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Summary 

In Tang and Barnett (1996) some techniques for monitoring and controlling the 

dispersion of multivariate normal processes based on subgroup data are presented. In 

this current paper, comparisons are made between the proposed techniques and 

various competing procedures. Simulation results indicate that the proposed 

techniques are superior to existing procedures. 

Key words : Dispersion control; multivariate normal processes; rational subgroups; 

statistical performance. 

1. Introduction 

In Tang and Barnett (1996), some procedures for monitoring and controlling 

the dispersion of multivariate normal processes based on rational subgroups are 

presented for both cases where the in-control value of the process covariance matrix 

L is specified and alternatively unknown in advance of production. Essentially, these 

1 Dept of Computer and Mathematical Scie!:lces 
PO Box 14428 MMC, Melbourne, Victoria 8001, Australia. 
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techniques involve the aggregation of suitably transformed variables, resulting from 

the decomposition of the covariance or some positive definite matrices, in order to 

produce control statistics having chi-square distributions under in-control and 

normality assumptions. In the present paper, the relative effectiveness of these and 

various competing techniques are studied. In addition, the effect of incorporating 

independent components from the decomposition, on the control performance, is 

examined for the known L case. To set the discussion in context, the proposed 

control procedures are briefly reviewed in subsequent paragraphs. 

Let sj (Lj), s*j (L*j) and sv,u (crv,u) be, respectively, the sample 

(population) covariance matrix of the first j variables, that of the last j variables and 

the vector of sample (population) covariances between the vth and each of the first u 

variables. The conditional sample and population variance of the jth variable given the 

first j-1 variables are then given by 

s~l · 1=S~-S~ - 1S-:-11S··1 l• , ...• 1- l 1.1- 1- 1.1- d 2 2 T ~-1 
an cr j•l , .. . ,j-1 = cr j - cr j,j-1 LJ j-1 cr j,j-1 · -

The conditional sample and population covariance matrices of the last p-j+ 1 variables 

given the remaining j- l variables are respectively 

( )
T ( s . . = s* . - s . . . . . s . s-:-1 s .. l •. .. ,p•l, ... ,1-1 p-1+1 1,.:!,-1 P,.:.;!-1 1-l 1,.:!,-1 ... s . ) p ,1-l -

and 

L · · = L* · - cr . . · · · cr . I,-:1 cr .. 
( )

T ( 
l·····P•l, ...• 1-l p-l+l -!.:.:!-l P,:J-l 1-l -!.:.:!-l 
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If d and 0 (j = 2, ... , p) denote respectively the vectors of sample and population 
-j -j 

regression coefficients when each of the last p-j+ 1 variables is regressed on the (j-l)th 

variable whilst the remainingj-2 variables are held fixed, these are expressible as 

{(s1·-1.1· s . i )-sT 1 . 2s~12(s .. 2 ... s . 2)}T J- ,p 1-;..J- J- t:.!.,- ~-

d =--0.------------------------"~ 
-j S · 1 · 1-S~1 · 2S~12S·1 · 2 J- ,J- J- ,]- J- J- ,]-,..., ,..., 

and 

Note that d and 0 should be interpreted as the vectors of unconditional sample 
-2 -2 

and population regression coefficients when each of the last p-1 variables is regressed 

on the 1st variable and these are given by 

(s12 slp r 
d =------ and 
-2 

respectively. We also use the same notation for distribution functions of Tang and 

Barnett (1996). 

For a p-variate normal process with presumably known I., the authors 

proposed the use of the following control statistic:-

where 

2p-l 

Tk = Iz~(k) 
j=l 

k = 1,2, ... (1) 
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z . = <I>-1{x2 · [(nk -I)SJ.1 .. .. ,j-1(k) ]} 
J(k) nk-J 2 

() . 1 . 1 1• ,. . .,)-

}=2, ... ,p. 

Zp+1(k) =<I>-
1{x2

p-1[(nk-I)Sick)(d -0 )TI.~~ . p•1(d -0 J]} 
....... 2(k) -2 ' " ....... 2(k) ....... 2 

z . =<I>-1 2 . -1 s~ . d -0 I,-:-1 . d -0 
{ [ ( ) T ( )~~ 'ptj4(k) xp--1+l (fltc ) 1-l•l, ... 1-2(k) ....... j(k) ....... j ') .... pel, . .. 1-1 ....... j(k) ....... j }=3, .. . ,p. 

and the subscript k indicates the subgroup number. 

In the absence of prior estimates for I, , the suggested control statistic is 

defined as 

where 

and 

2p-1 

Tk = IzJck) 
j=l 

k=2, ... 

z. = <1>-1[p . [ sJ.1 ..... j-l(k) ]] 
J(k) nk-J;Nj,k- 1 S2 

j ,k-1 (pooled) 

(2) 

j=l, ... ,p. 

( Sj
1
,k) s ;,!::.'" - v ~-1 r ( ( n, -1)-l Sj'., ., + u ~-Tl ( S;'. '" s ;.!::."' - v £-1) 

(j - l)SJ,k (pooled) 

}=2, ... ,p. 

The values of S ~ k( 1 d) U · k and V k can be updated sequentially using the J, pooe • J, j, 

following recursive equations :-
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2 1 [ 2 2 ] 
S j,k(pooled) = N N j,k-lS j,k-1 (pooled) + (nk - l)S j•l, . . . ,j-l(k) 

j,k 

k 

where N j ,k = L (ni - j) and sl~O(i) = sl~i)' 
i=l 

and 

Note that for both cases, {Tk} is a sequence of independent and identically distributed 

(i.i.d) chi-square variables with 2p- l degrees of freedom under the in-control and 

normality assumption. Thus, unlike other competing procedures, statistically valid 

control limits can be easily obtained for the resulting charts. Note also that since any 

instability in I. is likely to result in unusually large values in the Tk 's, it is suggested 

using only the upper control limit. 

2. Comparisons 

In this section, the relative performance of the proposed techniques are 

tested against some existing procedures. For the case where I, is assumed known, 

comparison is made between the proposed technique, the modified likelihood ratio 

test (MLRT), the ISl112 
charting technique as well as a possible method based on 

principal components. The first two charting procedures to be used in the comparison 

appear to be the most widely discussed techniques for monitoring the dispersion of 

multivariate normal processes (see for eg., Alt et al.(1986, 1990)). The latter is 
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included merely because it appears to be a reasonable technique in situations where 

principal components possess meaningful physical interpretations. In fact, as stated in 

Jackson (1989), this phenomenon is very common in industrial situations. In addition, 

Crosier (1988) has identified situations where ' ....... if the mean shifts, it does so along 

the major axis .... .'. Under these circumstances, it is expected that changes in L may 

well occur along some of the principal axes, namely the variances of some principal 

components may shift. As for the unknown L case, the proposed technique is 

compared with the modified likelihood ratio test for the equality of covariance 

matrices (MLRTECM) as given, for eg., in Anderson (1984, p.405). For clarity of 

subsequent discussion, these techniques are briefly reviewed. 

MLRT is an unbiased version of the likelihood ratio test of H 0:L =Lo 

against HA:L =F- Lo with the sample size, n, replaced by the number of degrees of 

freedom, n -1. This test rejects the null hypothesis H 0 and suggests a departure of 

the process covariance matrix from the standard or the known value Lo when the 

test or control statistic, w* exceeds w;,n,a where 

w* = -p(n-l)-(n-l)lnlSl+(n-l)lnlLol+Cn-l)tr(Lo1 S ). (3) 

a and w;,n,a denote respectively the false signal rate and the upper lOOa th 

percentage point of W * which depends on p and n. The distributional theory involved 

with this technique is prohibitively complicated thus limiting its practicality. Although 

w* can be approximated by a chi-square distribution with p(p+ l) degrees of 
2 

freedom when n is large, and the exact upper 1 % and 5% percentage points of w* 

have been tabulated, for example, in Anderson (1984), for p = 2(1)10 and various 
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values of n, these may be of little value in the context of control charting. In practice, 

the control or monitoring procedures are likely to be based on samples not sufficiently 

large to justify the use of the chi-square approximation. Besides, it may be preferable 

to have a control technique with false signal rates considerably smaller than 1 % or 

5%. Although MLRT is admissible (see for eg., Giri (1977), p.186), it will be seen 

later that this technique is inferior to the proposed technique for all of the cases 

considered. 

