
VICTORIA !
UNIVERSITY

+!

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Parallel Processing of Aggregate Functions

in the Presence of Data Skew

Kevin H. Liu, Yi Jiang and Clement H. C. Leung

(71 COI\1P 25)

April 1996

(AMS : 68Pl 5)

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF COI\1PUTER AND MATHEMATICAL SCIENCES

P 0 BOX 14428
MCMC

MELBOURNE, VICTORIA 8001
AUSTRALIA

TELEPHONE (03) 9688 4492
FACSIMILE (03) 9688 4050

F ootscray Campus

PARALLEL PROCESSING OF AGGREGATE FUNCTIONS

IN THE PRESENCE OF DATA SKEW

Kevin H. Liu, Yi Jiang and Clement H. C. Leung

Department of Computer and Mathematical Sciences

Victoria University of Technology, Ballarat Road, Footscray,

PO Box 14428 MMC, Melbourne, Victoria 3000, AUSTRALIA

Email: {kevin, jiang, clement}@matilda.vut.edu.au

Fax: +613-688 4050

ABSTRACT

Parallelising aggregate functions often involves queries of more than one relation, so .

that performance improvement can be achieved in both the intra-operation and inter­

operation parallelism levels. Join before aggregation is the conventional way for

processing aggregate functions in uni-processor systems and parallel processing of

aggregate functions has received little attention. In this paper, the effects of the

sequence of aggregation and join operations are identified in a parallel processing

environment. Three parallel methods of processing aggregate functions for general

queries are presented which mainly differ in their selection of partitioning attribute,

i.e JPM partitions on join attribute, APM fragments on group-by attribute, and HPM

adaptively partitions on both join and group-by attribute with a logical hybrid

architecture. Their cost models are provided which incorporate the effect of data skew.

The performance of these methods are investigated and the results are reported.

Page 1

http://matilda.vut.edu.au

1. Introduction

With the increasing complexity of database applications and the advancing inexpensive

multiprocessor technology, parallel query processing has emerged as an efficient way to

improve database performance [DeWi92, Moha94]. The parallelisation of query

processing can be conducted at intra-operation level, inter-operation level or

combination of both. Intra-operation parallelism attempts to, one at a time, distribute

the load of each single relational operation involved in the query to all processors and

performs the operation in parallel; while the inter-operation parallelism aims at

parallelising the operations of the query and allocating them to different processors for

execution [DeWi92].

Parallel processing of major relational operations (e.g. selection, projection and join) has

been studied extensively in recent years [Bell89, Ghan94, Seve90, Kell91, Wolf93a,

Wolf93b]. By contrast, parallel aggregation receives much less attention although it is

critical to the performance of database applications such as decision support, quality

control, and statistical databases. Aggregation may be classified into scalar aggregate

and aggregate fanction [Bitt83, Grae93]. The former refers to the simple aggregation

that produces a single value from one relation such as counting the number of tuples or

summing the quantities of a given attribute; while the latter refers to those that cluster

the tuples of the relation(s) into groups and produce one value for each group. The

queries with aggregate functions often involve more than one relation, and thus require

join operations. The issues on parallel processing scalar aggregate has been studied in

[Shat94] for locally distributed databases. A selectivity estimation is required for their

adaptive methods, and the cost components of the analytical models are provided.

Page2

This paper concentrates on the issues of aggregate functions and investigates efficient

parallel processing methods for queries involving aggregations and joins I. Three

methods, namely, join-partition method (JPM), aggregation-partition method (APM)

and hybrid-partition method (HPM), are presented. JPM and APM mainly differ in the

selection of partitioning attribute for distributing workload over the processors and

HPM is an adaptive method based on APM and JPM with a logical hybrid architecture.

Furthermore, all methods take into account the problem of data skew since the skewed

load distribution may affect the query execution time significantly. The performance of

the parallel aggregation methods have been compared under various queries and

different environments with a simulation study, and the ~esults are also presented. In the

next section, we discuss the critical issues on parallelising aggregate functions namely,

the selection of partitioning attribute, the sequence of aggregation and join operation,

and the skewness. The parallel processing methods and their cost models are introduced

in Section 3 followed by a sensitivity analysis in Section 4.

