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Abstract 

Difference delay and discrete renewal equations provide a rich source of material for the 

exploration and generation of infinite series. From this vantage point it will be shown that, 

with certain restrictions, these generated infinite series may be represented in closed form. 

The analysis will consist of an application of the Z transform together with a detailed 

description of the location of zeros of polynomial type characteristic functions. 

Introduction 

In this paper a technique is developed that allows for the exploration and generation of infinite 

series which in turn may be represented in closed form. Renewal processes provide a rich 

source of material for such investigations and of critical importance in our work, is the form of 

the characteristic equation in the denominator of a queue-length generating function including 

the location of zeros. 

In section 1, a discrete renewal equation will be considered and a method developed for the 

generation of Binomial type infinite series, by considering a similar characteristic function as 

produced by a bulk service queue. To analyse the discrete renewal equation a generating 

function approach by the use of the Z transform will be employed. It will be shown that the 

infinite series may be represented in closed form such that the closed form representation may 

be expressed in terms of the dominant zero of a characteristic function. 

For a particular parameter values of the series, the closed form identity may be confirmed by 

the WZ pairs method ofWilf and Zeilberger [11]. 

Section 2 investigates the connection of the Binomial type series with generalized 

hypergeometric functions. For a particular case the Binomial series will be shown to satisfy 

the identity of Kummer [7]. 

In section 3 we consider a modified density function in the discrete renewal equation. 

The closed form representation of the generated series may then be expressed in terms of a 

multiple number of dominant zeros of an associated characteristic function. In section 4, we 

consider a forcing term in the difference-delay representation of the stationary size 

probabilities, that yields an interesting Binomial convolution identity. 
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1. A Volterra Type Discrete Renewal Equation 

The analysis is begun by considering a volterra type discrete renewal equation 

71 

fn == Wn + Lfn-k <J>k (1.1) 
k=O 

where fn may represent the total average number of r:enewals at epoch n , $
11 

may 

represent the probability that a new item that is installed at a given time will fail after 

exactly n time units and w
11 

may represent the average number of renewals at time n 

of the original population. For a derivation of (1.1) one can refer to the books of 

Saaty [12] or Cohen [5]. 

Alternatively (1.1) may be represented as, where *is the discrete convolution 

' ! 

(1.2) 

Therefore by the use of the Z transform (1.2) may be written as, after rearrangement 

F(z) == W(z) 
1-<l>(z) 

(1.3) 

where F(z), W(z) and <l>(z) are the Z transforms of the respective functions f,,, w
11 

and <l>n· 
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Without loss of generality a convolution type argument of (1.3) will allow for the 

consideration of the more general transform function, 

F z)- W(z) 
( - (1-<1>(z)Y 

(1.4) 

for R = 1, 2, 3, 4,...... . 

A Bulk Service Queue 

The simplest Markovian queue to which the characteristic functions in the 

denominator of (1.4) becomes germane is the bulk service variation of the MIM(a)II 

system in which service is in fixed batches of size 'a', irrespective of whether or not the 

server has to wait for a full batch of size a, see Gross and Harris [9]. 

To obtain a similar characteristic function as that of the MIM(a)ll system, consider the 

densities 

:: ( n )bn-(R-1) R-1 
wn R-l c and 

<l>n = bn-a U(n-(a+ 1)) 

where U(n - x) is the discrete step function, a 2:: 1, c E 9\, b e9\ and R 2:: 1. 

Let W(z) and <l>(z) be the Z transform of (1.5) and (1.6) respectively, then 

ZCR-1 
W(z)= ( y 

z-b 

b -a 

<l>(z) =-z­
z-b 

and 

(1.5) 

(1.6) 

(1.7) 

(l.8) 
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Substituting (1.7) and (1.8) into (1.4) yields, upon simplification, the transformed 

function 

1 ~~ 
R=I F;(z) = F(z) = ( z )" = ( )'. (1.9) 
c z-b-bz-a za+l _bza -b 

An equivalent characteristic function as the denominator of (1.9) may be obtained 

when the stationary system-size probabilities are related in difference - equation form. 

It has been shown by Sofo and Cerone [14] that the same generating function (1.9) for 

the case R = 1 can be arrived at via the use of a related Fibonacci sequence, see also 

Kelley and Peterson [10]. 

Expanding the second term of (1.9) in series form results in 

F(z) = ~ (R + r - l)br Zl-ar 

,£..J r ( - b)r+R 
r=O Z 

(1.10) 

and therefore the inverse Z transform of (1.10) is 

(1.11) 

Equation (1.11) may also be rewritten as 

[n+l-R] 
f. = ~ (R + r - l)(n -ar )bn-ar-{R-1) 
" £..J r R+r-1 

r=O 
(1.12) 
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where [x] represents the integer part of x. 

The inverse transform of (1.9) may also be expressed as, refer to Elaydi [6], 

In=~ fcz"(F(z))dz = IResj(F(z))z" 
21tl Z j=O Z 

(l.13) 

where C is a smooth Jordan curve enclosing the singularities of (1.9) and the integral 

is traversed once in an anticlockwise direction around C. It may also be shown that 

there is no contribution from the integration around the contour C. Re sj is the 

residue of the poles of (1.9). 

From (1.9), the characteristic function (with some restriction) 

g(z) = za+l - bza -b (1.14) 

has exactly (a+ 1) distinct zeros, sj for j = 0, 1, 2 ....... a' of which at least one and at 

most two are real. See appendix B for a clarification of this statement. 

Therefore s;+1 
- bs; -b = 0, and all the singµlarities in (1.9) are poles of order R. 

Now, from (1.9) , F(z) has exactly '(a+ 1)' poles of order R at the zeros Sr 

Hence from (1.13) a solution of the system (1.2) may be expressed as 

(l.15) 

where the residue contribution 

(l.16) 

for each j =0, 1, 2, ....... a. 
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From (1.11) or (1.12) and using (1.15) it can be seen that 

~(R + r-l)(n-ar )bn-ar+l-R U(n-ar) 
~ r R+r-1 

_ n n-(R-1-µ) a R~ ( ) 
- ~ ~Q-(R,-µ)(~j) R-1-µ ~j • 

(1.17) 

Main Result 

The characteristic function (1.14) has at least one real zero. The dominant real zero, 

~o of (1.14) is defined as the one with the greatest modulus, and it may be easily 

shown that l~ol > 3:!!...._. Details of this statement are given in Appendix B. 
a+l 

The limiting behaviour of (1.17) is such that for n large 

[
n+l-R] 

a+l (R 1)( ) R-1 ( ) f, = ~ +r- n-ar bn-ar+I-R - ~ Q (~ ) n ~n-{R-I-µ) 0 
n £..J r R+r-1 £..J -{R.-µ) 0 R-1-µ 0 

r=O µ=O 

(1.18) 

The suggestive limiting behaviour of (1.18), leads the authors to the conjecture that 

~(R+r-l)(n-ar )bn-ar+I-R = ~ Q (~ )( n )~n-{R-1-µ) 
£..J r R + r - l £..J '-<R.-µ) 0 R-1- µ 0 
r=O µ=O 

(l.19) 

for all values of n (and not just n large) in the region where the infinite series converges. 

