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Abstract 

Statisticians and control engineers, often taking different perspectives, have long practised the 'art' of 

process control. In recent years, attention has been focussed on bringing the two control 

methodologies closer together. This report addresses some of the issues of automatic process control, 

with specific reference to continuous processes, such as stability of the feedback control path and the 

existence of dead time. A method to derive a control algorithm for making an adjustment that would 

yield the smallest possible mean square error (variance) of the output controlled variable is given for 

the critically damped second-order dynamic system. 

1 INTRODUCTION 

In manufacturing processes, uniform outputs are generally not attainable due to factors which 

cause unpredictable variation. The presence of non-random causes in a production system, (an 

assignable cause), may be detected as an unexpected variation in the system measurements. 

'Disturbances' may afflict the system causing it to drift off target if no action is taken to eliminate 

them. A requirement for a process to be controlled satisfactorily is that its output should follow both 

some reference signal and remain unaffected by extraneous disturbances or parameter variations. 

Engineering control systems continually adjust processes on-line in an attempt to counteract the 

effects of disturbances. Statistical process control (SPC) aims to contain variation in output so that 

the level of quality is both predictable and satisfactory. It may also subsequently prompt action in an 



attempt to reduce variability. Automatic process control aims to maintain certain key process 

variables as near their desired values called set points for as much of the time as possible in order to 

satisfy production objectives. One approach is to forecast the deviation from target which would 

occur if no action were taken and then act so as to cancel out this deviation. In this report, an 

explanation is given to how a stochastic model can be used to describe the effects of disturbances and 

to develop a feedback control algorithm. 

2 PROCESS CONTROL 

Global production objectives are to achieve production targets at an acceptable cost and to 

manufacture products of a desired quality in a safe manner with the minimum possible harm to the 

environment. These goals are realised by monitoring and controlling production. Control tools are 

used: 

(i) 

(ii) 

to detect changes in process performance from a stable state, 

to identify assignable or special causes of variation indicated by 

these deviations and eliminate the same and/or 

(iii) to adjust a process variable or variables so as to maintain a performance criterion in 

some desirable neighbourhood of a given target value (Box and Jenkins [1963]). 

The first two control actions of process monitoring and control are achieved by statistical 

process control (SPC) techniques. The third process control action is possible by an appropriate 

feedback or feedforward control procedure which indicates when and by how much to adjust the 

process automatically, by either using the deviation from target of the output or by cancelling these 

deviations by using knowledge of the value of some fluctuating measured input variable, 

respectively. In some situations, a combination offeedforward and feedback controls is used. 



Use of automatic control began in the late 1920's and the first technical publication appeared 

in 1932. Since then, there has been a steady growth in and use of automatic control systems. Various 

forms of feedback and feedforward control regulation schemes are used for process adjustment 

(control action) in automatic process control (APC). APC provides an instantaneous continuous 

response counteracting changes in the balance of a process and applying self-corrective action to 

bring the output close to the desired target often without human intervention (Keats and Hubele 

[1989]). 

The term 'controlled process' is often used to mean a 'process state' that is (narrowly) 

interpreted as stationary having iid variation about a target value. An alternative has a 'state of 

control' as a process state in which future behaviour can be predicted within probability limits 

determined by a common-cause system (Box and Kramer [1992]). 

If a state of statistical control is identified by a process generating independent and identically 

distributed (iid) random variables, control of such random processes by automatic means invariably 

leads to an undesirable increase in process variability. APC provides a consistent steady dynamic 

response in counteracting changes in the balance of a process and must be properly applied to obtain 

successful results. 

In situations where the cost of making an adjustment to the process is considerable, APC can 

result in increased cost. In comparison with SPC, APC, referred to as 'engineering feedback control' 

is a short-term approach that attempts to minimise (output) variation by transferring the predictable 

component of the output variation to the input manipulated (control) variable [MacGregor] (Box and 

Kramer [1992]). The appropriate engineering control strategy depends upon (i) the characteristics of 

the stochastic (statistical) component of the process modelled by a suitable time series and (ii) the 

costs associated with making dynamic adjustments. 



The general purpose of automatic control is to get satisfactory process operation by 

adjustment of a controller (control mechanism). By using a logical method for selecting controller 

adjustments and by suitable 'tuning', (which means, to have the freedom of choice to vary the 

parameters of control), there is the potential for high returns in the form of efficient process 

operation. By suitably modelling a process that is non-stationary but probabilistically predictable, it 

is possible to formulate a control mechanism leading to the 'adaptive control' situation (Box and 

Jenkins [1970, 1976]). 