The other competing procedure is based on the use of the square root of the 

generalized sample covariance matrix, ISl112
. The resulting chart can be regarded as a 

multivariate analogue of the univariate S chart. When p = 2, ISl112 
is distributed as a 

scaled chi-square variable under the stable or in-control multivariate normality 

assumption (Anderson (1984), p.264). Thus, control limits may be set at 

IL 1112 2 
LCL = o X2(n-2),a.12 

2(n- l) 

I
L 

1
112 2 

and UCL= o X2(n-2),1-a.12 

2(n- l) 
(4) 

where x~ 0 denotes the 100 8th percentage point of the chi-square distribution with v 
' 

degrees of freedom. For higher dimensions, Alt et al. (1986) suggested the use of the 

3-sigma limits as given by the following formulae : 

(5) 

where 
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The use of this charting technique is ill-advised because:-

(i) it is incapable of detecting changes in L such that IL.I remains constant. 

(ii) the formula (5) above yields negative values for the lower control limit for most 

practical values of p and n. If LCL is thus set to zero as suggested by Alt et 

al.(1990), this means no protection is provided by the resulting ISl112 
chart against 

a decreasing value in IL.I . 

(iii) the associated false alarm rate is considerably larger than the nominal value of 

0.0027 especially when n is relatively small. Refer to Table 1 for the false signal 

rates for various practical combinations of p and n. These figures are obtained 

based on 10,000 simulation runs except when p = 3 or 4 in which case the entries 

are found by numerical integration. Note that, in some cases, the false signal rate 

is as large as 2%. 

<Insert Table 1 about here> 

To illustrate the first two points, consider the case of a trivariate process. In this case, 

the population generalized variance is expressible as 
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subject to the constraint 

Thus, it is readily seen that, theoretically, it is possible for ILi to remain constant or 

even decrease in the presence of process troubles. For example, suppose that 

cr1 = cr 2 =cr3 =1, p12 = 0.1, p13 = 0.7 and p23 = 0.5 are specified as the in-control 

values, but in fact cr3 ·is 3 times as large as that specified and p23 is .0.7553, then ILi 

remains at the value 0.32. If cr3 doubles instead, then this results in a smaller value of 

ILi. In either case, the departure is unlikely to be 'picked up' by the ISl112 
charts 

presented by Alt et al.(1986). 

It is perhaps worth noting that, for p = 3 or 4, control limits for the ISl112 

chart can be obtained numerically at any desired a level. In this case, the control 

limits are given by 

and UCL= ki-a/2 IL 11/2 

2p-2 (n- l)p12 o 

where k5 is a numerical solution to the integral equation, 

00 

f G2(n-p) ( kr, / X(p-2)12 )g(p-2)(n-p+2) (x )dx = 8. 
0 

(8) 

(9) 

The notation gv ( •) and Gv ( •) here denote respectively the probability density and 

the distribution function of a chi-square variable with v degrees of freedom. kr, is 
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obtained in this manner using Mathematica version 2.2 (Wolfram (1991)) and is given 

to 4 significant digits in Table 2 for p = 3 and 4, and various combinations of b and n. 

<Insert Table 2 about here> 

The last technique considered for the known I, case is aimed at changes of 

I, along the principal axes. It involves charting the sum of the standardized variances 

for the principal components, abbreviated hereafter as SSVPC, which is known to be 

distributed as a scaled chi-square variable under the multi.variate normal assumption 

with the hypothesized I, . The value of SSVPC may be calculated from the familiar 

equivalent statistic (n- l)tr(s I,~1 ) (see Appendix (A.3)). Note that, unlike all other 

control procedures considered in this section, this technique is applicable even in 

situations where n::; p. It has also been shown by Kiefer et al.(1965) that it is 

admissible. Although separate monitoring of the variances for the different principal 

components is possible, this is not considered due to the large number of charts to be 

kept when p is large. It is also for meaningful comparison with other techniques 

involving a single chart that separate monitoring of the variances is not considered. 

However, in practice, it is the recommendation that these individual variances be 

retained in order to facilitate the interpretation of out-of-control signals from the 

SSVPC charts. 

In the absence of prior information about I,, Alt et al.(1990) suggest using 

the MLRT and ISlvz control charts with the unknown process dispersion parameters 

in (3) and (5) being replaced by some unbiased estimates based on current production 
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data. Under these circumstances, the data used for estimating the unknown 

parameters are likely to be either small or moderate data sets. Accordingly, the false 

signal rates of the resulting techniques are not fixed but instead vary stochastically 

with the parameter estimates. This causes some difficulties when a comparison is to be 

made between these and the proposed technique. Thus only MLRTECM, which was 

originally proposed in the context of hypotheses testing, is considered. 

The criterion for MLRTECM is 

(10) 

where s(i)' ni and spoooled denote respectively the ith sample covariance matrix, its 

associated sample size and the pooled covariance matrix based on the q samples. It 

was shown by Anderson (1984) that it is an admissible test if ni > 2p-1, i = l, ... ,q. 

For equal sample sizes ni = n , this test rejects the null hypothesis that all the q 

samples are drawn from populations with the same covariance matrix if W > Wq,p,n,a. 

where Wq,p,n,a. denotes the critical value at the I 00 a% significance level. The upper 

5% points of W have been tabulated, for example, in Anderson (1984) for various 

combinations of p, q and n. There are two problems with the use of MLRTECM in 

the context of SPC. The existing tables for the percentiles of W are incomplete in 

regard to other values of p, q, n and a which are required for SPC applications. 

Besides, successive values of W are correlated and thus the in-control behaviour of 

the resulting technique is somewhat unpredictable. However, it is found that ignoring 

this issue does not appear to have any remarkable effect on the overall false signal 

rate. Therefore, a reasonable comparison can still be made between this and the 

proposed procedure by using the same ex. value for both methods. 
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It is shown in Appendix (A. I), (A.3) and (A.4) respectively that the 

statistical performance of MLRT, SSVPC and MLRTECM (for a step shift in L from 

I I 

Lo to Li) depend on the eigenvalues, A1 , ••• ,AP of L~2 Li L~2 , or equivalently, of 

L~1 L1 or L1 L~
1 , whereas that of the ISl112 

charting technique depends on Lo and 

Li only through the product of these eigenvalues, A1A2 •• • AP (see A.2). Note that 

A1A2 \ .. AP represents the ratio of the 'equal-content' volumes of the process 

ellipsoids corresponding to Li and Lo respectively. In addition, Nagao (1967) and 

Das Gupta (1969) independently showed that the power function of the MLRT is 

monotonically increasing with respect to !Ai - ~ Vi. Furthermore, note that MLRT, 

SSVPC, MLRTECM and ISl112 
charting procedures are invariant w.r.t. the 

transformation x* = rx + µ where r is any nonsingular matrix. This is not true with 

the proposed techniques except when r . is diagonal. By letting r = diag(~1 . , ••• ,11; ), 

it is readily seen that the values of the proposed statistics are the same whether they 

are computed from the covariance or correlation matrix (see A.5 and A.6), and so is 

true with the other invariant procedures considered above. However, difficulties arise 

when an attempt is made to compare their operating characteristics, since the 

statistical properties of the proposed techniques do not appear to be completely 

I I 

determined by the eigenvalues of Lo 2 L1 Lo 2
• To provide a 'sensible' comparison, it 

is therefore necessary to consider several possible combinations of Lo and Li which 

and determine the 'average' perf01mance of the proposed techniques relative to that 
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of the competing procedures. Note, however, that only Lo 's m the form of 

correlation matrix need to be considered. 

