
VICTORIA ~
UNIVERSITY

+! ·. ..

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Self-adaptive Genetic Algorithms for

Numeric Functions

Robert Hinterding, Zbigniew Michalewicz and

Tom C. Peachey

(70 COMP 24)

February, 1996

(AMS : 68T05)

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COMPUTER AND MA THEMA TI CAL SCIENCES

P 0 BOX 14428
MCMC

MELBOURNE, VICTORIA 8001
AUSTRALIA

TELEPHONE (03) 9688 4492
FACSIMILE (03) 9688 4050

F ootscray Campus

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Self-Adaptive Genetic Algorithm
for Numeric Functions1

Robert Hinterding
email: rhh@matilda.vut.edu.au

Zbigniew Michalewicz
Department of Computer Science,

University of North Carolina,
Charlotte, NC 28223, USA

email:zbyszek@uncc.edu

T. C. Peachey
email: tom@matilda.vut.edu.au

TECHNICAL REPORT
70COMP24

February 1996

Department of Computer and Mathematical Sciences
VICTORIA UNIVERSITY OF TECHNOLOGY
PO Box 14428 MMC, Melbourne 3000, Australia

Telephone +61 3 9688 4249
Facsimile +61 3 9688 4050

1 A version of this report has been submitted to the Fourth International Conference on
Parallel Problem Solving from Nature.

mailto:rhh@matilda.vut.edu.au
mailto:zbyszek@uncc.edu
mailto:tom@matilda.vut.edu.au

Abstract

Self-adaption is one of the most promising areas of research in evo­
lutionary computation as it adapts the algorithm to the problem while
solving the problem. In this paper we extend self-adaption to operate on
more than one aspect of evolutionary computation and at more than one
level of adaption. We developed a genetic algorithm which self-adapts
both mutation strength and population size; the results indicate that the
approach works quite well .

1 Introduction

Since evolutionary algorithms implement the idea of evolution, it is more than
natural to expect some self-adapting characteristics of these techniques. Apart
from evolutionary strategies, which incorporate some of its control parameters
in the solution vectors, most other techniques use fixed representations, oper­
ators, and control parameters . Some of the promising research areas based on
the inclusion of self adapting mechanisms are:

• representation of individuals (as proposed by Shaefer (1987); the Dynamic
Parameter Encoding technique, Schraudolph & Belew (1992) and messy
genetic algorithms, Goldberg et al. (1991) also fall into this category) .

• operators. It is clear that different operators play different roles at differ­
ent stages of the evolutionary process. The operators should adapt (e.g.,
adaptive crossover Schaffer & Morishima (1987) , Spears (1995)). This is
true especially for time-varying fitness landscapes.

• control parameters. There have been various experiments aimed at adap- .
tive probabilities of operators (Davis, 1989; Julstrom, 1995; Srinivas &
Patnaik, 1994). However, much more remains to be done.

It seems that this is one of the most promising directions of research; after all,
the power of evolutionary algorithms lies in their adaptiveness. The advantages
of self-adaption are that for the parameters being self-adapted hand tuning is
not required, they dynamically adapt to the changing requirements during the
run and this is done while evolving a problem solution.

Angeline (1995) provides a classification of adaptive and self-adaptive evo-
lutionary computation (EC) techniques:

"Adaptive evolutionary computations can be separated largely by
the level at which the adaptive parameters operate. Population-level
techniques dynamically adjust parameters that are global to the
entire population, such as global crossover frequency. Individual­
level adaptive methods modify how a particular individual within
the population is affected by the [...] operators. Component-level
adaptive ECs dynamically alter how the individual components of
each individual will be manipulated independently from each other."

1

Additionally, the EC systems can be classified as adaptive or self-adaptive on
the basis whether or not they evolve the values for the adaptive parameters.

In this paper we discuss a particular self-adaptive system (SAGA) for nu­
merical optimisation problems, which combines population-level and individual­
level techniques. The paper is organized as follows. The next section explains
population-level and individual-level techniques incorporated in the proposed
system; it also includes a discussion on adaptation of the population sizes. Sec­
tion 3 reports the results of experiments and section 4 concludes the paper.