3 STOCHASTIC MODELS AND STOCHASTIC DISTURBANCES 

In process control, it is common to come across disturbances (noise) that are drifting or 

nonstationary in nature. The importance of considering disturbances of this nature was known to 

control system engineers from the early stages of the development of deterministic control theory. 

Deterministic control theory was developed to provide tools to analyse and synthesise a large variety 

of feedback control systems. Results from various branches of applied mathematics and control 

problems were used in developing this theory. The early development focussed on stability theory 

and the theory of analytic functions. Due to complexity and the stringent performance criteria 

required of controlled processes, the theory of optimal control of deterministic processes was 

developed using the tools of the calculus of variations. In controlling deterministic processes, no 

significant distinction was made between a feedback control system and a feedforward control 

system and no dynamics (inertia) was assumed in the feedback. There were some drawbacks in using 

deterministic control theory such as not using realistic models for disturbances and when a 

disturbance was introduced, it was postulated as a function which is known a priori. Many of the 

classical methods were capable of dealing with disturbances in only an heuristic manner (Hall 



[1956]). The effects of disturbances were required to be predicted by suitable models and there 

existed the need to model the disturbances in a proper and fitting manner. 

Since analytic functions are limited in their capacity to accurately model, the potential for the 

use of 'statistical models' became apparent. Barnard [1959] and Bather [1963] linked the control 

problem and SPC charts. Barnard [1959] suggested that for a wandering industrial process, by using 

control charts and its signals, improvements in process adjustments can be made by means of a 

model that c!osely described the disturbance and an estimate of the current process mean connected 

with the control problem. Other statisticians, Box [1970], Jenkins [1970] and Astrom [1970] 

endeavoured to provide an answer to the problem of how to characterise and model the disturbance. 

A 'deterministic model' makes possible exact calculation of the value of some time-dependent 

quantity at any instant of time. In many process control problems, unknown factors make this 

unrealistic. However, it is often possible to derive a realistic model that can be used to calculate the 

probability of a future value lying between two specified limits. Such a model is called a 

'probabilistic' or a 'stochastic model'. Box and Jenkins [1970,1976] adopted this approach and made a 

major contribution to stochastic control. 

Since a disturbance causes a process to drift off target, it is necessary to compensate this by 

taking proper control action. A process in which the mean is varying in nature with respect to time 

can be described as a non-stationary disturbance. A stationary disturbance represents the situation 

where there is no drift in the mean and the process is in a perfect state of control. 

Disturbances entering at various points of a process are often persistent in nature, however, in 

many instances, it may not be economically possible or physically feasible to eliminate them. Such 

disturbances can be envisaged as the result of a sequence of independent random shocks which can 

be represented by a first order differential equation, such a system being referred to as a 'first-order 

dynamic system'. 



Control systems engineers described the system model behaviour in which the response of a 

system to a given input is certain and well defined (deterministic). They used (linear) differential 

equations to represent the dynamic (feedback) control systems in continuous time and used Laplace 

transforms to obtain simplified solutions (Deshpande and Ash [1981]. The linearity assumption 

supplies an approximation for many practical situations. In a similar manner, in dealing with discrete 

processes, linear difference equations were employed to represent the processes in which the 

sampling intervals are short enough so that the dynamic or inertial properties of the process cannot be 

ignored. A first-order process may be represented by the first-order difference equation when 

sampled at discrete intervals or by the first-order transfer function or 'filter', (the term used in 

engineering terminology, by control system engineers), (cf. MacGregor [1987]). 

Box and Jenkins [1965] set up realistic and flexible stochastic models for the disturbances 

which force the system, unless controlled, away from their optimal operating conditions. They used 

process knowledge and took care of the inertia or the dynamics of the system which makes the 

control actions, needed to combat these disturbances, more complex in nature. In doing so, they 

found methods for estimating the unknown parameters in the models from process input-output data. 

They also used the models, after fitting the parameters, to design control schemes. Box, Jenkins and 

MacGregor [1974], describe how stochastic and (dynamic) transfer function models may be brought 

together to design feedforward and feedback control schemes. They showed how the parameters in 

the stochastic and dynamic models may be simultaneously estimated from measurements made in the 

operating system. 

