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Abstract 

Self-adaption is one of the most promising areas of research in evo­
lutionary computation as it adapts the algorithm to the problem while 
solving the problem. In this paper we extend self-adaption to operate on 
more than one aspect of evolutionary computation and at more than one 
level of adaption. We developed a genetic algorithm which self-adapts 
both mutation strength and population size; the results indicate that the 
approach works quite well . 

1 Introduction 

Since evolutionary algorithms implement the idea of evolution, it is more than 
natural to expect some self-adapting characteristics of these techniques. Apart 
from evolutionary strategies, which incorporate some of its control parameters 
in the solution vectors, most other techniques use fixed representations, oper­
ators, and control parameters . Some of the promising research areas based on 
the inclusion of self adapting mechanisms are: 

• representation of individuals (as proposed by Shaefer (1987); the Dynamic 
Parameter Encoding technique, Schraudolph & Belew (1992) and messy 
genetic algorithms, Goldberg et al. (1991) also fall into this category) . 

• operators. It is clear that different operators play different roles at differ­
ent stages of the evolutionary process. The operators should adapt (e.g., 
adaptive crossover Schaffer & Morishima (1987) , Spears ( 1995) ). This is 
true especially for time-varying fitness landscapes. 

• control parameters. There have been various experiments aimed at adap- . 
tive probabilities of operators (Davis, 1989; Julstrom, 1995; Srinivas & 
Patnaik, 1994). However, much more remains to be done. 

It seems that this is one of the most promising directions of research; after all, 
the power of evolutionary algorithms lies in their adaptiveness. The advantages 
of self-adaption are that for the parameters being self-adapted hand tuning is 
not required, they dynamically adapt to the changing requirements during the 
run and this is done while evolving a problem solution. 

Angeline (1995) provides a classification of adaptive and self-adaptive evo-
lutionary computation (EC) techniques: 

"Adaptive evolutionary computations can be separated largely by 
the level at which the adaptive parameters operate. Population-level 
techniques dynamically adjust parameters that are global to the 
entire population, such as global crossover frequency. Individual­
level adaptive methods modify how a particular individual within 
the population is affected by the [ ... ] operators. Component-level 
adaptive ECs dynamically alter how the individual components of 
each individual will be manipulated independently from each other." 
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Additionally, the EC systems can be classified as adaptive or self-adaptive on 
the basis whether or not they evolve the values for the adaptive parameters. 

In this paper we discuss a particular self-adaptive system (SAGA) for nu­
merical optimisation problems, which combines population-level and individual­
level techniques. The paper is organized as follows. The next section explains 
population-level and individual-level techniques incorporated in the proposed 
system; it also includes a discussion on adaptation of the population sizes. Sec­
tion 3 reports the results of experiments and section 4 concludes the paper. 

2 SAGA-A Self-Adaptive Genetic Algorithm 

SAGA (Self-Adaptive Genetic Algorithm) uses population-level and individual­
level adaptive parameters to self-adapt the population size and the mutation 
strength during the runs. While the self-adaptiveness for the mutation strength 
was explored in earlier work (Hoffmeister & Back, 1992; Hinterding, 1995), the 
addition of population-level techniques to control the size of the EC populations 
is discussed in this pap~r. 

There have been empirical studies (De Jong, 1975; Grefenstette, 1986; Schaf­
fer et al. , 1989) that address the question "how large should a GA population 
be for a given problem?"; there are also a number of heuristics on sizing GA 
populations. Some researchers studied the problem from a theoretical point 
of view, e.g., to maximize schemata processing ability (Goldberg, 1989) or to 

. maximize GA performance by insuring accurate sampling (Goldberg et al. , 
1992). 

