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Abstract 
Representation and reproduction operators are important issues in Ge­

netic Algorithms(GAs). When optimising numerical functions some re­
searchers advocate using floating point representation instead of bit-string 
representation . Floating point representation is also used in Evolutionary 
Strategies(ESs) and Evolutionary Programming(EP) . We show that it is 
not the representation that is responsible for the improved performance, 
but the mutation operator. By using Gaussian mutation with bit-string 
representation we improve the performance of GAs. We then introduce 
self-adaption which raises the performance to that of ESs. We also show 
that keeping bit-string representation can have advantages to the efficiency 
of GAs. 

1 Introduction 

In Genetic Algorithms ( GAs ), bit-flip mutation is unchallenged when bit-string 
representation is used. Most research has concentrated on other issues as mu­
tation is generally considered to be a background operator used only to replace 
bits lost by crossover (Holland, 1992; Goldberg, 1989). Other forms of muta­
tion have been used when bit-string representation was inappropriate or was 
not used. Examples of GAs not using bit-flip mutation are Order based GAs 
(Davis, 1991), Grouping GAs (Falkenauer & Delchambre, 1992) and real valued 
GAs (Wright, 1991) . 

The other areas of Evolutionary Computation, Evolutionary Programming 
· (EP) and Evolutionary Strategies (ES) consider mutation to be far more impor­

tant (Back & Schwefel, 1993). In fact in EP, mutation is the only reproduction 
operator. 

In Hinterding, Gielewski & Peachey (1995) it was shown that by considering 
function variables as genes in GAs using bit-string representation, important 
characteristics about representation and mutation could be discerned . By con­
sidering mutation as an independent reproduction operator, its importance to 
GAs was demonstrated. The probability distributions of bit-flip mutation on 
genes using Gray or binary decoding were developed and showed that neither of 
these types of mutation is ideal as the changes to the function variables cluster 
very strongly about zero and are sensitive to the granularity used to represent 
the function variables. 

When we consider the function variables to be the genes, we can develop 
other mutation operators besides bit-flipping. We now have a much larger al­
phabet for the genes , and can consider mutation to generate a normal distribu­
tion of changes. This can be simulated by adding Gaussian noise to gene values 
(Gaussian mutation). Gaussian mutation is not new to Evolutionary Compu­
tation as it has been used in both Evolutionary Strategies and Evolutionary 
Programming (Back & Schwefel, 1993; Saravanan & Fogel, 1994). 

We investigate the usefulness of Gaussian mutation in GAs used for nu­
meric function optimisation. We maintain bit string representation so that the 
distinction between genotype and phenotype is maintained, and control over 

\ the granularity of representation is possible. Hence, the changes to the GA 
paradigm are minimised and the normal crossover operators can be used . 
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Self-adaption is a powerful tool that has long been used in ESs (Back, 1992; 
Schwefel, 1995) to set the values of the strategy parameters. Back (1992) used 
self-adaption in GAs to control the probability for flipping bits representing one 
of more function variables. We use self-adaption to allow the GA to control the 
variance for Gaussian mutation. 

We show that Gaussian mutation can give superior results to bit-flipping 
mutation for most functions, in particular Gaussian mutation is better for some 
of the "deceptive" problems. We also show that using self adaption to control 
the variance for Gaussian mutation gives significant improvement for most of 
the functions and that the changes of the variance over time are appropriate 
for the different types of functions being optimised . 

In ES and EP, the function variables are represented as floating point num­
bers. In GAs the "traditional" representation is bit-strings that are mapped 
to fixed-point reals, although a number of researchers advocate using floating 
point numbers (Davis, 1991; Michalewicz, 1994; Wright, 1991) . We investi­
gate whether bit-string repesentation has any advantages over floating point 
representation. 

2 Gaussian mutation 

By considering the variables of the function that are being optimised as the 
genes, we can define new mutation operations besides the standard bit-flipping 
mutation operator. The distribution of changes to genes by using bit-flipping 
mutation with either Gray or binary decoding is not ideal. When Gray decoding 
is used, most of the changes are very small and it is very sensitive to choosing the 
correct granularity. Binary decoding has the effect that all possible changes are 
equally likely, but there are large gaps in the distribution of possible changes. 
It seems reasonable therefore that mutation which has normally distributed 
changes could produce better results and reduce the sensitivity to choosing the 
length of the variables. 