4 FEEDFORW ARD AND FEEDBACK CONTROL MODELS 

A feedforward control model is proposed when the major disturbances to a production system 

can be measured. Feedback control may be applied, when the primary sources of disturbance are 



either not known or cannot be measured. Making use of the available knowledge of the production 

process and the serially occurring data (which are very likely correlated), it is often possible to build 

stochastic models to realistically represent and model the disturbances. Box and Jenkins [1970] 

expressed the process inputs and outputs in terms of time series and described the disturbances by 

time series models in order to manipulate the system for control purposes. 

Feedforward or open-loop control is used to eliminate the effect of some fluctuating 

measured input by making an adjustment from direct calculation of its effect on the output. For a 

specified target value of the output, the feedforward control model gives an estimate of the required 

change to be made in the compensating variable to minimise the mean square error (sum of the 

squared deviations between an output value and the target value). When the time series model 

predicts an out-of-control signal for shifts in the mean of the quality deviations from target, changes 

are made to the compensating variable to offset the effects of the predicted situation (Keats and 

Hubele [1989]). 

Feedback or closed-loop control uses past output deviations from target to determine a 

process adjustment. This approach makes use of the error (difference between the output and the 

target values) as the means of identifying changes to the input. Using time series analysis, the effect 

of the disturbance in the absence of a control action is estimated and a dynamic model is developed 

linking the input and the process output. 

5 ARIMA MODELS 

The class of stochastic time series nonstationary models, called Autoregressive Integrated 

Moving Average (ARIMA) Models developed by Box and Jenkins [1970,1976] are used to describe 

the stochastic disturbances to the system and provide a means of modelling disturbances and process 

dynamics (inertia). These time series models characterise and forecast the drifting behaviour of 



process disturbances when no control action is taken and describe the dynamic relationship between 

the controlled variables (outputs) and the manipulated variables (control inputs). From these models, 

a feedback control algorithm is derived which minimises the variance of the output controlled 

variable at every sample point which exactly compensates for the forecasted disturbance. Models of 

this kind are used in inventory control problems, in econometrics and to characterise certain 

disturbances that regularly occur in industrial processes. 

6 CONTROLLERS 

6.1 Proportional Integral Derivative (PID) Controllers 

In feedback control systems, the process adjustments (control actions) are performed either 

manually or by automatic means through the use of 'controllers'. Often a digital computer connected 

directly to the process accomplishes the execution of the control action by observing the system so 

that the available data appears in discrete-time. 

Slow changes are encountered in many chemical processes. Under such circumstances, it may 

be adequate to monitor and take whatever control action is necessary at convenient time intervals. 

For many automatic controllers, as soon as the measurements are made, the control actions are 

initiated immediately. By means of the discrete data, the adjustments are made to bring the process 

into a state of control. With the process data available, it is possible to control the mean square error 

about the target by proportional-integral feedback control schemes (Box and Kramer [1992]). 

The proportional plus integral (PI) controller makes a compensation (correction) (which lags 

behind the trend, if any, in the disturbance) proportional to a (linear) combination of terms 

involving the deviation and the integral of all the previous errors. A PI controller is a 'standard linear 

controller'. A special case of such a controller is, regulation based on the control-modified EWMA 

statistic. 



The proportional integral derivative (PID) controller is a modified form of the PI 

controller in which an additional term involving the first derivative with respect to the time of the 

error is included. This type of automatic control action makes a correction which is proportional to a 

(linear) combination of (i) the first derivative of the current deviation ('the difference between value 

of the output controlled variable and position of the final controller set point'), (ii) the deviation 

itself and (iii) the integral of the deviations over all past history (Box and Kramer [1990]). PID 

controllers, also known as three-term controllers, are automatic continuous time controllers. These 

controllers (i) are not capable of providing tight control over processes in which the effect of an 

adjustment is delayed until the following sample due to time taken to deliver material from the point 

of adjustment to the sample point (called, the 'dead time'), (ii) tend to perform poorly unless 

'detuned' in the face of dead times in order to take necessary action at each sampling instant (page 

428, Harris, MacGregor & Wright [1982]), and (iii) are not suited for direct-digital (discrete) control. 

