
VICTORIA ~
UNIVERSITY

•
:
n
z
z
0 .
0

. :

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Representation and Self-adaption in

Genetic Algorithms

Robert Hinterding

(69 COMP 23)

February, 1996

(AMS : 68T05)

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMPUTER AND MATHEMATICAL SCIENCES

P 0 BOX 14428
MCMC

MELBOURNE, VICTORIA 8001
AUSTRALIA

TELEPHONE (03) 9688 4492
FACSIMILE (03) 9688 4050

F ootscray Campus

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Representation and Self-adaption in Genetic Algorithms 1

Robert Hinterding
email: rhh@matilda.vut.edu.au

TECHNICAL REPORT
69COMP23

December 1995

Department of Computer and Mathematical Sciences
VICTORIA UNIVERSITY OF TECHNOLOGY
PO Box 14428 MMC, Melbourne 3000, Australia

Telephone +61 3 9688 4249
Facsimile +61 3 9688 4050

1 A version of this report was presented at the Korea-Australia Joint Workshop on Evolu­
tionary Computation, Taejon Korea, Sept 1995.

mailto:rhh@matilda.vut.edu.au

Abstract
Representation and reproduction operators are important issues in Ge­

netic Algorithms(GAs). When optimising numerical functions some re­
searchers advocate using floating point representation instead of bit-string
representation . Floating point representation is also used in Evolutionary
Strategies(ESs) and Evolutionary Programming(EP) . We show that it is
not the representation that is responsible for the improved performance,
but the mutation operator. By using Gaussian mutation with bit-string
representation we improve the performance of GAs. We then introduce
self-adaption which raises the performance to that of ESs. We also show
that keeping bit-string representation can have advantages to the efficiency
of GAs.

1 Introduction

In Genetic Algorithms (GAs), bit-flip mutation is unchallenged when bit-string
representation is used. Most research has concentrated on other issues as mu­
tation is generally considered to be a background operator used only to replace
bits lost by crossover (Holland, 1992; Goldberg, 1989). Other forms of muta­
tion have been used when bit-string representation was inappropriate or was
not used. Examples of GAs not using bit-flip mutation are Order based GAs
(Davis, 1991), Grouping GAs (Falkenauer & Delchambre, 1992) and real valued
GAs (Wright, 1991) .

The other areas of Evolutionary Computation, Evolutionary Programming
· (EP) and Evolutionary Strategies (ES) consider mutation to be far more impor­

tant (Back & Schwefel, 1993). In fact in EP, mutation is the only reproduction
operator.

In Hinterding, Gielewski & Peachey (1995) it was shown that by considering
function variables as genes in GAs using bit-string representation, important
characteristics about representation and mutation could be discerned . By con­
sidering mutation as an independent reproduction operator, its importance to
GAs was demonstrated. The probability distributions of bit-flip mutation on
genes using Gray or binary decoding were developed and showed that neither of
these types of mutation is ideal as the changes to the function variables cluster
very strongly about zero and are sensitive to the granularity used to represent
the function variables.

When we consider the function variables to be the genes, we can develop
other mutation operators besides bit-flipping. We now have a much larger al­
phabet for the genes , and can consider mutation to generate a normal distribu­
tion of changes. This can be simulated by adding Gaussian noise to gene values
(Gaussian mutation). Gaussian mutation is not new to Evolutionary Compu­
tation as it has been used in both Evolutionary Strategies and Evolutionary
Programming (Back & Schwefel, 1993; Saravanan & Fogel, 1994).

We investigate the usefulness of Gaussian mutation in GAs used for nu­
meric function optimisation. We maintain bit string representation so that the
distinction between genotype and phenotype is maintained, and control over

\ the granularity of representation is possible. Hence, the changes to the GA
paradigm are minimised and the normal crossover operators can be used .

