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ABSTRACT 

Parallelising aggregate functions often involves queries of more than one relation, so . 

that performance improvement can be achieved in both the intra-operation and inter­

operation parallelism levels. Join before aggregation is the conventional way for 

processing aggregate functions in uni-processor systems and parallel processing of 

aggregate functions has received little attention. In this paper, the effects of the 

sequence of aggregation and join operations are identified in a parallel processing 

environment. Three parallel methods of processing aggregate functions for general 

queries are presented which mainly differ in their selection of partitioning attribute, 

i.e JPM partitions on join attribute, APM fragments on group-by attribute, and HPM 

adaptively partitions on both join and group-by attribute with a logical hybrid 

architecture. Their cost models are provided which incorporate the effect of data skew. 

The performance of these methods are investigated and the results are reported. 
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1. Introduction 

With the increasing complexity of database applications and the advancing inexpensive 

multiprocessor technology, parallel query processing has emerged as an efficient way to 

improve database performance [DeWi92, Moha94]. The parallelisation of query 

processing can be conducted at intra-operation level, inter-operation level or 

combination of both. Intra-operation parallelism attempts to, one at a time, distribute 

the load of each single relational operation involved in the query to all processors and 

performs the operation in parallel; while the inter-operation parallelism aims at 

parallelising the operations of the query and allocating them to different processors for 

execution [DeWi92]. 

Parallel processing of major relational operations (e.g. selection, projection and join) has 

been studied extensively in recent years [Bell89, Ghan94, Seve90, Kell91, Wolf93a, 

Wolf93b]. By contrast, parallel aggregation receives much less attention although it is 

critical to the performance of database applications such as decision support, quality 

control, and statistical databases. Aggregation may be classified into scalar aggregate 

and aggregate fanction [Bitt83, Grae93]. The former refers to the simple aggregation 

that produces a single value from one relation such as counting the number of tuples or 

summing the quantities of a given attribute; while the latter refers to those that cluster 

the tuples of the relation(s) into groups and produce one value for each group. The 

queries with aggregate functions often involve more than one relation, and thus require 

join operations. The issues on parallel processing scalar aggregate has been studied in 

[Shat94] for locally distributed databases. A selectivity estimation is required for their 

adaptive methods, and the cost components of the analytical models are provided. 
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This paper concentrates on the issues of aggregate functions and investigates efficient 

parallel processing methods for queries involving aggregations and joins I. Three 

methods, namely, join-partition method (JPM), aggregation-partition method (APM) 

and hybrid-partition method (HPM), are presented. JPM and APM mainly differ in the 

selection of partitioning attribute for distributing workload over the processors and 

HPM is an adaptive method based on APM and JPM with a logical hybrid architecture. 

Furthermore, all methods take into account the problem of data skew since the skewed 

load distribution may affect the query execution time significantly. The performance of 

the parallel aggregation methods have been compared under various queries and 

different environments with a simulation study, and the ~esults are also presented. In the 

next section, we discuss the critical issues on parallelising aggregate functions namely, 

the selection of partitioning attribute, the sequence of aggregation and join operation, 

and the skewness. The parallel processing methods and their cost models are introduced 

in Section 3 followed by a sensitivity analysis in Section 4. 

2. Parallelising Aggregate Functions 

For simplicity of description and without loss of generality, we consider queries that 

involve only one aggregation function and a single join. The example queries given 

below arise from a Suppliers-Parts-Projects database. The first query clusters the part 

shipment by their city locations and selects the cities with average quantity of shipment 

I Hereafter, aggregation means simple aggregation operation (e.g. AVG and SUM on an attribute in 
one relation) while aggregate function (or aggregation query) consists of aggregation and join 
operation. 
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between 500 and 1000. The second query retrieves the project number, name and the 

total quantity of shipment for each project. 