PID controllers are also not capable of producing control actions that might be called for by a 

minimum variance feedback controller (page 437, Box and Jenkins [1970,1976]). Controllers 

employing stochastic characteristics to regulate production processes are called time · series 

controllers. With time series controllers, it is possible to provide tight control of processes with dead 

time and to provide minimum variance at the same time. 

6.2 Time Series Controllers - Characteristics and features 

Time series controllers are used in the chemical and process industries for regulating quality 

variables measured at discrete time intervals. Their 'stochastic feedback control algorithms' 1 are used 

to calculate a series of adjustments which compensate the disturbances. Recourse to ARIMA models 

1 Tue terms 'stochastic feedback control algorithm' and 'statistical time series control algorithm' are 
synonymous and used alternatively in this report at appropriate places. 



is made to forecast their drifting behaviour and the stochastic feedback control algorithm or equation 

derived from these ARIMA models is computerised. Thus 'time series control algorithms' by 

calculating a series of adjustments compensate for the disturbances by making an adjustment at every 

sample point. 

7 MINIMUM VARIAN CE CONTROL 

A feedback control strategy to minimise the mean square of the output deviation (error) from 

the target is by minimum mean square error or variance control. Minimum variance control is the 

best possible control for processes described by linear functions with disturbances which can be 

added together and treated as a single disturbance for purposes of mathematical analysis and 

convenience. Its implementation may demand aggressive control much in excess of what is 

(normally) required and so may not be practically desirable. However, minimum variance control 

provides a convenient bound on achievable performance against which the performance of other 

controllers may be compared. Such a basis is important in the context of deciding corrective control 

actions. Harris [1989] described a technique to ascertain the best theoretically achievable feedback 

control performance as measured by the output mean square error. 

Time series controllers are capable of giving a minimum control error variance even when 

there are dynamics (inertia) and delay in the process control system. It may be possible to restrict 

sampling a process until an acceptable minimum of control error variance can be achieved by making 

use of the time series controller's minimum variance control property and to minimise monitoring 

and adjustment costs. 



8 DEVELOPMENT OF TIME SERIES MODELS 

8.1 Feedback Control Difference Equation 

The 'stochastic difference equation' for the feedback control model is derived with the help of 

a block diagram shown in figure 1. 

Controlled 
Input 

xt+ Process 

Disturbance 

Controlled 1t 
Output Yt 

'---------~lxt+ =f(et,et-1, ........... ) 11--~ 

Figure 1 Block Diagram for the Feedback Control Model 

In the feedback control scheme shown in figure 1, the process is regulated by manipulating 

the input variable Xt which in turn affects the controlled output Y t- Xt+ is the setting of the 

controlled input variable (the plus sign on the subscript of Xt+ implies that the adjustment is made 

during the interval between t and t+ 1 ). A definite deterministic relationship exists between the 

process input X1 and its output Y1 which does not exhibit stochastic characteristics. Z , the non­
t 

stationary disturbance is the output of the (linear) system, when subjected to a sequence of 

2 
uncorrelated random shocks {ai} where ai- N (0, O-a ). 



8.1.1 Symbols used in the Feedback Control model block diagram of figure 1. 

2 
~ Random shocks NID (0, a a), 

Zt Disturbance2, 

et Forecast Error, 

Xt+Input Manipulative Variable (Linear function of et and of integral over time of past errors), 

Y t Output or Controlled Variable, 

Box and Jenkins [1970,1976] described some dynamic models of the order (r,s) by 

(Table 10.1, page 350, Box and Jenkins [1970,1976]), b being the number of whole periods of dead 

time (delay), where 

or(B) and os(B) are polynomials in Band BXt = Xt-1, Bbxt = Xt-b; Bis the backward shift operator. 

A first-order single input single output (SISO) dynamic system is parsimoniously, 

represented by the general (linear) difference equation 

0::; 0 <1 (1) 

where~= 0/1-o and \1 is the backward difference operator, \1=1-B. 

The terms g(ain) and o are explained subsequently. 