2 SAGA-A Self-Adaptive Genetic Algorithm

SAGA (Self-Adaptive Genetic Algorithm) uses population-level and individual­
level adaptive parameters to self-adapt the population size and the mutation
strength during the runs. While the self-adaptiveness for the mutation strength
was explored in earlier work (Hoffmeister & Back, 1992; Hinterding, 1995), the
addition of population-level techniques to control the size of the EC populations
is discussed in this pap~r.

There have been empirical studies (De Jong, 1975; Grefenstette, 1986; Schaf­
fer et al. , 1989) that address the question "how large should a GA population
be for a given problem?"; there are also a number of heuristics on sizing GA
populations. Some researchers studied the problem from a theoretical point
of view, e.g., to maximize schemata processing ability (Goldberg, 1989) or to

. maximize GA performance by insuring accurate sampling (Goldberg et al. ,
1992).

There are also two attempts reported at dynamically adjusting (self-adapt­
ing) the population size. One method (Smith, 1993) is based on the absolute
expected selection loss; the other (Arabas et al., 1994)- on the concept of the
age of individuals in the population. SAGA proposes a new approach which is
based on the concepts of co-evolution: there is a community of three individual
genetic algorithms (IGAs) with different population sizes. The population sizes
are adapted by using a mutation function which is activated after a set number
of function evaluations (an epoch) for each of the IGAs. This mutation function
uses either the best fitness value or best fitness improvement found during an
epoch to adjust the population size for each or the IGAs for the next epoch.
We explain this process in detail in the next section of the paper.

Also, the IGA can self-adapt the mutation strength during the run. This
requires addition of one value ms to each chromosome (which is allowed to vary
from 0.000001 to 0.2); this value controls the standard deviation of the Gaussian
mutation applied to the genes in the chromosome to be mutated. This value
is allowed to participate in crossover and mutation, but does not contribute
directly to the fitness of the solution. When the chromosome is to be mutated
the following steps are followed:

1. decode the gene ms to a value,

2. apply Gaussian noise to the ms value using a standard deviation of 0.013
(meta-mutation).

2

3. use the ms value as the standard deviation for the Gaussian noise to
mutate the other genes in the chromosome,

4. write the mutated genes (including ms) back to the chromosome.

During the initialization process, the value of ms for all chromosomes is set using
a Gaussian distributed random variable with mean 0.1 and standard deviation
0.01. When fixed Gaussian mutation is used (for experiments described later
in the paper), the standard deviation for t he Gaussian noise is set to 0.1.

2.1 Adaptation of the population size

Three JGAs (with population sizes of Pl, P2, and P3, respectively, and initial
values of 50, 100 and 200) are used. The population sizes are adapted to
maximize the performance of the IGA-P2 system; the best fitness found during
an epoch of 1,000 evaluations for each IGA is used as the criteria to alter the
population sizes.

Fitness refers to the fitness of the best individual or improvement of the
best fitness value found, measured at the start and end of the epoch . IGA-Pl ,
IGA-P2, and IGA-P3 are referred to as: Pl, P2, and P3; Pl has always the
smallest population , and P3 - the largest.

The population sizes are allowed to range from 10 to 1,000, and the dif­
ferences between the population sizes are kept to at least 20. There are two
categories of rules; those activated when the fitnesses of the IGAs converge and
those activated when the fitness values are distinct .

The rules in the first category, when two or three fitnesses from the IGAs
are the same (< le - 9), are to move the populations further apart. That
is, the smallest population size is decreased and the largest population size is ·
increased. Given the assumption that population size effects performance, the
justification for these rules is that if the fitnesses converge, the population sizes
are too close together, or a (local) optimum has been found. In either case
adjusting the population sizes so that they are further apart could help. Note
that the case when Pl , P2 and P3 have the same fitness is covered by the first
rule as the fitness of P2 is not considered for this rule.