2. Parallelising Aggregate Functions

For simplicity of description and without loss of generality, we consider queries that

involve only one aggregation function and a single join. The example queries given

below arise from a Suppliers-Parts-Projects database. The first query clusters the part

shipment by their city locations and selects the cities with average quantity of shipment

I Hereafter, aggregation means simple aggregation operation (e.g. AVG and SUM on an attribute in
one relation) while aggregate function (or aggregation query) consists of aggregation and join
operation.

Page3

between 500 and 1000. The second query retrieves the project number, name and the

total quantity of shipment for each project.

SUPPLIER {gt, sname, status, city)
PARTS <J!!l., pname, colour, weight, price, city)
PROJECT (Ul, jname, city, budget)
SHIPMENT (s#, p#, i#, qty)

Query 1: SELECT parts.city, AVG(qty)
FROM parts, shipment
WHERE parts.p#=shipment.p#
GROUP BY parts.city
HAVING AVG(qty)>500 AND AVG(qty)<lOOO;

Query 2: SELECT project.j#, project.jname, SUM(qty)
FROM project, shipment
WHERE project.j#=shipmentj#
GROUP BY project.j#, project.name
HAVING SUM(qty)>lOOO;

For parallel query processing, we assume a parallel architecture that consists of a host

and a set of working processors as shown in Figure 1. The host accepts queries from

users and distributes each query with required base relations to the processors for

execution. The processors perform the query in parallel with possibly intermediate data

transmission between each other through the network, and finally send the result of the

query to the host.

In the present architecture, an aggregation query is carried out in three phases:

• Data partitioning, the operand relations of the query are partitioned and the

fragments are distributed to each processor;

• Parallel processing, the query is executed in parallel by all processors and

the intermediate results ar~ produced;

Page4

• Data consolidation, the final result of the query is obtained by consolidating

the intermediate results from the processors.

HOST

Cross Bar Network

Worker Processor

I I I

Figure 1

2.1 Selection of Partition Attribute

Choosing proper partition attribute is a key issue in the above procedure. Although in

general any attributes of the operand relations may be chosen, two particular attributes,

i.e. join attribute and group-by attribute, are usually considered (e.g. p# and city in the

first example query). If the join attribute is chosen, both relations can be partitioned into

N fragments using either range partitioning or hash partitioning strategy, where N is the

number of processors. The cost for parallel join operation can therefore be reduced by a

factor of N 2 as compared with a single processor system. However, after join and local

aggregation at each processor, a global aggregation is required at the data consolidation

phase since the local aggregation is performed on a subset of the group-by attribute. In

contrast, if the group-by attribute is used for data partitioning, the relation with the

group-by attribute can be partitioned into N fragments while the other relation needs to

be broadcast to all processors in order to perform the join, leading to a reduction in join

Page5

cost by a factor of merely N. Although, in the second method, the join cost is not

reduced as much as in the first method, no global aggregation is required after local join

and aggregation at each processor because the tuples with identical values of the group-

by attribute have been allocated to the same processor. Assuming that there are indexes

on the join attribute and 4 processors, and the execution time is given in terms of the

number of tuples processed in the absence of data skew, Figures 2 and 3 illustrate the

execution time of two types of partitioning strategies on the first example query.

Cardinality (JoinSelectivlty= l /r(I)= 1 /200) (AggregationFactor=0 .5)
r=S=BOO Assumption: Worker (4 processors) & No Skew

Execution Time: No. of tuples Processed

JOIN (Rx S)
200 x (log 200) 200 x (log 200) 200 x (log 200) 200 x (log 200)

LOCAL
AGGREGATION 200 200 200 200

GLOBAL
100 100 100 100

AGGREGATION

Figure 2. Join-Partition method

2.2 Sequence of Aggregation and Join Operation

When the join attribute and group-by attribute are the same as shown in the second

example query (i.e. jlf), the selection of partitioning attribute becomes obvious. Instead

of performing join first, the aggregation would be carried out first followed by the join

since the join is more expensive in cost and it would be beneficial to reduce the join

relation sizes by applying aggregation first. Generally, aggregation should always

precede join whenever it is possible with the exception that the size reduction gained

from aggregation is marginal or the join selectivity factor is extremely small. Figure 4

Page6

shows that by applying aggregation first, the execution time of the second example

query is much lower than that of join operation first as shown in Figures 2 and 3.

