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ABSTRACT 

This paper is aimed at finding a solution to the commonly occurring product 

quality control problem by suitably modelling a process control system. The techniques 

from engineering and statistical process control overlap at the interface of the two 

process control methodologies. Problems connected with feedback (closed-loop) 

stability, controller limitations and dead-time compensation to obtain minimum variance 

(mean square) control at the output are encountered while applying statistical process 

monitoring and feedback control adjustment. The focus in this paper is to model a 

control system by application of both the process control techniques. 

1 INTRODUCTION 

In recent years, statisticians and control engineers have focused their attention on 

bringing the statistical process control (SPC) nnd the automatic process control (APC) 

methodologies closer together. Automatic process control techniques have been used to 

control process variables such as feed rate, temperature, pressure, viscosity and to 

product quality variables as well. Conventional practices of engineering control use the 

potential for step changes to justify an integral term in the controller algorithm to give 

(long-run) compensation for a shift in the mean of a product quality variable. 

Application of techniques from the fields of time series analysis and stochastic control 

to tackle product quality problems is also common. The literature on stochastic-dynamic 

process control is replete with contributions from (statistical) process control specialists, 

for example Box [1957], Box and Jenkins [1962, 1963, 1965, 1968, 1970, 1976], 

Astrom [1970], Box and MacGregor [1974], MacGregor [1987, 1988], Harris [1989], 

Harris and MacGregor [1987], Harris and MacGregor and Wright [1982]. This work 

covers topics that relate to the analysis of closed-loop dynamic-stochastic systems, 
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assessment of control loop performance, on-line process control, discrete stochastic and 

linear quadratic controllers etc. These contributions, along with the work done 

independently by control engineers in automatic process control, focus only on 

particular aspects of process control. This paper is in the direction of modelling a 

process control system applied to product quality. 

2 STOCHASTIC DISTURBANCE MODEL AND FEEDBACK CONTROL 

DIFFERENCE EQUATION 

APC aims to maintain certain key process variables as near their set points 

(targets) for as much of the time as possible in order to satisfy certain production 

objectives. One of the production objectives is to produce material of desired quality by 

having an acceptable level of variation (product variability) in the measured output 

characteristics. Disturbance (noise) causes variability in the output or outputs of an 

othenvise stable process by producing undesirable changes in the (output) mean. 

Disturbances cause a process to wander and drift off target resulting in shifts in the 

mean of the output product quality away from target. The error, the difference between 

the output and target values, is used to determine a process adjustment. If no 

compensatory adjustments are made and no (feedback) control actions are taken, the 

output follows the course of the disturbance. The effect of an input adjustment (control 

action) is delayed in its effect due to dead time, (time taken to deliver material from the 

point of adjustment to the sample point), in the process. The presence of dead time in 

the process requires that forecasts of the output deviation (error) are made over the delay 

period. 

An ARIMA (Autoregressive integrated movmg average) model is used to 

forecast the behaviour of the time series describing the disturbance. The integrated 

moving average model has the property that the forecasts for all future time is an 

exponentially weighted moving average (EWMA) of current and past values of the 

disturbance. The EWMA provides the forecasts over the dead time period (time delay). 

Moreover, the time series controller gives (b+ 1) periods ahead forecast error variances 

over the time delay (dead time) period in a process. 

The ARIMA (0, 1, 1) stochastic time series model characterising the drifting 

behaviour of the process disturbance is given by 
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(1) 

where 'z' is the stochastic variable and 'at', the random variable. Z' represents the 

stochastic disturbance and { 3t} represents the sequence of random variables. 

Zt, is the output of a (linear) process control system, when subjected to a sequence of 

uncorrelated random shocks {at}, where at follows a Normal distribution with mean 0 

and standard deviation cra, represented by at -N(O,cra2). e is the integrated moving 

average (IMA) parameter. 

Figure 1 describes the relationship between the output (Y t) and the input (Xt+) in the 

feedback control model. 

Process 
In put 

xt+ 

c II d ontro e 
Output 

Process 

x = f ( e ,e _ , ........... ) t+ t t 1 

Disturbance 
zt 

yt 

Figure 1 Block Diagram for the Feedback Control Model 

et= Zt +Yt 

The 'stochastic difference equation' for the feedback control model can be 

(approximately) represented by the following second-order dynamic model (transfer 

function) of the form:-

Yt (1- 81B - 82B2) = roBb+l Xt, (2) 

where 

Xt+, the input put manipulative variable, is a linear function of~, the forecast error and 

of integral over time of past errors, 

Y t is the output or controlled variable, 
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81 and 82 are the parameters that represent the dynamics (inertial) characteristics of the 

system, Bis the backward shift operator; BXt = Xt-J, BbXt= Xt-b· 

co is the magnitude of the process response to a unit step change in the first period 

following the dead time carrying over into additional sample periods. 

b is the process dead time, b > -1. PG represents the process gain realised by total effect 

in output caused by a unit change in the input variable after the completion of the 

dynamic response. 

et; is the forecast error in Figure 1 and~= Zt+Yt. 