This discrete dynamic model of the order (r,s) = (1,0) has the form 

0::; 0 <1 

Withs= 0, the impulse response tails off exponentially (geometrically) from the initial starting value 

2 Note that we will be using 'z' to denote the stochastic variable and 'Z' to represent the stochastic 

disturbance. The same logic holds good for at which denotes the variable and {at} represents the 

sequence of random variables. 



roo = g/(l + ~) = g/(l + (8/(1 - 8)) = g(l - 8) 

(page 352 Box and Jenkins [1970,1976]). 

where g, the (steady-state) gain denotes the ratio of change in the steady-state process output to the 

change in the input which caused it (Deshpande and Ash [1981], (Shinskey [1988]). 8 represents the 

(dynamics) inertial capacity of a process to recover back to its equilibrium conditions after an 

adjustment is made to the process and due to which the adjustments do not have an immediate effect 

on the process. It is connected to the sampling interval and the time constant by means of the relation 

8 = e-ttr where t is the sampling interval of the discrete process and T, the process time constant. 

Time constant is the time required for the process output to complete 63 .2% of its final steady-state 

value after a change is made in the input. 

So, we write the recursive control equation for the first-order dynamic model with b 

units of delay (dead time) in the form 

(1-8B)Yt = rooXt-b = g(l-8)Xt-b = g(l-8)Bbxt 0 ~ 8 <1 (2) 

This is the feedback control first-order difference equation for the dynamic model for which the 

output change asymptotically approaches 'g' for a unit change in the input, where 'g' is called also 

the 'system' or 'pure' gain (Box and Kramer [1992]). 

8.2 Justification For Second-Order Dynamic Models 

For feedback control (closed-loop) stability, the parameter 8 must satisfy the condition 

that O < 8 < 1 for the discrete dynamic model of the process and the gain should be less than or equal 

to 1.0 (Shinskey [1988]). 

The first-order dynamic model characterised by the linear difference equation (2) can 

be written as 

Yt = o xYt-1 + g(l - o)Xt-b O ~()<I (3) 



The MMSE (minimum mean square error) or minimum variance control schemes based on 

the first-order dynamic model and the ARIMA (0, 1, 1) disturbance model produce the minimum 

mean square error (MMSE) at the output requiring excessive control action in the following 

situations in which (i) the values of 8 are not fairly small; and in (ii) as 8 becomes larger and in 

particular, as it approaches unity (Box and Kramer [1992]). As 8 becomes larger, the minimum 

variance control exhibits large 'alternating' character in the required adjustments (control actions) to 

give minimum output variance (Box and Kramer [1992]). It is believed and understood that the 

properties of the noise reflects the system inertia as well (Box and Jenkins [1970, 1976]). 

For higher values of 8, the general recourse is to go in for constrained variance control 

schemes. In such control schemes, reduced control action may be achieved at a cost of small 

increases in the mean squared error at the output by placing a constraint on the input manipulated 

variable. Kramer [1990] developed a constrained variance control scheme in which he showed the 

effect on both adjustment variance and the specified output variance in order to evaluate the trade­

offs between the two variances. 

The processes found in practice are complex because of their dynamic characteristics which 

change with time. Approximating such processes by first-order dynamic models does not always 

seem to be satisfactory. It can be shown from the simulation study results of the time series controller 

for a first-order (plus dead time) dynamic model and ARIMA (0,1,1) model that for drifting 

processes, for values of 8 from 0 to 1, the required adjustments are of alternating character and 

sometimes with huge increases in control error standard deviation and its adjustment variance. It is 

likely that some processes may have more than one dynamic element and the exact mathematical 

model relating the output and the input could be greater than the first-order. Many complicated 

dynamic systems can be fairly closely approximated to a greater extent by second-order systems with 

delay (dead time). It is conjectured that the dynamic system is better described by a second-order 



system represented by a dynamic model of the order (2, i ), ('a discretely coincident' continuous 

system, page 358, Box and Jenkins [i970,i976]). Detailed analysis and identification of the dynamic 

models and their suitability can be found in Box and Jenkins [i970,i976]. 

It may therefore, be appropriate to use higher order dynamic models. Many more complex 

processes can be closely approximated by second-order systems with dead time (delay) than by the 

first-order dynamic model (Page 345, Box and Jenkins [i970,i976]). This view is shared also by 

MacGregor [i988]. 

The recent methodologies, suggested by MacGregor [1988], Box and Kramer [i992] to 

superimpose statistical process control charts to monitor the performance of closed-loop controlled 

systems give rise to stability problems of the feedback control loop. Under these circumstances, it 

will then be appropriate and justify our action to consider a second-order dynamic model 

(4) 

For stability reasons, only the 'critically damped' behaviour of the second-order dynamic 

system is considered, (for which the time constants Ti and T1 are real and equal) and not the 

behaviour of the system when it is said to be 'overdamped' or 'underdamped' for which their 

respective time constants Ti and T1 can be either real or complex. 