However, aggregation before join may not always be possible, and the semantic issues

on aggregation and join and the conditions under which the aggregation would be

performed before join can be found in [Kim82, Daya87, Bult87, Y an94]. In the

following sections, we assume the more general case where aggregation can not be

executed before join, since earlier aggregation reduces execution time and thus we

process aggregation before join if it is possible.

Cardinality

r=S=800

JOIN (Rx S)

AGGREGATION

UNION

2.3 Skewness

(JoinSelectivity= l /r(i)= l /200) (AggregationFactor::Cl.5)

Assumption: Worker (4 processors) & No Skew
Execution Time: No. of Tuples Processed

200 x (log 800) 200 x (log 800) 200 x (log 800) 200 x (log 800)

200 200 200 200

Neglgble Neglgble Neglgble Neglgble

·Figure 3. Aggregation-Partition method

Another issue in parallel processing of aggregation queries is the problem of data skew,

and in this context, data skew consists of data partitioning skew and data processing

skew. The data partitioning skew refers to uneven distributing tuples of the operand

relations over the processors and thus results in different processing loads. This is mainly

caused by skewed value distribution in the partitioning attribute as well as improper use

of the partitioning method. The data processing skew, on the other hand, refers to

Page?

uneven sizes of the intermediate results generated by the processors. This is caused by

the different selectivity factors of the join/aggregation of the local fragments . Since the

intermediate results of the join operation are processed for aggregation, the data

processing skew may lead to different loads of the processors even when there is no data

partitioning skew. As skewness may reduce the improvement of query response time

gained from parallel processing substantially, it must be considered in parallelising

aggregation queries.

r

Cardinality

f=S=800
(JoinSelectivity= l /r(i)= l /200) (AggregationFactor::0.5)

Assumption: Worker (4 processors) & No Skew
Execution Time: No. of Tuples Processed

AGGREGATION 200 200 200 200

JOIN (Rx S) 100 x iog(200) 100 x log(200) 100 x log(200) 100 x log(200)

UNION Neglgble Neglgble Neglgble Neglgble

Figure 4. Aggregation Before Join

IP.~I1L11tim!miflII1I1I1It1II1IltftIIIIf1@tlttltI1IIltltl@IIlt11@II1Flttm
N the total number of orocessors
m the number of orocessor clusters

n the number of processor in each cluster (N - m X n)

r, s the number of tuples in base relations R and S
the number of tuples of fraJmlents of relations R and S at processor i

Sel(i) join selectivity factor for fragment i

AgJ.?(i) a1?1?Iegation factor for fraJmlent i

0 reduction factor after performin,!!; Having clause

a. data partitioning skew factor
data processing skew factor

~omm the average data transmission time for each message

1Join the average join time for each tuple

T:gg the average aggregation time for each tuple

z message size in terms of the number of tuples

Table 1. Notations

Page8

3. Parallel Processing Methods

We present in this section three parallel processing methods for queries that involve joins

and aggregation functions. The notations used in the description of the methods and in

the subsequent performance evaluation are given in Table I.

3.1 Join Partitioning Method (]PM)

The JPM can be stated as follows. First, the relations R and S are partitioned into N

fragments in terms of join attribute, i.e. the tuples with the same join attribute values in

the two relations fall into a pair of fragments. Each pair of the fragments will be sent to

one processor for execution. Upon receipt of the fragments, in parallel, the processors

perform the join operation and then the local aggregation operation on the fragments

allocated. After that, a global aggregation operation is carried out by. re-distributing the

lqcal aggregation results across the processors such that the result tuples with identical

values of group-by attribute are allocated to the same processors. Then, each processor

performs a N-way merging with the local aggregation results, followed by doing a

restriction operation for the Having clause if exists at local processors. Finally, the host

simply consolidates the partial results from the processors by a union operation, and

produces the query result.