It can be shown that (i) PG = l/(l-81-82) = g, the steady-state gain for a critically 

damped second-order dynamic system when the conditions given below are satisfied 

and (ii) co= PG(l-81-82) =lfor a critically damped system. 

Equation (2) describes the critically damped behaviour of the second-order dynamic 

system for which the time constants are real and equal. The following inequality 

conditions are imposed for closed-loop stability. 

81+82<1, 

82-81 <1, 

-1<82<1, 

81 2 +482 = 0. 

3 EXPRESSION FOR FEEDBACK CONTROL ADJUSTMENT 

From Equations (1) and (2) for the stochastic and dynamic models, an 

expression for feedback control adjustment is developed which minimizes the variance 

of the output controlled variable by making an input control adjustment at every sample 

point that exactly compensates for the forecasted disturbance. Figure 2 shows a 

feedback control scheme to compensate disturbance in a second-order dynamic model 

with delay (dead time). Refer to Venkatesan [1995] for derivation of the feedback 

control algorithm. 
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Disturbance Zt. 

Process 

Input Xt+ 
Process to be Controlled Output Yt -T set point 

controlled 

et=Zt+Yt 
Time Series 

adjustment Xt Controller 

Figure 2 Feedback Control scheme to compensate disturbance Zt. 

(3) 

This feedback control algorithm gives information about when to make an 

adjustment and by how much. The control adjustment given by Equation (3) minimises 

the variance of the output controlled variable even in the face of dead time (time delay) 

and process dynamics (inertia). 

The first term in the above stochastic feedback control algorithm represents the 

integral term and the second term, the dead-time compensator developed by Smith 

[1959] (Baxley [1991]). According to Palmor and Shinnar [1979], the Smith predictor is 

a direct result of minimal variance strategy and that minimal variance control for 

processes having dead times includes this type of dead-time compensation. At this stage, 

an intuitive conjecture is made that the inclusion of the dead-time compensation term of 

either the Smith predictor or the Dahlin's (on-line) tuning parameter, (whose values 

range from 0 to 1 ), in a feedback control algorithm will also result in a minimum 

variance strategy for processes with dead time. 

This draws on the comparison made by Harris, MacGregor and Wright [1982] to 

the minimum variance controller they derived for the process with dead time (for which 

the number of whole periods of delay was equal to 2) and the Dahlin controller (Harris, 

MacGregor and Wright [1982]) given in their paper. The authors showed that the two 

controllers were identical upon setting the value of Dahlin's parameter, (the discrete 
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time constant of the closed-loop process), equal to 0, the IMA parameter in the 

stochastic disturbance model. They reconciled the different approaches by noting that 

the 'IMA parameter 0 provides information about the magnitude of the closed-loop time 

constant'. 

Equation (3) is identical to Baxley's [1991] algorithm for a first-order model 

with dead time and includes both integral action and dead-time compensation terms, 

when ch= 0 and 01 = o and b =1. The control obtained through the first term in Equation 

(3) is the discrete analogue of integral control. The IMA parameter 0 , (whose values 

range from 0 to 1), is set to match the disturbance as well as take care of Dahlin's 

parameter to compensate for the dead time. It is used as an on-line tuning parameter for 

dead-time compensation. So, it follows that the variance of the output product variable 

achieved by using Equation (3) with integral action and dead-time compensation terms 

is a minimum. The dead-time compensation term (seemingly) removes the delay from 

stability considerations and definitely provides a stabilising effect on the feedback 

control system. These principles are used for designing (formulating) the discrete 

(sampled-data) time series controller. Such a controller will maintain the mean of the 

process quality variable at or near target and will allow for a (rapid) response to process 

disturbances without much overcompensation or overcorrection. 