Pl & P3 have the same fitness: expand left and expand right
Pl & P2 have the same fitness: expand left
P2 & P3 have the same fitness: expand right

where the adjustment operator 'expand ' is defined as:

expand left: size(Pl) := size(Pl)/2; rest unaltered
expand right: size(P3) := size(P3)*2; rest unaltered

The second category covers the situation where the best fitness values from
Pl, P2, and P3 are distinct. Here we try to adjust the population sizes so that
the performance of P2 is maximized. The following set of rules gives a list of
appropriate actions (in terms of adjustment operators being invoked) for each
possible case (these cases are ordered by fitness, smallest fitness value on the
left, largest on right):

3

Pl P2 P3: move right
Pl P3 P2 or P2 Pl P3: compress left
P2 P3 Pl or P3 Pl P2: compress right
P3 P2 Pl: move left

where the adjustment operators 'move' and 'compress ' are defined as :

move right: size(Pl) := size(P2); size(P2) := size(P3); size(P3) := size(P3)*2
move left: size(Pl) := size(Pl)/2; size(P2) := size(Pl); size(P3) := size(P2)
compress left: size(Pl) := (size(Pl) + size(P2))/2; rest unaltered
compress right: size(P3) := (size(P2) + size(P3))/2; rest unaltered

We justify these heuristic rules on the following grounds. As we used three
IGAs (the minimum we thought would work), it seemed sensible to have rules
that would maximize the performance of the "middle IGA" (i.e., the IGA with
the middle population size). Then we could have rules that would adjust all
the population sizes to be larger or smaller if the best population size could be
outside the range of the current population sizes ('move' rules). We can also
have rules to adjust the population size of the worse IGA so that it is closer
in size to the others. The idea was to design rules that would explore different
population sizes, try to maximize the performance of IGA-P2, and, if it was
unclear how to adjust the population sizes then to take some actio~ that could
lead to future improvements.

As SAGA contains three IGAs we have the option of keeping the populations
from the IGAs separate or we can allow them to mix at the end of each epoch.
In the latter case, the three populations are collected into a single population
pool at the end of an epoch, and after the sizes of the populations are adjusted,
the three IGAs will draw their members from the population pool randomly. If
the number of individuals in the population pool is insufficient to meet the needs
of the IGAs, the number of individuals they get from the population pool is
proportional to their desired population size. For example, if desired population
sizes of the three IGAs are 10, 30 and 60, and the population pool contains only
50 individuals, then they will get 5, 15 and 30 individuals respectively.

When a population size is to decrease the worst individuals in the IGA
or population pool are removed. When a population size is to be increased,
we can either randomly generate new individuals and add them to the IGA
or population pool or we can allow the population of an IGA to grow to the
desired size by not deleting individuals for a number of generations.

2.2 The IGAs

The GA used for the IGAs is a steady-state GA (Davis, 1991) using tournament
selection with a tournament size of two. It uses bit-string representation, but
the genes are considered to be the function variables rather than the binary
bits. Crossover and mutation are used as independent reproduction operators;
that is a new individual is produced by either crossover or mutation and never
by both. The crossover /mutation rate determines the proportion of new indi­
viduals produced by crossover or mutation. Two point crossover is used and

4

Fl
Fla
F2
F3
F5

F6
F7

F8

F9
FlO

Table 1: Test functions

f(xi) li=1,20) = 20A + l:r~1 xr - A cos(27rxi)
f(xi) li=1,10) = V + L:J~1 -Xi sin(JfXJ)

Xi E [-5.12, 5.12]
Xi E [-5.12, 5.12]

Xi E [-2.048, 2.048]
Xi E [-5.12, 5.12]

Xi E (-65.536, 65.536]

](= 500
Xi E [-5.12, 5.12]; A= 10

Xi E (-512, 512]
v = 4189.827601614

Xi E [-512, 512]

Xi E (-65.536, 65.536]
Xi E [-200.0, 200.0]

crossover points operate at the bit level. Mutation modifies genes and Gaussian
mutation is used. Two parameters control mutation: Poisson mean-which is
the mean number of genes that will be mutated in a chromosome; and muta­
tion strength-which is the standard deviation of the Gaussian noise used in
the mutation of a gene.

When a new individual is created, and it duplicates an individual already in
the population, it is discarded and still counted as an evaluation. The other ma­
jor parameter is the replacement rate, which is the percentage of the population
to be replaced in one generation.