1

Self-adaption is a powerful tool that has long been used in ESs (Back, 1992;
Schwefel, 1995) to set the values of the strategy parameters. Back (1992) used
self-adaption in GAs to control the probability for flipping bits representing one
of more function variables. We use self-adaption to allow the GA to control the
variance for Gaussian mutation.

We show that Gaussian mutation can give superior results to bit-flipping
mutation for most functions, in particular Gaussian mutation is better for some
of the "deceptive" problems. We also show that using self adaption to control
the variance for Gaussian mutation gives significant improvement for most of
the functions and that the changes of the variance over time are appropriate
for the different types of functions being optimised .

In ES and EP, the function variables are represented as floating point num­
bers. In GAs the "traditional" representation is bit-strings that are mapped
to fixed-point reals, although a number of researchers advocate using floating
point numbers (Davis, 1991; Michalewicz, 1994; Wright, 1991) . We investi­
gate whether bit-string repesentation has any advantages over floating point
representation.

2 Gaussian mutation

By considering the variables of the function that are being optimised as the
genes, we can define new mutation operations besides the standard bit-flipping
mutation operator. The distribution of changes to genes by using bit-flipping
mutation with either Gray or binary decoding is not ideal. When Gray decoding
is used, most of the changes are very small and it is very sensitive to choosing the
correct granularity. Binary decoding has the effect that all possible changes are
equally likely, but there are large gaps in the distribution of possible changes.
It seems reasonable therefore that mutation which has normally distributed
changes could produce better results and reduce the sensitivity to choosing the
length of the variables.

We implement fixed Gaussian mutation by first decoding the gene to an
unsigned integer and then adding Gaussian noise, the new value is then encoded
and replaces the gene in the chromosome. Gaussian noise is obtained from a
normally distributed random variable which has a mean of 0 and a standard
deviation of 0.1 times the maximum value of the gene. The value 0.1 was chosen
so that an interval of more than 3 standard deviations each side of the mid­
point of the range will encompass most of the range. With this scheme new
gene values can exceed the range at either end of the range if the original gene
value is sufficiently far away from the mid-point of the range. These values can
be treated in two ways, we can either truncate the value back to the end-point
it exceeded, or the value can be allowed to "wrap around", that is multiples of
the range are added or subtracted to give a value within the range.

The effects of Gray or binary decoding are removed from mutation, as the
value is decoded and then mutated, and then encoded before replacing the
original gene.

2

2.1 Self-adaptive Gaussian Mutation.

In ESs and in meta-EPs self-adaption is used to control strategy parameters.
Here learning is used to adjust the strategy parameters while searching for the
optimum. One of the problems with Evolutionary Computation algorithms is
finding values for the parameters which will optimise their performance. The
optimal values for the parameters are generally not constant during the whole
run, and also depend on the function to be solved. Hence allowing the algorithm
to adjust the values during the run can have large benefits.

We add one value to each chromosome, which will control the standard
deviation of the Gaussian mutation used on the genes in the chromosome that
will be mutated. This value is allowed to participate in crossover and mutation,
but does not contribute directly to the fitness of the solution. This simple
scheme should allow us to test its utility.

We implement self-adaptive mutation by adding an extra gene to the front
of all chromosomes. The values of this gene are allowed to vary from 0.00002
to 0.2. This gene is allowed to participate normally in crossover, but when the
chromosome is to be mutated the following steps are followed:

1. decode the gene to a value.

2. apply Gaussian noise to the value using a standard deviation of 0.013.
This value was found experimentally to give good results.

3. use this value as the standard deviation of the Gaussian noise to mutate
the other genes in the chromosome.

4. write the mutated special gene and the mutated genes back to the chro­
mosome.

When the initial population is created, the special genes are given random
values around 0 .1.

3 Numeric GA Test functions

The test functions have been taken from a number of sources, and more difficult
functions have been included. Fl - F5 are from De Jong (1975), F6 - F8 are
from Scott & Whitley (1993), F9 is from Hoffmeister and Back (1992), and FlO
is from Michalewicz (1994). The range, number of variables and number of bits
used to represent each variable is summarised in Table 1.