4 SIMULATION AND ANALYSIS 

The stochastic feedback control algorithm is simulated to firtd the time series 

controller performance measures, namely, CESTDDVN (control error standard 

deviation) or control error sigma (product variability) and the mean frequency of 

adjustment (MFREQ) of the time series controller. An advantage of dead-time 

simulation is that the inter-sample variances are compared at the sampling points. Table 

1 gives the control error sigma (CESTDDVN) and the mean frequency of adjustment 

(MFREQ). 
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Table 1 Time series Controller Performance Measures 

-----------------------------------------------------------------------------------------------------------------
IMA System Dynamics Mean Frequency of Adjust. Interval Control error sigma 

Parameter 0 01 02 Adjustrnent(MFREQ) AI=l/MFREQ CESTDDVN 

0.05 -1.82 -0.83 0.000 0.00 1.000 

0.05 -1.00 -0.25 0.102 9.80 1.039 

0.25 -1.00 -0.25 0.050 20.0 1.030 

0.25 -0.27 -0.02 0.075 13.3 l.073 

0.75 -0.27 -0.02 0.000 0.00 1.000 

0.75 -1.00 -0.25 0.000 0.00 l.000 

0.90 -1.00 -0.25 0.402 2.48 1.002 

0.90 -1.82 -0.83 0.121 8.26 1.000 

0.95 -0.27 -0.02 0.213 4.85 1.006 

0.95 -0.01 0.00 0.187 5.34 1.004 

The above table shows a range of minimal control error sigmas (CESTDDVN) 

for values of 0 and the dynamic (inertial) parameters 8i, 82. The values of 

CESTDDVNs are 1.0, when 0 = 0.75, the EWMA forecasts are effective and the 

EWMA has good control of the process. Since the CESTDDVN values, (close to around 

the value of 1. 0), are obtained for the second-order dynamic process with dead time b = 

1, it is possible to achieve good (feedback) control possessing features such as (i) 

Permissible gain of the feedback (closed) loop, (ii) Stability of the feedback control loop 

and (iii) Precise regulation of loops containing dead time. The range of control error 

sigmas (CESTDDVN) for corresponding values of 0 can be used to formulate process 

regulation schemes. These values of 0 and AI are used to formulate process regulation 

schemes as shown in the next Section. 

A dead-time compensation scheme which provides a process gain (PG) in the 

feedback path whose value depends on both the process output and model has been 

devised This scheme is suited to use in situations where the process dead time results 

from a measurement device in a laboratory and is a known quantity. A process 

modelling (control) approach to product quality based on discrete laboratory data has 

the potential for improvements (in product quality). A practical control strategy would 

then be (i) based on the use of quality control laboratory analyses and (ii) the process 

model based on a time series analysis of plant data collected from a designed closed-
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loop experiment and using the laboratory data to update the set point of the minimum 

variance time series controller to verify the quality of outgoing product. 

5 PROCESS REGULATION SCHEMES 

The choice of feedback control process regulation schemes depends on 'how 

capable' the 'controlled process' (model) was of providing quality products within 

manufacturing specifications. If the process capability index was high, then, a moderate 

increase in the control error deviation (product variability) might be tolerated if this 

action resulted in savings in sampling and adjustment costs. Table 2 shows the 

adjustment interval (AI) and the corresponding CESTDDVN for some alternative 

schemes using combinations of control limits L = 2.98, 3.0 and 3.04. These schemes are 

denoted by A, B, ... 0. These schemes are based on how much the CESTDDVN would 

need to increase to achieve the advantage of taking samples and making adjustments 

less frequently. This approach avoids the direct assignment of values to costs Ca (cost of 

adjustment and sampling) and C1 (cost of being off-target). The table 2 shows for 

various values of the standardised action limit, L/cra = 3.010, 3.000, 3.009 and the 

adjustment interval (AI), the percent of increase in CESTDDVN (ISTD.) with respect to 

cra and AI. The AI and CESTDDVN values show that for different sets of values of AI 

and CESTDDVN, the process regulation scheme varies according to the AI values. 

Table 2 Alternative Process Regulation Schemes 

Control Limits L(= 3 a0 ) 

2.98 3.00 3.04 

-------------
Scheme AI CESTDDVN !STD. Scheme AI CESTDDVN. !STD Scheme AI CESTDDVN /STD. 

A 10.99 1.022 F 10.0 1.033 K 20.00 1.025 

B 10.52 1.032 0.980 G 9.00 1.058 2.42 L 12.20 1.032 0.68 

c 8.200 1.043 1.066 H 5.26 1.157 9.36 M 12.35 1.037 0.48 

D 5.100 1.127 8.050 I 5.02 1.158 0.09 N 9.52 1.089 5.01 

E 5.680 1.186 5.24 J 4.46 1.217 5.09 0 6.94 1.119 2.75 

L/cra 3.010 3.000 3.009 

8 



The alternative schemes are: (i) Scheme B: To set L = 2.98 and adjust process at 

10.5 sample periods, with an increase in CESTDDVN (ISTD.) of 0.98 or 

(ii) Scheme E: Adjust process at 5.7 sample periods and ISTD of 5.24 or (iii) Scheme J: 

by setting L = 3.0 and AI= 4.46 sample periods, the same ISTD. could be achieved with 

an AI of 4.5. 