A somewhat systematic way of studying the relative performance of the 

various competing techniques is to use several arbitrary orthonormal matrices r 's 

that diagonalize L0112 Li L0112 giving the same diagonal matrix of eigenvalues, 

A = diag (A.1 , ••• , A. P ) • For a given L 0 , A and r , L 1 is then determined from 

Li =L~2rTArL~2. 

Amongst others, the orthonormal matrix that diagonalizes Lo, r = r 0 is used. This 

corresponds to situations where the shift is along the principal axes, namely, the 

variances of some principal components either increase or decrease. Under these 

circumstances, the eigenvalues of L0112 L1 L 0112 are the ratios ·of variances for the 

principal components, after and before the shift, and hence the control performance of 

MLRT, MLRTECM, SSVPC and ISl112 
depend on them (see A.7). Note that if the 

eigenvalues of L0112 L1 L0112 are identical, then L1 is the same irrespective of r. In 

this case, Li= A Lo where A is the common eigenvalue. This situation may occur in 

practice as a consequence of all variances increasing proportionally and the 

correlational structure of the variables remaining the same (see Healy (1987)). 

The techniques considered for the known L case above are compared on the 

basis of probability of detecting a persistent shift in the process covariance matrix 

from Lo to Li. It is assumed that this change, as well as the shift in the process 

mean vector if any, occur somewhere during the time interval between the sampling of 

two adjacent subgroups. Accordingly, the covariance matrices for samples or 

subgroups taken after the shift are characterized by a common distribution and the 



Page 14 

mean shift has no effect on this distribution. Of course, if desired, the average run 

lengths (ARLs) of the various techniques can be determined as the reciprocals of their 

corresponding probabilities of detection. As for the unknown l: case, a more 

complete profile of the run length (RL) properties is required. This is because the out-

of-control RL distributions of both techniques under consideration are not geometric 

so that ARL is not a suitable performance criterion (see Quesenberry (1993)). 

Furthermore, since these techniques estimate the in-control dispersion parameters 

sequentially from the current data stream and the efficiency of these estimates increase 

as more data are incorporated into the computations, it can be expected that their RL 

performance depend on when the shift takes place. As such, the relative performance 

of MLRTECM and the proposed technique are evaluated based on Pr(RL=S; k) for a 

step change in l: after the rth subgroup, for various combinations of rand k. 

The results for the known l: case are tabulated in Tables 3, 4 and 5 

respectively for the cases where (p = 3, n = 4), (p = 4, n = 5) and (p = 5, n = 8). 

These are based on simulations consisting of 5000 iterations each. Thus, the estimated 

maximum standard error of the results is 

" 

" " 
_P_r(_l -_Pr_) = 0.0071 which occurs when the 

5000 

estimated probability, Pr= 0.5 . For the unknown l: case, the results are based on 

2000 simulation runs each (with maximum standard error = 0.0112) and these are 

shown in Tables 6, 7 and 8 respectively for (p = 2, n = 3), (p = 3, n = 4) and (p = 4, n 

= 5). Here, it is assumed that the control procedures are based on subgroups of equal 

size, n. The false signal rate associated with each of the control schemes is fixed at 

0.0027, in line with the tradional control charting approach. Note that the control 

limits for MLRT and MLRTECM are obtained to sufficient accuracy using the work 
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of Davis et al.(1971). The control limits for ISl112 
chart are determined from Table 2 

for p = 3, 4 and by means of simulation consisting of 100,000 iterations for p = 5 and 

n = 8. Note also that 2-sided control limits with equal significance level on each side 

are used with SSVPC. 

<Insert Tables 3 to 8 about here> 

For every set of eigenvalues A.1, ••• ,AP not enclosed within a bracket, the 

probabilities for the proposed techniques are simulated for all possible permutations 

and the maximum, median and minimum values are tabulated, except for p = 2 in 

which case the median is not applicable. The results for the other control procedures 

are unaffected by these permutations. Note that for the cases where the eigenvalues 

are identical, the results for the proposed techniques are theoretically the same 

irrespective of Lo (see next section). As shown in Tables 3, 4 and 5, the proposed 

technique is much more powerful than the MLRT and ISl112 
charting procedures for 

all the cases considered. Note that even its worst performance in each case is 

significantly better than these procedures. For instance, when p = 3, n = 4 and the 

standard deviations of two principal components double, the results for MLRT and 

ISl112 techniques are respectively 0.0564 and 0.1268 whereas the smallest probability 

of detection for the proposed procedure is 0.3524. As compared to SSVPC, the 

proposed technique is seen to be marginally worst in most cases where some 

eigenvalues are greater than 1 whilst others are 1. However, in cases where some 

eigenvalues are greater and others are smaller than 1 (a situation which typically 
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occurs as a result of some but not all of the variances increasing), the proposed 

technique is almost always superior. Particularly notable is the situation when p is 

large. For instance, whenp = 5, n = 8 and the eigenvalues are (1, 1, 1, 0.1, 10), the 

result for SSVPC is 0.7398 whereas those for the proposed technique are 0.7780, 

0.8642 and 0.8532 respectively for the different r considered. Note that the exact 

probabilities for SSVPC and ISl112 
charting technique (for p = 3, 4) are obtainable 

using standard statistical software and a published program. The program of Davies 

(1980) can be used for finding the cumulative probability of SSVPC since the latter is 

distributed as a linear combination of independent chi-square variables with 

coefficients A.1 ,. •• ,A.P (see A.3). If A.1,. .. ,A.P are identical, resulting in a scaled chi-

square distribution, then many statistical software packages currently available can be 

used. If p = 3 or 4, the cumulative probability of ISl112 
can be determined by means of 

numerical integration. However, as a partial check of the simulation, the simulation 

results for these techniques are included. They are found to agree well with the 

theoretical values. For instance, the theoretical probabilities for ISl112 
and SSVPC are 

(0.1333, 0.3828), (0.4575, 0.8873) and (0.7020, 0.9866) for p = 4, n = 5, a= 0.0027 

and A.1 , .. .,A.P all equal to 2.25, 4 and 6.25 respectively. These are very close to the 

corresponding figures in Table 4. 

As for the comparison for the unknown L case, Tables 6, 7 and 8 clearly 

reveal that the proposed technique is far superior to MLRTECM irrespective of the 

dimension p, the change point r, the eigenvalues A.1, ••• ,A.P and the direction of the 

shift as specified by r . Like the known L case, limited comparisons using other 

values of p, n, r, Lo and some arbitrarily chosen r's yielded similar conclusions. 
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It is perhaps worth noting that Calvin (1994) has developed a one-sided test 

of covariance matrix with a known null value. However, no attempt has been made to 

compare the operating characteristics of this and the proposed technique. A 

reasonable comparison cannot be made since the former is specifically designed for 

situations where the deviations take the form of L = Lo+ B (B is a symmetric 

positive definite matrix) whereas the proposed technique is not meant for any specific 

shifts. If the shift is anticipated to be of the form L = Lo+ B, then the 

recommendation is to use the former technique. 

