were 
available. 

In the Genetic Algorithm used, a new chromosome is produced either by 
crossover or mutation but not both. In this way we treat crossover and mutation 
as independent reproduction operators. This was done so that the separate 
effects of these reproduction operators could be determined. By using these 
operators independently and varying the application rates we can determine 
the mix of these operators that produces the best results within a given number 
of evaluations. 

The mutation rate for the GA is (100% - Crossover rate). The mutation 
rate is the percentage of chromosomes of the replacement population that will 
undergo mutation. If Poisson Mutation is false, then mutation of one gene 
is carried out. If Poisson Mutation is true, then the number of genes to be 
mutated in a chromosome is determined by sampling a Poisson distributed 
random variable with mean 1. If n genes are to be mutated in a chromosome, 
then we repeat n times: select a random gene from the chromosome and flip a 
randomly selected bit in the gene. 

6 The Experiments 

The GA was run on all the problems using both Gray and binary decoding. 
Three sets of runs were performed on each problem, so that the parameters 
could be varied to get some indication of the best settings for each problem. 
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Table 3: Results from Set 1 and 2 runs 

Binary encoding Gray encoding 
Fn. Evals Best Std D. Crx. Rep Best Std D. Crx. Rep 
Fl 4,000 l.3e-4 7.8e-5 20 100 2480# 0 40 20 
Fla 12,000 1. 7e-3 6.9e-3 60 20 5.9e-2 3.6e-2 60 40 
F2 12,000 1.9e-4 2.8e-4 0 80 2.7e-4 6.6e-4 0 80 
F3 6,000 2570# 0 30 80 5090# 0 10 70 
F5 4,000 l.2e0 5.4e-l 20 80 2480# l.4e-8 0 100 
F6 12,000 3.3el 8.9e0 40 100 3.5el 7.7e0 80 100 
F7 12,000 3.4e2 l.9e2 80 100 4.7e2 l.7e2 0 40 
F8 12,000 2.8e-l l.2e-l 20 40 2.2e-1 9.9e-2 40 40 
F9 12,000 4.9e3 l.8e3 40 100 2.7e3 8.0e2 0 100 
FlO 20,000 3.6e5 6.le4 0 100 2.5e5 3.7e4 0 20 

The parameters that were varied were the crossover (and hence the mutation 
rate), the replacement rate, and whether Poisson based mutation used. In the 
set of runs where Poisson based mutation was used, the Poisson mean was 
varied. 

Set 1: population size:50, no duplicates allowed, replacement rate:90%, mu
tation is one gene per chromosome, the crossover rate is varied from 0% to 100% 
in steps of 20%. 

Set 2: population size:50, no duplicates allowed, mutation is one gene per 
chromosome, the crossover rate: 50%, replacement rate is varied from 203 to 
100% in steps of 20%. 

Set 3: population size:50, no duplicates allowed, Poisson mutation is used 
and the mean is varied from less than one to about 5 genes per chromosome. , 
replacement and crossover rates are set to be the most effective rates found in 
Sets 1 and 2, unless those rates were found to be 0% or 100% in which case 
they were set to be 10% and 90% . 

In Table 3, the column "Evals" shows the number of evaluations that the 
GAs performed (these values were used in all the Sets of runs), "Best" shows 
the best value found if the number in E notation or the number of evaluations 
required to find the optimum if the number is suffixed by a"#" . "Std D." gives 
the standard deviation of the result shown, "Crx" shows the crossover rate for 
the best results in the Set 1 runs, and "rep" show the replacement rate for the 
best values obtained in the Set 2 runs . 

The figures in bold show the best results obtained for that function in the 

table. 
In Table 4, ">." shows the Poissor1 mean which gave the best results in the 

Set 3 runs. "µ" gives the Poisson mean as a probability of bit mutation for the 
chromosome, assuming the chromosome is to undergo mutation. 