• Fl Sphere Model. This is a continuous, strictly convex, unimodal func­
tion. The solution is at x* = (0, ... , Of; fi(x*) = 0. This is a scalable
problem, with n = 3 the problem is easy, Hoffmeister & Back (1992) use
n = 30, which we call test function Fla.

• F2 Rosenbrock's Function. This is a continuous, unimodal, bi-quadratic
function of two variables. It is a standard test function in optimisa­
tion which was proposed by Rosenbrock (1960). The solution is at x* =
(1, lf; h(x*) = 0.

3

• F3 De Jong Step Function. This is a simple linear but discontinuous func­
tion, which consists of many small plateaus. Due to this characteristic f3
has a lot oflocal optima. The solution is at Xi E [-5.12, ... , -5); h(x*) =
0.

• F5, Shekel's Foxholes. This is a continuous, non-linear, multimodal func­
tion proposed by Shekel (1971). It is a difficult problem as it consists of a
large plateau with some holes in it which have different objective values
at their bottoms, while the plateau is made up of equal objective values.
The solution is at xi = (-32, -32f; fs(x*) ~ 1.

• f6, Generalised Rastrigin's Function. This function is a scalable, contin­
uous, mulitmodal test function which is made from Fl by modulating it
with Acos(27rxi)· It was first proposed by Rastigin as a 2-dimensional
problem (Torn & Zilinskas, 1989), and has been generalised by Rudolph
(1991) as a test function for distributed parallel ESs. The solution is at
x* = (0, . .. , Of; fB(x*) = 0.

• F7, Schwefel's Fu·nction. This is a multimodal function characterised by
a second-best minimum which is far away from the global optimum. The
solution is at x* = (421, ... ,421f; h(x*) = 0.

• F8, Griewangk's Function. This function is difficult for GAs because the
variables are strongly independent. The solution is at x* = (0, ... , o)T;
fs(x*) = 0.

• F9, Schwefel's Problem 1.2. This is a continuous, unimodal function which
comes from the set of test functions that Schwefel (1977) once used to
compare the performance of several optimisation methods. The difficulty
of this function results from the fact that searching along the coordinate
axes only gives a poor rate of convergence. The solution is at x* =
(0, ... 'of; fg(x*) = 0.

• FlO, Michalewicz's dynamic control problem. The range of x is (-200,
200), the function has a minimum at 16,180.4.

4 The GA

The Genetic Algorithm used is a steady-state GA based on the description of
OOGA in Davis (1991). Tournament selection is used with a tournament size
of 2 as this was faster and gave comparable results to roulette wheel selection
with linear normalisation. It was developed using Smalltalk/V for Windows.
The following parameters can be set:

• Population Size - set the size of the population.

• Allow Duplicates - set a flag to allow or disallow duplicates to exist in
the population. If duplicates are not allowed, any duplicates produced by

4

Fn. Range No Vars Bits/Var Tot Len
Fl ±5.12 3 10 30
Fla. ±5.12 30 10 300
F2 ±2.028 2 12 24
F3 ±5.12 5 10 50
F5 ±65.536 2 17 34
F6 ±5.12 20 10 200
F7 ±512 10 10 100
F8 ±512 10 10 100
F9 ±65.536 20 17 340
FlO ±200.0 45 12 540

Table 1: Function Characteristics

reproduction are discarded while they still count as an evaluation. We
determine whether two chromosomes are the same by comparing their
genotypes.

• Number of Evaluations - set the number of evaluations for the run. We
use evaluations rather than generations so that we can comp&re between
runs where the population size and replacement rate are different.

• Replacement Rate - set the percentage of the population that will be
replaced by reproduction in one generation. The rate can be set from 0
to 1003.