The conjectured result (1.19) together with the equation (1.17) implies that 

[ "~R] (R + r - I)(n -ar )bn-ar+l-R + ~ (R + r- I)(n- ar )b"-ar+l-R = ~ n , ( ~ )( n )~"-(R-1-µ) 
£.... r R+r-I £... r R+r-1 £..."'°'""\R.-µ) 0 R-1-µ 0 
~ [~] ~ r=-a+l 
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which gives the result 

~ (R + r - l)(n -ar )bn-ar+l-R = _ ~ ~ n , _ ( ~ .)( n )~-{R-1-µ). 
£.J r R+r-1 £.. £..~R. µ) 1 R-1-µ 1 

[n+2-R] j=l µ=O 
r=--

a+l 

An appropriate test indicates that the infinite series (l.19) converges in the region 

(a+ly+i 
·~----1 <I. 

(abY 
(1.20) 

The restriction (l.20) also applies to (1.14). 

A diagram of the region of convergence is shown as the shaded area of figure 1 

b value 

15 

10 

s 

a value 

-5 

-10 

-15 

Figure 1: The region of convergence (l.20). 
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The residue contribution from (l.16), can be evaluated and some results are listed in 

table 1 below for the dominant zero ~0 and various values of µ. 

µ µf Q-(R-µ)(~o) 

0 ~~ 
AR 

aR~~-1 (A-b) = aR(a+l)(~0 -b) ~R-I 1 
2A R+l 2AR+l 0 

2 R~R-2 
~2A ~+2 [ A

2(3aR- a-8)-2bA(3aR+ a-4) + 3(R + l)ab2
] 

3 ,-A3{ a2R(R-l)+2a(l-4R)+ 12} 
-I 

aR~~-3 +bA2{-a2R(3R+1) + 2a(8R + 3)-12} 
8AR+3 +b2A{a2(3R+ 2)(R+ 1)-8a(R+ 1)} 

' 

-a2b3(R + l)(R+ 2) I 

-

Table 1: µ!Q_(R.-µ)(~0 ) terms for µ=0,1,2,3, where A=(a+l)~0 -ab and ~o 

is the dominant zero of ( 1.14 ). 
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Utilizing the terms of table 1 the closed form expressions of (1.19) are listed in table 2, 

for various R values 

R 
' 

1 

2 

3 

4 

Table 2: 

The closed form expression of (1.19) 

~~+1 

A 

-n+ ~;·1 
[ a(a+ 1)(~0 -b)] 

A2 A 

~;·1 
[ ( n )+( n) 3a(A-b) + a(2(a-l)A

2 
-(5a-2)bA +3ab

2
)] 

A3 2 1 2A 2A2 

- (n)+(n)2a(A-b) +(nt((11a-8)A
2
-2b(13a-4)A+ 15ab

2r 
3 2 A 1 6A2 

I 

~~+1 
+~{A3(12a2 -30a+12)+bA2 (-52a2 +70a-12) A4 l2A 

+b2A(10a2 -40a)-30a2b3
} 

-
I 

The closed form expressions of the infinite sum at (1.19) for the values 

R = 1, 2, 3 and 4. Where A = (a+ 1 )~0 - ab and ~o is the dominant zero 

of (l.14). 

The proof of the conjecture at (1.19) can now proceed. 
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Proof of Conjecture 

The proof of (1 .19) will involve the application of an induction argument. Firstly a 

recurrence relation will be developed for the series 

S = ~ (R + r - l)(n - ar )bn-ar+I-R. 
R ~ r R+r-1 

(1.21) 

Lemma 

A recurrence relation for (l.21) is 

d 
(a+l)b-S -abRS -(n+l-R)S =0 db R R+l R 

(1.22) 

Proof 

.!!:._ 5 =-E.~ r(R+r-l)(n-ar )bn-ar-R+i+(n+l-R)s 
db R b ~ r R + r -1 b R 

and 

S = ~ (R + r)(n - ar)bn-ar-R 
R+I £.. r R+r 

r=O 

= _ (a+I)~r(R+r-l)(n-ar )bn-ar-R+I+(n+l-R)s 
bR ~ r R + r -1 bR R 

From the left hand side of (1.22). 

(a+l)b[(n+l-R)s _a~ r(R+r-l)(n-ar )bn-ar-R+I] 
b R b ~ r R+r-1 

-abR[ (a+ 1) ~ r(R+r-l)(n-ar )bn-ar-R+I +(n+ 1-R)s ]-(n+ l-R)S 
bR ~ r R + r -1 bR R R 
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= 0 which is the right hand side of (l.22) 

and the proof of the lemma in complete. 

The next step in the procedure of the proof of (1.19) will involve the expansion of 

the left hand side of (1.19) in inverse powers of the dominant zero So, therefore 

showing that ¢is expansion is the same as the right hand side of (l.19), in which case 

the basis for R = 1 is true. 

Consider (1.19) and let n = -aN such that 

~(R+r-1)(-aN-ar}-aN-ar+I-R = ~ Q (; )(-aN );-aN-(R-1-µ). (1.23) 
kt r R + r - l kt -(R,-µ) 0 R-1-µ 0 
r=O µ=O 

From the characteristic equation (1.14) 

~a+l 
b=-0-

l+~~ 

so that, the left hand side of (1.23) maybe written as 

~(R+ r-l)(-a(N + r))(l +~~ )a(N+r)+R-l 
kt r R + r -1 ~ a+1 
r=O i.,o 
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The convergent double sum (1.24) may be written term by term as 

(-l)R-1 (R- l)(aN + R- 2)[(aN + R-1)~-(a+IXaN+R-1) (aN + R-1)~-a(N+O)-(R-l)] 
0 R -1 , 0 ~o +. · · · · · · · · · · · · · · · · · + aN + R -1 ~o 

(-l)R(R)(aN +a+ R-l)[(aN +a+ R-1),i:-(a+l)(aN+a+R-1) (aN +a+ R-1),i:-a(N+l)-(R-1)] 
+ 1 R 0 "=>o + ............. + aN+a+R-1 "=>o 

( -l)R+l (R + 1)( aN + 2a + R)[( aN + 2a + R -1)~ -(a+l)(aN+2a+R-l) ( aN + 2a + R -1)~ -a(N+Z)-(R-I) J ( 1.25) 
+ · 2 R + 1 0 '='0 + .. ··· ··· · ·· ·· + aN + 2a + R -1 '='0 

(-l)R+2(R + 2)(aN + 3a + R- l)[(aN + 3a + R- l)i:;-(a+1)(aN+3a+R-1) (aN + 3a+ R- l)i:;-a(N+3)-(R-l)] 
+ 3 R + 2 0 '='0 + .. · · ····· · ·· · + aN + 3a + R-1 '='0 

+ ................................................................................................ . 

