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Generalisation of a Waiting Time Relation 

Abstract 

A generalisation of a waiting time relation is developed by the use of Laplace Transform 

theory. The generalisation produces an infinite series and it is demonstrated how it may be 

summed by representation in closed form. Extensions and examples of the waiting time 

relation are given. 

AMS: 40C99. 
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1. Introduction 

It seems that the sum, after a rearrangement to suit the following work, 

e-ab1 

l+ab 
(I) 

first appeared in the work of Jensen [IO]. Jensen's work was based on an extension of the 

Binomial theorem due to Abel and an application of Lagrange's formula. 

In the analysis of the delay in answering of telephone calls Erlang [7] obtains an 

integro-differential-difference equation from which a similar result to (I) is quoted. Likewise 

a series similar to (I) later appeared in the works ofBruwier [3] and [4] in his analysis of 

differential-difference equations. In fact, the result (I) arises in a number of areas including 

the works of Feller [8] on ruin problems, Hall [19] on coverage processes, Smith [13] on 

renewal theory and Tijms [ 14] on stochastic modelling, just to name a few. To date no 

extension to (I) appears to be available. It is therefore the aim of this paper to give a novel 

· technique for the development and generalisation of (1). Recurrence relations will be 

developed and further extensions to the results indicated. 

2. The Differential-Difference Equation 

Consider the differential-difference equation 

t,( R~n}•-·t,(;}·-' i'l(t-(R-n)a) = 0 

t,(~}·-' i'l(1) = 0 

t>Ra 

O<t~Ra 

(2) 

with f R-l) ( O) = I and all other initial conditions at rest, where a, b, and c are real constants. 

Erlang [2] considered equation (2) in his work on the delay in answering of telephone calls for 

the case of R =I only. For the case of R servers Erlang derived a differential-difference 

equation different than (2) and this will be the subject of a forthcoming paper. 

It has become common place to analyse differential-difference equations by the use of Laplace 

Transform Theory. In this paper Laplace Transform techniques will be used to bring out the 

essential features that are required for the results. 
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Taking the Laplace transform of (2) results in 

The inverse Laplace transform is 

f(t)= i (n + R-1)(-1)" c"e-b(t-an) (t- an)"+R-1 H(t-an) 
n=o n ( n + R - 1) ! 

where H( x) is the unit Heaviside step function. 

The solution to (2) by Laplace transform theory may be written as 

f(t) = _l . rr+_i"' ept(g(p)r1 dp, 
2m lr-1"' 

for an appropriate choice of r. such that all the zeros of the characteristic equation 

(4) 

g(p) = (p + b +ce-ap t (5) 

are contained to the left of the line in the Bromwich contour. 

Now using the residue theorem · 

f ( t) = L Re_sidues of { ept [ g(p) r1
} 

which suggests the solution off( t) maybe written in the form 
j(t)= LQrep,t 

r 

where the sum is over all the characteristic roots pr of g(p) = 0 and Qr is the contribution of 

the residues in F(p) at p =Pr· 

The poles of (3) depend on the zeros of the characteristic equation ( 5), the roots of g(p) = 0. 

The dominant root Po of g(p) = 0 has the greatest real part and therefore asymptotically 

R-1 fR-k-1 
f( t)-""""' kl 0 ePof 

~ ·--(R-k) (R-k-1)! 
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and so from ( 4) 

f(t) = f (-1r c"e-b(t-an)(t-anr+R-1 H(t-an)-~ k!Q tR-1c-1 ePot 
n=o n!(R-1)! ~ -(R-k)(R-k-1)! 

(6) 

where the contribution Q-(R-k) to the residue 

k ' Q _ 1. {ti") (<p- PorJ} 
. -(R-k) - p~ dp(k) g(p) k = 0, 1, 2 .. .. . R - 1 (7) 

since the right hand side of (3) has a pole of order R at the dominant root p = p 0 . 

It seems reasonable to suggest that if in ( 6), t is large, more and more terms in the expression 

on the left hand side will be included. For R = 1, Cerone and Sofo [5] conjectured and then 

proved, by the use ofBurmann's theorem, that (6) is an equality, as represented by a special 

case of (8), for all real values oft , 

""'·co (-l)" c"e-b(t-an)(t- an)n+R-I R-I fR-k-1 
£..J ---~~-- = L k IQ ePof 
n=o n!(R-1)! 1c=o . -(R-k) (R-k-1)! 