We implement fixed Gaussian mutation by first decoding the gene to an 
unsigned integer and then adding Gaussian noise, the new value is then encoded 
and replaces the gene in the chromosome. Gaussian noise is obtained from a 
normally distributed random variable which has a mean of 0 and a standard 
deviation of 0.1 times the maximum value of the gene. The value 0.1 was chosen 
so that an interval of more than 3 standard deviations each side of the mid­
point of the range will encompass most of the range. With this scheme new 
gene values can exceed the range at either end of the range if the original gene 
value is sufficiently far away from the mid-point of the range. These values can 
be treated in two ways, we can either truncate the value back to the end-point 
it exceeded, or the value can be allowed to "wrap around", that is multiples of 
the range are added or subtracted to give a value within the range. 

The effects of Gray or binary decoding are removed from mutation, as the 
value is decoded and then mutated, and then encoded before replacing the 
original gene. 
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2.1 Self-adaptive Gaussian Mutation. 

In ESs and in meta-EPs self-adaption is used to control strategy parameters. 
Here learning is used to adjust the strategy parameters while searching for the 
optimum. One of the problems with Evolutionary Computation algorithms is 
finding values for the parameters which will optimise their performance. The 
optimal values for the parameters are generally not constant during the whole 
run, and also depend on the function to be solved. Hence allowing the algorithm 
to adjust the values during the run can have large benefits. 

We add one value to each chromosome, which will control the standard 
deviation of the Gaussian mutation used on the genes in the chromosome that 
will be mutated. This value is allowed to participate in crossover and mutation, 
but does not contribute directly to the fitness of the solution. This simple 
scheme should allow us to test its utility. 

We implement self-adaptive mutation by adding an extra gene to the front 
of all chromosomes. The values of this gene are allowed to vary from 0.00002 
to 0.2. This gene is allowed to participate normally in crossover, but when the 
chromosome is to be mutated the following steps are followed: 

1. decode the gene to a value. 

2. apply Gaussian noise to the value using a standard deviation of 0.013. 
This value was found experimentally to give good results. 

3. use this value as the standard deviation of the Gaussian noise to mutate 
the other genes in the chromosome. 

4. write the mutated special gene and the mutated genes back to the chro­
mosome. 

When the initial population is created, the special genes are given random 
values around 0 .1. 

3 Numeric GA Test functions 

The test functions have been taken from a number of sources, and more difficult 
functions have been included. Fl - F5 are from De Jong (1975), F6 - F8 are 
from Scott & Whitley (1993), F9 is from Hoffmeister and Back (1992), and FlO 
is from Michalewicz (1994). The range, number of variables and number of bits 
used to represent each variable is summarised in Table 1. 

• Fl Sphere Model. This is a continuous, strictly convex, unimodal func­
tion. The solution is at x* = (0, ... , Of; fi(x*) = 0. This is a scalable 
problem, with n = 3 the problem is easy, Hoffmeister & Back (1992) use 
n = 30, which we call test function Fla. 

• F2 Rosenbrock's Function. This is a continuous, unimodal, bi-quadratic 
function of two variables. It is a standard test function in optimisa­
tion which was proposed by Rosenbrock (1960). The solution is at x* = 
(1, lf; h(x*) = 0. 
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• F3 De Jong Step Function. This is a simple linear but discontinuous func­
tion, which consists of many small plateaus. Due to this characteristic f3 
has a lot oflocal optima. The solution is at Xi E [-5.12, ... , -5); h(x*) = 
0. 

• F5, Shekel's Foxholes. This is a continuous, non-linear, multimodal func­
tion proposed by Shekel ( 1971). It is a difficult problem as it consists of a 
large plateau with some holes in it which have different objective values 
at their bottoms, while the plateau is made up of equal objective values. 
The solution is at xi = (-32, -32f; fs(x*) ~ 1. 

• f6, Generalised Rastrigin's Function. This function is a scalable, contin­
uous, mulitmodal test function which is made from Fl by modulating it 
with Acos(27rxi)· It was first proposed by Rastigin as a 2-dimensional 
problem (Torn & Zilinskas, 1989), and has been generalised by Rudolph 
(1991) as a test function for distributed parallel ESs. The solution is at 
x* = (0, . .. , Of; fB(x*) = 0. 

• F7, Schwefel's Fu·nction. This is a multimodal function characterised by 
a second-best minimum which is far away from the global optimum. The 
solution is at x* = (421, ... ,421f; h(x*) = 0. 

• F8, Griewangk's Function. This function is difficult for GAs because the 
variables are strongly independent. The solution is at x* = (0, ... , o)T; 
fs(x*) = 0. 