SUPPLIER {gt, sname, status, city) 
PARTS <J!!l., pname, colour, weight, price, city) 
PROJECT (Ul, jname, city, budget) 
SHIPMENT (s#, p#, i#, qty) 

Query 1: SELECT parts.city, AVG(qty) 
FROM parts, shipment 
WHERE parts.p#=shipment.p# 
GROUP BY parts.city 
HAVING AVG(qty)>500 AND AVG(qty)<lOOO; 

Query 2: SELECT project.j#, project.jname, SUM(qty) 
FROM project, shipment 
WHERE project.j#=shipmentj# 
GROUP BY project.j#, project.name 
HAVING SUM(qty)>lOOO; 

For parallel query processing, we assume a parallel architecture that consists of a host 

and a set of working processors as shown in Figure 1. The host accepts queries from 

users and distributes each query with required base relations to the processors for 

execution. The processors perform the query in parallel with possibly intermediate data 

transmission between each other through the network, and finally send the result of the 

query to the host. 

In the present architecture, an aggregation query is carried out in three phases: 

• Data partitioning, the operand relations of the query are partitioned and the 

fragments are distributed to each processor; 

• Parallel processing, the query is executed in parallel by all processors and 

the intermediate results ar~ produced; 
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• Data consolidation, the final result of the query is obtained by consolidating 

the intermediate results from the processors. 

HOST 

Cross Bar Network 

Worker Processor 

I I I 

Figure 1 

2.1 Selection of Partition Attribute 

Choosing proper partition attribute is a key issue in the above procedure. Although in 

general any attributes of the operand relations may be chosen, two particular attributes, 

i.e. join attribute and group-by attribute, are usually considered (e.g. p# and city in the 

first example query). If the join attribute is chosen, both relations can be partitioned into 

N fragments using either range partitioning or hash partitioning strategy, where N is the 

number of processors. The cost for parallel join operation can therefore be reduced by a 

factor of N 2 as compared with a single processor system. However, after join and local 

aggregation at each processor, a global aggregation is required at the data consolidation 

phase since the local aggregation is performed on a subset of the group-by attribute. In 

contrast, if the group-by attribute is used for data partitioning, the relation with the 

group-by attribute can be partitioned into N fragments while the other relation needs to 

be broadcast to all processors in order to perform the join, leading to a reduction in join 
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cost by a factor of merely N. Although, in the second method, the join cost is not 

reduced as much as in the first method, no global aggregation is required after local join 

and aggregation at each processor because the tuples with identical values of the group-

by attribute have been allocated to the same processor. Assuming that there are indexes 

on the join attribute and 4 processors, and the execution time is given in terms of the 

number of tuples processed in the absence of data skew, Figures 2 and 3 illustrate the 

execution time of two types of partitioning strategies on the first example query. 

Cardinality (JoinSelectivlty= l /r(I)= 1 /200 ) ( AggregationFactor=0 .5 ) 
r=S=BOO Assumption: Worker (4 processors) & No Skew 

Execution Time: No. of tuples Processed 

JOIN (Rx S) 
200 x (log 200) 200 x (log 200) 200 x (log 200) 200 x (log 200) 

LOCAL 
AGGREGATION 200 200 200 200 

GLOBAL 
100 100 100 100 

AGGREGATION 

Figure 2. Join-Partition method 

2.2 Sequence of Aggregation and Join Operation 

When the join attribute and group-by attribute are the same as shown in the second 

example query (i.e. jlf), the selection of partitioning attribute becomes obvious. Instead 

of performing join first, the aggregation would be carried out first followed by the join 

since the join is more expensive in cost and it would be beneficial to reduce the join 

relation sizes by applying aggregation first. Generally, aggregation should always 

precede join whenever it is possible with the exception that the size reduction gained 

from aggregation is marginal or the join selectivity factor is extremely small. Figure 4 
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shows that by applying aggregation first, the execution time of the second example 

query is much lower than that of join operation first as shown in Figures 2 and 3. 

However, aggregation before join may not always be possible, and the semantic issues 

on aggregation and join and the conditions under which the aggregation would be 

performed before join can be found in [Kim82, Daya87, Bult87, Y an94]. In the 

following sections, we assume the more general case where aggregation can not be 

executed before join, since earlier aggregation reduces execution time and thus we 

process aggregation before join if it is possible. 

