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Summary 

Some techniques for monitoring and controlling the dispersion of multivariate normal 

processes based on subgroup data are presented. The procedures involve use of 

independent statistics resulting from the decomposition of the covariance matrix. 

Those that do not depend on prior estimates of the process covariance matrix are 

particularly attractive to short-run or low volume manufacturing environments. 

Key words : Dispersion control; multivariate normal processes; rational subgroups; 

probability integral transformation; short production runs. 

1. Introduction 

Over the last decade, the problem of multivariate quality control has received 

considerable attention in the literature (see for eg., Woodall et al.(1985), Murphy 

(1987), Healy (1987), Crosier (1988), Pignatiello et al.(1990), Doganaksoy et 

al.(1991), Sparks (1992), Tracy et al.(1992), Lowry et al.(1992), Hawkins 

(1991,1993), Hayter et al.(1994), Chan et al.(1994) and Mason et al.(1995)). This 

1 Dept of Computer and Mathematical Sciences, 
PO Box 14428, MMC Melbourne, Victoria 8001, Australia 
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work has focussed on the detection of parameter changes, departures from 

distributional assumptions, and the identification of out-of-control variables. Most of 

the work is based on the assumption that the observation vectors, Xi's are 

independently and identically distributed (i.i.d) multivariate normal variables and that 

the true values of the process parameters, in particular the process variance­

covariance matrix, :L, are known. Recently, Tang (1995) has developed a procedure 

for monitoring the mean level of multivariate normal processes for situations where 

prior information about the in-control process parameters is unavailable. He 

demonstrated that this procedure is particularly useful when subgroup data are used. 

Whilst substantial work has been devoted to the control of the process mean 

vector, µ,very little emphasis has been placed on the importance of monitoring and 

controlling L . In fact, the issue is a formidable one due to the complexity of the 

distribution theory involved. One exception is the paper by Alt et al.(1986) who 

proposed two control techniques for :L ; one based on the likelihood ratio principle 

and the other that makes use of the sample generalized variance, which is sometimes 

taken as a measure of dispersion or spread of multivariate processes. Although 

traditional multivariate control charts such as the Hotelling x 2 or T 2 charts may 

signal certain shifts in L (see Hawkins (1991) and Tracy et al.(1992)), other 

particular changes in L will remain undetected. This is also true for the technique 

based on generalized variance. For instance, if L shifts in such a way that the 

resulting process region (i.e the ellipsoidal region in which almost all observations fall) 

is contained completely within the undisturbed one, this 'shrunken' process is unlikely 

to be detected by a x 2 chart, especially when the sample size is small. In addition, 

Hawkins (1991) stated that 'measures based on quadratic forms (like T 2 ) also 
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confound mean shifts with vanance shifts and require quite extensive analysis 

following a signal to determine the nature of the shift' . Note that the ' T 2 
' term that 

he used actually refers to the more commonly called x 2 statistic which uses 

(presumably) the true value of the process covariance matrix. When 'special' or 

'assignable' causes affecting both process parameters are present, it is also possible 

that the effect of the mean (vector) shift is masked or 'diluted' by the accompanying 

change in the variance-covariance matrix. 

The purpose of this paper is to present some control procedures for the 

dispersion of multivariate normal processes based on subgroup data. Special attention 

is drawn to the situations where prior information about L is not available as is often 

the case in situations of short production runs, which have become increasingly 

prevalent. When L is specified or assumed known, the proposed procedure involves 

the decomposition of the sample covariance matrix and uses the resulting independent 

components, which have meaningful interpretations, as the bases for checking the 

constancy of the process covariance matrix. Another possible approach is also 

outlined for this case. As for the case where L is unknown in advance of production, 

the proposed procedure is adapted from the step-down test of Anderson ( 1984, 

p.417) which is based on the decomposition of the likelihood ratio statistic for testing 

the equality of several covariance matrices. When these procedures are used together 

with Hotelling x 2 or T 2 -type charts, they supplement the latter by providing 

independent information about the stability of the process covariance matrix. 