From the results from the Set 1 runs, we can extract the data for runs 
where 1003 crossover and no mutation ii-, used, these are shown in Table 5. As 
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Table 4: Results from Set 3 runs 

Binary encoding Gray encoding 
Fn. Best .A µ Crx. Rep Best .A µ Crx. Rep 
Fl 1.5e-4 0.9 0.03 20 90 2510# 2.7 0.09 40 20 
Fla 6.9e-3 2.1 0.007 60 20 7.9e-2 2.1 0.007 50 40 
F2 2.2e-4 2.6 0.11 10 80 3.3e-5 3.6 0.15 20 80 
F3 2610# 2.5 0.05 30 80 5090# 3 0.06 10 70 
F5 l.leO 4.4 0.13 20 80 1650# 2.4 0.07 10 90 
F6 2.5el 3 0.015 40 90 2.8el 2.2 0.011 80 90 
F7 2.8e2 0.5 0.05 80 90 2.5e2 4.2 0.042 10 40 
F8 2.7e-l 2 0.02 20 40 1.2e-1 3 0.03 40 40 
F9 1.9e3 5 0.015 40 90 9.5e2 5.8 0.017 10 90 
FlO 1.6e5 4.3 0.008 10 90 9.6e4 3.4 0.006 10 20 

Table 5: Results for 100% crossover and no mutation 

Binary encoding Gray encoding 
Fn. Best Std D. Evals Best Std D. Eval. 
Fl 1.5e-2 2.8e-2 1670 6.le-2 le-1 2075 
F2 2.4e-2 3.8e-2 4910 9.9e-2 le-1 4910 
F3 2.4e0 l.2e0 2570 2.5e0 8e-l 3830 
F5 2.5e0 3.3e0 2075 3.0eO 2.5e0 2075 
F6 7.3el 1.8el 4910 8.4el l.4el 6152 
F7 5.7e2 2.7e2 4910 7.7e2 2.5e2 3695 
F8 7.3e0 3.5e0 6125 8.7e0 3.4e0 6125 
F9 5.4e3 1.8e3 12,200 6.0e3 l.6e3 8555 
FlO 6.3e5 l.le5 12,200 5.9e5 le5 16250 

no mutation is used the progress of the GA stagnates and the column headed 
"Eval." indicates the number of evaluations after which no further improvement 
was made by the GA. 

A set of runs to determine the effect of granularity on the performance of the 
GAs was also performed. These results are summarised in Table 6. The runs 
were performed for functions Fl, F2 and F3 and the length of representation 
for the function variables was varied from 10 to 30 bits. 

For function Fl, the replacement rate was 20% and the Crossover rate was 
40% for the runs using both Gray and binary decoding. For function F2, the 
replacement rate was 80% and the crossover rate was 10% for both encodings. 
The runs for function F3, when Gray decoding was used the replacement rate 
was 70% and the crossover rate 10%, when binary decoding was used the re
placement rate was 80% and the crossover rate was 30%. Table 6 gives the best 
value found or the number of evaluations need to find the optimum. 
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Table 6: Varying gene length 

Fl F2 F3 
Length Binary Gray Binary Gray Binary Gray 
10 1.le-4 2100# 8.5e-2 2.9e-4 3250# 3250 
12 9.4e-6 2510# 1.9e-2 2.3e-3 3250# 5.0e-2 
14 5.3e-7 3330# 6.3e-2 3.6e-3 3890# 1.0e-1 
16 3.4e-8 4150# 8.4e-2 1.0e-2 3890# 4460# 
18 2.2e-9 l.le-9 l.2e-l 1.2e-2 5170# 2.0e-1 
20 1.2e-10 2.5e-10 4.le-2 8.9e-3 5.0e-2 l.5e-l 
22 9.5e-12 5.0e-10 l.2e-l 2.5e-2 5810# 3.5e-l 
24 7.5e-13 l.6e-9 l.4e-l 5.le-2 1.5e-l 2.0e-1 
26 3.3e-13 7.0e-9 l.6e-l 3.7e-2 5.0e-2 5.5e-l 
28 5.le-13 3.6e-9 2.0le-1 5.3e-2 2.0e-1 6.0e-1 
30 8.2e-14 l.2e-7 9.9e-2 4.3e-2 5.0e-2 8.5e-l 

7 Discussion and Conclusions 

7.1 Function Variables as Genes 

Throughout this paper we have considered the fundamental unit of inheritance 
(genes) to be the function variables. This approach has enabled us characterise 
the effect of bit-flip mutation by probability distributions of changes in the 
function variables. This also showed the dependence of these changes on gene 
length .. 