The second-order dynamic system can then be thought of as equivalent to two discrete first­

order systems arranged in series. 

The second-order model will be 

(i) underdamped, when the roots are complex, that is, when 

<>i 2 + 4 <>2 < O; 

(ii) overdamped, when the roots are real (and not equal), that is, when 

<>i2 + 4 c52 > O; and 

(iii) critically damped, when the roots are real and equal, that is when 



012 +4 02 = 0. 

Stability is achieved when the point (oi,82) lies in a triangular region defined by the 

conditions 82 - 81 = 1, 01 + 02 = 1 and o2 < 1. This is shown in figure 2. 

Figure 2 Triangular region defined by the inequality conditions for achieving stability. 

We approximate equation ( 4) by 

(1- 01B - 02B2)Yt = ro Bb+l Xt (5) 

where (roo - ro1) = ro, for mathematical convenience in dealing with a single term, being, the 

magnitude of the process response to a unit step change in the fir~t period following the dead time 

carrying over into additional sample periods. This is possible since we are considering only whole 

periods of deadtime (delay) and not fractional periods. 

Moreover, equation (5) reduces to that ofBaxley's [1991] first-order dynamic model, namely, 

Yt = 8Yt-1 + ro Bb+l Xt 

that describes the first-order system with dead time (delay) when 02 = 0 and 81= 8. 

The steady-state gain, 'g', of such a second-order discrete dynamic model is given by 



g = ( 0) 0 - 0) 1 )/ (1-81-82). 

(equation 10.2.5, page 346, Box and Jenkins [1970]). 

To evaluate the values for roo and ro1 equation (4) can be written as 

(l-81B-82B2)Yt = (roo-ro1B)Bhxt 

where 

= (1-81 B)(l-82B)Yt 

= (roo- ro1B) sh Xt 

roo = [PG/(T1-T2)]{(T1(1-81)-T2(1-82)} 

ro1 = [PG/(T1-T2)]{(81+82)(T1-T2)+T282(1+81)-T181(l+82)}, 

(Palmor and 8hinnar [1979]), 

81=e-1/T1' 

82 = e-1IT2, 

81=81 +82 = e-1/T 1 + e-l!T2, 

82 = - 81 x82 = - e-(1/T i-llT 2) and 

PG represents the process gain, realised by the total effect in output caused by a unit change in the 

input variable after the completion of the dynamic response (Baxley [1991]). 

Now, 

ro = (roo - ro1) = [[PG/(T1-T2)]{(T1(1-81)-T2(1- 82)}] -

[[PG/(T1-T2)]{(81+82)(T1 -T2) +T282(1+81)-T181(1+82)}] 

which on simplification, gives for a critically damped system, 

ro = PG[ 1 - 81 - 82 + 81 82] 

= PG[l-(81+82)+8182] 

= PG[l-(e-1/T1 +e-1/T2) +(e-1/T1 x e-1/T2)] 

= PG[l - 81 - 82] 



Therefore, the steady-state or system gain 

g = (roo - ro1)/(1 - 81 - 82) = PG[l- 81- 82]/[l- 81- 82] =PG, the process gain. 

Baxley [1991] used PG =111-8 and made PG= 1.0 by setting 8 = 0, meaning that there are no carry­

over effects (inertia) and seems to have tack.led the problem of feedback control stability in a 

convincing manner in his simulation studies for drifting processes. Kramer [1992], derived 

expressions for the disturbance and the output effect of control actions as functions of random 

shocks, independent of the control scheme. Moreover, Kramer [1992] considered approaches for 

reducing adjustment variability. Since, interest here is in reducing product variability at the output, it 

may be worthwhile to consider the critically damped behaviour of the second-order dynamic system 

for which the time constants are real and equal thus ensuring closed-loop stability. Furthermore, it is 

shown that the steady state gain of such critically damped second-order systems is PG, the process 

gain itself. 

An additional term in the parameter 8, (82) of the second-order dynamic model makes it 

possible to account for more of the process dynamics for both small and large values of 8 and to 

better represent the dynamic nature of the process. The additional term Yt-2 defines the input-output 

relationship in a better manner than the first-order dynamic model. 