Furthermore, the proposed procedures effectively replace existing competing 

techniques to provide enhanced detection of general shifts in L . 
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This paper is organized into three subsequent sections. In 2, the underlying 

methodology is presented. In 3, appropriate control statistics are given for both the 

cases regarding prior knowledge or lack of prior knowledge of the process covariance 

matrix. In a sequel to this paper, comparisons are made between the proposed 

techniques and various competing procedures. The total discourse is given in the 

context of the manufacture of discrete items. 

2. Methodology 

Suppose that the vectors of observations on p correlated product 

characteristics, Xi' s follow a multivariate normal NP(µ, .L.) distribution with mean 

vector µ and covariance matrix .L. when the process is operating under stable 

conditions. In practice, the validity of this assumption should be checked using, for 

example, a multivariate normal goodness-of-fit test (Gnanadesikan (1977)). The aim 

here is to develop control procedures for monitoring and controlling the dispersion of 

such a multivariate process based on rational subgroups where the sample size, n may 

vary. 

In order to provide more flexibility, ease of implementation and better 

control of the false alarm rate than existing procedures as well as to facilitate the 

interpretation of out-of-control signals, it is suggested that the sample variance­

covariance matrix be partitioned into various statistically independent components 

having physical interpretation and known distributions. These components are then 

used to indicate the stability of the process covariance matrix. 
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It is well known, that under the stable or in-control normality assumption, 

the sample covariance matrix, S , multiplied by the factor ( n - 1) follows the Wishart 

distribution with parameters ( n -1) and L , denoted by 

Let the sample and population covariance matrices be similarly expressed m 

partitioned form as follows:-

where S1
2 (cr;), 812 (I,12 ) and S22 (L 22 ) denote respectively the sample 

(population) vanance of the 1st variable, the vector of sample (population) 

covariances between the 1st and each of the remaining variables, and the sample 

(population) covariance matrix excluding the 1st variable. Next, define 

then according to a well-known theorem (see for eg., theorem 6.4.1, p.120, Giri 

(1977), where L(zz) - L(zt) L(lt) L(tz) m (c) should be replaced by 

L(lt) - L(tz) L(2~) L(zt) using his notation), 

(i) S22>1 is independent of (Si ,s12 ) , 
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(iv) The conditional distribution of s2.: 'given s,2 =sf' is N(L~z ' Lzz.t 2 J. 
S1 l 0'1 (n - l)s1 

Note that s22•1 and L22·1 here denote respectively the conditional sample and 

population covariance matrices of the last (p-1) variables given the 1st. Note also that 

S12 L12 
~ and -=- represent respectively the vectors of sample and population regression 
S12 cri 

coefficients when each of the last (p-1) variables is regressed on the 1st variable. 

S12 
Furthermore, S'f, and S22•1 may be regarded as independent components 

s2 
1 

following the above decomposition of the sample covariance matrix S . Further, 

decomposing S22•1 in the same manner yields Si •1 (the conditional sample variance 

s12·1 -of the 2nd variable given the 1st one), (the vector of regression coefficients 
s;.1 

when each of the last (p- 2) variables is regressed on the 2nd whilst the 1st variable 

is held fixed) and s3,4, ... ,p. 1,2 (the conditional sample covariance matrix of the last 

(p- 2) variables given the first two) which are independently distributed as 

s2 = (t- R1 )s2 _ O-Pi2)cr~ X2 
2•1 12 2 (n-l) n-2 

s12.1 j (:L12.1 :L J -=- s2 _ 2 -N ~ 3, ... ,p•1,2 
2 2•1 - S2•1 2 ' 2 

s2•1 0'2•1 (n-l)s2•1 
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1 ( ) s - w n-3 I 3, .. . ,p•1,2 (n - l) p-2 ' 3, ... ,p•1,2 

where R1
2
2 and p;2 are respectively the squares of the sample and population 

correlations between the 1st and the 2nd variables. Repeating the above procedures 

until further decomposition is impossible results in p scaled chi-square variables S[, 

S J.1, ... , j-t , j = 2, .. . ,p and p-1 conditional (univariate or multivariate) normal 

variables which are independent and have meaningful interpretations. S J •1, ... , j- l 

here denotes the conditional sample variance of the jth variable given the first j-1 

variables. 