In Table 4, columns headed µ show the optimum bit-flip mutation rate, 
whereas the column headed >. shows the optimum gene mutation rate. The 
values for ,\ show much less variation. This indicates that the gene mutation 
rate is the more significant parameter. 

7.2 Granularity 

The results shown in Table 6 show the dramatic effect of granularity on GA 
performance. In general the best results are obtained with a coarse granularity; 
we believe that a fine granularity retards convergence by allowing only small 
changes in the variables with bit-flip mutation. 

A glaring exception to this trend is shown in solving Fl using binary code 
representation where a finer granularity is preferable. A watch on the actual 
populations in this case shows that sometimes the population is trapped by a 
large Hamming cliff near the optimum (0,0,0). With a finer granularity, that 
particular cliff is closer to the origin and hence gives a better solution on these 

occasions. 
These results bear upon the comparison of the efficacy of GAs with ESs. 

Table 7 shows the results obtained by Hoffmeister and Back (1992) for those 
functions which we have also optimised. Our results are shown in the final 

column. 
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Table 7: Comparison of results with Hoffmeister and Back 

Fn. ES GA Our GA 
Fla le-5 3e0 2e-3 
F2 5000# le-2 3e-5 
F3 leO 3e-l 2610# 
F5 3.5e0 1250# 1650# 
F6 6e0 3.5el 2.5el 
F9 2el 2e3 9.5e2 

For the functions Fla, F2, F6 and F9, the ES algorithm was significantly 
better, sometimes by several orders of magnitude. In these cases, our imple
mentation of the GA was superior to that of Hoffmeister and Back, narrowing 
the performance gap with ESs. And for F3 and F5 where the GA was superior 
to ES, our implementation was still superior. 

It would appear that most of the superiority in our GA is due to the coarser 
granularity used. We made no effort here to optimise the granularity for perfor
mance, just selecting a granularity that was natural for the variable intervals in 
each case. So perhaps further improvements to the GA performance is possible 
by judicious selection of the representation length. 

Of course it may be argued that these problems are artificial and that the 
optima occur at coordinates that can be represented using a coarse granularity. 
With "real" problems one would expect the optima to occur at fractional co
ordinates and a fine granularity would be needed to encompass such solutions. 
This suggests that the best performance with bit-flip mutation may be obtained · 
by starting with short representations and increasing the string lengths as the 
GA approaches an optimum. This approach has been tried by other researchers 
using delta coding and dynamic parameter encoding. 

7 .3 Gray verses Binary Coding 

The other factor affecting performance is the type of variable representation 
used. The results confirm that Gray coding seems to be usually superior, espe
cially if the number of genes mutated is optimised. This may be due to the tra
ditional explanation that Gray coding eliminates Hamming cliffs. Perhaps the 
different distributions of changes play a role. The preference for binary coding 
in solving F3 may be explained by the gene changes exactly fitting the breadth 
of the steps. But we are unable to explain the difference between Fl where Gray 
coding is significantly better, and Fla where it is significantly worse. The only 
difference between these functions is the number of variables used. Except for 
this result, it appear that Gray coding is better for the "smoother" functions. 
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7.4 The Nature of Mutation 

Performance of our GAs are also affected by the number of genes (variables) in 
a chromosome that are allowed to mutate. Comparison of Tables 3 & 4 shows 
the value of optimising this . Note that the mean number of bits mutated for 
optimum performance, µ, varied greatly between the various functions. How
ever, the consequential mean number of genes mutated (.A) shows much less 
variation. 