• F9, Schwefel's Problem 1.2. This is a continuous, unimodal function which 
comes from the set of test functions that Schwefel (1977) once used to 
compare the performance of several optimisation methods. The difficulty 
of this function results from the fact that searching along the coordinate 
axes only gives a poor rate of convergence. The solution is at x* = 
(0, ... 'of; fg(x*) = 0. 

• FlO, Michalewicz's dynamic control problem. The range of x is (-200, 
200), the function has a minimum at 16,180.4. 

4 The GA 

The Genetic Algorithm used is a steady-state GA based on the description of 
OOGA in Davis (1991). Tournament selection is used with a tournament size 
of 2 as this was faster and gave comparable results to roulette wheel selection 
with linear normalisation. It was developed using Smalltalk/V for Windows. 
The following parameters can be set: 

• Population Size - set the size of the population. 

• Allow Duplicates - set a flag to allow or disallow duplicates to exist in 
the population. If duplicates are not allowed, any duplicates produced by 
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Fn. Range No Vars Bits/Var Tot Len 
Fl ±5.12 3 10 30 
Fla. ±5.12 30 10 300 
F2 ±2.028 2 12 24 
F3 ±5.12 5 10 50 
F5 ±65.536 2 17 34 
F6 ±5.12 20 10 200 
F7 ±512 10 10 100 
F8 ±512 10 10 100 
F9 ±65.536 20 17 340 
FlO ±200.0 45 12 540 

Table 1: Function Characteristics 

reproduction are discarded while they still count as an evaluation. We 
determine whether two chromosomes are the same by comparing their 
genotypes. 

• Number of Evaluations - set the number of evaluations for the run. We 
use evaluations rather than generations so that we can comp&re between 
runs where the population size and replacement rate are different. 

• Replacement Rate - set the percentage of the population that will be 
replaced by reproduction in one generation. The rate can be set from 0 
to 1003. 

• Crossover Rate - set the percentage of the replacement population that 
will be replaced by crossover in one generation. The remainder of the 
replacement population will be produced by mutation. The rate can be 
set from 0 to 1003. 

• Poisson Mutation - use a Poisson distributed random variable to deter­
mine how many genes to mutate in a chromosome. If this is false only 
one gene per chromosome is mutated. 

• Poisson Mean - set the mean ( >.) for the Poisson distributed random 
variable. This controls the number of genes that will be mutated in the 
chromosome if Poisson Mutation is true. 

Two point crossover was used for all the experiments, although others were 
available. 

In the Genetic Algorithm used, a new chromosome is produced either by 
crossover or mutation but not both. In this way we treat crossover and mutation 
as independent reproduction operators. This was done so that the separate 
effects of these reproduction operators could be determined. By using these 
operators independently and varying the application rates we can determine 

5 



fixed self-adaptive 
Fn. Best A Crx. Rep Best A Crx. Rep 
Fl 3570# 1.5 50 80 3830# 2 40 60 
Fla 4.6e-2 1.5 50 20 9e-5 10 40 60 
F2 8.9e-5 5 40 90 7490# 5 10 80 

I 

F3 1895# 2 ' 30 30 2550# 1 50 50 
I 

F5 2690# 2 50 80 3830# 1 60 60 
F6 1.9e0 1.2 50 40 3.leO 1. 7 60 60 
F7 5.6el 2.5 50 20 7.3el 4 60 90 
F8 l.6e-l 1 60 20 7.9e-2 1.5 40 20 
F9 3.6e2 2 10 90 1.4e2 10 10 40 
FlO 4.2e4 2.5 30 90 2.6e4 15 10 20 

Table 2: Results for Gaussian mutation 

the mix of these operators that produces the best results within a given number 
of evaluations. 

The mutation rate for the GA is (100% - Crossover rate). The mutation 
rate is the percentage of chromosomes of the replacement population that will 
undergo mutation. If Poisson Mutation is false, then mutation of one gene 
is carried out. If Poisson Mutation is true, then the number of genes to be 
mutated in a chromosome is determined by sampling a Poisson distributed 
random variable with mean A. If n genes are to be mutated in a chromosome, 
then we repeat n times: select a random gene from the chromosome and mutate 
the gene. Note that mutation is now controlled by the crossover rate, the 
number of genes in the chromosome to mutate, and the standard deviation of 
the Gaussian noise if Gaussian mutation is used. 

5 The Experiments 

5.1 Gaussian Mutation 

Table 2 show the results for the GAs using fixed and self-adaptive Gaussian 
mutation. Three sets of runs were performed on each problem, so that the 
parameters could be varied to get some indication of the best settings for each 
problem. The parameters that were varied were the crossover (and mutation 
rate), the replacement rate, and whether Poisson based mutation used. In the 
set of runs where Poisson based mutation was used, the Poisson mean was 
varied. In each run the GA is run on the problem 20 times and the results are 
averaged. 