Note that the ordering of the variables is not unique. In fact, there are p ! 

possible permutations each of which results in (2p-1) terms in the decomposition. If 

all of these p ! x (2p-1) variables are used as the control statistics, there will be a 

multitude of control charts even when p is quite small. For instance, when p = 3 , 

there will be p!(2p-1) = 30 terms in total that can be obtained from the various 

decompositions. When p = 8, this number increases to p !(2p-l) = 604800 which 

clearly renders the approach impractical ! Furthermore, there are component variables 

in common to the various partitionings and terms that reflect essentially the same 

information. Therefore, one particular arrangement of the variables is deemed to be 

adequate for the purpose of decomposition. It is suggested that the choice of this 

should reflect the relative importance of the variables involved. In particular, the 

variables should be arrang~d in decreasing order of importance from 1 top. For the 

case of a 'cascade' process as described by Hawkins (1993), the variables should be 

arranged from the most 'upstream' (being the 1st) to the most 'downstream' one 
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(being the last) so that a shift in a variable will not be masked by the accompanying 

change in the downstream variables. 

If L is specified or assumed known in advance of production, the statistics 

obtained in the above manner can of course be used separately to monitor the 

dispersion of the multivariate process. However, due to independence, these statistics 

can be combined into a single aggregate-type control statistic as considered in the 

next section. In practice, if the latter approach is adopted, it is recommended that the 

values of the individual statistics be retained for post-signal analysis. 

To illustrate the above idea, consider the case of p = 3 product 

characteristics. Using conventional notation, the sample covariance matrix of n 

observations on these variables is given by 

Letting 

R11S1S2 
s2 

2 

Rz3S2S3 

proceeding as previously, we have 

(n- l)S22 •• 1 = (n-l)[S 22 -S21S~is12 ] 

= (n-l)( SiC1-Ri22) S2S3(~23 - ~1R13)J ~ Wz(n- 2,L22•
1

) 

S2S3(R23 -R12R13 ) S3 (l-R13 ) 

(n- l)s; - cr:x2 (n-1) 

and 

(1) 
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(2) 

where 

L22·1 = [I22-L21 I;~ L12] 

( 
cr~(l-p;2) cr2cr3(p23 -P12P13)) 

- cr2cr3(p23-P12P13) cri(l-p;3) 

coefficients when each of the 2nd and 3rd variables is regressed on the 1st variable. 

Further, decomposing S22•1 in the same manner yields independent components, 

and 

where 

and R:C1•2) and Pi(l.2) denote respectively the sample and population multiple R2 

when the 3rd variable is regressed on the first two variables. Note that 
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S3(R23 -R12R13) . b. d . f . 

( 
2 ) 1s an un iase estlmate o the slope coefficient for the regression of 

S2 1-R12 

the 3rd variable on the 2nd variable whilst the first variable is held fixed. 

It is suggested that, if L is known, the statistics given in (1), (2), (3), (4) 

and (5) should all be used to provide protection against changes in the process 

covariance matrix L . It is advocated using all these components instead of only Sf , 

some changes in L that may not be reflected by the former statistics. For instance, if 

the 3rd quality characteristic lS independent of others i.e 

2 2 (p 12P 13 - P 23 ) 
2 o d ( ) hif ( ) h h p302) = p13 + 2 = , an cr2, p12 s ts to cr2new• p12new sue t at 

1-p12 

crin~(l-p~2new) = 1, then this change is unlikely to be detected when only sf' sJ.1 
cr20-P12) 

and sJ.1,2 are used because their respective distributions are not distorted under these 

circumstances. However, this change induces a shift in the slope coefficient for the 

regression of the 2nd quality characteristic on the first. Therefore, it is possible to 

'pick up' such a change if the vector of population regression coefficients 

(p12cr2 / cr1 , p13cr3 I a1? is also monitored based on the corresponding vector of 

bivariate normal for fixed S1
2 under the in-control and normality assumption (see (2)). 

If the traditional Hotelling X 2 chart based on these coefficient vectors is used, it is 

readily seen that its statistical performance depends on the noncentrality parameter 
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where the +ve sign is used when Pl2new > 0 and the -ve sign otherwise. Thus, whilst 

the use of the control statistics S 1
2 

, S J.1 and S J.1,2 are unlikely to register the change, 

it is clear that the probability of detection by the Hotelling X 2 chart may increase 

depending on the value of S1 for the current subgroup, the sample size, n, as well as 

the dispersion parameters. The same is true if the aggregate-type control statistic as 

given in the next section is used. 