Summing (1.25) diagonally from the top right hand comer and gathering the 

coefficients of inverse powers of ~0 gives 

~ ~-a(N+r)-(R-l)(-lt-t+r'f (-l)k(R+ r-k-l)(a(N + r-k)+ R+ r-k-2)(a(N + r-k)+ R-1 )· (l.Z6) 
£.J 0 £.J r-k R+r-k-1 a(N+r-k)+R-k-1 
r=O k=O 

In the case that R=l, (1.26) is again expanded to allow for the collection of the ~~ar 

terms such that 

~ ~-a(N+r)~ (-lY+k(a(N +r-k) )(a(N +r-k)+r-k-1) 
k 0 k a(N+r-k)-k r-k 
r=O k=O 

~-aN[ 1+~~ ] 
0 {a+l)+;~ 
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= ;~aN+l 

(a+ 1);0 -ab 
putting n = - aN gives 

(1.27) 

From the right hand side of (1.19) and using (1 .16) for R = 1 

n n-(R-l-µ) ":lo R-l ( ) ~n+l 

~Q-(R.-µ) (;o) R-1-µ o (a+l)~o-ab (1.28) 

and comparing (1.27) and (1.28) indicates that (1.19) is proved for R = 1. 

Now, we consider the right hand side of (1.19) for the general case R 

S _ n n-(R-1-µ) R-l ( ) 

R - ~ Q-(R.-µ)(;o) R-1-µ o 

and utilize the recurrence relation (1.22). 

SR+i =-
1
-[(a+l)b!!_SR-(n+l-R)sRJ· 

abR db 
(1.29) 

. d ;~ d
5 Firstly, from - SR = -b d~ R 

db A ":lo I 

d ;~ R-I ( n \n-{R-l-µ)[ d (n-(R-1 ~µ)) ] 
db SR = Ab ~ R -1-µf 0 d;

0 
~R.-µ) + ;o ~R,-µ) 
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and substitute into (1.29) such that 

S =-1-[(a+l)b~~~( n )~n-{R-l-µ){_!!_n . +(n-R+I+µ)Q_ } 
R+I abR Ab £... R - I - µ 0 dJ= ~R.-µ) J: (R.-µ ) 

µ=O ..,0 ..,0 

-( n + l - R) ~ ( n )J:n-{R-1-µ)Q ] 
£..i R - I - µ ..,0 -(R,-µ) 
µ=O 

In the second sum rename µ * = µ + 1 (and let µ * = µ again), so that (1.30) may be 

written as 
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_ n n (n )i:n-R 1 f ( n \n-CR-µ)[ ( )!: 
- X:-Cl,--O)X:-CR.--0) R l:io + abRA f=t R - µ ro ab R-µ l:IOQ-(R.-µ) 

_ n . (n )J:n-R 1 ~( n \n-(R-µ)[ b( )!: 
- X:-CR+l,--0) R ""o + abRA;::. R- µ ro a R - µ ..,OQ-(R.-µ) 

+(A + ab) ~o d~, Q-( R,-{µ-1)) + (µ -1) A Q-( .. 1.-11) l (l.31) 

Now utilizing the lemma in appendix. A, and after replacing µ with µ -1 we have 

d 
abRAQ(R+l,-µ) = ab{R- µ)~O~R.-µ) +(A +ab)~o d~o Q-(R,-(µ-1)) +(µ- l)AQ_(R.-(µ-1)) 

so that, from (l.31) we have 

n n~ n ~~~ 
( ) 

R ( } R ~o ~R+1.--0) + ~ R _ µ o Q-(R+l.-µ) 

_ n n-(R-µ ) 
R ( } - ~ R - µ 0 Q-(R+l,-µ) 

which completes the proof of (1.19). 

Some numerical results are now given for various parameter values of (1.19). 
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Numerical Results 

The following numerical results, to five significant digits, are given for various 

parameter values of the conjecture (1.19) 

R n a b ~o The left and right hand side of (1.19) 

2 3 2 I 9 9.10848 242.97104 

2 3 2 -9 -9.10848 242.97104 

2 3 3 9 9.01230 242.99553 

2 3 3 -9 -8.98760 242.99532 

3 3 2 9 9.10848 27.00525 

3 3 2 -9 -9.10848 -27.00525 

3 3 3 9 9.01230 27.00147 

3 3 3 -9 -8.98760 -27.00158 

I 

For a even and b > 0 orb< 0 the modulus of the zero, !~0 j, of (1.14) is identical, hence 

the modulus of the sum (l.19) is identical. Details of the zeros of (1.14) are given in 

appendix B. 

The Degenerate Case 

From (1.19), for a= 0 the degenerate case can now be noted. 

From (1.14) ~0 = 2b , and from (1.16) 

µ!~R.-µ.)(2b) = l forµ =0 and zero otherwise such that (l.19) becomes 
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~(R+r-1)( n )bn+1-R =( n )(2br+1-R 
£... r R+r-l R-l r=O 

and upon simplification yields the familiar result 

n-R+1( R 1) L n - r + = 2n+l-R • 

r=O 
(1.32) 

The series on the left hand side of (1.32) is not Gosper summable, as defmed by 

Petkovsek et al. [11], however the closed form solution of (l.32) can be verified by 

the WZ pairs method, see Petkovsek et al. [ 11]. A sketch of the procedure of WZ 

pairs method follows. Let 

n-R+l 

LF(n,r)=l 
r=O 

h F( ) -(n -R + 1)2R-1-n w ere n,r - . 
r 

The rational function 

R(n,r) = r 
2(r-n+R-2) 

can be obtained by the WZ pairs method, a package which is available for use an 

MATHEMATICA. Now let 

and the recurrence 

F(n + l,r )- F(n,r) = G(n,r+ l)-G(n,r) 
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including the initial condition F( O,r) = 1 holds, hence the identity (1.32) is verified. 

In the next section we investigate the connection of the series (l.21) with generalised 

hypergeometric functions. 

2. Generalized Hypergeometric Functions 

It is known that a series 

is called geometric if the ratio of consecutive terms are constant, and it is called 

hypergeometric if the ratio of consecutive terms is a rational function of T\. 