Cardinality 

r=S=800 

JOIN (Rx S) 

AGGREGATION 

UNION 

2.3 Skewness 

( JoinSelectivity= l /r(i)= l /200 ) ( AggregationFactor::Cl.5 ) 

Assumption: Worker (4 processors) & No Skew 
Execution Time: No. of Tuples Processed 

200 x (log 800) 200 x (log 800) 200 x (log 800) 200 x (log 800) 

200 200 200 200 

Neglgble Neglgble Neglgble Neglgble 

·Figure 3. Aggregation-Partition method 

Another issue in parallel processing of aggregation queries is the problem of data skew, 

and in this context, data skew consists of data partitioning skew and data processing 

skew. The data partitioning skew refers to uneven distributing tuples of the operand 

relations over the processors and thus results in different processing loads. This is mainly 

caused by skewed value distribution in the partitioning attribute as well as improper use 

of the partitioning method. The data processing skew, on the other hand, refers to 
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uneven sizes of the intermediate results generated by the processors. This is caused by 

the different selectivity factors of the join/aggregation of the local fragments . Since the 

intermediate results of the join operation are processed for aggregation, the data 

processing skew may lead to different loads of the processors even when there is no data 

partitioning skew. As skewness may reduce the improvement of query response time 

gained from parallel processing substantially, it must be considered in parallelising 

aggregation queries. 

r 

Cardinality 

f=S=800 
(JoinSelectivity= l /r(i)= l /200 ) ( AggregationFactor::0.5 ) 

Assumption: Worker (4 processors) & No Skew 
Execution Time: No. of Tuples Processed 

AGGREGATION 200 200 200 200 

JOIN (Rx S) 100 x iog(200) 100 x log(200) 100 x log(200) 100 x log(200) 

UNION Neglgble Neglgble Neglgble Neglgble 

Figure 4. Aggregation Before Join 

IP.~I1L11tim!miflII1I1I1It1II1IltftIIIIf1@tlttltI1IIltltl@IIlt11@II1Flttm 
N the total number of orocessors 
m the number of orocessor clusters 

n the number of processor in each cluster ( N - m X n) 

r, s the number of tuples in base relations R and S 
the number of tuples of fraJmlents of relations R and S at processor i 

Sel(i) join selectivity factor for fragment i 

AgJ.?(i) a1?1?Iegation factor for fraJmlent i 

0 reduction factor after performin,!!; Having clause 

a. data partitioning skew factor 
data processing skew factor 

~omm the average data transmission time for each message 

1Join the average join time for each tuple 

T:gg the average aggregation time for each tuple 

z message size in terms of the number of tuples 

Table 1. Notations 

Page8 



3. Parallel Processing Methods 

We present in this section three parallel processing methods for queries that involve joins 

and aggregation functions. The notations used in the description of the methods and in 

the subsequent performance evaluation are given in Table I. 

3.1 Join Partitioning Method (]PM) 

The JPM can be stated as follows. First, the relations R and S are partitioned into N 

fragments in terms of join attribute, i.e. the tuples with the same join attribute values in 

the two relations fall into a pair of fragments. Each pair of the fragments will be sent to 

one processor for execution. Upon receipt of the fragments, in parallel, the processors 

perform the join operation and then the local aggregation operation on the fragments 

allocated. After that, a global aggregation operation is carried out by. re-distributing the 

lqcal aggregation results across the processors such that the result tuples with identical 

values of group-by attribute are allocated to the same processors. Then, each processor 

performs a N-way merging with the local aggregation results, followed by doing a 

restriction operation for the Having clause if exists at local processors. Finally, the host 

simply consolidates the partial results from the processors by a union operation, and 

produces the query result. 