As an alternative, the following method of decomposition may be employed. 

Let Si and L, i be the upper left-hand square submatrices of S and L, respectively, 

of order I Also, let su1 and L,[jJ denote respectively the sample and population 

covariance matrices of the jth, 1st, 2nd, . . . and (j-1 )th variable in the order indicated. 

In addition, let Si and er i be ·such that 

(
s .. s~ J 11 l s . = .... 

[1] ~ s j-1 
and er~ J L~-1 ' 

j = 2, ... ,p. 

where S ii = SJ and er ii = er}. Repeatedly applying theorem 6.4.1 of Giri (1977) to 

s[j]' starting with j = p and decreasing in steps of 1, results in the following 2 p - l 

(conditionally) independent statistics: 

2 
er · 1 · 1 s ~ . - l· •.. .• 1- x2 . 

1•1, ...• 1-1 (n -1) n-l' 
j = 1, .. . ,p. 

er · 1 · 1 -1 -1 l• , .... 1- -1 

( 
2 J s j-1 ~ .... N j-1 L, j-1 ~, (n - l) S j-1 , j = 2, ... ,p. 
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Where S ~ 1 · 1 = S ·· -S~ s~ll S · and 0' 2 
l = l'T' - l'T'T ~ -l l'T' are respect.I·vely 1• , . ..• 1- 11 1 1- 1 j• , .. . ,j-1 v jj v j £..J j-1 v j 

the conditional sample and population variances of the }th variable given the first j - l 

variables. Note that Sj~1 SJ is the (}-1) dimensional vector estimating the 

regression coefficients of the }th variable regressed on the first (}-1) variables (see 

Mason et al.(1995)). Note also that s1:0 and cri.0 are taken to be s'( and cri 

respective! y. 

The hypothesis H 0:I. =Lo may be tested based on these statistics for each 

subgroup in a sequential or step-down manner. At the }th step, the component 

hypothesis cr}.1, ... ,J-l = ( cr}.1, .. . ,J-l ) 0 is tested at a J significance level by means of a 

chi-square test based on 

s21 . 1 1• ,-·-.1-

( cr~•l , ... ,J-1 )o 
(6) 

If there ts failure to reject this sub-hypothesis, then ':J ~ ( ':J l (or 

L }~1 cr J = (Li }~1 )0 (cr J) ) is tested at significance level 8 J on the assumption that 
,.... ,.... 0 

L J-l = (I. J-l )
0

. The test statistic, 

JT ( J -1 -1 (n -l)S 1-1 -1 -1 (sj-1~-(I1-1)0(~J (cr2 _ ) Sj_,~-(Lj-1)0 (~) 
0 1•1 , ... ,] 1 0 0 

(7) 

is a X}-1 variable if the component hypothesis is true. If there is failure to reject this 

component hypothesis, then the (j+ l)th step is taken. The hypothesis H 0:I. =Lo is 
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accepted provided there is failure to reject all the 2p-1 component hypotheses. The 

overall significance level of this test for each subgroup is then given by 

p p 

1-TI c1- a j ) TI c1- b j ) . 

j=l j=2 

Anderson (1984, p.417-418) has presented such an approach for testing the 

equality of covariance matrices as an alternative to the standard maximum likelihood 

ratio procedure, with the unknown parameters replaced by appropriate estimates 

based on previous subgroups and other suitable adjustments made. The resulting 

statistics for all successive subgroups follow Snedecor-F distributions and were 

shown by this author to be stochastically independent (Anderson (1984), theorem 

10.4.2, p.414). Although this method is not proposed in the context of SPC, it can be 

used for monitoring the stability of the process covariance matrix for which the true 

in-control value is unknown and cannot be reliably estimated. Following the 

conventional approach, however, a single control chart based on all these statistics is 

considered instead of using them separately. This control technique, which is 

particularly useful for short production runs and low volume manufacturing, lS 

discussed in detail in the next section. 