There are also two attempts reported at dynamically adjusting (self-adapt­
ing) the population size. One method (Smith, 1993) is based on the absolute 
expected selection loss; the other (Arabas et al., 1994)- on the concept of the 
age of individuals in the population. SAGA proposes a new approach which is 
based on the concepts of co-evolution: there is a community of three individual 
genetic algorithms (IGAs) with different population sizes. The population sizes 
are adapted by using a mutation function which is activated after a set number 
of function evaluations (an epoch) for each of the IGAs. This mutation function 
uses either the best fitness value or best fitness improvement found during an 
epoch to adjust the population size for each or the IGAs for the next epoch. 
We explain this process in detail in the next section of the paper. 

Also, the IGA can self-adapt the mutation strength during the run. This 
requires addition of one value ms to each chromosome (which is allowed to vary 
from 0.000001 to 0.2); this value controls the standard deviation of the Gaussian 
mutation applied to the genes in the chromosome to be mutated. This value 
is allowed to participate in crossover and mutation, but does not contribute 
directly to the fitness of the solution. When the chromosome is to be mutated 
the following steps are followed: 

1. decode the gene ms to a value, 

2. apply Gaussian noise to the ms value using a standard deviation of 0.013 
(meta-mutation). 
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3. use the ms value as the standard deviation for the Gaussian noise to 
mutate the other genes in the chromosome, 

4. write the mutated genes (including ms) back to the chromosome. 

During the initialization process, the value of ms for all chromosomes is set using 
a Gaussian distributed random variable with mean 0.1 and standard deviation 
0.01. When fixed Gaussian mutation is used (for experiments described later 
in the paper), the standard deviation for t he Gaussian noise is set to 0.1. 

2.1 Adaptation of the population size 

Three JGAs (with population sizes of Pl, P2, and P3, respectively, and initial 
values of 50, 100 and 200) are used. The population sizes are adapted to 
maximize the performance of the IGA-P2 system; the best fitness found during 
an epoch of 1,000 evaluations for each IGA is used as the criteria to alter the 
population sizes. 

Fitness refers to the fitness of the best individual or improvement of the 
best fitness value found, measured at the start and end of the epoch . IGA-Pl , 
IGA-P2, and IGA-P3 are referred to as: Pl, P2, and P3; Pl has always the 
smallest population , and P3 - the largest. 

The population sizes are allowed to range from 10 to 1,000, and the dif­
ferences between the population sizes are kept to at least 20. There are two 
categories of rules; those activated when the fitnesses of the IGAs converge and 
those activated when the fitness values are distinct . 

The rules in the first category, when two or three fitnesses from the IGAs 
are the same ( < le - 9), are to move the populations further apart. That 
is, the smallest population size is decreased and the largest population size is · 
increased. Given the assumption that population size effects performance, the 
justification for these rules is that if the fitnesses converge, the population sizes 
are too close together, or a (local) optimum has been found. In either case 
adjusting the population sizes so that they are further apart could help. Note 
that the case when Pl , P2 and P3 have the same fitness is covered by the first 
rule as the fitness of P2 is not considered for this rule. 

Pl & P3 have the same fitness: expand left and expand right 
Pl & P2 have the same fitness: expand left 
P2 & P3 have the same fitness: expand right 

where the adjustment operator 'expand ' is defined as: 

expand left: size(Pl) := size(Pl)/2; rest unaltered 
expand right: size(P3) := size(P3)*2; rest unaltered 

The second category covers the situation where the best fitness values from 
Pl, P2, and P3 are distinct. Here we try to adjust the population sizes so that 
the performance of P2 is maximized. The following set of rules gives a list of 
appropriate actions (in terms of adjustment operators being invoked) for each 
possible case (these cases are ordered by fitness, smallest fitness value on the 
left, largest on right): 
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Pl P2 P3: move right 
Pl P3 P2 or P2 Pl P3: compress left 
P2 P3 Pl or P3 Pl P2: compress right 
P3 P2 Pl: move left 

where the adjustment operators 'move' and 'compress ' are defined as : 

move right: size(Pl) := size(P2); size(P2) := size(P3); size(P3) := size(P3)*2 
move left: size(Pl) := size(Pl)/2; size(P2) := size(Pl); size(P3) := size(P2) 
compress left: size(Pl) := (size(Pl) + size(P2))/2; rest unaltered 
compress right: size(P3) := (size(P2) + size(P3))/2; rest unaltered 