3. Effect of Aggregation on Control Performance 

As presented earlier, the proposed techniques involve the charting of some 

aggregate-type statistics formed using independent components resulting from the 

partitioning of the covariance matrices. Certainly, if the use of such a statistic incurs 

some loss in control performance, then it is preferable to chart the individual 

components separately though the improved performance is gained at the expense of 

increasing the charting effort. In this section, the effect of such 'aggregation' on the 

control performance, is briefly considered for the known L case. This effect is 

examined by comparing the probabilities of detection by the proposed technique with 

that based on the use of the individual components for certain shifts in L , having 

equated first their false signal rates. Note that the latter technique, abbreviated 

hereafter as the JC technique, involves the plotting of the following statistics :-

(11) 



and 

(nk - l)SJ.1, ... ,j-1(k) 

2 
(j . 1 . 1 1• , .... 1-

j = 2, ... ,p. 
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(12) 

(13) 

(nk-l)S1~_1•1 .. . 1·_2<k)(d -0 )TL-1· ~ .. p.1._1(d -0) j=3, ... ,p. (14) 
' ' ,_ j(k) ,_ j ' ' ,_ j(k) ,..... j 

It may also be of some value to study the control performance of the 

technique based on the use of principal components. In the presence of :L, it is 

reasonable to chart the standardized variances of the principal components (multiplied 

by (n-1) each) separately. These are given by the diagonal elements of 

I I 

(n-l)A0
2r 0sr0A 0

2 where A 0 and rl denote respectively the diagonal matrix 

containing the eigenvalues of Lo and the matrix of the corresponding eigenvectors. 

For ease of subsequent discussion, this technique is referred to as ISVPC. 

Following a shift in the process covariance matrix L , the statistics (11) and 

(12) are readily seen to follow some scaled chi-square distribution whereas the 

Hotelling X2 -type statistics in (13) and (14) can be shown to be generally distributed 

as linear combinations of independent noncentral chi-square variables (see A.8). 

Furthermore, note that the (conditional) independence of these statistics is preserved. 

Thus, given the program of Davies (1980), it is possible to determine the overall 

probability of 'picking up' any given shift in L by the use of these statistics. 

However, for mathematical convenience, only a special case is considered, namely, 

when the shifts take the form:-
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a situation which has been noted earlier. Note that under these circumstances, all the 

above statistics are chi-square except for the scalar multiple /.., . The same is true for 

the ISVPC technique. Thus, the statistical performance of these and the proposed 

technique depends on A (besides p and n) irrespective of L,
0

. 

For reasonable comparison, suppose that the significance levels associated 

with the control charts for the IC and ISVPC techniques are set to be equal to a* so 

that the overall false signal rate, a, for each control scheme is the same as that of the 

proposed technique. Accordingly, the a* for both techniques are respectively given 

by 

* -'-a =1-(l-a) 2 p-I and 
. * ~ 
a =l-(l-a)P. 

Furthermore, note that both the lower and upper control limits are used with each 

* * 
chart and these are set at ~ and 1-~ probability levels respectively. The power 

of these and the proposed technique are given to 4 decimal places in Table 9 for 

various combinations of p, n, /... and a. Note that the results for the proposed 

technique are obtained by means of 5000 simulation runs. In all these cases, it is 

observed that the proposed technique is significantly better than the IC and ISVPC 

techniques. It is also seen that ISVPC ranks between the proposed and the IC 

technique in performance for all the given shifts. Although no attempt has been made 

to study their relative performance thoroughly, the results provide an indication that 

incorporating the individual components into a composite statistic in the suggested 

manner may well result in improved control performance. 
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<Insert Table 9 about here> 

4. Concluding Remarks 

Some methods have been presented by Tang and Barnett (1996) for 

controlling the dispersion of multivariate normal processes as measured by the 

variance-covariance matrix. The one presented for the case with no prior knowledge 

of the process parameters is particularly attractive for short production runs and low 

volume manufacturing environments. This procedure also enables the monitoring of 

new or start-up processes soon after production commences. 

A simulation study indicates that the proposed techniques outperform 

previously proposed procedures for many sustained shifts in the process covariance 

matrix. It has also been demonstrated that the technique presented for the known .L 

case is more powerful in 'picking up' certain shifts than that which involves the 

separate charting of the standardized variances of the principal components or the 

individual components resulting from the decomposition of the covariance matrices. 

In addition, the proposed methods have some practical advantages over the existing 

procedures. Besides having a better control over the false alarm rate and the ease of 

locating the control limits, the proposed techniques can help identify the nature of 

change in the process dispersion parameters. As all multivariate control procedures 

are computerised, the complexity of the associated computation should not be an 

issue. In fact, almost all standard statistical software packages commercially available 

support the implementation of the proposed procedures. 

This paper has only considered control procedures based on subgroup data. 

There are situations where only a single measurement is made on each product 
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characteristic at regular time intervals. In this regard, Hawkins (1992), amongst 

others, has developed some nonparametric procedures for detecting ramp shifts in 

functions of the process dispersion parameters for retrospective and sequential 

settings, when the process covariance matrix is either specified or unknown. 

However, if the distribution of the observation vectors is known, for example, to be 

multivariate normal, a parametric procedure is preferable since better performance is 

anticipated. This is an area for future research. Another aspect that warrants 

investigation is the robustness of the proposed procedures to departures from the 

normality assumption. 
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TABLE 1. False Signal Rate of jSj
112 

Chart with '3-sigma' Limits 

~ p 
3 4 5 6 7 8 9 10 

4 0.0203 
5 0.0174 0.0206 
6 0.0154 0.0188 0.0203 
7 0.0139 0.0172 ' 0.0187 0.0219 
8 0.0128 0.0159 0.0191 0.0197 0.0202 
9 0.0118 0.0149 0.0141 0.0191 0.0199 0.0203 

10 0.0111 0.0140 0.0178 0.0192 0.0207 0.0220 0.0205 
15 0.0087 0.0110 0.0130 0.0143 0.0157 0.0170 0.0204 0.0180 
20 0.0085 0.0093 0.0108 0.0121 0.0148 0.0166 0.0164 0.0140 i 

25 0.0071 0.0079 0.0108 0.0123 0.0125 0.0121 0.0124 0.0169 
30 0.0056 0.0075 0.0106 0.011 1 0.0098 0.0119 0.0137 0.0114 

112 
TABLE 2. S Control Chart Factor 

3 4 .0034 .0063 .0126 20.98 24.48 27.73 
5 .1513 .2082 .2994 34.48 38.87 43.18 
6 .6842 .8573 1.112 48.15 53 .81 58.90 
7 1.673 2.007 2.473 62.25 68.86 74.70 
8 3.117 3.652 4.367 76.85 84.35 91.01 
9 5.050 5.780 6.770 91.92 100.3 107.7 

10 7.417 8.375 9.659 107.5 116.7 124.8 
15 25.39 27.76 30.73 191.7 204.9 216.5 
20 52.80 56.65 61.51 285.6 302.6 317.4 

4 5 .0108 .0200 .0401 90.46 108.0 124.5 
6 .5297 .7308 1.055 169.3 195.9 220.5 
7 2.620 3.303 4.318 260.4 296.2 329.1 
8 6.981 8.427 10.49 364.3 409.6 450.4 
9 14.10 16.60 20.03 480.6 535.7 585.0 

10 24.36 28.13 33.30 609.1 674.2 732.7 
15 132.1 146.0 164.1 1427 1546 1652 
20 350.0 379.1 416.6 2522 2703 2862 
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TABLE 3. Power Comparison of Proposed, MLRT, ISl112 and SSVPC Charting 

Techniques for p = 3, n = 4 and a= 0.0027. 