Given the notation early, the execution time for the JPM method can be expressed as 

follows 

JPM = ~omm X ( max(r; + s;)) + 1j0 in X ( max(r; logs;))+ -Z:gg X (max(r; XS; X Sel(i))) 

+J:omm X (maxh XS; X Sel{i)x Agg(i))) 
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+Tagg x(max(r; Xs; xSel(i)xAgg(i)))x(l+l). (1) 

The maximum execution time for each of the components in the above equation varies 

with the degree of skewness, and could be far from average execution time. Therefore, 

we introduce two skew factors a and ~ to the above cost equation, and a describes the 

data partitioning skew while ~ represents the data processing skew. Assume that a 

follows the Zipf distribution where the ith common word in natural language text occurs 

with a frequency proportional to i [Knut73, Wolf93b], i.e. 

where HN is the Harmonic number and could be approximated to ('Y + lnN) [Leun94]. 

Notice that the first element p 1 always gives the highest probability and the last element 

p N gives the lowest. Considering both operand relations R and S use the same number 

of processors and follow the Zipf distribution, the data partitioning skew factor a thus 

can be represented as 

1 1 
a=a =a =-= , 

r s HN y+lnN 

where 'Y = 0.57721 known as the Euler Constant and N is the number of processors. 

The other skew factor ~ for data processing skew is affected by the data partitioning 

skew factors in both operand relations since the join/aggregation results rely on the 

operand fragments. Therefore, the range of ~ falls in [ ar x as, 1]. However, the actual 

value of ~ is difficult to estimate because the largest fragments from the two relations 
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are usually not allocated to the same processor, resulting the p much less than the 

product of ar and as. We assume in this paper p = (ar x as+ 1)/ 2 = (a2 + l)! 2 and 

a detail discussion on skewness can be found in [Liu95, Leun94]. 

Applying the skew factors to the above cost equation, we also make the following 

assumptions and simplifications: 

• · Ji = 1i x si x Sel(i) = J i.e. in the absence of the skewness, 

• Agg(i) = Agg, 

• 1)oin = Tagg = Tproc' 

• data transmission is carried out by message passing with a size z. 

The cost equation (1) can then be re-written below 

JPM= i:-{[a(r+s)+ Jx:gg }z} 

[ 
J (l + 1) x J x Agg] 

+Tproc ar xlog(as)+i3+ ~ 

[( 
r+s 2x(y+lnN)

2 Ji ] = T + 2 x J x Agg z 
comm y+lnN l+(y+lnN) 

r s 2 x y+lnN 
+ T log + x J x (1+2 x Agg) . 

( ) 

( )
2 J '~ y +In N ('Y + lnN I+ (y + lnN)
2 

3.2 Aggregation Partitioning Method (APM) 

In the APM method, the relation with the group-by attribute, say R, is partitioned into N 

fragments in terms of the group-by attribute, i.e. the tuples with identical attribute values 
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will be allocated to the same processor. The other relation S needs to be broadcast to all 

processors in order to perform the binary join. After data distribution, each processor 

first conducts the joining one fragment of R with the entire relation S, followed by the 

group-by operation and having restriction if exists on the join result. Since the relation R 

is partitioned on group-by attribute, the final aggregation result can be simply obtained 

by an union of the local aggregation results from the processors, i.e. the step of merging 

of the local results used in JPM method is not required. Consequently, the cost of the 

AP M can be given by 

APM = I:omm X (max(rj + s ))+ Tjoin X (max(rj logs)) 

+Tagg X (max(rj X s X Sel(j))x (I+ Agg(j))) 

+i:
0
mm x (max(rj x s x Sel(j)x Agg(j)x 0 )). (2) 

The skew factors a and ~ can be added to the above equation in the same way for the 

JPM method. For the purpose of comparison of the two methods, we assume that 

Jj = rj xsxSel(j)= J and Agg(j)= ~ Agg. The time of APM method can then be 

expressed as 

[( 
r 2(y+lnN)2 JxAggxeJ 1 J 

- T +s+ 2 x z 
- comm 'Y + In N 1 + ( 'Y +In N) N 

( 
r 2('Y+lnN)2 1 (i Agg)J +T logs+ 2 x x +-- . 

proc 'Y + In N 1 + ( 'Y + In N) N 
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3.3 Hybrid Partitioning Method (HPM) 