From the left hand side of (1.19) let 

T. = (R + r - l)(n -ar )bn-ar-R+l 
r I r R+r-1 

L = ( n )bn-R+l 
0 R-1 

(2.1) 

and n may be relaxed to be a real number. The ratio of consecutive terms, using (2.1 ), 

is 

IT( j+R-n-lJ 

T,+1 = j=O r ~-1 a + ~ ( s) 
T, (r+l)fi(r+ 1-nJ. 

i=-O a 

(2.2) 
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Since (2.2) is a quotient of rational functions in r, then the left hand side of (1.19) may 

be expressed as a generalized hypergeometric function, 

1 R-n-l R-n R-n+l R+a-n-l ' 

a+l ' a+l ' a+l 
, ........ , 

a+l 
Ta a+1F:i s (2.3) 

n l-n 2-n a-1-n 
, ........ ' 

a a a a 

00 
(R-n-l) (R-n) (R-n+l) ···········(R+a-n-l) k -z::L a+l k a+l k a+l k a+l k s 

-

0 

•=' (-:). (1:n). (2:n ).. .......... ..(°-~-n). k! (Z.4) 

where (x)m =x(x+ 1) ........... (x+m-l) is known as Pochhammer's symbol or as 

rising factorial powers of m, as mentioned by Graham et al. [8], and 

(a+1r+1 

s = - (abt . 

. , 

(2.5) 

Generalizing the expression 15.1.1 given on page 556 of Abromowitz and Stegun [1], 

allows (2.3) or (2.4) to be written as 

a-1 ( • ) a+R-1 ( · ) fir 1-n 00 fir 1-n+k . k 

T,., j=O a "" j=R-l a + 1 !.._ 
0 a+R-1 ( • ) .£..t a-1 ( • ) k f II r 1-n k=O fir 1-n +k . 

i=R-1 a+ 1 j=o a 

(2.6) 

where r( x) is the classical Gamma function. It is evident that (2.4) is a divergent 

series for n a positive integer. Many relations of the generalized hypergeometric 

function (2.3) exist in terms of the special functions of mathematical physics, and some 

of these may be seen in the classical works of Slater [13] and Gaspar and Rahman [7]. 
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Some special cases of (2.3) are worthy of mention, since for a= 1, (2.3) reduces to 

the classical Gauss series. Thus letting a= 1 in (2.3), we have that 

[ 

R - n -1 , R - n ( 4 )] 
To 2F'i 2 2 --

-n b 
. (2.7) 

2t-l 

_ [l(R-n-1+ j) 
= T,, 1 + """' j=O 0 k.--~-k--1~~~ 

t=I k!bk Il(n- j) 
j=O 

The Gauss hypergeometric series (2.6) may be expressed as an integral. From 

Abramowitz and Stegun, let ex.= -n e9\\J-, so that (2.7) may be written as 

To f (l -t/a-R-2)12 /R+a-2)12(1- stil-R-«)12 dt (2.8) B( R +ex. ex. - R) r=o 
2 , 2 

which is valid for Isl < 1 , s = -4 lb and B( x, y) is the Beta function. 

Since the difference in the two top terms of the hypergeometric function (2. 7) is V2, 

there exists a quadratic transformation [13] connected with the Legendre functions, 

P.,11
• A definition of the Legendre function P: may be seen in [1]. From (2.7) and 

using identity 15.4.11 of [1] we have that 

4 
whre s=-- and se(-oo,0). 

b 
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Since the left hand side of (1.19) converges for b > 4, in the case that a= 1, then we 

may write from (2.9) that 

(2.10) 

for b > 4 , "2~0 = b+.Jb2 +4b and Q-{R,-µ)(~0 ) is defined by (1.16). 

Other specific cases of (2. 7) and (2.9) are as follows 

(i) 
3 

For b = 4 , s = -1 and a= - , we have from (2.9) and 15.1.22 of [1], 
2 

Moreover, since the parameters in the hypergeometric function (2.11) gives the result 

R +.!.-~-~+~ = 1 then the left hand side of (2.11) satisfies Kummer's identity [11], 
2 4 2 4 2 

= I:~R,-µ)(~o)( -~ J~~-R-~ 
11=0 R-1-µ · 

R 1 R 3 -+- -+-
-T., R 2 4 ' 2 4 - l 
- 0 2 1 3 

2 

(2.12) 
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In equation (2.10), with b = 4 the characteristic function 

g(z) =z2-4z-4 

gives the dominant zero, ~o = 2(1+../2). Some values of (2.12) are 

R=l R=2 I R=3 R=4 II 

i I 

1 -(2+../2) 3(2+../2) -5 
1 l 

s(1+.J2)2 
1 1 

.J247 (1 +.J2)2 
2.43(1+../2)2 2../245(1 +.J2)2 I 

I 

(ii) Another elegant identity may be obtained from (2.10). Upon putting b = 4 and 
1 

a=-, we have that 
2 

R 1 R 1 
--- -+-
2 4'2 4_1 

1 
(2.13) 

2 

which may be extracted from identity 15.1.21 of Abramowitz and Stegun. We 

may now conclude that, from (2.13) and (1.19) 
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i)Hl~rG) - ,_, ( _.! J µ.-R+-i 

.(5 R) (3 R) - LQ_(R,-11)(~0) 2 ~o r. --- r -+- . µ=0 R-1-µ 
8 4 8 4 

= f (R+;-1)(- ~ -r 14~-r-R (2.14) 
r=o R+r-1 

where ~0 = 2( 1 + ../2). 

The infinite series in (2.12) and (2.14) are on the boundary of convergence, s = -1. 

It may be shown by Leibniz's theorem and Stirling's approximation of the Gamma 

function that (2.12) and (2.14) converge, albeit very slowly. 

Some values of (2.14) are 

R=l R=2 R=3 R=4 
I I 1 I 

(1+.J2)2 ( 1 + .J2)2 ( .J2 - 2) 3.J2(1 +.J2)2(.J2-2) s.J2(1 +.J2)2 

4 43 2.45 41 

If on the other hand b = -4, ands= 1 equation (2.8) does not hold. Equation (2.8) 

requires the . condition that R < _!_. In this instance the identities of Gauss and 
2 

V andermonde [7] cannot be ascertained from (2. 7). A further illustrative case is 

obtained by talcing a= 2, b = - J27 and s = 1 in (2.3) to give, without the 
2 

coefficient To, 

R-n-l R-n R-n+l --
3£i 3 3 3 1 (2.15) 

n 1-n -- --
2 2 
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Following the preceeding argument relating to 2R, it may be stated that (1.19) diverges 

and (2.15) will not yield the identities of Dixon, Saalschutz, Watson or Whipple, see 

Gaspar and Rahman [7]. 