3 Experiments and Results

For the experiments, test functions have been taken from a number of sources,
and more difficult functions have been included. Fl - F5 are from De Jong
(1975), F6 - F8 are from Gordon & Whitley (1993), Fla and F9 are from
Hoffmeister and Back (1992), and FlO is from Michalewicz (1994). The test
functions include a range of function types and include nonlinear, non-separable
and scalable functions. The functions are shown in Table 1. Gray coded binary
representation was used for each function.

SAGA was allowed to run for up to 12 epochs on the test functions except
for FlO where 20 epochs were allowed. All parameter settings for the IGAs,
except for population size was taken from Hinterding (1995).

SAGA was run on these ten test functions in nine different configurations.
The configurations can be divided into two major groups: where fixed strength
Gaussian mutation was used (FM), and where self-adaption of the mutation
strength was used (SAM). The sub-configurations common to both groups are:

• Control (CTRL) - Populations sizes remain fixed, populations are kept
separate, extra individuals generated randomly.

5

T bl 2 R 1 a e esu ts - avera~ e num b er o f h epoc s or average b l est va ue
FM - fixed muta.tion SAM - self-a.da.ptive muta.tion

Fn. CTRL NM M CTRL NM M MND MG MGND
Fl 2.3 1.9 2.1 2.5 2.3 2 .5 2.2 2 . 7 2 .5
Fla. 0/1.le-l 0/1.8e-2 l/1.4e-3 3/7.le-4 8.1 7.3 8 .6 7.9 7.8
F2 7 /3e-7 7 /Se- 7 7/1.8e-6 4.2 4 .3 3.6 4 3.4 3 .5
F3 2.2 2 2.2 2 2 1.8 1 .8 2 1.7
F5 1.6 1.3 1.6 2 .1 2.1 1.8 2 .2 1.9 1.7
F6 0/1.8e1 0/2.3el 0/2el 0/4e0 0/2 .6e0 0/6 .4e0 1 /1.leO 0/3 .5e0 1/2.2e0
F7 0/4 .8el 2/8.9e1 6/5.9el l/2.5e0 4/2.6el 8/2 .4el 8/l.3e-2 9 /3 .4el 6.7
F8 0/1.2e-1 1/1.le-1 O/l.8e-l 0/6 .2e-2 2/7. le-2 0/7e-2 2/4. 7e-2 1 /Se-2 2/4.le-2
F9 0/l.5e3 0/1.5e3 o/7.9e2 0/1.4e2 0/3.4el 0/1.6el 0/2 .3el 0/2. lel 0/3.lel
FlO 0/1.3e5 0/1.3e5 0/4.2e4 0/2. 7e4 0/1. 7e4 0/1.67e4 oii. 7e4 0/1.68e4 0/1. 7e4

• No Mix (NM) - Population size allowed to self-adapt, populations kept
separate, extra individuals generated randomly.

• Mix (M) - Population size allowed to self-adapt, populations mix at
epochs, extra individuals generated randomly.

The following three sub-configurations were only used with self-adaption of
mutation strength.

• Mix, No Dups (MND) - population size allowed to self-adapt, popu­
lations mix at epochs, extra individuals generated randomly, duplicates
removed from population pool.

• Mix, Grow (MG) - population size allowed to self-adapt, populations mix
at epochs, populations grow to desired size.

• Mix, Grow, No Dups (MGND) - population size allowed to self-adapt,
populations mix at epochs, populations grow to desired size, duplicates
removed from population pool.

Results are produced by averaging the results from ten runs of SAGA on
each of the functions. The results are summarised in Table 2. In this table,
an entry consisting of a single number indicates the problem was always solved
and gives the average number of epochs to solve the problem, while entries of
the form x/y should be interpreted as follows: x gives the number of times the
problem was solved and y gives the average best value found . Average number of
epochs rather than average number of evaluations to solve are reported as SAGA
can act as three independent GAs or as three interconnected GAs depending
on whether or not the populations are allowed to mix.

The results from Table 2 show that for the set of runs where fixed Gaussian
mutation is used, adaptation of the population size is not always beneficial, and
(surprisingly) that allowing the populations to mix can also be detrimental.
The situation is very different when we enable self-adaption of the mutation
strength. Now adaption of the population size and allowing the populations to
mix both give improved results. In fact, except for the simple functions Fl, F3,
and F5, these configurations give the best results. The other point to notice is
that the configurations where duplicc...tes are removed give better results for the
multimodal functions.