We have shown that when mutation and crossover are used as indepen
dent reproduction operators, that is a new chromosome is produced by either 
crossover or mutation, best results are often obtained with quite low rates of 
crossover and hence high rates of mutation (see Tables 2 & 3). This could 
indicate that the "explorative" nature of crossover is not needed for these func
tions, or that for these functions crossover is able to absorb quite high rates 
of introduced genes successfully. These results show that mutation is a very 
important operator for GAs, and should not be regarded as just an operator to 
replace allele values lost from the population. 

References 

Caruana, R, & Schaffer, J. D. 1988. Representation .and Hidden Bias: Gray 
vs. Binary Coding for Genetic Algorithms. In: Proceedings of the 5th 
International Conference on Machine Learning. pp. 153-161. 

Davis, L. 1985. Job-shop Scheduling with Genetic Algorithms. In: Proceedings 
of an International Conference on Genetic Algorithms and their Applica
tions. pp. 136-140. 

Davis, L. (ed). 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold. 

Dawkins, R. 1982. The Extended Phenotype. Oxford University Press. 

De Jong, K. A. 1975. An analysis of the behaviour of a class of genetic adaptive 
system. Doctoral dissertation, University of Michigan. 

Falkenauer, E. A., & Delchambre, A. 1992. A Genetic Algorithm for Bin Packing 
and Line Balancing. In: Proceedings of 1992 IEEE International Confer
ence on Robotics and Automation(RA92). pp. 1186-1193. 

Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization B Ma
chine Learning. Addison-Wesley. 

Gordon, V.S., & Whitley, D. 1993. Serial and Parallel Genetic Algorithms 
as Function Optimizers. In: Forrest, Stephanie ( ed), Proceeding of the 
Fifth International Conference on Genetic Algorithms. Urbana-Champain: 
Morgan-Kaufmann. pp 177-183. 

Hinterding, Robert. 1994. Mapping, Order-independent Genes and the Knap
sack Problem. In: Proceedings of the First IEEE Conference on Evolution
ary Computation. Orlando, Florida: IEEE Press. pp. 13-17. 

13 



Hoffmeister, F., & Back, T. 1992 (Feb). Genetic Algorithms and Evolution 
Strategies: Similarities and Differences. Technical Report No. SYS-1/92. 
Systems Analysis Research Group, University of Dortmund, Germany. 

Holland, J. H. 1992. Adaption in Natural and Artificial Systems. 2nd edn. MIT 
Press. 

Hollstein, R. B. 1971. Artificial Genetic Adaption in Computer Control Sys
tems. Ph.D. Dissertation, Department of Computer and Communication 
Sciences, University of Michigan, Ann Arbor, Michigan. 

Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = Evolution Pro
grams. 2nd edn. Springer - Verlag. 

Rechenberg, R. 1973. Evolutionsstrategie: Optimierung technischer Syseme 
nach Prinzipien der biologischen Evolution. Stuttgart: Frommann-
Holzboog. 

Rosenbrock, H. H. 1960. An automatic method for finding the greatest or least 
value of a function. In: The Computer Journal. 3, vol. 3. pp 175-184. 

Schwefel, H-P. 1977. Numerische Optimierung von Computer-Modellen mittels 
der Evolutionsstrategie. Interdisciplinary systems research, vol. 26. Basel: 
Birhauser. 

Shekel, J. 1971. Test functions for multimodal search techniques. In: Fifth 
Annual Princeton Conference on Information Science and Systems. 

Torn, A., & Zilinskas, A. 1989. Global Optimization. Lecture Notes in Computer 
Science, vol. 350. Springer-Verlag. 

Wright, A.H. 1991. Genetic Algorithms for Real Parameter Optimization. In: 
Rawlins, G.E. (ed), Foundations of Genetic Algorithms. 3, vol. 3. Morgan 
Kauffmann. pp 205-218. 

14 