The HPM method is a combination of the JPM and APM methods. In the HPM, the 

processors are divided into m clusters each of which has Nim processors as shown in 

Figure 5. Based on the proposed logical architecture, the data partitioning phase is 

carried out in two steps. First, the relation with group-by attributes is partitioned into 

processor clusters in the same way of the APM, i.e. partitioning on the group-by 

attribute and the other relation is broadcast to the cluster. Second, within each cluster, 

the fragments of the first relation and the entire broadcast relation is further partitioned 

by the join attributes as the JPM does. Depending on the parameters such as the 

cardinality of the relations and the skew factors, a proper value of m will be chosen such 

that the minimum query execution time is achieved. 

Hybrid Logical Architecture 

Cluster No. I I I I I I I 
1 2 m 

Processor No. I I _...... ...... I__..... 
I .. . 1 .. . I I I ... 1 .. . I I I .. . 1 .. . I I I ... 1 .. . 

1 2 n 1 2 n 1 2 n 1 2 j n 

Figure 5. Logical Architecture for HPM 

The detail of the HPM method is described below: 

Step 1 Partition the relation R on group-by attribute to m clusters, denoted by r; . 

Within each cluster, further partition the fragment r; and the other relation S on 
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join attribute to n=Nlm processors, denoted by rii and sj. Therefore, the total data 

transmission time is given by 

~omm X (max(rij +Si)) 

where i is in the range of [ 1,m] and j is in the range of [ 1,n]. 

Step 2 Carry out join at each processor and the maximum processing time is 

expressed as 

T. . x (max(r .. logs . )) ;om IJ ; 

Step 3 Perform local aggregation at each processor with the execution time 

Step 4 Redistribute the local aggregation results to the processors within each 

cluster by partitioning the results on the group-by attribute. The transmission time 

ts given as 

T;;omm X (max(rii X si X Sel(j)x Agg(i)}) 

Step 5 Merge the local aggregation results within each cluster and this requires. the 

time 

Step 6 Perform the Having predicate in each cluster with the processing time 

Step 7 Transfer the results from the clusters to the host. The time for data· 

consolidation in the host is small and thus only data transmission cost is counted, 

i.e. 

~omm x (max(rij x Six Sel(j)x Agg(j)x e )) 
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The total execution time of the HPM is the sum of the time of the above steps and can 

be given as 

+J:0 mm X (max(rii X si X Sel(j)x Agg(j))) 

+J:omm x(max(r;i xsi xSel(j)xAgg(j)xe)). (3) 

By applying the same simplification assumptions m the previous methods and 

Agg(j) = .!. Agg, (3) is re-written as 
m 

. 1 1 l+(y+lnn)2 
where J = rii X Si X Sel(J ), a.n = , a.m = , and ~n = 

2 
. 

y+lnn y+lnm 2(y+lnn) 

It can be seen from the above execution time equation that the number of clusters m has 

strong influence on the performance of HPM. Figures 6(a) and 6(b) show the changes of 

query execution time when increasing the number of clusters in the HPM. It appears that 

a value of m = r .JNl approximately g~ves the optimal cost of the query2 although the 

2Tue approximation can also show the robutne:ss of the adaptive method (HPM). 

Page 15 



precise value of m may be worked out by finding the minimum value of the 

differentiation of the equation (3). 

T(Ume 
6200 

unit) 
5700 
5200 
4700 
4200 

1 2 3 4 5 6 7 8 

No. of Clusters (m) 

T(Ume 
unit) 

6000 
5500 

5000 

4500 

4000 

3500 

3000 

2500 -
1 3 5 7 9 11 13 15 

No. of Clusters (m) 