(8) 

Therefore it is conjectured that for all positive integer values of R, (8) is an equality, for all 

real values of t , in the region where the infinite series converges. 

Burmann's theorem may again be used to prove (8) once the specific form of the right hand 

side is evaluated. 

By the use of the ratio test it can be seen that the series on the left hand side of (8) converges 

in the region 
laceI+abl < 1. 

An alternate expansion for the Laplace transform from (3) is 
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and using the Inverse Laplace transform gives 

Hence, following the above work it is conjectured that 

- n bn-r r t n+R-1 k I t p t 
00 

( l)" n ( ) R-1 R-k-1 
~ n!(R-1)! ~ r c ( -ar) = ~ .Q_(R-k) (R-k-1)! e o 

(9) 

whenever the double series converges. 

Without loss of generality, choosing b + c = 0 and ( 1 +ab) > 0 allows the dominant root of the 

characteristic equation ( 5) to occur at p0 = 0. 

Let t = -a-r and so from (8) 

f (-1)" (abeab)"( r+n)"+R-1 

n=O n! 
-abr~Q (-l)k(R-l)_l ~-k-l e L,. -(R-k)) k k T . 

k=O a 
{10) 

Further, using the same transformation in (9) gives 

In the case when 1 +ab < 0 , the dominant root of the characteristic equation ( 5) occurs at 

p
0 

= i; and therefore the right hand sides of (8) and (9) are multiplied by the factor e~. 

When 1+ab=0, the right hand side of (3) has a pole of order 2R and the left hand side of (8) 

is divergent. In this case 

where the constants c0 , ck can be evaluated from residue theory. Details of calculations for 

the case R = 1 can be found in [5]. 



7 

The following lemma regarding moments of the convolution of the generator function <fl._ x) 

will be proved and required in the evaluation of a recurrence relation for the contribution 
Q-(R-m) to the residues. 

Lemma: 

Proof: 

The nth moment of the Rth convolution of ¢1._x) = -bH(a-x) is 

(-ab )R ( -1 )"a" n ! c:. 
Consider the rectangular wave <fl._ x) = -bH( a - x) = b(-1 + H( x - a)) , which 

has a Laplace Transform of 

b(-1 +e-ap) 
<l>(p)=--­

p 

The Rth convolution of <l>(p) can be expressed as 

R 

-1+ f (-1Y (ap)' 
r=O T ! R = 1,2,3, .... 

p 

=hR(-f a(-1)' (ap)' )R 
r=O (r+l)! 

ao 

=(-abrL(-1)' c~a' p' . (12) 
r=O 

The convolution constants, C~ in (12) can be evaluated recursively as follows: 

R=l 

(13) 
r 

cR =""'P . c~-1 
r £..J r-J J 

R = 2,3,4 ... .. 
j=O 
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Moreover, the convolution constants are polynomials in R of degree r , so that 

CR R R R ( ) o = 1 , C1 = 2 , C2 = R 3R + 1 I 24 and so on. 

These convolution constants are related to Stirling polynomials and details may be found in the 

work of Cerone, Sofo and Watson [ 6] . 

The nth moment of the Rth convolution can be obtained by differentiating (12) n times with 
respect to p, so that 

dnn [ <l>R(p )]=(-abt f (-lY c: arr(r-1) .... ... (r -n + l)pr-n. 
dp r=n 

Upon letting r = n, gives the constant relative top as, 

This result will now be used in the determination of a recurrence relation for Qr 

3. A Recurrence relation for Qr 

The contribution Q-(R-m) to the residue can be obtained from (7). In this section a recurrence 

relation for Q-(R-m) is developed which, it is argued to be more computationally efficient than 

using (7) directly and better allows for an induction type proof of (10). 

From (7) 

m = 0, 1,2, .... .. ,(R-1) 

- lim dm 1 + <l>(p) [ J
R] 

- ~odpm ( 1-<l>(p) 
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= lim. R (R) m (m) dm-r <l>k .![__{ 1 } ,_.,~ k ~ r ,qr [ (p)].q,, (I-<t>(p))' 

Now utilizing the lemma for the (m-r)th moment of <I>k(p) implies that 

Using the fact that C~ = 1 and taking the term at k = R, r = m to the left hand side results in, 

Q-(R-m) = ( (I )")[±(:)± (-at-r(-abYC!_rQ-(k-r)-(-ab)RQ_(R-m)]·(14) 
1- -ab k=O r=O 

Equation (14) allows for the recursive evaluation of the contribution to the residues, Q-(R-m)' 

with the initial values cg = 1, Q-(0-0) = 1. 