Eigenvalues Power 

of I.01 I.1 MLRT 1s1112 SSVPC PR1JP(1sl-in a 

Max Med Min 
2.25, 1, 1 0.0030 0.0096 0.0334 * 0.0366 0.0240 0.0230 

t 0.0350 0.0296 0.0244 
:j: 0.0402 0.0264 0.0250 

2.25, 2.25, 1 0.0050 0.0348 0.1060 0.0908 0.0888 0.0842 
0.0844 0.0840 0.0692 
0.0782 0.0750 0.0690 

2.25, 2.25, 2.25 0.0102 0.0862 0.2140 ------- 0.1688 -------
4, 1, 1 0.0226 0.0206 0.1668 0.1820 0.1286 0.1254 

0.1622 0.1474 0.1346 
0.1390 0.1334 0.1262 

4, 4, 1 0.0564 0.1268 0.4278 0.3736 0.3706 0.3524 
0.3870 0.3624 0.3536 
0.3806 0.3610 0.3310 

4, 4, 4 0.1326 0.3182 0.6674 ------- 0.6014 -------
6.25, 1, 1 0.0888 0.0340 0.3374 0.3490 0.3060 0.2926 

0.3174 0.3122 0.2874 
0.3010 0.2976 0.2936 

6.25, 6.25, 1 0.2374 0.2294 0.6810 0.6810 0.6726 0.6510 
0.6488 0.6324 0.6296 
0.6534 0.6454 0.6284 

6.25, 6.25, 6.25 0.4276 0.5234 0.8944 ------- 0.8664 -------
b (1, 0.25, 4) 0.0342 0.0030 0.1298 ------- 0.1704 -------

------- 0.0886 -------
------- 0.1306 -------

(1, 0.16, 6.25) 0.1046 0.0028 0.2890 ------- 0.3324 -------
------- 0.2786 -------
------- 0.2732 -------

(1, 0.1, 10) 0.3026 0.0040 0.5036 ------- 0.5622 -------
------- 0.4610 -------
------- 0.4846 -------

(1, 0.05, 20) 0.6062 0.0042 0.7410 ------- 0.8066 -------
------- 0.7528 -------
------- 0.7430 -------

~ :: ::::: ~~:: :ef:::: :::::::;ip:=ax[~~ -~1' v~ ]· 
11.[6 11.[6 -21.[6 

d b (0.44 0.85 0.27 ) :j: The entries in 3rd row are for shifts determine Y r = o.78 --0.52 035 
· 

0.44 0.06 --0.90 

a ( 1 0.75 0.45) is used. 
Io= 0.75 1 0.9 

0.45 0.9 1 

b The entries for the proposed technique are for the particular permutations of eigenvalues enclosed within 

the brackets. 
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TABLE 4. Power Comparison of Proposed, MLRT, ISl112 and SSVPC Charting 

Techniques for p = 4, n = 5 and a = 0.0027. 

Eigenvalues Power 

ot I.~1 I.1 MLRT 1s1v2 SSVPC PROPO.~Pn 3 

Max Med Min 
2.25, 1, 1, 1 0.0046 0.0082 0.0308 * 0.0346 0.0309 0.0260 

t 0.0354 0.0271 0.0206 
:j: 0.0350 0.0273 0.0250 

2.25, 2.25, 1, 1 0.0072 0.0224 0.1136 0.0972 0.0865 0.0789 
0.0920 0.0886 0.0690 
0.1036 0.0783 0.0750 

2.25, 2.25,.2.25, 1 0.0080 0.0672 0.2292 0.1866 0.1672 0.1556 
0.1828 0.1731 0.1586 
0.1794 0.1605 0.1416 

2.25, 2.25, 2.25, 2.25 0.0110 0.1358 0.3802 ------- 0.2970 -------
4, 1, 1, 1 0.0154 0.0214 0.1712 0.1782 0.1664 0.1452 

0.1850 0.1530 0.1326 
0.1656 0.1480 0.1350 

4,4, 1, 1 0.0462 0.0656 0.3874 0.4484 0.4209 0.3968 
0.4360 0.4115 0.3860 
0.4320 0.3985 0.3756 

4,4,4, 1 0.1124 0.2504 0.7440 0.6708 0.6562 0.6330 
0.6610 0.6535 0.6416 
0.6658 0.6599 0.6480 

4,4,4,4 0.1914 0.4480 0.8846 ------- 0.8300 -------
6.25, 1, 1, 1 0.0688 0.0346 0.3812 0.3996 0.3790 0.3502 

0.4010 0.3373 0.3320 
0.3850 0.3448 0.3280 

6.25, 6.25, 1, 1 0.2356 0.1848 0.7824 0.7388 0.7153 0.7086 
0.7320 0.7136 0.6770 
0.7350 0.6984 0.6836 

6.25, 6.25, 6.25, 1 0.4316 0.4392 0.9386 0.9092 0.9070 0.8988 
0.9152 0.9123 0.9086 
0.9116 0.9054 0.8930 

6.25, 6.25, 6.25, 6.25 0.6144 0.6968 0.9842 ------- 0.9746 -------
b 0.0234 0.0026 0.1394 0.1548 -------(1, 1, 0.25, 4) -------

------- 0.1688 -------
------- 0.1404 -------

(0.25, 0.25, 4, 4) 0.0810 0.0040 0.3218 ------- 0.4116 -------
------- 0.4150 -------
------- 0.4466 -------

(1, 1, 0.16, 6.25) 0.0932 0.0012 0.3114 ------- 0.3616 -------
------- 0.3742 -------
------- 0.3380 -------

(0.16, 0.16, 6.25, 6.25 0.3412 0.0038 0.6570 ------- 0.7208 -------
------- 0.7358 -------
------- 0.7587 -------

(1, 1, 0.1, 10) 0.3040 0.0036 0.5662 ------- 0.6116 -------
------- 0.6064 -------
------- 0.5868 -------

cont... 
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TABLE 4. continued 

Eigenvalues Power 

of I.;1 I.1 MLRT 1s1112 SSVPC PROPO.~Fn 8 

Max Med Min 

(0.1, 0.1, 10, 10) 0.7022 0.0032 0.8674 -------- 0.9316 -------
-------- 0.9210 -------
-------- 0.9316 -------

(1, 1, 0.05, 20) 0.6276 0.0016 0.7992 -------- 0.8700 -------
-------- 0.8530 -------
-------- 0.8644 -------

(20, 0.05, 0.05, 20) 0.9522 0.0020 0.9808 -------- 0.9892 -------
-------- 0.9914 -------
-------- 0.9834 -------

*The entries in 1st row are for shifts along the principal axes. 

( 1/2 
1/2 1/2 

112 ] t The entries in 2nd row are for shifts determined by 11.Ji -11.Ji 0 0 . 
r-

11./6 -21./6 - 11./6 

-31°.m 11!12 11112 11!12 

[ 099 
0.07 0.09 006] 

:j: The entries in 3rd row are for shifts determined by -0.11 0.10 0.98 0.15 . 
r= 

0.71 -0.19 0.04 -0.08 

0.06 0.15 0.68 -0.72 

a _ 0.5 1 0.2 0.7 is used. 
I.o- o.9 0.2 1 o.4 

0.6 0.7 0.4 1 
[ 

1 0.5 0.9 0.6] 

b The entries for the proposed technique are for the particular permutations of eigenvalues enclosed within 

the brackets. 
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TABLE 5. Power Comparison of Proposed, MLRT, ISl112 and SSVPC Charting 

Techniques for p = 5, n = 8 and a= 0.0027. 