• Crossover Rate - set the percentage of the replacement population that
will be replaced by crossover in one generation. The remainder of the
replacement population will be produced by mutation. The rate can be
set from 0 to 1003.

• Poisson Mutation - use a Poisson distributed random variable to deter­
mine how many genes to mutate in a chromosome. If this is false only
one gene per chromosome is mutated.

• Poisson Mean - set the mean (>.) for the Poisson distributed random
variable. This controls the number of genes that will be mutated in the
chromosome if Poisson Mutation is true.

Two point crossover was used for all the experiments, although others were
available.

In the Genetic Algorithm used, a new chromosome is produced either by
crossover or mutation but not both. In this way we treat crossover and mutation
as independent reproduction operators. This was done so that the separate
effects of these reproduction operators could be determined. By using these
operators independently and varying the application rates we can determine

5

fixed self-adaptive
Fn. Best A Crx. Rep Best A Crx. Rep
Fl 3570# 1.5 50 80 3830# 2 40 60
Fla 4.6e-2 1.5 50 20 9e-5 10 40 60
F2 8.9e-5 5 40 90 7490# 5 10 80

I

F3 1895# 2 ' 30 30 2550# 1 50 50
I

F5 2690# 2 50 80 3830# 1 60 60
F6 1.9e0 1.2 50 40 3.leO 1. 7 60 60
F7 5.6el 2.5 50 20 7.3el 4 60 90
F8 l.6e-l 1 60 20 7.9e-2 1.5 40 20
F9 3.6e2 2 10 90 1.4e2 10 10 40
FlO 4.2e4 2.5 30 90 2.6e4 15 10 20

Table 2: Results for Gaussian mutation

the mix of these operators that produces the best results within a given number
of evaluations.

The mutation rate for the GA is (100% - Crossover rate). The mutation
rate is the percentage of chromosomes of the replacement population that will
undergo mutation. If Poisson Mutation is false, then mutation of one gene
is carried out. If Poisson Mutation is true, then the number of genes to be
mutated in a chromosome is determined by sampling a Poisson distributed
random variable with mean A. If n genes are to be mutated in a chromosome,
then we repeat n times: select a random gene from the chromosome and mutate
the gene. Note that mutation is now controlled by the crossover rate, the
number of genes in the chromosome to mutate, and the standard deviation of
the Gaussian noise if Gaussian mutation is used.

5 The Experiments

5.1 Gaussian Mutation

Table 2 show the results for the GAs using fixed and self-adaptive Gaussian
mutation. Three sets of runs were performed on each problem, so that the
parameters could be varied to get some indication of the best settings for each
problem. The parameters that were varied were the crossover (and mutation
rate), the replacement rate, and whether Poisson based mutation used. In the
set of runs where Poisson based mutation was used, the Poisson mean was
varied. In each run the GA is run on the problem 20 times and the results are
averaged.

For comparison, results from GAs using bit-flip mutation are shown in Table
3. In Table 3, the column "Evals" shows the number of evaluations that the
GAs performed in each run for that function. In tables 2 & 3 "Best" shows the
best value found if the number is in E notation or the number of evaluations
required to find the optimum if the number is suffixed by a "#". "Crx" shows

6

Fn. Evals Best A µ Crx. Rep
Fl 4,000 2510# 2.7 0.09 40 20
Fla 12,000 7.9e-2 2.1 0.007 50 40
F2 12,000 3.3e-5 3.6 0.15 20 80
F3 6,000 5090# 3 0.06 10 70
F5 4,000 1650# 2.4 0.07 10 90
F6 12,000 2.8el 2.2 0.011 80 90
F7 12,000 2.5e2 4.2 0.042 10 40
F8 12,000 l.2e-l 3 0.03 40 40
F9 12,000 9.5e2 5.8 0.017 10 90
FlO 20,000 9.6e4 3.4 0.006 10 20

Table 3: Results from bit-flip mutation

Fn. Best Mutation type
Fl Bit-flip
Fla Gauss. Self Adapt
F2 Gauss. Self Adapt
F3 Gauss
F5 Bit-flip
F6 Gauss
F7 Gauss
F8 Gauss Self Adapt
F9 Gauss Self Adapt
FlO Gauss Self Adapt

Table 4: Best results by GA type

the crossover rate for the best results, and "rep" show the replacement rate
which gave best results for a crossover rate of 503.