6 ENGINEERING CONTROL APPLICATION TO PRODUCT QUALITY 

To control the quality of a product at the output, the set point of a product­

quality controller is adjusted so that the product remains within its specification limits 

following expected load changes or disturbances. In product quality control, the 

product-quality set point is adjusted away from the specification limit in proportion to 

the peak deviation expected to be yielded by the controller. Again, the adjustment is in a 

direction that increases operating costs. Deviation in the 'safe' direction increases 

operating costs in proportion to the deviation. The quality-controller's set point is 

positioned relative to the specification limit so that the limit will not be violated for 

most upsets (load changes). Since the average output product quality will be equal to the 

set point, the product will be more expensive to make than if the set point were 

positioned exactly at the specification limit. Excess manufacturing cost is proportional 

to the difference between the set point and the specification limit and so, proportional to 

the peak deviation expected. By limiting the peak deviation, excess manufacturing cost 

and product quality are controlled in engineering control. Peak deviation of the 

controlled variable from set point is significant when excessive deviation will cause an 

incident such as rejecting product due to failure to meet specifications. 

Process control provides the operating conditions under which a process will 

function safely, productively and profitably. Ineffective control can be costly in causing 

amongst other things such as plant shutdown, in allowing off-specification product to be 

made, etc. For a particular control loop, it is often possible to relate operating cost to 

deviation of the output controlled variable. In product-quality control loop, the cost 

function is usually found to be different on opposite sides of set point. 

Process operators frequently place a large margin between the measured quality 

of a product and its specification. This is done in order to counteract the changes in 

economic performance when a product specification is violated. It will cost more to 

produce higher-quality product. Maximum profit can be realized when product quality 
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meets exactly the specifications; but variations in product quality are not equally 

acceptable on both sides of the specification. So, as a consequence, the quality set point 

must be positioned far enough without excessive operating costs, on acceptable side of 

the specification in order to reduce the likelihood of specification violation. The 

operating cost can be reduced by better control and smaller variation in quality allowing 

the set point to be moved to closer the specification. 

The deviation between the output controlled variable and its set point can be 

related (linearly) to operating cost. For a specific production rate, each increment of 

time will correspond to a quantity of product manufactured over that time. So, 

integration of deviation (error) over time could be equated to accumulated (excess) 

operating cost. Under such circumstances, the control objective would be to minimize 

integrated error*. This criterion could be applied to control the quality of a product 

flowing into a storage tank, for example. This can be achieved by keeping the integrated 

error as low as possible and the quality of the product closer to the set point. *Integrated 

error can be estimated from the feedback control equation (3), being equal to 

(ei-81ei-1-82ei-2). It is a function of the change required in the input manipulated variable 

and the setting of the integral mode of the (time series) controller. Integrated error can 

be significant in product-quality loops, where it may represent excessive operating cost 

such as product giveaway. Lag-dominant dynamics characterize, (similar to the second­

order dynamic model with two exponential terms), most of the important plant loops 

such as product quality. For these processes, the integral error varies linearly with time. 

7 STATISTICAL QUALITY CONTROL APPLICATION TO PRODUCT 

QUALITY 

For the sample values of a product variable whose measurements are normally 

distributed, its mean will equal the set point if the integral of the error approaches zero 

over a period of time. In minimizing the deviation of the output controlled variable, the 

standard deviation is a transformation of that deviation over a statistically significant 

number of samples or time of operation. The economic incentive behind the standard­

deviation criterion is that this criterion estimates the percentage of time the controlled 

variable violates the specification based on a normal distribution. If samples of an 

output controlled variable that is 'cycling' uniformly are averaged over a complete cycle 
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to form a subgroup, then the mean of subgroups will lie on the set point and their 

standard deviation will approach zero (if there are no disturbances in the feedback 

control system). 

The assignment of subgroup size should reflect the capacity of a process to 

absorb variations in product quality. The method used to average samples also needs to 

be selected to match the characteristics of the process. If the product is segregated into 

lots, then, the samples should be segregated into the same lots and averaged equally. 

Different criteria can be applied to set point and load disturbances that affect a 

control loop. Different controller settings will be required to satisfy these criteria. 

Overshoot of the output controlled variable can be minimized by limiting the rate of the 

set-point changes that are likely to be introduced by the operator during the course of 

plant operation and process control. 

8 CONCLUSION 

In this paper, the objective of applying the engineering and statistical techniques 

to find a solution to the product quality control problem was explained. Techniques 

from the two different disciplines at the interface of the two process control 

methodologies were used to derive a feedback control difference equation and an 

expression for feedback control adjustment. An analysis of simulated results were given 

and also some process regulation schemes along with engineering and statistical control 

applications to product quality. 
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