The result of equation (l.19) can now be extended by varying the form of the 

characteristic function (1.14). In the next section the case of more than one dominant 

zero of a characteristic function affecting the closed form solution of an associated 

infinite series will be investigated. For this case a modified probability density function 

will be considered in the application of a discrete renewal equation. 

3. A Modified Density Function 

In this section a modified probability density function will be considered such that more 

than one dominant zero of a resulting characteristic function will affect the closed form 

representation of an infinite sum generated by the consideration of the transformed 

function F(z) in (1.9). 

To achieve this end, consider the average number of renewals, 

= ( n )bn-{k-1) k-1 
wn k-1 c (3.1) 

and the modified probability density function 

(3.2) 

where c E 9\, b e 9\, a ~ 1 and k ~ 1. 

Defining W(z) and <P(z) as the Z transform of wn and <l>n respectively, results in, upon 

using (3.1) and (3.2) 
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k-1 

W(z) ( zc y 
z-b 

~(z)=(:~:J 
(3.3) 

Substituting (3.3) into the transformed discrete renewal equation (1.3) gives 

1 z z~I 
· k=I Fi(z) = F(z)= k ( k = ( t · (3.4) 

c ( z - b) - bz -a) za ( z - b) - bk 

Expanding the second term of (3.4) in series form, results in 

oo bkr ZI-akr 

F(z)= L ( -b)k(I+r) • 
r=O Z 

(3.5) 

The inverse Z transform of (3.5) is 

+ = ~ (n -akr 1n-akr-k+1u( _ kr) 
Jn £.. kr+k-1 n a 

r=O 

(3.6) 

which may be written as 

[
n-k+I] 

k(a+I) ( ak } + = """' n - T n-akr-k+I 
Jn £.. kr+k-1 

r=O 

(3.7) 

where [x] represents the integer part of x. 

The inverse Z transform of (3.5) may also be written as 



27 

where Re sj,v is the residue of the poles of (3.5) and C is a smooth Jordan curve 

enclosing the singularities of (3.5). 

From (3.5), the characteristic function (with some restriction) 

(3.8) 

has exactly k(a+l) distinct zeros ~j.v for j=0,1,2, .. .. ,(k-1) and v=0,1,2, ... ..... ,a, 

of which at least one and at most four are real. See appendix B for an explanation of 

this statement. 

Therefore ( ~~) ~j, v - b) r -bk = 0' and all the singularities in (3.4) are simple poles. 

Hence from (3.4), F(z) has exactly k(a+ 1) simple poles, so that 

k-1 a 

1,, = IIQ(~j.J~;.v (3.9) 
j=O v=O 

where the residue contribution 

~j,v (3.10) 
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From (3.6) or (3.7) and using (3.10) 

[
n-k+l] 

k(a+l) ( _ k ) k-1 a ):: n+l 
~ n a r bn-akr-k+l = ~ ~ ~j.v 
£..i kr + k -1 £..i £..i k-1 • 
r=O j=O v=O k(~j.v -b) {(a+l)~j, v -ab} 

(3.11) 

The Infinite Series 

Define ~j. o , j = 0, 1, 2, ....... (k-1) , as the k dominant zeros (the ones with the 

greatest modulus) of the characteristic function (3.8). The limiting behaviour of (3.11) 

is such that for n large, asymptotically 

[
n-k+l] 

· k(a+l) ( ) k-1 J:;n+l 

f, = ~ n-akr bn-akr-k+l _ ~ ~i.D • 

n £..i kr + k - 1 £..i k-1 
r=O j=ok(~j,0 -b) {(a+l)~j,0-ab} 

This suggestive limiting behaviour leads to the conjecture that 

(3.12) 

for all values of n, in the region where the infinite series converges. 

The conjectured result (3.12) together with (3.11) implies that 

[
n-k+l] 

k(a+l) ( akr ) "" ( k ) """ n - bn-akr-k+I + """ n - a r bn-akr-k+I 

(:t kr+k-1 r=[~+l] kr+k-1 
k(a+l) 

k-1 ~n+l -I j.o 
- j=O k( ~j,O -b t-l {(a+ l)~j,O -ab} 
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which gives that result 

00 

( k ) k-1 a J:n+I ~ n-a r bn-akr-k+I = _ ~ ~ '°'j.v 

£.... kr+k 1 £....£.... k-I • 
J n+ak+I] - j=O v=I k( ~j.v -b) {(a+ l)~j. v -ab} 
·-l .c(a+1) 

Application of the ratio test indicates that the infinite series (3.12) converges in the region 

{
(a+It+I }k 

(abY < 
1 

' 

which is the same as (l.20), and this restriction also applies to equation (3.8). 

Proof of result (3.12) 

The characteristic function (3.8) may be expressed as the product of factors such that 

k-I k-I 

g(z) = { za(z-b)r -bk= Il(za+l -bza -be21tijlk) = 11 q/z) (3.13) 
j=O j=O 

Now, consider each of the factors in (3.13) and write 

za+I 
F(z)=----

1 a+I b a be21tijlk z - z -
(3.14) 

for each j = 0, 1, 2, ... .. (k -1). 

The singularities in (3.14) with restriction (1.20) are all simple poles and therefore for 

each j, Pj(z) has exactly '(a+l)' simplepolesofwhichai.o shall indicate the 

dominant zero of each of the factors qi( ai.0 ) in (3.13). 
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From the work of the previous section and utilizing the result (1.19) for R = 1, it 

follows from (3.14) that 

~ e2rtijrlk,(n - ar)bn-ar = w(a. . ) a.~ 
~ r 1.o ,,o 
r=O 

(3. 15) 

where from (l.16) the residue contribution, w(a.i.0) from (3.14) is 

w(a.j,0) = lim [(z-Uj,O) z(a )] 
z~ai.o qi Z 

U j,O 

(a+ l)aj,o -ab 

and aj,o are the dominant zeros of each of the factors qi( aj,o). See appendix B for an 

explanation of this statement 

Substituting w(aj,o) into (3.15) results in 

oo ( ) an+l L e21tijrlk n ~ ar bn-ar = j,O -
r=O (a+ l)a.j,O ab 

(3.16) 

for each j=0,1,2, ..... (k-l). 

Notice that (3.16) implies that the sum may in fact be a complex number. 