Table 3 displays the trends in the total population sizes for a few of the
functions in the following configurations: Fla - SAM, M; F6 & F8 - SAM,

6

I a e esu T bl 3 R lt s - avera~e t t 1 o a 1 . popu at1on size
Epochs 0 1 2 3 4 5 6 7 8 9 10 11 12
Fla. 350 350 175 87 85.5 85.5 85 89.5 133
F6 350 350 187.5 134 128 .3 133 134.2 123.9 138 .7 160.l 147.2 154.5 128.5
F8 350 350 212.5 154.9 112.2 101.2 130 104.9 131. 7 203 .2 347 340

MND. For problem Fla (sphere in 30 dimensions) the trend is clearly to get
the population sizes small and keep them small, as this is a simple function
and exploitation (rather than exploration) gives better results. In a few of the
runs, the population size increases at the end of the run as the values found
by the three IGAs converge. With problems F6 (Rastrigin's function) and F8
(Griewank's function) the populations do not decrease to the same extent, and
increase again to facilitate escaping local optima and to change the mode to
exploration. In some runs (e.g., on F6), it can be seen that the population size
fluctuates as the SAGA increases the population size to escape a local optimum
and then decreases the population size again to find the next optimum (see
Fig. 2).

4 Conclusions and Future Research

Self-adaption is an important area of research in EC as it adapts the algo­
rithm to the problem while solving the problem. SAGA, the system developed,
combines population-level and individual-level adaption; and self-adapts two
different parameters, population size and mutation strength.

SAGA can adopt different strategies for different test functions. On con­
tinuous unimodal functions (Fl, Fla, F9 & FlO) it is able to adapt to small
population sizes for all the IGAs; to maximize their exploitation capabilities.
A small population size leads to a greater number of generations per epoch and
increases the average fitness of the individuals selected.

For functions where exploration is more important, some interesting trends
can be seen. The removal of duplicates from the population pool is beneficial as
this lowers the average fitness of individuals selected and increases the diversity
of the population. IGA-Pl tends towards a small population size, and IGA-P3
tends to a large population size. Here we get an interesting maximization of
both exploitation and exploration by using different population sizes. While
at the same time using mixing of the populations to minimize their respective
problems: converging to local optima, and lack of progress. So some ideas of
co-evolutionary computation were used in a new and interesting manner.

415.4

While previous work has dealt with self-adapting only one aspect of EC
systems, we have shown that self-adapting more than one is both possible and
beneficial. A natural extension to this research is to include self-adaption of
other parameters as well. We self-adapt only one parameter per adaption level,
but just as ECs can optimise many function variables, it should be possible to
self-adapt many parameters concurrently. This is summarised well by Ange­
line (1995):

"There is no reason to believe that having only one level of adaption
in an evolutionary computation is optimal. On the contrary, com-

7

Fn
Value 0_1

10

Fn l
Value

0.1

Fla- SAM , M

300

250

Pop 200

Size 150

10~____,,_

50

Fla - SAM , M

P2 Pop~
Tot PopB

Orr--t-____,...____,...~~---_...,

~o~ ~o~
Figure 1: Function value & population size in single run of Fla

F6 - SAM , MND

300

250

Pop 200

Size 150

F6- SAM, MND

2 Pop~
Tot PopB

E~~s ~o~s
Figure 2: Function value & population size in single run of F6

FB- SAM, MND

Pop 250
Size 200

150

FB- SAM, MND

P Pop~
Tot PopB

~o~s ~o~
Figure 3: Function value & population size in single run of F8

8

bining methods at different levels may actually provide significant
advantages in some environments. Some effort is required to deter­
mine effective methods for combining adaptive methods at different
levels and determine when they are useful."

References

Angeline, P.J. 1995. Adaptive and Self-Adaptive Evolutionary Computation.
In: Computational Intelligence, A Dynamic System Perspective. IEEE
Press. pp.152-161.

Arabas, J., Michalewicz, Z., & Mulawka, J. 1994. GAVaPS - a Genetic Al­
gorithm with Varying Population Size. In: Proceedings of the First IEEE
Conference on Evolutionary Computation. Orlando, Florida: IEEE Press.
pp. 73-78.