Given the notation early, the execution time for the JPM method can be expressed as

follows

JPM = ~omm X (max(r; + s;)) + 1j0 in X (max(r; logs;))+ -Z:gg X (max(r; XS; X Sel(i)))

+J:omm X (maxh XS; X Sel{i)x Agg(i)))

Page9

+Tagg x(max(r; Xs; xSel(i)xAgg(i)))x(l+l). (1)

The maximum execution time for each of the components in the above equation varies

with the degree of skewness, and could be far from average execution time. Therefore,

we introduce two skew factors a and ~ to the above cost equation, and a describes the

data partitioning skew while ~ represents the data processing skew. Assume that a

follows the Zipf distribution where the ith common word in natural language text occurs

with a frequency proportional to i [Knut73, Wolf93b], i.e.

where HN is the Harmonic number and could be approximated to ('Y + lnN) [Leun94].

Notice that the first element p 1 always gives the highest probability and the last element

p N gives the lowest. Considering both operand relations R and S use the same number

of processors and follow the Zipf distribution, the data partitioning skew factor a thus

can be represented as

1 1
a=a =a =-= ,

r s HN y+lnN

where 'Y = 0.57721 known as the Euler Constant and N is the number of processors.

The other skew factor ~ for data processing skew is affected by the data partitioning

skew factors in both operand relations since the join/aggregation results rely on the

operand fragments. Therefore, the range of ~ falls in [ar x as, 1]. However, the actual

value of ~ is difficult to estimate because the largest fragments from the two relations

Page 10

are usually not allocated to the same processor, resulting the p much less than the

product of ar and as. We assume in this paper p = (ar x as+ 1)/ 2 = (a2 + l)! 2 and

a detail discussion on skewness can be found in [Liu95, Leun94].

Applying the skew factors to the above cost equation, we also make the following

assumptions and simplifications:

• · Ji = 1i x si x Sel(i) = J i.e. in the absence of the skewness,

• Agg(i) = Agg,

• 1)oin = Tagg = Tproc'

• data transmission is carried out by message passing with a size z.

The cost equation (1) can then be re-written below

JPM= i:-{[a(r+s)+ Jx:gg }z}

[
J (l + 1) x J x Agg]

+Tproc ar xlog(as)+i3+ ~

[(
r+s 2x(y+lnN)

2 Ji] = T + 2 x J x Agg z
comm y+lnN l+(y+lnN)

r s 2 x y+lnN
+ T log + x J x (1+2 x Agg) .

()

()
2 J '~ y +In N ('Y + lnN I+ (y + lnN)
2

3.2 Aggregation Partitioning Method (APM)

In the APM method, the relation with the group-by attribute, say R, is partitioned into N

fragments in terms of the group-by attribute, i.e. the tuples with identical attribute values

Page 11

will be allocated to the same processor. The other relation S needs to be broadcast to all

processors in order to perform the binary join. After data distribution, each processor

first conducts the joining one fragment of R with the entire relation S, followed by the

group-by operation and having restriction if exists on the join result. Since the relation R

is partitioned on group-by attribute, the final aggregation result can be simply obtained

by an union of the local aggregation results from the processors, i.e. the step of merging

of the local results used in JPM method is not required. Consequently, the cost of the

AP M can be given by

APM = I:omm X (max(rj + s))+ Tjoin X (max(rj logs))

+Tagg X (max(rj X s X Sel(j))x (I+ Agg(j)))

+i:
0
mm x (max(rj x s x Sel(j)x Agg(j)x 0)). (2)

The skew factors a and ~ can be added to the above equation in the same way for the

JPM method. For the purpose of comparison of the two methods, we assume that

Jj = rj xsxSel(j)= J and Agg(j)= ~ Agg. The time of APM method can then be

expressed as

[(
r 2(y+lnN)2 JxAggxeJ 1 J

- T +s+ 2 x z
- comm 'Y + In N 1 + ('Y +In N) N

(
r 2('Y+lnN)2 1 (i Agg)J +T logs+ 2 x x +-- .