The summation of (3.16) for all j = 0, 1, 2, .... ( k - l) gives the result, that 

k-1 00 ( ) k-1 an+l 
~ L e21tijrlk n ~ ar bn-ar = ~ j,O - ' 
;=O r=O ;=O (a+ l)aj,O ab 

(3.17) 
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Rescaling the left hand side of (3.17) by r = (r *+ l)k and then replacing r *by r 

results in, after changing the order of summation 

LL e21tij(r+l) n - a r + n-ak{r+l) = L Cl. j,O 
00 

k-1 ( k( 1)} k-1 n+l 

r=-li=O k(r+ 1) i=O (a+ l)aj.o -ab 

L n-a -a n-akr-ak = L aj,O - bn 
00 

( kr k} k-1 n+l 

r=O . kr+k j=Ok{(a+l)et.j,0-ab} 
(3.18) 

Now make the substitution n - ak = m in (3.18) such that 

(3.19) 

Newton's eh forward difference formula of a function h( xi) = hi at xi is defined as 

(k = 1,2,3, .. ...... ) 

and taking the first difference of (3.19) with respect to m results in, from the left hand 

side, 

~ (m + 1-akr)b-akr _ ~ (m -akr)b-akr = ~ (m -akr )b-akr. 
~ kr+k ~ kr+k ~ kr+k-l 

(3.20) 

Similarly from the right hand side of (3.19), gives the result that 

k-l (an:+2+akb-(m+1) _an:+1+akb-m) k-l b-man:+l+ak (CJ. . -b) L J,0 J,0 = L J,0 ~;._O -

j=O Ak j=O Ak b 
(3.21) 

where A= (a+ l)aj,o -ab. 
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From (3.14) using the characteristic equation 

a~ (a . - b)-be2roj/k = O 
J,0 J,0 

it may be seen that (3.21) becomes 

k-1 b-m+k-lam+l 
~ j ,O 

£... ( )k-1 . 
j=O kA Cl.j,O -b 

(3.22) 

Combining (3.20) with (3.22) one obtains after simplification 

oo ( k J k-1 ,-vm+l ~ m- a r m-akr-k+1 = ~ u.j,O 

£... kr + k - l £... k-1 • 
r=O j=O k( Clj ,O -b) {(a+ l)et.j,O - ab} 

(3.23) 

Since the dominant zeros aj.o j = 0, 1, 2, 3, ...... (k-1) of q/z) = 0 are the same as the 

dominant zeros ~j. o of (3.8) then upon renaming m as n in (3.23) proves the 

conjecture, since (3.12) and (3.23) are identical. 

Putting k = 1 in (3.23) yields the result (1.19) for R = 1. 

The degenerate case, a= 0, of (3.23) yields the result 

[
m-k+1] 

-k- ( m )- k-1 (1 + e2tr.ijlkt - 2m k-1 !f<m+2) m(rcj) L kr + k - l - L 2mj(k-1)1k - Le · Cos 
r=O j=O ke k j=O k 

(3.24) 
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Using the WZ pairs method of Wilf and Zeilberger [ 11] a rational function proof 

certificate Rk(m,r) fork= 1and2 of (3.24) is respectively 

R1 ( m, r) = ( r ) 
2 r-1-m 

and 
( ) (r-1)(2r-1) 

Ri m,r = m(2r-m-2)° 

By definition 

Gk ( m, r) = ~ ( m, r) ~ ( m, r) 

where 

( ) ( 
m )1k-l-m ~ m, r = kr + k -1 

and therefore the identity 

[m-:-1] 
L~(m,r)=l 
r=O 

is certified by the pair (~,Gk) with the conditions 

~(m+ 1,r )- ~(m,r) =Gk(m,r+ 1)-Gk(m,r) 

and limit Gk ( m, r) = 0 satisfied. 
r"'±oo 
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In particular from (3.24) fork= 4, we have 

[m-3] 
~ ( m )=.!.[2m-2"i+1

Sinm1t] 
~ 4r+3 4 4 

Some numerical results are now given for various parameters values of (3.12). 

Numerical Results 

The following numerical results, to five significant digits, are given for various 

parameter values of (3.12). 

n k a b ~j,O The left and right hand sides 

of (3.12) 

3 2 1 -10 
s 0 0 = - 8.87298 } 299.98554 
s10 = -10.91611 

~00 = 9.89791 } 3 2 2 10 
s1.o = 10.09807 299.98988 

3 3 1 -10 ' ~00 = -8.87298 • } -30.00050 
s1.0 = -10.53286+ o. 78262i 
s2.o = -10.53286-0.78262i 

~00 = 10.09807 

} 3 3 2 10 
~1,0 = 9.95107+ 0.08833i 

29.99979 

~2,0 = 9.95107- 0.08833i 

Notice that fork~ 3 some dominant zeros of the characteristic function (3.8) occur in 

complex conjugate pairs. 

In the next section the average number of renewals function, wn, will be modified so as 

to reflect a non homogeneous difference delay form of the stationary system size 

probabilities. The effect of this non homogeneity is to allow for distinct factors, 

therefore producing distinct multiple order poles in an associated distribution function. 
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4. Forcing Terms 

Consider, in this section, the densities 

= ( n )bn-f_m+R-1) m+R-1 
w,, m+R-1 c (4.1) 

and (4.2) 

where m is a natural number, R, a, n c and b are defined in section 1. 

Choosing w,, as given by ( 4.1) is equivalent to putting a forcing term of the type bm in 

the difference delay form of the stationary system size probabilities. 

The Z transform of (4.1) and (4.2) is respectively 

ZCm+R-1 
W(z) = ( r+R 

z-b 
and <l>(z) = bz-a 

z-b 
(4.3) 

and substituting (4.3) into (1.4) results in 

1 z zaR+l 
m+R-1.Fi(z) =F(z) ( r -( ) ( r c ( z - b r z -b -bz-a z - b m za+l - bza -b 

(4.4) 

Expanding (4.4) into series form, results in 

-(R+ r-1) r z1
-ar 

F(z) = ~ r b (z-bt+R+r (4.5) 



36 

and the inverse Z transform of ( 4.5) is 

Now (3.4) has a simple pole of order mat the singularity z =band a simple pole of 

order R at the dominant zero, ~0 , of ( 1.14) so that ~~+1 
- b~~ - b = 0. 

Following the procedure as described in section 1, we can define 

v! p_( _ >(b)=lim[!!_{(z-bt F(z)}] 
m, v Z"°'b dzv Z 

and 

where F(z) is given by (4.4) so that we arrive at the conjecture 

~ (R + r -.l)(n -ar )bn-ar...f_m+R-1) = ~ p (b )( n )bn...f_m-1-v) 
.£... r r+m+R-1 .£... ...f.m,-v) m-1-v 
r=O v=O 

+ ~ n _ (i: )( n )~11-(R-1-11). 
,£...~R.-µ) ~o R-1-µ o 
µ=O 

Note that form= 0, (4.7) reduces to the previous result (1.19). 