The figures in bold show the best results obtained for that function in the
table.

In Tables 2 and 3, "A" shows the Poisson mean which gave the best results.
The data from Table 3 is from Hinterding, Gielewski and Peachey (1995), the
same same GA was used to produce these results. Here bit-flip mutation and
Gray encoding was used.

5.2 Gene Length

In Hinterding, Gielewski & Peachey (1995) it was shown that the strength
of bit-flip mutation was dependent on the number of bits used to represent
a gene (function variable). Gaussian mutation should remove this sensitivity,
but the number of bits used to represent a gene will still affect the size of the
search space. Each extra bit uried to represent a gene doubles the search space.

7

30

fixed ~
25 self adapt -8-

20

% 15 succ.

10

5

0
0 3000 6000 9000 12000

Evals

Figure 1: Percentage successful mutations for Fla

In Evolutionary Algorithms where floating point representation is used, the
search space is huge as floating point representation gives a very fine granularity.
Experiments were run on all the functions and the number of bits used to
represent genes was varied from 10 to 30 bits. These runs used fixed Gaussian
mutation.

From the results in Table 5, ·we see that for some of the functions the
gene length has no significant effect while for others the shorter gene length
gives better results. These differences could be explained by the change in
granularity or by changes to the efficiency of crossover. If the optimum can be
found during the run, having a coarser granularity makes the optimum easier
to find. Where the optimum is not likely to be found during the run (on the
more difficult problems), the granularity used may have only a small effect.
Crossover could be effected by finer granularity (and longer representation) as
a greater percentage of crossovers will produce only a very small change in the
function value. The results are generally worse for longer gene representation,
but do not deteriorate as quickly as when bit-flip mutation is used (Hinterding
et al. , 1995).

5.3 Recombination or Crossover

In GAs using bit-string representation crossover points can occur anywhere
in the chromosome. When floating point representation is used some form of re­
combination of the genes is used instead of crossover (Davis, 1991; Michalewicz,
1994; Wright, 1991). A version of the GA was created where crossover points
could only occur between the genes (function variables), that is the genes
were treated as discrete entities. Table 6 gives the results of both the GA

8

Fn. 10 bits 14 bits 18 bits 22 bits 26 bits 30 bits
Fl 2690# 4010# l.6e-8 l.6e-8 4.le-7 9.9e-7
fla 4.6e-2 5.0e-2 4.8e-2 4.9e-2 4.5e-2 4.5e-2
F2 3.0e-5 2.4e-4 2.3e-4 2.le-4 1. 7e-4 3.3e-4
F3 1895# 3740# 3125# 2510# 3740# 2510#
F5 2690# 3130# 2690# 3130# 4010# 4010#
F6 l.7e0 l.9e0 2.4e0 2.2e0 l.9e0 2.leO
F7 3.7e2 4.le2 4.le2 4.3e2 5.4e2 6.2e2
F8 2.8e-l 2.8e-l 3.0e-1 3.5e-l 8.3e-l 8.4e-l
F9 l.3e3 l.8e3 l.7e3 2.3e3 2.5e3 2.8e3
FlO l.le5 l.4e5 l.7e5 l.8e5 2.le5 2.4e5

Table 5: Results for Varying Gene Length

fixed self-adaptive
Fn. con tin. discrete contin. discrete

Fl 3570# l.9e-4 3830# 8.0e-5
Fla 4.6e-2 4.3e-2 9e-5 1. 7e-2

F2 8.9e-5 7.7e-4 7490# 7490#
F3 · 1895# 1895# 2550# 3175#
F5 2690# 9.9e-l 3830# l.8e0

F6 1.9e0 2.5e0 3.leO l.Oel

F7 5.6el 6.8el 7.3el l.2e2

F8 1.6e-1 3.5e-l 7.9e-2 l.2e-l

F9 3.6e2 4.5e2 l.4e2 l.4e2

FlO 4.2e4 4.6e2 2.6e4 2.6e4

Table 6: Results for comparison with discrete genes

9

0.12

Fla 4-
0.1 F7 -e-

F6 ~

0.08

Std. 0.06 Dev.