For stability of the second-order dynamic model, the parameters 81 and 82 must satisfy the following 

inequality conditions given by 

81+82 < 1 

82 - 81 < 1 

-1 < 82 < 1 

For the second-order dynamic system, when the roots of the characteristic equation (1-81 B-82 B2)=0, 

are real, that is, when 812 + 4 82 ;;::: 0, the solution of this equation will be the sum of two 

exponentials. 



The roots of the characteristic equation determine the stability of the second-order dynamic 

system. When these roots are real and positive, the step response, which is the sum of two 

exponential terms, approaches its asymptote g, the steady-state gain, without crossing it. When the 

roots are complex, as can be seen from figure 3, (Reproduced from figure 10.5, page 344, Box and 

Jenkins [1970]), the step response overshoots the value g . From figure 3, we see also that the system 

has no overshoot when the characteristic equation has real positive roots. This explains the focus on 

the criticall)'." damped second-order discrete dynamic model which ensures closed-loop (feedback 

control) stability. 

The values of 81 and 82 are given by 

81 = e-1/T1 +e-1/T2 

82 = e-1/T1 x e-1/T2 

It is known that for the critically damped second-order dynamic system, T 1=T2= T. 

So, 81=2e-11T and 

82 = -e-2/T 

As shown in figures 2 and 3, the values of 81 and 82 should satisfy 

-2 < 81 <2 

-1<82 < 1. 

9 EXPRESSION FOR THE CONTROL ADJUSTMENT IN THE INPUT VARIABLE 

OF A TIME SERIES CONTROLLER 

An expression is derived for the feedback control adjustment required in the input 

manipulated variable of a time series controller for a dynamic process with dead time (delay). This 

expression is different from equation (2) which explains the feedback control model. Figure 4 shows 



the feedback control scheme to compensate a disturbance Zt by means of a time series controller. 

Baxley [1991] considered the dead time equal to one period when deriving the feedback control 

equation. In this Section, the feedback control (adjustment) algorithm is derived considering b 

periods of deadtime. It is shown that it conforms to the minimum variance (mean square error) 

control equation derived by Kramer [1990] for a system in which adjustments to the input variable 

are made after the process is observed and so their effects are first seen at the next observation (b= 0). 

Disturbance Zt 

'-,/ 

Controlled Controlled Output 
x yt Input t+ 

" process to be '-... 

/ 
controlled 

/ 

et= Zt.¥t 
Time Series I Controller / 

adjustment xt I .......... 

Figure 4 Feedback Control scheme to compensate disturbance Zt 

in a Time Series Controller . in the existence of Dynamics 

and Deadtime 

From (5), 

-T set point 

Changes are made in the controlled input X at times t,t- l ,t-2,---, immediately after 

observing the disturbances zt,zt-1,zt-2,---. 

Because of this, a pulsed input results and the level of X in the interval t to t+ 1 is denoted by Xt+ 

For this pulsed input, assume that the dynamic model which connects the input manipulated 

variable Xt+ and the controlled output Y t is 

y t=L 1-1 (B)L2(B )B b+ 1 Xt+' 

where, 

(6) 



Li (B) is a polynomial in B of degree r, 

L1(B) is a polynomial in B of degree s and 

b is the number of complete intervals of pure delay before an adjustment in the input Xt+ begins to 

affect the output Y t· 

The nonstationary disturbance is represented by the ARIMA (0, 1, 1) model 

VZt = (1-E>B)~. 

Zt measures the effect at the output of an unobserved disturbance, that is, an uncompensated 

nonstationary disturbance that reaches the output before it is possible for the compensating control 

action to become effective, this causes the process to wander off target. It is defined as the deviation 

from the target that would occur if no control action was taken. The effect of the disturbance would 

be cancelled if it was possible to set 

Xt+ = -L1 (B)L2-1(B)Zt+b+1 

This control action is not realisable since (b+ 1) is positive; but, the minimum mean square error of 

the deviation of the output from its target value can be obtained by replacing Zt+b+ 1 by its forecast 

A 

estimate Zt(b+ 1) made at time t. 

That is, by taking the minimum variance control action 

A 

(7) 

The change or adjustment to be made in the input manipulated variable is then 

A /\ 

(8) 

The error at the output or deviation from the target at time (t+b+ 1) is the forecast error et(b+ 1) at 

lead time b+ 1 for the Zt disturbance. 

That is, 

/\ 



made (b+ 1) steps ahead at time t. 