(4.7) 
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For R = 2andm=1, then from (4.7) 

~ (r + l)(n - ar)bn-ar-2 = bn+2a-2 + ~~+l . [(n)A +a( a+ l )( ~ _ b)] 
(=t r r+2 (~0 -b)A3 1 o 

where A= (a+ 1)~0 -ab. 

The degenerate case of (4.7), for a== 0 gives the interesting binomial convolution 

identity 

n-~R+l(R+r-l)( n )= ~(-l)R(R+v-1)( n ) 
~ r r+m+R-I ~ v m-1-v 
r=O v=O 

+~(-lt(m+µ-1)( n ) 2n-{R-l-µ) (4_8) 
~ µ R-1-µ 
µ=0 

which is in the spirit of the identities given by Chu [4]. 

For various specific values of m and R the WZ pairs method of Wilf and Zeilberger 

may be used to verify the identity (4.8). 
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Appendix A 

In section 1, equation (l.31), the identity 

abRAQ_(R+l.-•I = ab( R - µ)~,~•.-•I + (A+ ab)~, :r,. ~•.-(•-11) 

+(µ- l)AQ-(R-(µ-1)) (Al) 

was required. 

The identity (Al) can be arrived at in the following way. 

From equation ( 1.16) 

(A2) 

where g(z) is defined by equation (l.14) and ~0 is the dominant zero of g(z). 

The equation (A2) can be differentiated with respect to b, such that 

where A= (a+ 1)~0 -ab. 
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Simplifying (A3), by adjusting the third term, we obtain 

d -R R 
µ1-n , )=-µin , +-µrn , . db ~R.-µ b . ~R.-µ) b . ~R+l,-µ) 

(A4) 

Let h(z) = z-ag(z)~0 -A(z- ~0 ) , and obtain a Taylor series expansion of h(z) about 

the dominant zero ~0 giving 

Substituting (A5) into (A4) we obtain, 

d -Rµ! Rµ! 
µ1-n _ = n , +-Q_ . db ~R.-µ) . b ~R.-µ) b (R+l,-µ) 

(A6) 

(A7) 

Expanding (A6) by the Leibniz differentiation rule gives the result 

d -Rµ! Rµ! 
µ '-Q = n , +-Q_ . db -(R,-µ) b ~R.-µ) b (R+l,-µ) 

- R~o 'f(µ)c -k) 'Q r (B )(k) 
bA ~ k µ . -(R+I,-(µ-k)) z~~ i 

(A8) 
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After evaluating the lim(BJ(k) from (A7), and substituting in (A8) we obtain 
t-t~o 

d _ R[ (b-~0)~( )k(a+k+lJ -k ] 
db ~R.-µ) - b ~R+l,-µ) - ~R.-µ) - A f:'o -1 k + 2 ~o Q-{R+1,-(µ-k)) • (A9) 

In a similar fashion, we can evaluate 

( 1) / Q _ t [ dµ { d ( ( z - ~o Y zaR )}] 
· µ + · '-(R.-{µ+i)) - ,~'fo dzµ dz (g(z) Y 

which may be written as 

1 t - R t z "o z "1 z d µ [( _ ~ )R+l a(R+l)z. ( ) ] 

(µ+ ) . Q-(R,-{µ+1)) - ,~'fo dzµ (g(z)y+1(z-~0)2 (AlO) 

where 
~(z) _ (a(z-~0 )+z)g(z)-z(z-~0 )g'(z) 

(z - ~0)2 - za+l(z - ~0)2 

Further, expansion in a Taylor series about ~0 gives the representation 

~(z) =lB.=I,C-1Y(a+j-1)(j-1)(~0-~)(z-~oY-2 (All) 
(z-~0)2 ' j=2 a-1 ~~ 

From (AlO) and utilizing (All), we obtain after some simplification 

R(~0 -b) µ (-lt(k+l)(a+k+lp. 
(µ + l)Q-(R,-{µ+1)) = ~2 L ~k a-1 -(R+I.-{µ-k)) · 

0 k=O o 

(A12) 

Now (A9) and (A12) suggest that the Q's may be related by an expression of the form 
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for µ = 0, 1, 2, ..... (R-1). The constants £;, c2 and c3 can be evaluated by forming three 

simultaneous equations and using the Q values given in table 1 of section I, such that 

a+l d µ ~0(R-(µ+l)) 
Q-{R+I.-(µ+i)) = aR db ~R.-µ) + abR Q_(R.-µ) + AR Q-{R,-(µ+I)) 

which upon rearrangement and allowing A = (a+ 1 )~0 - ab gives 

:b ~•.-•) = Ab (!'+ab) [ abRAQ-{•+1.-{µ+1)) -µAQ-{•.-•l -abl;,( R-(µ + !) )~•.-{µ+1))]. (A14) 

. d d Ab 
Now, smce 7 Q =-Q.-;2 

d~0 db -,0 

, (A13) can be written as, after rearrangement 

~,(A+ ab) ~o ~•.-•) = abRAQ-{R+1,-{µ+1)) - µAQ-{•.-•l - abl;, ( R -(µ + 1} )Q-{R.-(µ+1)) 

for µ = 0, 1, 2, ...... (R-1) 

which is the required identity (Al). 
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AppendixB 

Some properties of the zeros of the characteristic functions 

g(z) = za+l -bza -b and (Bl) 

(B2) 

will be discussed in this appendix. 

Let b be a real constant , a and k e N , and z is a complex variable, and firstly we 

shall consider (Bl). 

Theorem 1 

(i) The equation (B 1) has at least one and at most two real zeros and a dominant 

zero, the one with the greatest modulus, ; 0 such that ; 0 > b for b > 0 and 

1; 0 j > _!!:!:._ for b < 0 and the restriction 
· a+l 

(a+1t+1 

(abt < l. 

(ii) The equation (B2) has at least one and at most four real zeros. 

Proof 

(B3) 

(i) The characteristic equation (B 1) with restriction (B3) has (a+ 1) distinct zeros, 

for the derivative of g(z) cannot vanish coincidentally with g(z). 

The fact that a related equation to (BI) has distinct zeros appears to have been 

reported first by Bailey [2]. 
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Let G(z) = za(z-b), hence G(z) = b, and the turning point of G(z), away from 

th 
. . ab 

e ongm occurs at z = --. 
a+l 

Now consider the graphs of G(z), 

For b> 0: 

Graph 1: 

For b< 0: 

a odd 

/ 
a even 

f./o 
/ 

b -------

The graph of G(z) for a odd or even and b > 0. 

a odd 

I 
I 

I 

Graph 2: 

r~ 

/ ' I \ 
b J. 1o ,, 

--f-~ 
I 

a even 

/ 

b 

/ 
/ 

I 

The graph of G(z) for a odd or even and b < 0. 