Eigenvalues Power 

ot L~1 L 1 MLRT 1s1112 SSVPf PR ()p()~Pn a 

Max 
2.25, 1, 1, 1, 1 0.0086 0.0100 0.0390 * 0.0366 

t 0.0470 
:j: 0.0512 

2.25, 2.25, 2.25, 2.25, 2.25 0.1356 0.4694 0.7560 --------
4, 1, 1, 1, 1 0.0946 0.0320 0.260.:1 0.2356 

0.2788 
0.3174 

4,4, 4, 4,4 0.8440 0.9232 0.9954 --------
6.25, 1, 1, 1, 1 0.3064 0.0630 0.5444 0.5216 

0.6072 
0.5806 

6.25, 6.25, 6.25, 6.25, 6.25 0.9930 0.9974 1.0000 --------
9, 1, 1, 1, 1 0.5336 0.0844 0.7406 0.7456 

0.7708 
0.7838 

9,9,9,9,9 0.9996 0.9990 1.0000 ---------
b 

0.1332 0.0026 0.1766 (1, 1, 1, 0.25, 4) ---------
---------
---------

(1, 4, 0.25, 0.25, 4) 0.4620 0.0008 0.4624 ---------
---------
---------

(1, 1, 1, 0.16, 6.25) 0.4358 0.0026 0.4414 ---------
---------
---------

(1, 6.25, 0.16, 0.16, 6.25) 0.8692 0.0040 0.8156 ---------
---------
---------

(1, 1, 1, 0.1, 10) 0.7622 0.0042 0.7398 ---------
---------
---------

(1, 10, 0.1, 0.1, 10) 0.9894 0.0034 0.9644 ---------
---------
---------

*The entries in 1st row are for shifts along the pnnc1pal axes. 
11./5 11./5 11./5 

t The entries in 2nd row are for shifts determined by v.Ji _11.Ji 0 

:j: The entries in 3rd row are for shifts determined by 

r = 11./6 11 .J6 -21./6 

11.ffi 11.ffi 11.ffi 

1/ .fiiJ 11 .fiiJ 11 .fiiJ 

0.88 -0.48 0.00 

0.47 0.87 0.11 

r= -0.07 -0.13 0.52 

-0.02 -0.03 0.85 

0.00 0.00 -0.04 

Med 

0.0316 
0.0376 
0.0352 
0.5792 
0.2206 
0.2450 
0.2362 
0.9926 
0.5030 
0.5418 
0.5258 
1.0000 
0.7256 
0.7626 
0.7350 
1.0000 
0.1866 
0.2990 
0.2766 
0.5422 
0.6694 
0.6244 
0.4818 
0.6226 
0.6192 
0.9006 
0.9344 
0.9396 
0.7780 
0.8642 
0.8532 
0.9910 
0.9988 
0.9930 

11./5 11./5 

0 0 

0 0 

-31.ffi 0 

11.fiiJ -41.fiiJ 

0.00 0.00 

0.08 0.07 

0.59 0.59 

-0.34 -0.41 

0.72 -0.69 

Min 

0.0268 
0.0290 
0.0226 
--------
0.1926 
0.2206 
0.2176 
--------
0.4636 
0.4926 
0.5110 
--------
0.7188 
0.7262 
0.7174 
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------
--------

cont'd 
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1 0.58 0.51 0.39 0.46 
a 0.58 1 0.6 0.39 0.32 is used. 

I.o = 0.51 0.6 1 0.44 0.43 

0.39 0.39 0.44 1 0.52 

0.46 0.32 0.43 0.52 1 

b The entries for the proposed technique are for the particular permutations of eigenvalues enclosed within 
brackets. 
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TABLE 6. Pr(RL ~ k) for a Change in L. after the rth Subgroup, by Proposed and 

MLRTECM Charting Techniques for p = 2, n = 3 and a= 0.0027. 

I 
' I 

Eigenvalues 
I 

PROPOSED a 

ot L.~1 L.1 r k MLRTECM Max Min 

4, 1 10 5 0.0110 * 0.1270 0.0675 
t 0.1645 0.0680 
:j: 0.1345 0.0615 

10 0.0205 0.1750 0.0970 
0.2195 0.0885 
0.1860 0.1010 

20 5 0.0125 0.2125 0.1255 
0.2640 0.1365 
0.2365 0.1205 

10 0.0165 0.3000 0.2105 
0.3165 0.1740 
0.3205 0.1925 

6.25, 1 10 5 0.0185 0.2785 0.1680 
0.3265 0.1295 
0.3205 0.1505 

10 0.0375 0.3195 0.2180 
0.3700 0.1505 
0.3840 0.1765 

20 5 0.0225 0.4515 0.3040 
0.5015 0.2705 
0.4725 0.2605 

10 0.0495 0.5875 0.4230 
0.6115 0.3405 
0.6040 0.3680 

9, 1 10 5 0~0360 0.4345 0.2840 
0.4880 0.2015 
0.5030 0.2370 

10 0.0525 0.5080 0.3455 
0.5660 0.2510 
0.5185 0.2910 

20 5 0.0485 0.6560 0.4785 

i 0.6755 0.4100 
0.6780 0.4625 

10 0.0970 0.8050 0.6370 
0.8045 0.5120 
0.7965 0.5695 

4, 4 10 5 0.0265 --------- 0.2285 ---------
10 0.0425 --------- 0.2760 ---------

20 5 0.0330 --------- 0.4205 ---------
10 0.0645 --------- 0.4890 ---------

6.25, 6.25 10 5 0.0675 --------- 0.4890 
_______ ... _ 

10 0.1090 --------- 0.5115 ---------
20 5 0.0940 --------- 0.6935 ---------

10 0.1905 --------- 0.8035 ---------
9, 9 10 5 0.1465 --------- 0.6965 ---------

10 0.2270 --------- 0.7450 ---------
20 5 0.2365 --------- 0.8770 ---------

1 () () .d.1'J() --------- () Q~Q() ---------
*The entries in 1st row are for shifts along the principal axes. 

cont'd 



t The entries in 2nd row are for shifts determined by r=(---0.9% 0.004 J· 
---0.004 ---0.996 

:j: The entries in 3rd row are for shifts determined by r = . (
0.189 0.982] 
0982 ---0.189 

a .L,0 = is used. ( 1 0.5J 
0.5 1 
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TABLE 7. Pr(RL~ k) for a Change in L after the rth Subgroup, by Proposed and 

MLRTECM Charting Techniques for p = 3, n = 4 and a = 0.0027. 

Eigenvalues PROPOSED a 

ot :L~1 :L1 r k MLRTECM Max Med Min 

4, 1, 1 10 5 0.0100 * 0.1385 0.0995 0.0370 
t 0.1535 0.0615 0.0560 
:j: 0.1075 0.0850 0.0525 

10 0.0170 0.1965 0.1395 0.0555 
0.2090 0.0810 0.0625 
0.1735 0.1010 0.0790 

20 5 0.0135 0.2425 0.1810 0.0855 
0.2685 0.1215 0.0935 
0.2205 0.1495 0.1015 

10 0.0145 0.3410 0.2790 0.1045 
0.3665 0.1695 0.1330 
0.2795 0.1935 0.1395 

6.25, 1, 1 10 5 0.0155 0.3405 0.2780 0.0775 
0.3845 0.1380 0.1190 
0.2795 0.2140 0.1065 

10 0.0245 0.3915 0.3190 0.0915 
0.4230 0.1660 0.1195 
0.3625 0.2260 0.1605 

20 5 0.0220 0.5505 0.2425 0.1925 
0.5625 0.3085 0.2180 
0.4710 0.3795 0.2415 

10 0.0350 0.6710 0.5860 0.2335 
0.6395 0.3650 0.3065 
0.5780 0.4720 0.3475 

9, 1, 1 10 5 0.0300 0.5520 0.4575 0.1110 
0.5840 0.2515 0.1735 
0.5055 0.3180 0.2320 

10 0.0495 0.6135 0.5545 0.1505 
0.6360 0.3055 0.2430 
0.5625 0.3555 0.3195 

20 5 0.0335 0.7625 0.6835 0.3145 
0.7755 0.4780 0.4060 
0.7380 0.6005 0.4445 

10 0.0785 0.8530 0.8325 0.3770 
0.8760 0.5915 0.5290 
0.6505 0.5575 0.4115 

4,4,4 10 5 0.0420 ------- 0.3940 -------
10 0.0690 ------- 0.4170 -------

20 5 0.0450 ------- 0.6040 -------
10 0.0810 ------- 0.7030 -------

6.25, 6.25, 6.25 10 5 0.1190 ------- 0.7045 -------
10 0.2105 ------- 0.7570 -------

20 5 0.1895 ------- 0.9310 -------
10 0.3820 ------- 0.9685 -------

9,9,9 10 5 0.3090 ------- 0.9215 -------
10 0.4460 ------- 0.9310 -------

20 5 0.4785 ------- 0.9940 -------
10 0.7655 ------- 0.9995 -------

cont'd 
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*The entries in 1st row are for shifts along the principal axes. 