For comparison, results from GAs using bit-flip mutation are shown in Table 
3. In Table 3, the column "Evals" shows the number of evaluations that the 
GAs performed in each run for that function. In tables 2 & 3 "Best" shows the 
best value found if the number is in E notation or the number of evaluations 
required to find the optimum if the number is suffixed by a "#". "Crx" shows 
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Fn. Evals Best A µ Crx. Rep 
Fl 4,000 2510# 2.7 0.09 40 20 
Fla 12,000 7.9e-2 2.1 0.007 50 40 
F2 12,000 3.3e-5 3.6 0.15 20 80 
F3 6,000 5090# 3 0.06 10 70 
F5 4,000 1650# 2.4 0.07 10 90 
F6 12,000 2.8el 2.2 0.011 80 90 
F7 12,000 2.5e2 4.2 0.042 10 40 
F8 12,000 l.2e-l 3 0.03 40 40 
F9 12,000 9.5e2 5.8 0.017 10 90 
FlO 20,000 9.6e4 3.4 0.006 10 20 

Table 3: Results from bit-flip mutation 

Fn. Best Mutation type 
Fl Bit-flip 
Fla Gauss. Self Adapt 
F2 Gauss. Self Adapt 
F3 Gauss 
F5 Bit-flip 
F6 Gauss 
F7 Gauss 
F8 Gauss Self Adapt 
F9 Gauss Self Adapt 
FlO Gauss Self Adapt 

Table 4: Best results by GA type 

the crossover rate for the best results, and "rep" show the replacement rate 
which gave best results for a crossover rate of 503. 

The figures in bold show the best results obtained for that function in the 
table. 

In Tables 2 and 3, "A" shows the Poisson mean which gave the best results. 
The data from Table 3 is from Hinterding, Gielewski and Peachey (1995), the 
same same GA was used to produce these results. Here bit-flip mutation and 
Gray encoding was used. 

5.2 Gene Length 

In Hinterding, Gielewski & Peachey (1995) it was shown that the strength 
of bit-flip mutation was dependent on the number of bits used to represent 
a gene (function variable). Gaussian mutation should remove this sensitivity, 
but the number of bits used to represent a gene will still affect the size of the 
search space. Each extra bit uried to represent a gene doubles the search space. 
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Figure 1: Percentage successful mutations for Fla 

In Evolutionary Algorithms where floating point representation is used, the 
search space is huge as floating point representation gives a very fine granularity. 
Experiments were run on all the functions and the number of bits used to 
represent genes was varied from 10 to 30 bits. These runs used fixed Gaussian 
mutation. 

From the results in Table 5, ·we see that for some of the functions the 
gene length has no significant effect while for others the shorter gene length 
gives better results. These differences could be explained by the change in 
granularity or by changes to the efficiency of crossover. If the optimum can be 
found during the run, having a coarser granularity makes the optimum easier 
to find. Where the optimum is not likely to be found during the run (on the 
more difficult problems), the granularity used may have only a small effect. 
Crossover could be effected by finer granularity (and longer representation) as 
a greater percentage of crossovers will produce only a very small change in the 
function value. The results are generally worse for longer gene representation, 
but do not deteriorate as quickly as when bit-flip mutation is used (Hinterding 
et al. , 1995). 

5.3 Recombination or Crossover 

In GAs using bit-string representation crossover points can occur anywhere 
in the chromosome. When floating point representation is used some form of re­
combination of the genes is used instead of crossover (Davis, 1991; Michalewicz, 
1994; Wright, 1991). A version of the GA was created where crossover points 
could only occur between the genes (function variables), that is the genes 
were treated as discrete entities. Table 6 gives the results of both the GA 
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Fn. 10 bits 14 bits 18 bits 22 bits 26 bits 30 bits 
Fl 2690# 4010# l.6e-8 l.6e-8 4.le-7 9.9e-7 
fla 4.6e-2 5.0e-2 4.8e-2 4.9e-2 4.5e-2 4.5e-2 
F2 3.0e-5 2.4e-4 2.3e-4 2.le-4 1. 7e-4 3.3e-4 
F3 1895# 3740# 3125# 2510# 3740# 2510# 
F5 2690# 3130# 2690# 3130# 4010# 4010# 
F6 l.7e0 l.9e0 2.4e0 2.2e0 l.9e0 2.leO 
F7 3.7e2 4.le2 4.le2 4.3e2 5.4e2 6.2e2 
F8 2.8e-l 2.8e-l 3.0e-1 3.5e-l 8.3e-l 8.4e-l 
F9 l.3e3 l.8e3 l.7e3 2.3e3 2.5e3 2.8e3 
FlO l.le5 l.4e5 l.7e5 l.8e5 2.le5 2.4e5 