3. Monitoring the Dispersion of Multivariate Processes 

The techniques now presented involve use of the probability integral 

transformation in order to produce sequences of independent chi-square variables 

(see Quesenberry (1991)). The suggested approach permits the monitoring of various 

components resulting from the decomposition of the covariance matrix on a single 

chart. 
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For uniformity of notation and ease of presentation, define s *k ( L*k) and 

Sv,u ( O'v ,u ) respectively as the sample (population) covariance matrix of the last k -
variables and the vector of sample (population) covariances between the vth variable 

and each of the first u variables. Accordingly, the sample and population covariance 

matrices are expressible as 

S= 

s j-1 : s j,j-1 ,. •. , s p,j-1 
I ,...., ,...., 

-----L--------------
S~ . 1 

l·l-

s~.j-1 -
S*p-j+l 

and I.= 

I. j-1 ! cr j ,j-1 , ... , cr p ,j-1 
I ,...., ,...., 

-T---1--------------
0' .. 1 I 

l ·l- I 
,...., I 

! 'L*p-j+1 
T : 

Q' p ,j-1 I 
,...., I 

I 

where S j ( L j ) denotes the sample (population) covariance matrix of the first j 

variables and S j,j-l = S j ( cr j ,j-l = O' j) as defined in the preceding section. The 

conditional sample variance of the jth variable given the first j -1 variables, is then 

given by 

s~ 1 . 1 =s~-s~. 1 s-:-1 1 s .. 1 l• , .... 1- l 1.1- 1- 1.1- (8) - -
Similarly, the corresponding population parameter is 

2 2 T ~-1 
0'·1 ·1=0'·-0'··1.£..J · 10' ·· 1 l• •.. .• 1- l l .1- 1- l .1- (9) - -

In terms of variances and multiple correlation coefficients, these are expressible as 

S J.1, . .. ,j-l = SJ (I - RJ(l, ... ,j-l)) and cr}.1, . .. ,j-l = cr} (1- p }(1, ... ,j-l)). The conditio~al 

sample and population covariance matrices of the last p - j + 1 variables given the 

remaining j-1 variables are respectively 
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and 

L · 1 · 1 = L* · 1 -(cr · · · · · cr )T ~ -l (cr J, ... ,p• , ... ,J- p-1+ ~-1 1:,J-1 £..J j-1 .f.:.!,-1 . . • (J' . ) p ,j-1 - (11) 

Apart from these, let d and 0 
-j -j 

(j = 2, ... , p) denote respectively the vectors of 

sample and population regression coefficients when each of the last p-j+ 1 variables is 

regressed on the (j-l)th variable whilst the remaining j-2 variables are held fixed. 

Then, these are given by the following expressions :-

(12)-

and 

(13) 

Note that d and 0 should be interpreted as the vectors of unconditional sample 
-2 -2 

and population regression coefficients when each of the last p-1 variables is regressed 

on the 1st variable and these are given by 

(s12 slp r d = _;.__ ____ ____ and 
( <J'12 • • • (J'lp r e =--------

-2 

respective! y. 

In addition to the above, the following notation will be used:-
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: inverse of the standard normal distribution function 

: distribution function of a chi-square variable with v degrees of 

freedom 

: distribution function of an F variable with v 1 numerator and v2 

denominator degrees of freedom 

In the following subsections, control statistics for monitoring the stability of 

the process covariance matrix are presented for the case where either I, is known or 

unknown. In order to specify the chronological order of the subgroups, the sample 

statistics are indexed with an additional subscript enclosed within a bracket. 

3.1. Case (i) : L known 

In practice, the process parameters, in particular the true value of the process 

covariance matrix I,, is never known exactly. Instead, it is estimated based on a 

presumably large enough set of relevant data that have been collected during the 

period in which the production process is assumed to be stable or in control. It will be 

assumed for current purposes that L is known precisely prior to production. In this 

case, the appropriate control statistic is 

where 

1p-1 

Tk = IzJ(k) 
j=l 

z . =<l>-1{x2 ·[(nk-1)sf.1, ... ,j-1(k)]} 
J(k) nk-J 2 

CT · 1 · 1 1• , .. .,J-

k = 1,2, ... (14) 

j = 2, ... ,p. 
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Zp+l(k)='1>-1 {x;-1[<nk-l)S1~k)(d -0 )TL~~ .. p•l(d -0 )]} 
-- 2(k) -- 2 • • -- 2(k) -- 2 

It is readily seen from the foregoing discussion, that under the in-control and 

normality assumption, {zj(k) }, j = 1, .. . ,2p-l are sequences of independently and 

identically distributed (i.i.cf) standard normal variables, whence Tk 's are independent 

x~p-1 variables. Although control charts may be constructed based on the 

transformed statistics Z j(k) 's, this is not considered a viable option due to the 

proliferation of charts that results even when p is fairly small. Besides, it is found that 

combining the Zj(k) 's in the proposed manner results in better control performance 

for certain shifts in L . 