( 

0.87 
t The entries in 2nd row are for shifts determined by r = _

036 

0.34 

0.23 044) 
-0.31 0.88 . 

-0.92 -0.19 

( 

0.85 
:j: The entries in 3rd row are for shifts determined by r = 0.3 l 

-0.43 

0.04 053) 
-0.85 -0.43 . 

-0.53 0.73 

a [ 1 I. 0 = o.75 

0.45 

0.45] 

. 

is used. 
1 0.9 

0.9 1 

0.75 
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TABLE 8. Pr(RL::; k) for a Change in L after the rth Subgroup, by Proposed and 

MLRTECM Charting Techniques for p = 4, n = 5 and a= 0.0027. 

Eigenvalues PROPOSED a 

or I.;1 I.1 r k MLRTECM Max Med Min 

4, 1, 1, 1 10 5 0.0055 * 0.1965 0.0918 0.0345 
t 0.1725 0.0810 0.0385 
:j: 0.1810 0.0813 0.0260 

10 0.0205 0.2540 0.1265 0.0500 
0.2125 0.0893 0.0490 
0.2620 0.1155 0.0595 

20 5 0.0130 0.3115 0.1705 0.0655 
0.2880 0.1570 0.0675 
0.3005 0.1400 0.0660 

10 0.0225 0.4170 0.2503 0.0990 
0.3655 0.2025 0.1115 
0.3930 0.1913 0.1090 

6.25, 1, 1, 1 10 5 0.0195 0.4125 0.2135 0.0565 
0.4105 0.2115 0.0700 
0.4090 0.1980 0.0935 

10 0.0300 0.5060 0.2635 0.0930 
0.4655 0.2253 0.1135 
0.4410 0.2233 0.1220 

20 5 0.0225 0.6430 0.4253 0.1915 
0.6295 0.3788 0.1610 
0.6165 0.3893 0.1735 

10 0.0485 0.7385 0.5253 0.2125 
0.7410 0.5053 0.2620 
0.7355 0.4550 0.2230 

9, 1, 1, 1 10 5 0.0300 0.7015 0.3350 0.0955 
0.6645 0.3593 0.1475 
0.6310 0.3460 0.1280 

10 0.0465 0.7175 0.4115 0.1515 
0.6900 0.3868 0.1925 
0.7005 0.3843 0.1785 

20 5 0.0370 0.8670 0.6730 0.2825 
0.8565 0.6340 0.3110 
0.8335 0.6208 0.3140 

10 0.0745 0.9440 0.7435 0.3390 
0.9225 0.7300 0.3970 
0.9390 0.7303 0.4180 

4,4,4,4 10 5 0.0585 -------- 0.5340 --------
10 0.1125 -------- 0.6170 --------

20 5 0.0750 -------- 0.7735 --------
10 0.1675 -------- 0.9020 --------

6.25, 6.25, 6.25 10 5 0.2420 -------- 0.8955 --------
10 0.3850 -------- 0.9240 --------

20 5 0.3790 -------- 0.9945 --------
10 0.6600 -------- 0.9970 --------

9,9,9,9 10 5 0.5755 -------- 0.9835 --------
10 0.7580 -------- 0.9930 --------

20 5 0.7500 -------- 1.0000 --------
10 0.9535 -------- 1.0000 --------

*The entries in 1st row are for shifts along the pnnc1pal axes. 

cont'd 



t The entries in 2nd row are for shifts determined by [ 0.96 
-0.27 r= 
0.04 

-0.06 

:j: The entries in 3rd row are for shifts determined by [0.96 
' 0.28 r= 

O.Ql 

0.07 

a [ I o .5 0.9 o.6] is used. 
:t = 0.5 1 0.2 0.7 

0 0 .9 0.2 0.4 

0.6 0.7 0.4 1 

0.11 

0.11 

-0.66 

0.74 

0.12 

- 0.23 

0.62 

-0.74 
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0.26 0031 0.94 0.17 

0.22 -0.72 

0.02 -0.67 

0.26 004) 
-0.87 -0.3 3 

-0.42 0.66 
I 

-0.04 -0.67 
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TABLE 9. Power Comparison of Proposed, IC and ISVPC Charting Technique 
for Shifts in the Form of I.1 = A I, 0 . 

Power 
p n a A Proposed IC ISVPC 

3 4 0.0027 2.25 0.1688 0.1149 0.1334 
4.00 0.6014 0.4666 0.5134 
6.25 0.8664 0.7596 0.7965 

0.01 2.25 0.2604 0.1995 0.2238 
4.00 0.6818 0.5928 0.6342 
6.25 0.8912 0.8404 0.8662 

4 5 0.0027 2.25 0.2970 0.1669 0.2017 
4.00 0.8300 0.6468 0.7097 
6.25 0.9746 0.9127 0.9390 

0.01 2.25 0.4050 0.2781 0.3216 
4.00 0.8792 0.7672 0.8145 
6.25 0.9822 0.9542 0.9686 

5 8 0.0027 2.25 0.5792 0.3078 0.3877 
4.00 0.9926 0.9036 0.9459 
6.25 1.0000 0.9962 0.9986 

0.01 2.25 0.7132 0.4648 0.5495 
4.00 0.9938 0.9566 0.9772 
6.25 1.0000 0.9989 0.9996 
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Appendices 

A.1. The Distributional Properties of w* Depend on the Eigenvalues of L~t Li Lo~. 

* . Note that W may be wntten as 

w* = - p(n -1)-(n -1) lnlLo i s Loi I+ (n - l)tr( Loi s Lo ~ ) 

s.t. 

A1 0 0 

rArT =A= diag(A-1, ... ,Ap )= 
0 A2 

0 

0 0 AP 

where A-1,. .. ,AP are the eigenvalues of A. Due to invariance w.r.t. any orthonormal 

I 

transformation (upon Lo 2 X ), 

where l'f 's are independently distributed as X~-i variables (see Theorem 3.3.8, p.82, 

Srivastava et al.(1979)). Similarly, tr( L~t SL~!) is distributed as 

1 p 
-~A..u. 
(n-1) fit i i 

where U i's are i.i.d X~-i variables. Combining these, the distribution of w* therefore 

depends on the combination of A-1, ... , AP . In addition, it is readily shown that the 

I I 

eigenvalues of Lo 2 Li Lo 2 are the same as that of L;1 Li or Li L;1 by using the 
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characteristic equation. Note also that the result is not affected by the rotation of the 

coordinate axes. 

A.2. The Statistical Performance of jsj112 
Chart Depends on the Product of the 

-.! --.!. 
Eigenvalues of Lo 2 L 1 Lo 2 • 

Note that the use of jsj112 
charts with control limits of the form kilLol and k

2
1Lol is 

equivalent to charting and comparing the statistic IL~! S Lo~ I with the constants ki and 

ki . By using similar arguments to those in A.1, it is readily shown that the statistical 

performance of this control technique depends on the product of the eigenvalues of 

A.3. The Distributional Properties of The Sum of Standardized Variances of The 
_.! --.!. 