proc 'Y + In N 1 + ('Y + In N) N

Page 12

3.3 Hybrid Partitioning Method (HPM)

The HPM method is a combination of the JPM and APM methods. In the HPM, the

processors are divided into m clusters each of which has Nim processors as shown in

Figure 5. Based on the proposed logical architecture, the data partitioning phase is

carried out in two steps. First, the relation with group-by attributes is partitioned into

processor clusters in the same way of the APM, i.e. partitioning on the group-by

attribute and the other relation is broadcast to the cluster. Second, within each cluster,

the fragments of the first relation and the entire broadcast relation is further partitioned

by the join attributes as the JPM does. Depending on the parameters such as the

cardinality of the relations and the skew factors, a proper value of m will be chosen such

that the minimum query execution time is achieved.

Hybrid Logical Architecture

Cluster No. I I I I I I I
1 2 m

Processor No. I I _...... I__.....
I .. . 1 .. . I I I ... 1 .. . I I I .. . 1 .. . I I I ... 1 .. .

1 2 n 1 2 n 1 2 n 1 2 j n

Figure 5. Logical Architecture for HPM

The detail of the HPM method is described below:

Step 1 Partition the relation R on group-by attribute to m clusters, denoted by r; .

Within each cluster, further partition the fragment r; and the other relation S on

Page 13

join attribute to n=Nlm processors, denoted by rii and sj. Therefore, the total data

transmission time is given by

~omm X (max(rij +Si))

where i is in the range of [1,m] and j is in the range of [1,n].

Step 2 Carry out join at each processor and the maximum processing time is

expressed as

T. . x (max(r .. logs .)) ;om IJ ;

Step 3 Perform local aggregation at each processor with the execution time

Step 4 Redistribute the local aggregation results to the processors within each

cluster by partitioning the results on the group-by attribute. The transmission time

ts given as

T;;omm X (max(rii X si X Sel(j)x Agg(i)})

Step 5 Merge the local aggregation results within each cluster and this requires. the

time

Step 6 Perform the Having predicate in each cluster with the processing time

Step 7 Transfer the results from the clusters to the host. The time for data·

consolidation in the host is small and thus only data transmission cost is counted,

i.e.

~omm x (max(rij x Six Sel(j)x Agg(j)x e))

Page 14

The total execution time of the HPM is the sum of the time of the above steps and can

be given as

+J:0 mm X (max(rii X si X Sel(j)x Agg(j)))

+J:omm x(max(r;i xsi xSel(j)xAgg(j)xe)). (3)

By applying the same simplification assumptions m the previous methods and

Agg(j) = .!. Agg, (3) is re-written as
m

. 1 1 l+(y+lnn)2
where J = rii X Si X Sel(J), a.n = , a.m = , and ~n =

2
.

y+lnn y+lnm 2(y+lnn)

It can be seen from the above execution time equation that the number of clusters m has

strong influence on the performance of HPM. Figures 6(a) and 6(b) show the changes of

query execution time when increasing the number of clusters in the HPM. It appears that

a value of m = r .JNl approximately g~ves the optimal cost of the query2 although the

2Tue approximation can also show the robutne:ss of the adaptive method (HPM).

Page 15

precise value of m may be worked out by finding the minimum value of the

differentiation of the equation (3).