We justify these heuristic rules on the following grounds. As we used three 
IGAs (the minimum we thought would work), it seemed sensible to have rules 
that would maximize the performance of the "middle IGA" (i.e., the IGA with 
the middle population size). Then we could have rules that would adjust all 
the population sizes to be larger or smaller if the best population size could be 
outside the range of the current population sizes ('move' rules). We can also 
have rules to adjust the population size of the worse IGA so that it is closer 
in size to the others. The idea was to design rules that would explore different 
population sizes, try to maximize the performance of IGA-P2, and, if it was 
unclear how to adjust the population sizes then to take some actio~ that could 
lead to future improvements. 

As SAGA contains three IGAs we have the option of keeping the populations 
from the IGAs separate or we can allow them to mix at the end of each epoch. 
In the latter case, the three populations are collected into a single population 
pool at the end of an epoch, and after the sizes of the populations are adjusted, 
the three IGAs will draw their members from the population pool randomly. If 
the number of individuals in the population pool is insufficient to meet the needs 
of the IGAs, the number of individuals they get from the population pool is 
proportional to their desired population size. For example, if desired population 
sizes of the three IGAs are 10, 30 and 60, and the population pool contains only 
50 individuals, then they will get 5, 15 and 30 individuals respectively. 

When a population size is to decrease the worst individuals in the IGA 
or population pool are removed. When a population size is to be increased, 
we can either randomly generate new individuals and add them to the IGA 
or population pool or we can allow the population of an IGA to grow to the 
desired size by not deleting individuals for a number of generations. 

2.2 The IGAs 

The GA used for the IGAs is a steady-state GA (Davis, 1991) using tournament 
selection with a tournament size of two. It uses bit-string representation, but 
the genes are considered to be the function variables rather than the binary 
bits. Crossover and mutation are used as independent reproduction operators; 
that is a new individual is produced by either crossover or mutation and never 
by both. The crossover /mutation rate determines the proportion of new indi­
viduals produced by crossover or mutation. Two point crossover is used and 
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Fl 
Fla 
F2 
F3 
F5 

F6 
F7 

F8 

F9 
FlO 

Table 1: Test functions 

f(xi) li=1,20) = 20A + l:r~1 xr - A cos(27rxi) 
f(xi) li=1,10) = V + L:J~1 -Xi sin( JfXJ) 

Xi E [-5.12, 5.12] 
Xi E [-5.12, 5.12] 

Xi E [-2.048, 2.048] 
Xi E [-5.12, 5.12] 

Xi E (-65.536, 65.536] 

]( = 500 
Xi E [-5.12, 5.12]; A= 10 

Xi E (-512, 512] 
v = 4189.827601614 

Xi E [-512, 512] 

Xi E (-65.536, 65.536] 
Xi E [-200.0, 200.0] 

crossover points operate at the bit level. Mutation modifies genes and Gaussian 
mutation is used. Two parameters control mutation: Poisson mean-which is 
the mean number of genes that will be mutated in a chromosome; and muta­
tion strength-which is the standard deviation of the Gaussian noise used in 
the mutation of a gene. 

When a new individual is created, and it duplicates an individual already in 
the population, it is discarded and still counted as an evaluation. The other ma­
jor parameter is the replacement rate, which is the percentage of the population 
to be replaced in one generation. 

3 Experiments and Results 

For the experiments, test functions have been taken from a number of sources, 
and more difficult functions have been included. Fl - F5 are from De Jong 
(1975), F6 - F8 are from Gordon & Whitley (1993), Fla and F9 are from 
Hoffmeister and Back (1992), and FlO is from Michalewicz (1994). The test 
functions include a range of function types and include nonlinear, non-separable 
and scalable functions. The functions are shown in Table 1. Gray coded binary 
representation was used for each function. 