Its instructive to follow an example through so that the flavour of the calculations for Q-(R-m) 

can be gleaned. 

Consider ( 14) and let m = 1, then 

k k k 
Since c1° = o , Q-(o-i) = o and from previous recursive calculations C0 = 1 , C1 = 

2
, 

Q-(k-o) = (1 +ab )k 
1 -ka(-ab) 

Q = then 
-(k-I) 2( 1- (-ab) y+i 

-a [~(R) (-ab)k k ~(R)( ht+1 k ] 
Q-(R-l) = (1-(-ab)R) £:t k 2(1-(-ab)Y + f:t k -a 2(1-(-ab)y+i 

= -a(-ab)R R ~(R)(-abt(1-(-ab)r-k-1. 
2( 1- (-ab )R )( 1- (-ab)) k=o k 
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Using the definition of the Bernstein polynomial [l], Bn(x) = ~(n)xk(l-x)n-k then Q L..J k -(R- 1) 
k=O 

may be expressed as 

_ a2bR[ BR-1(-ab)] 
Q-(R-1) - R-1 

2( 1-(-ab) )R+i L (-abY 

a2 bR 
Q-(R-1) = 2( 1 +ab t+1 . 

k=O 

and so 

If the value of m is specified at the outset, equation (14) may be simplified to produce the 

following recurrence relations on R only, so that; 

form= 0 

[ ]

R+I 

Q-((R+l)-0) = Q-{1-0) ' 

form= 1 

Q-((R+l)-1) = (R + l)Q_(1-1) [ Q-(1-0) r' 

form= 2 

Q-((R+l)-2} = (R +I)[ Q-(1-0)Q-(1-2) + R{Q_(l-1) r J[ Q-(1-0) r-l, 

and for m=3 

Utilizing some of the above ideas, section 6 will detail a functional relationship of (10). 
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The following table 1 is given for some of the Q-(R-m), the contribution to the residues from 

using the recurrence relation (14), or those below it. 

ffi Q-(R-m) 

0 1 
(1 +ab )R 

1 Ra2b 
2(l+ab)R+I 

2 -Ra3b(4-ab(3R-l)) 

12(1 +ab )R+
2 

3 Ra4 b[ 2-4abR+ a 2b2 R(R-1)] 

8(1 +ab )R+J 

4 -Ra5b[ 48-ab(56 + 200R) +a2b2 (-l6+40R+120R2)-a3b3(2+5R-30R2 +15R3
)] 

240( 1 +ab )R+4 

5 Ra6 b[ 16-ab(64+128R) + a 2b2 (-8+36R+ 140R2
) +a3b3 (16R + 40R2 -40R3 )+ a4 b4 (2R + 5R2 -10R3 +3R4 

)) 

96(I+abrs 

Table 1 : Values of Q-(R-m) 

4. Examples 

From (10) and using the residue calculations at (14), or from table 1, the following results for 

the right hand side of (10) are listed in table 2. 

R The right hand side of (10) 

1 -abr[ 1 J 
e l+ab 

2 -abr[ r ab J 
e ( 1 + ab) 2 

( 1 + ab) 3 

3 -abr[ i1- 3abr ab(I-2ab)] 
e ( 1 +ab )3 

( 1 +ab )4 - ( 1 + ab5
) 

-abr[ I _ 6abi- _ ab(4- l lab)r _ ab(I-8ab+6a
2 

b
2
)] 

e (l+ab)4 (l+ab)5 (l+ab)6 (I+ab)1 

4 

Table 2: The closed form expression of (10) for R= 1, 2, 3 and 4. 



12 

These elegant results, expressing the infinite series in closed form, can be generated form ( 1 O) 

for any positive integer value of R. 

The results at (8), (9), (10) or (11) can be used as a basis for the generation of other infinite 

series which may be expressed in closed form. This will be investigated in the next section. 

5. Generating Function 

The basic equations at (8), (9) or (10) (11) can be differentiated and integrated to produce 

more identities in closed form. 

Integrating the result at (8) or (9) will yield the same result as when considering the 

differential-difference equation (2) with an exponential or polynomial type forcing term 

respectively. The analysis can also be achieved with a polynomial-exponential type forcing 

term. 