T(Ume
6200

unit)
5700
5200
4700
4200

1 2 3 4 5 6 7 8

No. of Clusters (m)

T(Ume
unit)

6000
5500

5000

4500

4000

3500

3000

2500 -
1 3 5 7 9 11 13 15

No. of Clusters (m)

(a). 8 processors (b). 16 processors
Figure 6. Cost vs No. of Clusters in HPM

.i!::~ltltttlttittHlV.iiiieiilfrttittftfittltilflfrltJ:ffftllil:tttttttftt:t
N 16

m .J16=4
r 1000 tuples
s 1000 tuples
Sel(i) 5(N/r) = 0.08
Ae~(i) 0.5
0 0.5

0.2985
0.5446

0.5093

0.5093

0.6297

T;omm 0.1 standard time unit per message

0.01 standard time unit per tuple

z 100 tuples per message
Table 2. Default Parameters Values Listing

4. Sensitivity Analysis

The performance of the three parallel processing methods presented may vary with a

number of parameters listed in Table I. In this section, we analysis among them the

effect of the aggregation factor, the join selectivity factor, the degree of skewness (a

and J3), the relation cardinality, and the ratio of 1;;0 mm I Tproc· The default parameter

values are given in Table 2.

Page 16

• JPM • JPM

• APM • APM 1

44
HPM 34 HPM

T (time
39

T (time
29

unit) 34 unit) 24

29 19

24 14
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Agg(i) Agg(I)

(a). 16 processors (b). 32 processors

Figure 7. Varying Aggregation Factor

4.1 Varying the Aggregation Factor

The aggregation factor ~ is defined by the ratio of result size after aggregation to the

size of the base relation and its impact on three methods is shown in Figure 7. Not

surprisingly, APM is insensitive to aggregation factor. The reasons include little data to

transmit after joining and processing the Having predicate comparing with data

partitioning at beginning and broadcasting relation S, and little data to select with the

group-by condition (Having) as the aggregation factor is reduced by a factor of the

number of processors. Generally, the larger the aggregation factor, the more the running

time is needed as shown in Figure 7(a) with 16 processors. Moreover, increasing the

number of processors will reduce the running time despite data partitioning and

processing skew, and the performance of JPM is better than that of APM except the

aggregation factor is very large as plotted in Figure 7(b) with 32 processors. In both

Figure 7(a) and 7(b), HPM offers the best performance.

Page 17

94 59 • JPM • JPM
84 • APM ' 49 • APM 74

T (time 64 HPM
T (time 39

HPM 1

unit) 54 unit)
29 44

34
19

24
14 9

100 500 1000 2000 5000 100 500 1000 2000 5000

No. of Tuples (s) No. of Tuples (s)

(a). 16 processors (b). 32 processors

Figure 8. Varying the cardinality of relation S

4.2 Varying the Relation Cardinality

The cardinality of the operand relations are assumed the same elsewhere in the

sensitivity analysis and their influences on performance are investigated in this

subsection. Figure 8 shows the query execution time when we fix the cardinality of one

relation and increase the cardinality of another relation. JPM appears to be better than

APM only when the varied relation size is small while the HPM again outperforms APM

and JPM in all situations. Comparing 8(a) to 8(b), increasing processors will raise the

cross-over point of JPM and APM.

4.3 Varying the Ratio of T;;omm I Tproc

The ratio of T;;amm I Tprac reflects the characteristic of network used in the parallel

architecture. Primarily, data communication is not a critical issue any more in parallel

database systems comparing with distributed database systems [Alma94]. As we increase

the ratio shown in Figure 9, system performance decreases since we treat Tproc as a

standard time unit and magnify the communication cost, i.e. higher ratio means more

Page 18

expensive communication. Being a parallel database system, the ratio tends to stay small

and APM is the most sensitive to the communication cost. Nevertheless, HPM will

always perform better than either JPM or APM with improvement on fragmenting

relations within each cluster.

58 61
56

53
51

T (time 48 T (time 46
unit) 43 unit) 41

38 36
31

33 26
28 21

0.1 1 10 100 200 0.1 1 10 100 200

Ratio of Tconvn/Tproc Ratio of Tconvn/Tproc

(a). 16 processors (b). 32 processors

Figure 9. Varying the ratio of Tcomm !Tproc

45
62 • JPM

57 40 • APM
52 35

T (time 47 T (time
30

mlt) 42 mlt)
37 25
32 20
27
22 15

0 2/r 4/r 6/r 8/r 10/r 0 2/r 4/r 6/r 8/r 10/r

Sel(i) Sel(i)

(a). 16 processors (b). 32 processors

Figure 10. Varying the selectivity factor

4.4 Varying the Join Selectivity Factor

The join selectivity factor has significant influence on parallel aggregation processing as

it determines the number of tuples resulting from join intermediately. After that, those

Page 19

tuples are processed for aggregation and evaluated with the predicates. Eventually, the

qualified tuples are unioned to fonn the query result. Lower selectivity factor involves

less aggregation processing time and transferring time, and thus favours JPM as

displayed in Figure 10. Less processors will reduce the impact of the entire second

relation (both communication and processing) on running time so it favours APM.