SAGA was allowed to run for up to 12 epochs on the test functions except 
for FlO where 20 epochs were allowed. All parameter settings for the IGAs, 
except for population size was taken from Hinterding (1995). 

SAGA was run on these ten test functions in nine different configurations. 
The configurations can be divided into two major groups: where fixed strength 
Gaussian mutation was used (FM), and where self-adaption of the mutation 
strength was used (SAM). The sub-configurations common to both groups are: 

• Control (CTRL) - Populations sizes remain fixed, populations are kept 
separate, extra individuals generated randomly. 
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T bl 2 R 1 a e esu ts - avera~ e num b er o f h epoc s or average b l est va ue 
FM - fixed muta.tion SAM - self-a.da.ptive muta.tion 

Fn. CTRL NM M CTRL NM M MND MG MGND 
Fl 2.3 1.9 2.1 2.5 2.3 2 .5 2.2 2 . 7 2 .5 
Fla. 0/1.le-l 0/1.8e-2 l/1.4e-3 3/7.le-4 8.1 7.3 8 .6 7.9 7.8 
F2 7 /3e-7 7 /Se- 7 7/1.8e-6 4.2 4 .3 3.6 4 3.4 3 .5 
F3 2.2 2 2.2 2 2 1.8 1 .8 2 1.7 
F5 1.6 1.3 1.6 2 .1 2.1 1.8 2 .2 1.9 1.7 
F6 0/1.8e1 0/2.3el 0/2el 0/4e0 0/2 .6e0 0/6 .4e0 1 /1.leO 0/3 .5e0 1/2.2e0 
F7 0/4 .8el 2/8.9e1 6/5.9el l/2.5e0 4/2.6el 8/2 .4el 8/l.3e-2 9 /3 .4el 6.7 
F8 0/1.2e-1 1/1.le-1 O/l.8e-l 0/6 .2e-2 2/7. le-2 0/7e-2 2/4. 7e-2 1 /Se-2 2/4.le-2 
F9 0/l.5e3 0/1.5e3 o/7.9e2 0/1.4e2 0/3.4el 0/1.6el 0/2 .3el 0/2. lel 0/3.lel 
FlO 0/1.3e5 0/1.3e5 0/4.2e4 0/2. 7e4 0/1. 7e4 0/1.67e4 oii. 7e4 0/1.68e4 0/1. 7e4 

• No Mix (NM) - Population size allowed to self-adapt, populations kept 
separate, extra individuals generated randomly. 

• Mix (M) - Population size allowed to self-adapt, populations mix at 
epochs, extra individuals generated randomly. 

The following three sub-configurations were only used with self-adaption of 
mutation strength. 

• Mix, No Dups (MND) - population size allowed to self-adapt, popu­
lations mix at epochs, extra individuals generated randomly, duplicates 
removed from population pool. 

• Mix, Grow (MG) - population size allowed to self-adapt, populations mix 
at epochs, populations grow to desired size. 

• Mix, Grow, No Dups (MGND) - population size allowed to self-adapt, 
populations mix at epochs, populations grow to desired size, duplicates 
removed from population pool. 

Results are produced by averaging the results from ten runs of SAGA on 
each of the functions. The results are summarised in Table 2. In this table, 
an entry consisting of a single number indicates the problem was always solved 
and gives the average number of epochs to solve the problem, while entries of 
the form x/y should be interpreted as follows: x gives the number of times the 
problem was solved and y gives the average best value found . Average number of 
epochs rather than average number of evaluations to solve are reported as SAGA 
can act as three independent GAs or as three interconnected GAs depending 
on whether or not the populations are allowed to mix. 

The results from Table 2 show that for the set of runs where fixed Gaussian 
mutation is used, adaptation of the population size is not always beneficial, and 
(surprisingly) that allowing the populations to mix can also be detrimental. 
The situation is very different when we enable self-adaption of the mutation 
strength. Now adaption of the population size and allowing the populations to 
mix both give improved results. In fact, except for the simple functions Fl, F3, 
and F5, these configurations give the best results. The other point to notice is 
that the configurations where duplicc...tes are removed give better results for the 
multimodal functions. 