From (8) with b+c = 0 

!!!__ ·[~ bne-b(t-an) (t-ant+R-l J =!!_[(R- l)!~ Q tR-k-l ] 
dt i £..J nl dt1 ~ -(R-k) (R - k-1)! 

n=O • k-0 

O<jsR-1 

So that 
( )

n+R-(j+l) 
~ n( )( ) ( ·) -b(t-an) t-an £..Jb n+R-1 n+R-2 ......... n+R- J e 

1 
0 n. n= 

(15) 

= 1 1-r - R - 1 I . 
i ( ·) . dr [ R-1 tR-k-1 ] 
~ r dtr ( ).~ Q-(R-k) (R-k-1)! 

Differentiation is permissible within the radius of convergence of the infinite series, which for 
(15) is l-abe1+abl < 1. (16) 

For R = 2 and j = 1 then 

"""'(n+l)bne-b(t-an) -an = t+ +- . co (t )n b [ a
2 
b 1 ] 

~ n! (1 +ab)2 
1 +ab b 

Integrating (8) v -times with b + c = 0 , results in 

co bneabn(t-ant+R-l+v -f f bt(R-l)l~Q tR-k-1 dt 
~-n~!(n_+_R ___ l +-l---)(,-n_+_R ___ I_+_2') .. -.. 1.(n_+_R ___ I +-v')- ~· e · 1c=o -(R-k) (R-k-1)! 

v = 1,2,3, ..... 

This integration is permissible within the radius of convergence (16). 
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For R = 2 and v = I then 
' 

( I)hn -b(t-an) - an t a - I - ha e 
n+ e -+ + 

00 (t )n+2 I [ 2h2 ] -bt 

~ (n+2)! (!+ab)' b b'(I+ab) (be"')' 

By integrating (9), with h + c = 0, in its radius of convergence will yield similar results as above. 

For R = 2 and integrating once results in, 

:t(-Ithn(n+l):t(n)(-IY (t-art+2 = I [~+ a2ht + a3h(5ah-4)] · 
n=O r=O r (n+2)! (I+ab)2 2 (I+ah) I2(I+ab)2 

Further results may be obtained by considering forcing terms of a specific type. Using 
m-1 

previous techniques and choosing the forcing term w(t) = e-dt ( 1 
) in the right hand side 

m-1 ! 

of the differential-difference equation (2), with all initial conditions at rest, results in, for R = 2 

and m=2, 

f (-It (n + l) :t(n)(-IY (h-dr-r hr e-d(t-ar)(t-art+3 
n=O (n+3)! r=O r 

0 < a < I ; jhj < !di . 

In the case when (2) has an impulsive type forcing term of the form w(t) = g{t-d), and all 

initial conditions at rest, then by a change of variable t-d = T,d E Ir, the relation (8) holds 

with t replaced by T. 

The following section develops specific functional relationships for the equation (I 0). 
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6. Functional Relations 

For the case of R = 1, Pyke and Weinstock ( 12) gave a functional relationship of ( 10). 

The following lemma states a functional relationship for ( 10) in the general case with R - 1 = v. 

Lemma 

oo ( )n+v 
. +( ) "( )n n r+n Given that Jv r = £.-- -1 r ' 

n=O n. 
v = 0, 1,2, .. .. . . then 

Proof From (10) let r = abeab then 

00 
( )n+v v ( ) 1 . n n 't + n -al7t (-l)k v v-k 

.fv( 't) = L (-1) Y 
1 

e L Q-((v+I)-k) k ak 't 
n=O n. k=O 

From the right hand side of (10) 

[ 
v k(V) 1 v-k ~ ( )k(V) l ( l)v-k] .fv('t) = e-abt ~Q-{(v+I)-k}(-1) k ak 't +ab ~Q-((v+I)-k) -l k ak 't+ 

and it follows, after some algebraic manipulation, that 

for a= 1,2,3, ... .. 
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Conclusion 

A novel technique has been developed and utilized in the summing of infinite series. A host of 

infinite series can be expressed in closed form by the use of this procedure. This generalisation 

of a waiting time relation apart from the case of R = 1, does not seem to appear in the 

literature, such as the work of Gradshteyn and Ryzhik [9] . 

In a subsequent paper the authors will extend the techniques developed here to consider 

non-integer values of R and other cases in which more than one dominant root of the 

characteristic equation will affect the closed form solution of the infinite series. 
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