4.5 Varying the Degree of Skewness

Figure 1 l(a) indicates the tendency of the perfonnance when the data processing skew

changes accordingly with the data partitioning skew whereas Figure 11 (b) provides the

comparison when we ignore the data partitioning skew, i.e. a= 1/ N and alter the data

processing skew. The values on the horizontal axis of both figures represent the

expanding skewness factor which then is multiplied by the basic unit given by Zipf

di:;tribution. Unlike the a, the ~ is inversely proportional to data processing skew and

the larger the factor ~ , the less the data processing skew is. We conclude from Figure

11 that either of partitioning skew or processing skew degrades the performance of

parallel processing, HPM outperforms APM and JPM even in the presence of skewness,

and APM is less affected by the skewness compared with JPM .

• JPM 20 • JPM
98 A APM .. APM 18 88 HiPM

16 78

T (time 68 T (time 14

unit) 58 ur'l'lt) 12

48 10

38 8

28 6

1 1.5 2 3 3.5 4 0.5 0.75 1 1.25 1.5

Data Partition Skew (I) Data Processing Skew (I)

(a). Data partition skew (b). Data processing skew

Figure 11. Varying the skewness with 16 processors

Page20

84

74
64

T (time 54
unit) 44

34

• JPM

A APM
--HPM

24
14+-~---4--~--~~--.......;~

4 8 16 32 64

No. of Processors (N)

135

115

T (time
unit) 75

55

35

15
4 8 16 32 64

No. of Processors (N)

(a). Agg(i)=0.5, Sel(i)=5(Nlr) (b). Agg(i)=0.6, Sel(i)=lO(Nlr)

Figure 12. Varying the number of processors

4.6 Varying the Number of Processors

One of the desired goals of parallel processing is to have linear scale up which can be

achieved when twice as much processors perform twice as large a task in the same time.

When the number of processors is increased, as we expected, the performance is

upgraded in spite of the skewness shown in Figure 12. APM performs extremely well

when the number of processors is small, and it is even better than HPM because the

number of clusters in HPM may not be optimised and less processors make the

communication cost insignificant which favours APM. However, when the database

system scales up, both HPM and JPM performs better than APM.

5. Conclusion

Traditionally, join operation is processed before aggregation operation and relations are

partitioned on join attribute. In this paper, we demonstrate that group-by attribute may

also be chosen as the partition attribute and present three parallel methods for

Page21

aggregation queries, JPM, APM, and HPM. These methods differ in the way of

distributing query relations, i.e. partitioning on the join attribute, on the group-by

attribute, or on a combination of both; consequently, they give rise to different query

execution costs. In addition, the problem of data skew has been taken into account in the

proposed methods as it may adversely affect the performance advantage of the parallel

processing. A performance comparison of these methods has been provided under

various circumstances of queries and processors. The results show that when the join

selectivity factor is small and the degree of skewness is low, JPM leads to less cost;

otherwise APM is desirable. Nevertheless, the hybrid method (HPM) is always superior

to the other two methods since the data partitioning is adaptively made on both join

attribute and group-by attribute. In addition, it is found that the partitioning on group-by

attribute method is insensitive to the aggregation factor and thus the method will

simplify algorithm design and implementation.