I 

z 
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The two graphs of G(z) indicate therefore that (Bl) has at least one and at 

most two real zeros. In both cases of b > 0 and b < 0 it will be shown in the 

next theorem that the dominant zero, ~o , the one with the greatest modulus, of 

(BI) is always real, such that ~o > b for b > 0 and all a values, and that 

l~ol > _:!!!__ for b < 0 and all values of a with restriction (B3). 
a+I 

(ii) In a similar fashion it may be seen that g1 (z) has at most four and at least one 

real zeros. 

Let G1(z)=(za(z-b)Y , hence Gi(z)=bk and the turningpointof q(z), 

f th 
. . ab 

away rom e ongm occurs at z = --. 
a+I 

Now consider the graph of q (z) for b > 0 (the case b < 0 follows in a similar 

fashion). 

Graph 3: 

a even 

I 
I 

I 
a odd 

q(z) 

-b 

The graph of q (z) indicating at least one and at most four real 

zeros of g1 (z) with restriction (B3). 
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Theorem2 

The characteristic function 

q/z) = za+l -bza -be2mjlk 

has 'a' zeros on the contour C: lzl :::;; .!!!!__i for each j = 0, 1, 2, 3, .... (k-1) with 
a+I 

restriction (B3). 

(B4) 

The study of the zeros of (B4), (B2) and (B 1) is important in the area of queueing 

theory, and several papers have been devoted to this study, see for example, Chaudhry, 

Harris and Marchal [3] and Zhao [16]. Their studies have concentrated, amongst other 

things, on robustness of methods for locating zeros inside a unit circle. In this paper 

the location of dominant zeros of (Bl), (B2) and (B4) is of prime importance. 

Proof 

The restriction (B3) comes from (l.20) which is required for the convergence of the 

infinite series in equation (l.19). 

LetA(z) = -bza. Then A(z) has 'a' zeros in the contour C and 

IA(z)I:::;; b(.!!E_)a· 
a+I 

Now 
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( 
ab )a+l 

$ -- +b 
a+l 

By Rouche's theorem, see Takagi [15] , it is required that 

hence 

(
l +(_.!!:_)(_!!!!_)a) < (_!!!!_)a 

a+l a+l - a+l 

and 

l < (_!!!!_)a (-1 ) 
a+l a+I 

which is satisfied since (B3) applies. 

Hence the characteristic equation (B4) has 'a' zeros in the contour C and one zero with 

modulus bigger than _.!!!!__ . 
a+l 

Now from (B4), letting j = 0 gives the characteristic function (Bl). Theorem 1 now 

follows since at least one zero of (B 1) must be real, it is evident that So > b for b > 0 

and !sol> _.!!!!__ for b < o. 
a+l 
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Note, that restriction (B3) is imperative for theorem 2 to apply. If, for example 

a = 1, b = .I_, k = 1 which indicates that (B 3) is not satisfied then % ( z) = z2 - ~ - .I. 
2 2 2 

gives the two zeros as z = {- ~ , 1} , neither of which are in the contour C: lzl ,;; : . 

Theorem3 

The characteristic function g1 (z) has 'ak' zeros in the contour C:lzl:::;; .!!!?.__ with 
a+l 

restriction (B3). 

Proof 

Let B(z) =(qj(z)r =(za+1 -bza -be2mj11cy. Utilizing theorem 2, B(z) has therefore 

'ak' zeros in the contour C and therefore the remaining 'k' zeros have modulus bigger 

than ·l.!!!?._I · a+l 

In the contour C, 

(BS) 

Now, 

lg1 (z)- B(z)I =I( G(z))" -bk -(za+I -bza -be2mjtk ti 
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for every j=O,l,2, .... ,(k-1), and G(z)=z0 (z-b). 

Further more let cj = be2
1fijlk , such that 

j(G(z))' -b' -(G(z)-c;)'j= -b' -t(~)-1)' c;c'-'(z) 

(B6) 

h M (
ab )

0

(2a+l) O were=-- >. 
a+l a+l 

By Rouche's theorem, it is required that 

lg1 (z)-B(z)I ::; IB(z)I and upon using (B5) and (B6) we have that 

which is satisfied by virtue of restriction (B3). Therefore the characteristic function 

(B2) has 'ak' zeros in the contour C :lzl ::; _.!!:!!_ and 'k' zeros with modulus bigger 
a+l 

than _.!!:!!_ . 
a+l 
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Consider as, an example a= 3, b = 10, k = 6 such that restriction (B3) is satisfied and 

C:lzl ::;;1¥2. The zeros of qj(z) are listed below, showing that one dominant zero 

appears from each of the q/z), for j = 0, 12, 3, 4, 5. 

qo(z) 10.0100 -0.9696 0.4798- 0.8944i 0.4798+0.8944i 

qi (z) 10.0051+0.0086i -0.9157- 0.3231i 0.7697- 0.6786i 0.1412+0.9933i 

q2(z) 9.9951+0.0087i -0.7589- 0.6127 i 0.9669- 0.3668 i -0.2031 +0.9708i 

%(Z) 9.9900 1.0372 -0.5136+ 0.8375i -0.5136-0.8375i 

q4(z) 9.9951-0.0087i -0.7589+0.6127i 0.9669+ 0.3668 i -0.2031-0.9708i 

qs(z) 10.0051-0.0086 i -0.9157+0.3231 i 0.7697+0.6786i 0.1412-0.9932i 

The dominant zeros of q/z)are listed in the first column and all have modulus bigger 

than 7¥2. These dominant zeros are exactly the same k dominant zeros of (B2). 

It appears that the zeros, a j (a, b) of equation (B4) can be related for b > 0 and b < 0. 

It may be shown that the following relationships hold: 

(i) For all values of k and a even 

a.j(a,b) =-a./a,-b) 

(ii) For k odd and a odd 

and, 

I 



50 

(iii) For k even and a odd 

-a "(a,-b) . f . k 
' or l<-

"+- 2 J 2 

a/a,b) = -CXo (a, -b) . f . k 
' or l=-

2 

-a . "(a,-b) f . k . or 1 >-' 1- 2 2 

where)= 0, 1, 2, ... ... , (k-1). 
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Conclusion 

A Z transformation technique has been described whereby renewal processes were positively 

exploited to allow for the summation of series in closed form. The closed form representation 

of the infinite series depend on the dominant zeros of an associated characteristic function. 

The method may be easily extended to handle multiple delays and more general transformed 

functions of the type, 

and 

zaR+1 

E(z)--------,~ 
2 - { )m( a+l b a b)R z-c z - z -
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