Note that since the arguments of the normalizing transformation are 

independent chi-square variables, a single aggregate-type control statistic may be 

obtained by summing them. Similarly, the sum may be taken over the transformed 

statistics Z j(k) 's giving a sequence of independent N ( 0, 2 p -1) variables. In either 

case, however, certain deviations of the process covariance matrix from the specified 

I, are likely to be missed by the resulting techniques. In particular, if L shifts in such 

a way that the values of some Z j(k) 's tend to be larger whilst others tend to be 

smaller than that attributable to common causes, then this type of change is unlikely to 

be detected by the resulting charts. To provide protection against such changes, it is 

suggested that the Zj(k) 's be squared before summation as in formula (14), and only 
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an upper control limit is then necessary. It should be noted that a similar technique can 

also be developed based on the alternative partitioning method outlined in the 

foregoing section. This is, however, not considered further because it is found that the 

proposed technique always performs better. 

3.2. Case (ii) : L unknown 

In the absence of prior information about the process parameters, a natural 

solution is to estimate the various components resulting from the decomposition of .L 

sequentially from the data stream of the current production. The resulting estimates, 

together with the corresponding observations from the next sample are then used to 

test whether or not .L remains constant. 

Before proceeding, define the quantities:-

k 

N . k = ~ (n . - j) 
j, £.J l . 

i=l 

k 
2 1 ~ 2 

S j,k (pooled) = ~ ~ (ni - l)S j•l , .. .,j-l(i) 
J,k z=l 

j = 1, . .. ,p. 

with sf.oci) = s~i), 

j = 2, ... ,p. 

k 

v j.k =!Is 1~l(i) s j,j-l(i) 
- k i=l -

j = 2, ... ,p. 

These values can be updated through the following recursive equations:-

sJ,k+l(pooled) = N l [N j ,ksJ,k (pooled)+ (nk+1 - l)SJ.1, ... ,j-l(k+1)] 
j ,k+l 



v ~+1 = k ~ 1 [ k v..L, + s1:1c•+1) s j.j~k+l) J 

The appropriate control statistic for this case is then given by 

where 

and 

2p-1 

Tk = .LzJCk) 
j=l 

z . = <1>-1[F . [ sJ.1,. . ., j-1(k) ]] 
J(k) nk-r.Nj.k-1 8 2 

j,k-1 (pooled) 
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k=2, ... (15) 

j = l, ... ,p. 

Zp+j-1(k) = <1>-l Fj-l:,N ·k ,, 
(SJ',., s J.t]<'>- v ~-' r ( (n, -1) _,SJ'.'"' + u J:,>-' r (SJ'.,,, s 1·!:..", -v ~-') 

CJ - l)S}k (pooled) 

j = 2, ... ,p. 

Note that when k = 2, the argument of Zp+j(k) is 

( s:;:1,2l S j,ijC2l -Sj:'"' S j ·!j'" r ( ( n, - If' s:;:10, + ( "2 - If' Sf'-"" r' ( s:;:"" S i!j<2l -s:;:'"' S j,!Z"' J 
(j - l)Sf,2 (pooled) 

where 

8
2 _ (fii - l)SJ.1,. . .,j-1(1) + (nz - l)SJ.1,. . .,j-1(2) 
j,2(pooled) - (fii +nz _ 2 j) 

This is different from that given by Anderson (1984, p.418, expression (21)) which 

apparently contains a typographical error. 
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When the process covariance matrix is constant, {zJ(k) }, j = 1, .. . ,2p- l are 

independent sequences of i.i.d N(O,l) variables (see Theorem 10.4.2, p.414 of 

Anderson(1984)). Thus, the Tk 's here are again distributed as X~p-I variables. Note 

that although the arguments of the zj(k) 's have different degrees of freedom, the 

control limit for the resulting technique remains constant for successive subgroups. 