Davis, L. 1989. Adapting Operator Probabilities in Genetic Algorithms. In:
Proceedings of the 3rd International Conference on Genetic Algorithms.
Morgan Kaufmann.

Davis, L. (ed). 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold.

De Jong, K. A. 1975. An Analysis of the Behaviour of a Class of Ginetic Adap­
tive System. Doctoral dissertation, University of Michigan. Dissertation
Abstract International, 36(10), 5140B. (University Microfilms No 76-9381).

Goldberg, D.E. 1989. Sizing Populations for Serial and Parallel Genetic Algo­
rithms. In: Proceedings of the 3rd International Conference on Genetic
Algorithms. Morgan Kaufmann. pp.51-60.

Goldberg, D.E., Deb, K., & Korb, B. 1991. Do not Worry, Be Messy. In:
Proceedings of the 4th International Conference on Genetic Algorithms.
Morgan Kaufmann. pp.24-30.

Goldberg, D.E., Deb, K., & Clark, J.H. 1992. Accounting for Noise in the Sizing
of Populations. In: Whitley, D. (ed), Foundations of genetic Algorithms 2.
Morgan Kaufmann. pp. 127-140.

Gordon, V. S., & Whitley, D. 1993. Serial and Parallel Genetic Algorithms as
Function Optimizers. In: Proceeding of the Fifth International Conference
on Genetic Algorithms. Morgan Kaufmann. pp 177-183.

Grefenstette, J .J. 1986. Optimization of Control Parameters for Genetic Al­
gorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1),
pp.122-128.

Hinterding, R. 1995. Gaussian Mutation and Self-adaption in Numeric Genetic
Algorithms. In: IEEE International Conference on Evolutionary Compu­
tation. IEEE Press. pp 384-389.

9

Hoffmeister, F ., & Back, T. 1992 (Feb). Genetic Algorithms and Evolution
Strategies: Similarities and Differences. Technical Report No. SYS-1/92.
Systems Analysis Research Group, University of Dortmund, Germany.

Julstrom, B.A. 1995. What Have You Done for Me Lately? Adapting Operator
Probabilities in a Steady-State Genetic Algorithm. In: Proceedings of the
Sixth International Conference on Genetic Algorithms. Morgan Kaufmann.
pp.81-87.

Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = Evolution Pro­
grams. 2nd edn. Springer - Verlag.

Schaffer, J., Caruana, R., Eshelman, L., & Das, R. 1989. A Study of Control
Parameters Affecting Online Performance of Genetic Algorithms for Func­
tion Optimization. In: Proceedings of the 3rd International Conference on
Genetic Algorithms. Morgan Kaufmann. pp.51-60.

Schaffer, J.D., & Morishima, A. 1987. An Adaptive Crossover Distribution
Mechanism for Genetic Algorithms. In: Proceedings of the 2nd Interna­
tional Conference on Genetic Algorithms. Lawrence Erlbaum Associates.
pp.36-40.

Schraudolph, N., & Belew, R. 1992. Dynamic Parameter Encoding for Genetic
Algorithms. Machine Learning, 9(1), pp.9-21.

Shaefer, C.G. 1987. The ARGOT Strategy: Adaptive Representation Genetic
Optimizer Technique. In: Proceedings of the 2nd International Conference
on Genetic Algorithms. Lawrence Erlbaum Associates. pp.50-55.

Smith, R. 1993. Adaptively Resizing Populations: An Algorithm and Analysis.
In: Proceedings of the 5th International Conference on Genetic Algorithms.
Morgan Kaufmann. p.653.

Spears, W.M. 1995. Adapting Crossover in Evolutionary Algorithms. In: Mc­
Donnell, J.R., Reynolds, R.G., & Fogel, D.B. (eds), Proceedings of the
Fourth Annual Conference on Evolutionary Programming. The MIT Press.
pp.367-384.

Srinivas, M., & Patnaik, L.M. 1994. Adaptive Probabilities of Crossover and
Mutation in Genetic Algorithms. IEEE Transactions on Systems, Man,
and Cybernetics, 24(4), pp.17-26.

10