(a). 8 processors (b). 16 processors 
Figure 6. Cost vs No. of Clusters in HPM 

.i!::~ltltttlttittHlV.iiiieiilfrttittftfittltilflfrltJ:ffftllil:tttttttftt:t 
N 16 

m .J16=4 
r 1000 tuples 
s 1000 tuples 
Sel(i) 5(N/r) = 0.08 
Ae~(i) 0.5 
0 0.5 

0.2985 
0.5446 

0.5093 

0.5093 

0.6297 

T;omm 0.1 standard time unit per message 

0.01 standard time unit per tuple 

z 100 tuples per message 
Table 2. Default Parameters Values Listing 

4. Sensitivity Analysis 

The performance of the three parallel processing methods presented may vary with a 

number of parameters listed in Table I. In this section, we analysis among them the 

effect of the aggregation factor, the join selectivity factor, the degree of skewness (a 

and J3 ), the relation cardinality, and the ratio of 1;;0 mm I Tproc· The default parameter 

values are given in Table 2. 
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• JPM • JPM 

• APM • APM 1 

44 
HPM 34 HPM 

T (time 
39 

T (time 
29 

unit) 34 unit) 24 

29 19 

24 14 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

Agg(i) Agg(I) 

(a). 16 processors (b). 32 processors 

Figure 7. Varying Aggregation Factor 

4.1 Varying the Aggregation Factor 

The aggregation factor ~ is defined by the ratio of result size after aggregation to the 

size of the base relation and its impact on three methods is shown in Figure 7. Not 

surprisingly, APM is insensitive to aggregation factor. The reasons include little data to 

transmit after joining and processing the Having predicate comparing with data 

partitioning at beginning and broadcasting relation S, and little data to select with the 

group-by condition (Having) as the aggregation factor is reduced by a factor of the 

number of processors. Generally, the larger the aggregation factor, the more the running 

time is needed as shown in Figure 7(a) with 16 processors. Moreover, increasing the 

number of processors will reduce the running time despite data partitioning and 

processing skew, and the performance of JPM is better than that of APM except the 

aggregation factor is very large as plotted in Figure 7(b) with 32 processors. In both 

Figure 7(a) and 7(b), HPM offers the best performance. 
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94 59 • JPM • JPM 
84 • APM ' 49 • APM 74 

T (time 64 HPM 
T (time 39 

HPM 1 

unit) 54 unit) 
29 44 

34 
19 

24 
14 9 

100 500 1000 2000 5000 100 500 1000 2000 5000 

No. of Tuples (s) No. of Tuples (s) 

(a). 16 processors (b). 32 processors 

Figure 8. Varying the cardinality of relation S 

4.2 Varying the Relation Cardinality 

The cardinality of the operand relations are assumed the same elsewhere in the 

sensitivity analysis and their influences on performance are investigated in this 

subsection. Figure 8 shows the query execution time when we fix the cardinality of one 

relation and increase the cardinality of another relation. JPM appears to be better than 

APM only when the varied relation size is small while the HPM again outperforms APM 

and JPM in all situations. Comparing 8(a) to 8(b), increasing processors will raise the 

cross-over point of JPM and APM. 

4.3 Varying the Ratio of T;;omm I Tproc 

The ratio of T;;amm I Tprac reflects the characteristic of network used in the parallel 

architecture. Primarily, data communication is not a critical issue any more in parallel 

database systems comparing with distributed database systems [Alma94]. As we increase 

the ratio shown in Figure 9, system performance decreases since we treat Tproc as a 

standard time unit and magnify the communication cost, i.e. higher ratio means more 
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expensive communication. Being a parallel database system, the ratio tends to stay small 

and APM is the most sensitive to the communication cost. Nevertheless, HPM will 

always perform better than either JPM or APM with improvement on fragmenting 

relations within each cluster. 

58 61 
56 

53 
51 

T (time 48 T (time 46 
unit) 43 unit) 41 

38 36 
31 

33 26 
28 21 

0.1 1 10 100 200 0.1 1 10 100 200 

Ratio of Tconvn/Tproc Ratio of Tconvn/Tproc 

(a). 16 processors (b). 32 processors 

Figure 9. Varying the ratio of Tcomm !Tproc 

45 
62 • JPM 

57 40 • APM 
52 35 

T (time 47 T (time 
30 

mlt) 42 mlt) 
37 25 
32 20 
27 
22 15 

0 2/r 4/r 6/r 8/r 10/r 0 2/r 4/r 6/r 8/r 10/r 

Sel(i) Sel(i) 