Reference

[Alma94] Almasi G. S. and A. Gottlieb, "Highly parallel computing", The Benjamin/Cummings

Publishing Company, Inc., 1994

[Bell89] Bell D. A., D. H. 0. Ling, and S. McClean S., "Pragmatic estimation of join sizes

and attribute correlations", Proceedings of 5th IEEE Data Engineering Conference, Los Angeles, 1989

[Bitt83] Bitton D., H. Boral, D. J. DeWitt, and W. K. Wilkinson, "Parallel algorithms for the

execution of relational database operations", ACM Transactions on Database Systems, Vol 8, No.3,

September 1993

[Bult87] Bultzingsloewen G., "Translating and optimizing SQL queries having aggregate",

Proceedings of the 13th International Conference on Very Large Data Bases, Brighton, U.K., 1987

Page22

[Daya87] Dayal U., "Of nests and trees: a unified approach to processing queries that contain

nested subqueries, aggregates, and quantitiers", Proceedings of the I 3th International Conference on

Very Large Data Bases, Brighton, U.K., 1987

[DeWi92] DeWitt D.J., J. F. Naughton, D. A. Schneider, and S. Seshadri, "Practical skew

handling in parallel joins", Proceedings of the 8th International Conference on Very Large Data Bases,

Vancouver, British Columbia, Canada 1992

[Ghan94] Ghandeharizadeh S. and D. J. DeWitt, "MAGIC: a multiattribute declustering

mechanism for multiprocessor database machines", IEEE Transactions on Parallel and Distributed

Systems, Vol. 5, No. 5, 1994

[Grae93] Graefe G., "Query evaluation techniques for large databases", ACM Computing

Surveys, Vol.25, No.2, June 1993

[Kell91] Keller A. M. and S. Roy, "Adaptive parallel hash join in main-memory databases",

Proceedings of the I st International Conference on Parallel and Distributed Information Systems, Dec

1991

[~82] Kirn W., "On optimizing an SQL-like nested query", ACM Transactions on Database

Systems, Vol.7, No.3, September 1982

[Knut73] Knuth D. E., "The art of computer programming", Volume 3, Addison-Wesley

Publishing Company, INC., 1973

[Leun94] Leung C. H. C. and K. H. Liu, "Skewness analysis of parallel join execution",

Technical Report, Department of Computer and Mathematical Sciences, Victoria University of

Technology, Melbourne, Victoria, Australia, 1994

[Liu95] Liu K. H., Leung C. H. C., and Y. Jiang, "Analysis and taxonomy of skew in parallel

database systems", High Performance Computing Symposium'95, Montreal, Canada, July 1995, pp 304-

315

[Liu96] Liu K. H., Y. Jiang, and C.H.C. Leung, "Query execution in the presence of data

skew in parallel databases", Australian Computer Science Communications, vol 18, no 2, 1996, pp.

157-166

[Moha94] Mohan C., Pirahesh H., Tang W. G., and Y. Wang, "Parallelism in relational database

management systems" IBM Systems Journal, Vol.33, No.2, 1994

Page 23

[Schn89] Schneider D. A. and D. J. DeWitt, "A perfonnance evaluation of four parallel join

algorithms in a shared-nothing multiprocessor environment", Proceedings of the International

Conference on ACM SIGMOD, New York, U.S.A. 1989

[Seve90] Severance C., Pramanik S., and P. Wolberg, "Distributed linear hashing and parallel

projection in main memory databases", Proceedings of the 16th International Conference on Very Large

Data Bases, Brisbane, Australia 1990

[Shat94] Shatdal A. and J. F. Naughton, "Processing aggregates in parallel database systems",

Computer Sciences Technical Report# 1233, Computer Sciences Department, University of Wisconsin­

Madison, June 1994

[Wolf93a] Wolf J. L., Dias D. M., and P. S. Yu, "A parallel sort-merge join algorithm for

managing data skew", IEEE Transactions On Parallel And Distributed Systems, Vol. 4, No.I, January

1993

[Wolf93b] Wolf J. L., Yu P. S., Turek J. and D. M. Dias, "A parallel hash join algorithm for

managing data skew", IEEE Transactions On Parallel and Distributed Systems, Vol.4, No. 12,

December 1993

[Yan94] Yan W. P. and P. Larson, "Perfonning group-by before join", Proceedings of the

International Conference on Data Engineering, 1994

Page24