Table 3 displays the trends in the total population sizes for a few of the 
functions in the following configurations: Fla - SAM, M; F6 & F8 - SAM, 
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I a e esu T bl 3 R lt s - avera~e t t 1 o a 1 . popu at1on size 
Epochs 0 1 2 3 4 5 6 7 8 9 10 11 12 
Fla. 350 350 175 87 85.5 85.5 85 89.5 133 
F6 350 350 187.5 134 128 .3 133 134.2 123.9 138 .7 160.l 147.2 154.5 128.5 
F8 350 350 212.5 154.9 112.2 101.2 130 104.9 131. 7 203 .2 347 340 

MND. For problem Fla (sphere in 30 dimensions) the trend is clearly to get 
the population sizes small and keep them small, as this is a simple function 
and exploitation (rather than exploration) gives better results. In a few of the 
runs, the population size increases at the end of the run as the values found 
by the three IGAs converge. With problems F6 (Rastrigin's function) and F8 
(Griewank's function) the populations do not decrease to the same extent, and 
increase again to facilitate escaping local optima and to change the mode to 
exploration. In some runs (e.g., on F6), it can be seen that the population size 
fluctuates as the SAGA increases the population size to escape a local optimum 
and then decreases the population size again to find the next optimum (see 
Fig. 2). 

4 Conclusions and Future Research 

Self-adaption is an important area of research in EC as it adapts the algo­
rithm to the problem while solving the problem. SAGA, the system developed, 
combines population-level and individual-level adaption; and self-adapts two 
different parameters, population size and mutation strength. 

SAGA can adopt different strategies for different test functions. On con­
tinuous unimodal functions (Fl, Fla, F9 & FlO) it is able to adapt to small 
population sizes for all the IGAs; to maximize their exploitation capabilities. 
A small population size leads to a greater number of generations per epoch and 
increases the average fitness of the individuals selected. 

For functions where exploration is more important, some interesting trends 
can be seen. The removal of duplicates from the population pool is beneficial as 
this lowers the average fitness of individuals selected and increases the diversity 
of the population. IGA-Pl tends towards a small population size, and IGA-P3 
tends to a large population size. Here we get an interesting maximization of 
both exploitation and exploration by using different population sizes. While 
at the same time using mixing of the populations to minimize their respective 
problems: converging to local optima, and lack of progress. So some ideas of 
co-evolutionary computation were used in a new and interesting manner. 

415.4 

While previous work has dealt with self-adapting only one aspect of EC 
systems, we have shown that self-adapting more than one is both possible and 
beneficial. A natural extension to this research is to include self-adaption of 
other parameters as well. We self-adapt only one parameter per adaption level, 
but just as ECs can optimise many function variables, it should be possible to 
self-adapt many parameters concurrently. This is summarised well by Ange­
line (1995): 

"There is no reason to believe that having only one level of adaption 
in an evolutionary computation is optimal. On the contrary, com-
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Fn 
Value 0_1 

10 

Fn l 
Value 

0.1 

Fla- SAM , M 

300 

250 

Pop 200 

Size 150 

10~____,,_ 

50 

Fla - SAM , M 

P2 Pop~ 
Tot PopB 

Orr--t-____ ....,...____,...~~---_..., 

~o~ ~o~ 
Figure 1: Function value & population size in single run of Fla 

F6 - SAM , MND 

300 

250 

Pop 200 

Size 150 

F6- SAM, MND 

2 Pop~ 
Tot PopB 

E~~s ~o~s 
Figure 2: Function value & population size in single run of F6 

FB- SAM, MND 

Pop 250 
Size 200 

150 

FB- SAM, MND 

P Pop~ 
Tot PopB 

~o~s ~o~ 
Figure 3: Function value & population size in single run of F8 

8 



bining methods at different levels may actually provide significant 
advantages in some environments. Some effort is required to deter­
mine effective methods for combining adaptive methods at different 
levels and determine when they are useful." 
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