Table 5: Results for Varying Gene Length 

fixed self-adaptive 
Fn. con tin. discrete contin. discrete 

Fl 3570# l.9e-4 3830# 8.0e-5 
Fla 4.6e-2 4.3e-2 9e-5 1. 7e-2 

F2 8.9e-5 7.7e-4 7490# 7490# 
F3 · 1895# 1895# 2550# 3175# 
F5 2690# 9.9e-l 3830# l.8e0 

F6 1.9e0 2.5e0 3.leO l.Oel 

F7 5.6el 6.8el 7.3el l.2e2 

F8 1.6e-1 3.5e-l 7.9e-2 l.2e-l 

F9 3.6e2 4.5e2 l.4e2 l.4e2 

FlO 4.2e4 4.6e2 2.6e4 2.6e4 

Table 6: Results for comparison with discrete genes 
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Figure 2: Change in variance in Self Adaptive GA 

where crossover points can occur within the genes ( contin.) and the GA where 
crossover points can only occur between genes (discrete). While this is only a 
simple experiment as other forms of recombination are also used, the results 
indicate that crossover is beneficial. 

6 Discussion and Conclusions 

By treating the function objective variables as genes, we are able to introduce 
new mutation operators which could not be envisioned when we treat the binary 
bits of the chromosome as genes. 

We can see from Table 4 that GAs using Gaussian mutation produced the 
best results for most of the functions . We can therefore conclude Gaussian 
mutation is a useful mutation operator and is in most cases superior to bit flip 
mutation. Our GAs use mutation as an independent reproduction operator, 
that is a new individual (chromosome) is produced by either crossover or mu­
tation and not both. By comparing Tables 2 and 3 we can see that when using 
Gaussian mutation, the crossover rate is more often near 503. We speculate 
that this could be due to Gaussian mutation producing values that crossover 
can more easily utilise. 

GAs using self-adaptive Gaussian mutation work, they produce values that 
are close to or better than the GAs using fixed Gaussian mutation. The GA 
keeps track of the number of mutations that are better than the individual that 
the mutant was produced from . Figure 1 shows the rolling average of successful 
mutations for function Fla. The self adaptive GA keeps the percentage higher 
for all of the run, showing that it can successfully optimise the variance for the 
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Figure 2 shows the change in the variance of the Gaussian mutation when 
self-adaption is used. For Fla the variance is decreased as expected and is very 
small towards the end of the run, while the variances for F6 and F7 are both kept 
high throughout the run. Function F6, Rastrigins's function is characterised by 
many local optima, in this case keeping the variance high would optimise the 
chance of hitting a peak. F7 is a "deceptive" problem with a local optimum a 
long way from the optimum, again keeping the variance high is advantageous . 
This shows that self adaption is capable of adapting to different situations 
successfully. 

Part of the improvement for function F7, with the GAs using Gaussian 
mutation we attribute to the fact that "wrap around" is used in the Gaussian 
mutation operator. F7 is like the "deceptive" problems (Deb & Goldberg, 
1992) in that it has a second best optimum near one end of the range while 
the optimum is at the other end (see Fig 3). By allowing values being mutated 
to "wrap around" a much short path to the optimum value is provided. This 
result looks very promising and could eliminate a class of "deceptive" problems. 

When we now compare our results with those of ESs in Hoffmeister and 
Back (1992) (see Table 7), we see that our GAs using Gaussian or self-adaptive 
Gaussian mutation now have comparable performance. ESs appear to do bet­
ter on the "smoother" functions, while our GAs do better on the "rougher" 

functions. 
We have shown large improvements in GAs perfomance on numeric func­

tion optimisation is possible by choosing better reproduction operators. By 
keeping bit-string representation, we maintain control of the granularity of rep­
resentation for the function variables and we can keep our normal crossover 
operators, both of which are beneficial. In fact we speculate that the improve-
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Fn. ES Our GAs 
Fla le-5 9e-5 
F2 5000# 7490# 
F3 leO 1895# 
F5 3.5e0 2690# 
F6 6e0 1.9e0 
F9 2el 1.4e2 

Table 7: Comparison of results with Hoffmeister and Back 

ment reported by switching from bit-string to floating point representation in 
GAs(Davis, 1991; Wright, 1991) is due the different mutation operators used 
rather than any change in representation. 
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