The error observed at time t is 

Et= et-b -1 (b+l) 

" 

" " 
Zt(b+ 1) -Zt-1(b+1) can be deduced from the observed error sequence Et,Et- l ,Et_2,---. 

" 
~ (b+l) and Zt(b+l) are linear functions of the {~}'s . 

So, 

Zt+b+l = L4(B)~+b+l + L3(B)~ where 
' 

L3(B) and L4(B) are operators in B which can be deduced from the relations 

From these, 

" 

and 

" 
Zt(b+l) = {1- 0/ 1-B}~ = L3(B)~, giving L3(B) = 1-011-B. 

Similarly, L4(B) is found by expressing the forecast errors as a linear function of future shocks (Box 

and Jenkins [page 128, 1970,1976]). 

Then, 

Ll(B) = (1- 01B - 02B2), 

L1(B) = PG(l- 01 - 02) 

L3(B) = (1-0)/(1-B) and 

L4(B) = 1 + (1-0)B. 



So, for a time series controller, when the disturbance is described by the ARIMA (0, I, I) model and 

there are definite carry over effects, the · adjustment (xt) in the input manipulated variable required to 

make the control and forecast error variances equal, is given by 

(Box and Jenkins [1970,1976]) 

The control action in terms of the adjustment x = x - x to be made at time t is 
t t+ t-1+ 

- LI (B) L3(B)(l - B) 
Xt = L2(B)14 (B) Et 

(equation 12.2.8 page 435 Box and Jenkins [1970,1976]). 

This 'feedback control equation defines the adjustment to be made to the process at time t 

which would produce the feedback control action yielding the smallest possible mean square error 

since it exactly compensates the predicted deviation from target' (page 213, Box and Jenkins 

[1968b]). 

The above equation, on substituting the_ expressions for L1 (B), L2(B), L3(B) and L4(B), results in 

(I- 01B-02 B2)(1- 0) 
Xt = - Et 

PG(l-01-02)(1 + (l-0)B) 
(9) 

where 0 is the moving average (operator) parameter. 

The control (forecast) errors which turn out to be the one-step ahead forecast errors are measured in 

practice. 

It is known that the forecast error Et at the output at time t is the forecast error at lead time b+ 1 for 

the Zt disturbance. 

So, 

·Et= ~-b-1(b+l) = -woat + 'VJ~-1 (10) 

For the ARIMA (0, I, I) model, the weights are 'VO= I and 



WI =1-0, so 

= (1 + (1 - 0)B) at 

and further, 

( -01B-02B2)(1-0) 
Xt = - 1 (1+(1-0)B) 

PG(l-01-02)(1+(1-0)B) at 

Since (1 - 0) x 100 per cent of the control error will affect the future process behaviour as per the 

disturbance model, for a dead time b, 

and so 

et=~+ (1-0)~-b 

= ~[1 + (l-0)Bb] 

Therefore, the control adjustment equation for b periods of deadtime is 

(l-01 B-02B2)(1-0) et 
Xt = - X -------0---

PG(l - 01 - 02) (1 + (1-0) Bb) 

That is, 

givmg 

(11) 

(12) 

The control adjustment action given by (12) minimises the variance of the output controlled variable. 

Equation (12) is in conformance with the feedback control action adjustment equation 

of Kramer [1990] when the output variance is made equal to the variance (cra2) of the random 

shocks, the ~·s, for achieving minimum variance or mean square control when b = 0. The control 



adjustment action is made up of the current deviation (et) and the past adjustment action xt-b 

(Kramer [1990]). It is observed also that this is similar to the feedback control action adjustment 

equation for one period of deadtime derived by Baxley [1991] on taking a value 1 for b, the deadtime 

and when there are no carry-over effects for a 'standard' time series controller. On comparison with 

the equation of Baxley [ 1991], it is found that the first term in equation 12 gives the integral action 

and the second term, the deadtime compensator, developed by Smith [1959] (Baxley [1991]). 

Some simulation results of equation 12 obtained when b = 1, (Table 1) match closely 

with that ofBaxley's [1991] values for the time series controller. 

10 CONCLUSION 

This report, having discussed briefly the need for stochastic models has provided a brief 

discussion of minimum variance control and time series controllers. A general feedback control 

equation has been derived and a statistical control algorithm developed for the critically damped 

second-order dynamic system. 
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