0.04

0.02

0
0 3000 6000 9000 12000

Evals

Figure 2: Change in variance in Self Adaptive GA

where crossover points can occur within the genes (contin.) and the GA where
crossover points can only occur between genes (discrete). While this is only a
simple experiment as other forms of recombination are also used, the results
indicate that crossover is beneficial.

6 Discussion and Conclusions

By treating the function objective variables as genes, we are able to introduce
new mutation operators which could not be envisioned when we treat the binary
bits of the chromosome as genes.

We can see from Table 4 that GAs using Gaussian mutation produced the
best results for most of the functions . We can therefore conclude Gaussian
mutation is a useful mutation operator and is in most cases superior to bit flip
mutation. Our GAs use mutation as an independent reproduction operator,
that is a new individual (chromosome) is produced by either crossover or mu­
tation and not both. By comparing Tables 2 and 3 we can see that when using
Gaussian mutation, the crossover rate is more often near 503. We speculate
that this could be due to Gaussian mutation producing values that crossover
can more easily utilise.

GAs using self-adaptive Gaussian mutation work, they produce values that
are close to or better than the GAs using fixed Gaussian mutation. The GA
keeps track of the number of mutations that are better than the individual that
the mutant was produced from . Figure 1 shows the rolling average of successful
mutations for function Fla. The self adaptive GA keeps the percentage higher
for all of the run, showing that it can successfully optimise the variance for the

10

1000

100

-500

x(l)

Figure 3: Schwefel's Function

Gaussian mutation during the run.

500

Figure 2 shows the change in the variance of the Gaussian mutation when
self-adaption is used. For Fla the variance is decreased as expected and is very
small towards the end of the run, while the variances for F6 and F7 are both kept
high throughout the run. Function F6, Rastrigins's function is characterised by
many local optima, in this case keeping the variance high would optimise the
chance of hitting a peak. F7 is a "deceptive" problem with a local optimum a
long way from the optimum, again keeping the variance high is advantageous .
This shows that self adaption is capable of adapting to different situations
successfully.

Part of the improvement for function F7, with the GAs using Gaussian
mutation we attribute to the fact that "wrap around" is used in the Gaussian
mutation operator. F7 is like the "deceptive" problems (Deb & Goldberg,
1992) in that it has a second best optimum near one end of the range while
the optimum is at the other end (see Fig 3). By allowing values being mutated
to "wrap around" a much short path to the optimum value is provided. This
result looks very promising and could eliminate a class of "deceptive" problems.

When we now compare our results with those of ESs in Hoffmeister and
Back (1992) (see Table 7), we see that our GAs using Gaussian or self-adaptive
Gaussian mutation now have comparable performance. ESs appear to do bet­
ter on the "smoother" functions, while our GAs do better on the "rougher"

functions.
We have shown large improvements in GAs perfomance on numeric func­

tion optimisation is possible by choosing better reproduction operators. By
keeping bit-string representation, we maintain control of the granularity of rep­
resentation for the function variables and we can keep our normal crossover
operators, both of which are beneficial. In fact we speculate that the improve-

11

Fn. ES Our GAs
Fla le-5 9e-5
F2 5000# 7490#
F3 leO 1895#
F5 3.5e0 2690#
F6 6e0 1.9e0
F9 2el 1.4e2

Table 7: Comparison of results with Hoffmeister and Back

ment reported by switching from bit-string to floating point representation in
GAs(Davis, 1991; Wright, 1991) is due the different mutation operators used
rather than any change in representation.