Note also that, using this technique, process monitoring can begin with the second 

subgroup without having to wait until considerable process performance data have 

been accumulated for computation of the unknown I. . 

4. Concluding Remarks 

An underlying methodology and appropriate control statistics for dispersion 

control for the cases where L is known and unknown initially have been provided. In 

a sequel to this paper, comparisons are made between the proposed techniques and 

various competing procedures and the proposed techniques are demonstrated to be 

supenor. 



Page 21 

References 

ALT, F. B. and BEDEWI, G. E. (1986). 'SPC of Dispersion for Multivariate Data'. 

ASQC Quality Congress Transaction - Anaheim. American Society for Quality 

Control, pp. 248-254. 

CHAN, L. K. and LI, GUO-YING. (1994). 'A Multivariate Control Chart for Detecting 

Linear Trends'. Communications in Statistics - Simulation and Computation 23, 

pp.997-1012. 

CROSIER, R. B. (1988). 'Multivariate Generalization of Cumulative Sum Quality­

Control Schemes'. Technometrics 30, pp. 291-303. 

DOGANAKSOY, N.; FALTIN, F. W. and TUCKER, W. T. (1991). 'Identification of 

Out Of Control Quality Characteristics in a Multivariate Manufacturing Environment'. 

Communications in Statistics - Theory and Methods 20, pp. 2775-2790. 

GIRI, N. C. (1977). Multivariate Statistical Inference, Academic Press, New York, NY. 

GNANADESIKAN, R. (1977). Methods for Statistical Data Analysis of Multivariate 

Observations, John Wiley & Sons, New York, NY. 

HAWKINS, D. M. (1991). 'Multivariate Quality Control Based on Regression-Adjusted 

Variables'. Technometrics 33, pp. 61-75. 

HAWKINS, D. M. (1993). 'Regression Adjustment for Variables in Multivariate Quality 

Control'. Journal of Quality Technology 25, pp. 170-182. 

HAYTER, A. J. and TSUI, K. (1994). 'Identification and Quantification in Multivariate 

Quality Control Problems'. Journal of Quality Technology 26, pp. 197-208. 

HEALY, J. D. (1987). 'A Note on Multivariate CUSUM Procedures'. Technometrics 

29, pp.409-412. 

LOWRY, C. N.; WOODALL W. H.; CHAMP, C. W. and RIGDON, S. E. (1992). 'A 

Multivariate Exponentially Weighted Moving Average Control Chart'. Technometrics 

34, pp. 46-53. 

MASON, R. L.; TRACY, N. D. a!ld YOUNG, J. C. (1995). 'Decomposition of T
2 

for 

Multivariate Control Chart Interpretation'. Journal of Quality Technology 27, pp.99-

108. 

MURPHY, B. J. (1987). 'Selecting Out of Control Variables with the T 2 Multivariate 

Quality Control Procedure'. The Statistician 36, pp.571-583. 



Page 22 

PIGNATIELLO, J. J. Jr and RUNGER, G. C. (1990). 'Comparisons of Multivariate 

CUSUM Charts'. Journal of Quality Technology 22, pp.173-186. 

QUESENBERRY, C. P. (1991). 'SPC Q Charts for Start-Up Processes and Short or 

Long Runs'. Journal of Quality Technology 23, pp.213-224. 

SPARKS, R. S. (1992). 'Quality Control with Multivariate Data'. Australian journal of 

Statistics 34, pp.375-390. 

TANG, P. F. (1995). 'Mean Control for Multivariate Processes with Specific Reference 

to Short Runs'. International Conference on Statistical Methods and Statistical 

Computing for Quality and Productivity Improvement - Seoul. The International 

Statistical Institute (ISI), pp.579-585. 

TRACY, N. D.; YOUNG, J.C. and MASON, R. L. (1992). 'Multivariate Control Charts 

for Individual Observations'. Journal of Quality Technology 24, pp.88-95. 

WOODALL, W. H. and NCUBE, M. M. (1985). 'Multivariate CUSUM Quality-Control 

Procedures'. Technometrics 27, pp.285-292. 