(a). 16 processors (b). 32 processors 

Figure 10. Varying the selectivity factor 

4.4 Varying the Join Selectivity Factor 

The join selectivity factor has significant influence on parallel aggregation processing as 

it determines the number of tuples resulting from join intermediately. After that, those 
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tuples are processed for aggregation and evaluated with the predicates. Eventually, the 

qualified tuples are unioned to fonn the query result. Lower selectivity factor involves 

less aggregation processing time and transferring time, and thus favours JPM as 

displayed in Figure 10. Less processors will reduce the impact of the entire second 

relation (both communication and processing) on running time so it favours APM. 

4.5 Varying the Degree of Skewness 

Figure 1 l(a) indicates the tendency of the perfonnance when the data processing skew 

changes accordingly with the data partitioning skew whereas Figure 11 (b) provides the 

comparison when we ignore the data partitioning skew, i.e. a= 1/ N and alter the data 

processing skew. The values on the horizontal axis of both figures represent the 

expanding skewness factor which then is multiplied by the basic unit given by Zipf 

di:;tribution. Unlike the a, the ~ is inversely proportional to data processing skew and 

the larger the factor ~ , the less the data processing skew is. We conclude from Figure 

11 that either of partitioning skew or processing skew degrades the performance of 

parallel processing, HPM outperforms APM and JPM even in the presence of skewness, 

and APM is less affected by the skewness compared with JPM . 

• JPM 20 • JPM 
98 A APM .. APM 18 88 HiPM 

16 78 

T (time 68 T (time 14 

unit) 58 ur'l'lt) 12 

48 10 

38 8 

28 6 

1 1.5 2 3 3.5 4 0.5 0.75 1 1.25 1.5 

Data Partition Skew (I) Data Processing Skew (I) 

(a). Data partition skew (b). Data processing skew 

Figure 11. Varying the skewness with 16 processors 
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84 

74 
64 

T (time 54 
unit) 44 

34 

• JPM 

A APM 
--HPM 

24 
14+-~---4--~--~~--.......;~ 

4 8 16 32 64 

No. of Processors (N) 

135 

115 

T (time 
unit) 75 

55 

35 

15 
4 8 16 32 64 

No. of Processors (N) 

(a). Agg(i)=0.5, Sel(i)=5(Nlr) (b). Agg(i)=0.6, Sel(i)=lO(Nlr) 

Figure 12. Varying the number of processors 

4.6 Varying the Number of Processors 

One of the desired goals of parallel processing is to have linear scale up which can be 

achieved when twice as much processors perform twice as large a task in the same time. 

When the number of processors is increased, as we expected, the performance is 

upgraded in spite of the skewness shown in Figure 12. APM performs extremely well 

when the number of processors is small, and it is even better than HPM because the 

number of clusters in HPM may not be optimised and less processors make the 

communication cost insignificant which favours APM. However, when the database 

system scales up, both HPM and JPM performs better than APM. 

5. Conclusion 

Traditionally, join operation is processed before aggregation operation and relations are 

partitioned on join attribute. In this paper, we demonstrate that group-by attribute may 

also be chosen as the partition attribute and present three parallel methods for 
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aggregation queries, JPM, APM, and HPM. These methods differ in the way of 

distributing query relations, i.e. partitioning on the join attribute, on the group-by 

attribute, or on a combination of both; consequently, they give rise to different query 

execution costs. In addition, the problem of data skew has been taken into account in the 

proposed methods as it may adversely affect the performance advantage of the parallel 

processing. A performance comparison of these methods has been provided under 

various circumstances of queries and processors. The results show that when the join 

selectivity factor is small and the degree of skewness is low, JPM leads to less cost; 

otherwise APM is desirable. Nevertheless, the hybrid method (HPM) is always superior 

to the other two methods since the data partitioning is adaptively made on both join 

attribute and group-by attribute. In addition, it is found that the partitioning on group-by 

attribute method is insensitive to the aggregation factor and thus the method will 

simplify algorithm design and implementation. 
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