Acknowledgments

The author would would like to thank Ted Alwast, Tom Peachey and Harry
Gielewski for their help and useful comments.

References

Back, T. 1992. Self-adaption in Genetic Algorithms. In: Proceedings of the
First European Conference on Artificial Life. Cambridge: MIT Press. pp.
263-271.

Back, T., & Schwefel, H-P. 1993. An Overview of Evolutionary Algorithms. In:
Evolutionary Computation. l, vol. 1. MIT Press.

Davis, L. (ed). 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold.

De Jong, K. A. 1975. An analysis of the behaviour of a class ofgenetic adaptive
system. Doctoral dissertation, University of Michigan.

Deb, K., & Goldberg, D. E. 1992. Analysing Deception in Trap Functions.
Jn: Whitley, L. D. (ed), Foundations of Genetic Algorithms - 2. Morgan
Kaufmann.

Falkenauer, E. A., & Delchambre, A. 1992. A Genetic Algorithm for Bin Packing
and Line Balancing. In: Proceedings of 1992 IEEE International Confer­
ence on Robotics and Automation(RA92}. pp. 1186-1193.

Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization f3 Ma­
chine Learning. Addison-Wesley.

Gordon, V.S., & Whitley, D. 1993. Serial and Parallel Genetic Algorithms
as Function Optimizers. In: Forrest, Stephanie (ed), Proceeding of the

12

Fifth International Conference on Genetic Algorithms. Urbana-Champain:
Morgan-Kaufmann. pp 177-183.

Hinterding, R., Gielewski, H., & Peachey, T. C. 1995. The Nature of Mutation
in Genetic Algorithms. In: Eshelman, L. J. (ed), Proceedings of the Sixth
International Conference on Genetic Algorithms. Morgan Kaufmann. pp.
65-72.

Hoffmeister, F., & Back, T. 1992 (Feb). Genetic Algorithms and Evolution
Strategies: Similarities and Differences. Technical Report No. SYS-1/92.
Systems Analysis Research Group, University of Dortmund, Germany.

Holland, J. H. 1992. Adaption in Natural and Artificial Systems. 2nd edn. MIT
Press.

Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = Evolution Pro­
grams. 2nd edn. Springer - Verlag.

Rosenbrock, H. H. 1960. An automatic method for finding the greatest or least
value of a function. In: The Computer Journal. 3, vol. 3. pp 175-184.

Rudolph, G. 1991. Global Optimization by means of distributed evolution
strategies. In: In Parallel Problem Solving from Nature. Lecture Notes in
Computer Science, vol. 496. Springer-Verlag.

Saravanan, N ., & Fogel, D.B. 1994. Learning Strategy Parameters in Evolu­
tionary Programming: An Empirical Study. In: Sebald, A.V., & Fogel,
L.J. (eds), Proceedings of the Third Annual Conference on Evolutionary
Programming. World Sci.

Schwefel, H-P. 1977. Numerische Optimierung von Computer-Modellen mittels
der Evolutionsstrategie. Interdisciplinary systems research, vol. 26. Basel:
Birhauser.

Schwefel, H-P. 1995. Evolution and Optimum Seeking. Sixth-Generation Com­
puter Technology Series. Wiley.

Shekel, J. 1971. Test functions for multimodal search techniques. In: Fifth
Annual Princeton Conference on Information Science and Systems.

Torn, A., & Zilinskas, A. 1989. Global Optimization. Lecture Notes in Computer
Science, vol. 350. Springer-Verlag.

Wright, A.H. 1991. Genetic Algorithms for Real Parameter Optimization. In:
Rawlins, G.E. (ed), Foundations of Genetic Algorithms. 3, vol. 3. Morgan
Kauffmann. pp 205-218.

13