Principal Components (SSVPC) Depend on The Eigenvalues of Lo 2 L 1 Lo 2 • 

The sum of the standardized variances (multiplied by n - 1) of the principal components 

is given by 

t{<n-1>( A~r0 )s( A0lr0 rJ 
=tr[ (n - l)A~tr0srJ A0~ J. 

where A 0 and rJ denote respectively the diagonal matrix of the eigenvalues of Lo and 

the matrix with the corresponding normalized eigenvectors. This statistic is invariant 

I 

w.r.t. any pxp orthonormal transformation (upon A 0
2r 0X). In particular, it is 

expressible as 
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t{ (n -I>rl( A0~r0srJ A-} )r0 J 

= tr[(n -1)( r.; A0~r0 )s( rJ A~!r0 rJ 
= t{ (n -1):~) s( ~) rJ (see Johnson et al.(1988), p.51) 

1 

= tr[<n-l)Loi sL;t] 

= (n - l)tr[ Loi S Loi J. 

·: Lo 2 is symmetric 

Note that this implies that the value of the plot statistic remains the same whether it is 

computed from the principal components or any other set of linearly independent 

combinations of the individual variables obtained in the above manner. 

Now, let r be an orthogonal matrix such that 

1 I 

where b1,b2 , ••• ,bP represent the eigenvalues of Lo 2 L1 L~2 . Since 

(n-l)tr[ Lo~ SL~t J 
= (n-l)t{ r( L0 ~ SL~! )rT J 

where r( Loi S Loi )rT -WP (n -1, A) when I.= I.1, it is readily seen that the sum of 

the standardized variances of the principal components is distributed as a linear 

combination of p independent chi-square variables with n-1 degrees of freedom each and 

with coefficients A.1 , ... , AP. Thus, the statistical performance of this technique depends 



A.4. Statistical Performance of MLRTECM Depends on the Eigenvalues of 
I.~112 L1 I.;112 

The MLRTECM criterion is W = -2lnA where 

q 1 

Ill 12(n;-1) 
s(i) 

A= i=1 

I
s 1-t<ni+ ... +nq-q) 

pooled 

=C~-i-~"'--~~~~~~~ 
q 1<n1+ ... +nq-q) 

L/ni - l)S(i) 
i=l 
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and C is a constant depending on the ni 's . Due to invariance, A may be characterized 

by 

ITq I l.!.(n ·-1) c v. 2 
} 

J 

where 

Vi - WP ( n i -1, I), 

- WP(ni -1, A), 

j=l, ... ,r 

j = r+ 1, ... ,q 

r is the change point and A denotes a diagonal matrix containing the eigenvalues 

"' "' of "'-112 "" "'-112 Thus it is readily seen that the statistical performance of /\;1, .. • 'l\;P ~o ~1 ~o · , 

MLRTECM depends on these eigenvalues. 
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A.5. Scale Invariance of The Proposed Statistic (Known I. Case) 

Let G = diag(~1 , ... ,*) be the diagonal matrix with ith element being the reciprocal of 

the standard deviation of the ith variable. The sample covariance matrix computed from 

the variables scaled to have unit variances (i.e the sample correlation matrix) is then 

given by 

s* =GSGT 

where d denotes the zero vector of (p-1) elements, S22 is the sample covariance 

matrix of the last (p-1) variables, and 

ST = (R
12

S
1
S

2 
R

13
S

1
S

3 
• •• R1PS1S P ). Similarly, the population correlation matrix is 

-12 
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where L.22 represents the population covariance matrix of the last (p-1) variables and 

matrix of the last (p-1) variables, given the first one, is :-

L.;2.1 = Dl'.22 DT -(-
1 

Dl'.12)(1r
1
(-

1 
L.i2 DT) 

0'1 ,..., 0'1 -

= Dl'.22DT -DL.12(cri)-1 L.i2DT 
,..., -

=D( L22-L~2(cr:f LJ2 )oT 
= Dl'.22•1DT, 

where L.22•1 denotes the corresponding quantity calculated from the covariance matrix. 

Note that the proposed charting variable is a function of, amongst others, the variance 

ratio of the first variable and the Hotelling chi-square statistic based on the vector of 

regression coefficients when each of the last (p-1) variables is regressed on the first 

variable (1st off-diagonal vector divided by 1st diagonal element of the sample 

covariance matrix). When calculated from s* and L. *, these are respectively 

and 

s*2 s2;cr2 s2 
1 - 1 1 - 1 

~*2 - 1 - 0'2 
~1 1 
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1.e their values remam the same whether they are calculated from the original or 

standardized variables. Note also that the other statistics incorporated into the charting 

variable are obtained from S j , . . . ,p•l, .. . , j-l and I, j , ... ,p•l, ... ,j - l (j = 2, ... ,p) in exactly the same 

manner. Thus, to complete the proof, it is only required to show that S~ .... ,p•l, . . . ,j-l and 

I, ~ .. .. ,p•l, ... ,j-l are of the same form as s* and L *. For this, let 

and 

where G11 and S11 denotes the (j-1) x (j-1) submatrices. Note that G12 here 

represents the (j -1) x (p - j + 1) zero matrix. Thus, 

and 

S~··· ~P·i .... ,j-l = G22S22Gi2 -( G22S21G{1 )( G11S11G{1 r1 
( GuS12Gi2) 

= G 22S22Gi2 -G22S21Gi1 ( G{1 r1 
s1JG1JG11S12Gi2 

= G22S22GI2 -G22S21s1Js12GI2 

= G22(s22 -S21S11
1
S12 )GI2 

= G22s j ... .. p•1 •...• j-1Gi2 

which is clearly of the same form as s* = GSG T. Likewise, it can be shown that 

I,~ .. .. ,p•l, ... ,j-l is of the same form as L * . 

A.6. Scale Invariance of The Proposed Statistic (Unknown L Case) 

The proof here is similar to those in A.5. 
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A.7. Statistical Performance of MLRT, SSVPC, MLRTECM and jsj112 Charting 

Technique when L Shifts Along The Principal Axes. 

The eigenvalues of Lo~ L1 L~t are the solutions (A's) to the following characteristic 

equation: 

containing the eigenvalues of Lo and Li respectively, r~ and rlT are the orthogonal 

matrices with the corresponding normalized eigenvectors. 

If L changes from Lo to Li in the directions of the principal axes, Lo and Li can 

be diagonalized by the same orthogonal matrix i.e. r1T = r~. Thus, 

Combining this with A.1, A.2, A.3 and A.4 yields the following results : 

(i) The statistical performance of MLRT, SSVPC and MLRTECM depend on the ratios 

of variances of the principal components when L changes along the principal axes. 

(ii) The statistical performance of the 1Sj112 
charts depends on the product of the ratios of 

variances of the principal components when L changes along the principal axes. 
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A.8. The Distributional Properties of Hotelling X2 -type Statistic When the Mean vector 

and Covariance Matrix are Not As Specified. 

The Hotelling X2 -type statistic is of the form 

where Y denotes a p-dimensional random vector, µ 0 and I,0 are respectively the 

specified population mean vector and covariance matrix of the same dimension. Due to 

invariance, Q is expressible as 

where r is any (conformable) orthonormal matrix. Thus, Q is a function of 

when y - Np (µ1, L1). By letting r to be the orthonormal matrix that diagonalizes 

L ~112 L
1 
L ~112 , it is readily seen that Q is distributed as 

p 

~').,, .u . £.J 1 1 
j=l 

h '\ ' d th . 1 Of ~ -
0

Il2 ~I~ -
0

11 2 and U
1
-

1
S' are independent w ere /\, J s enote e etgenva ues .L... .L... .L... 

noncentral chi-square variables with one degree of freedom and noncentrality parameters 

v/s given by 

where the subscriptj in the numerator indicates thejth component of rr,~v2 (µ 1 -µ 0 ). 




