
VICTORIA ~
UNIVERSITY

·~ •. ~

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Limits to Database Speedup for Data Partitioned

in Unary Relational Operations

C. H. C. Leung and K. H. Liu

(72 COMP 26)

April 1996

(AMS: 68Pl5)

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF CO:MPUTER AND MATHEMATICAL SCIENCES

P 0 BOX 14428
MCMC

MELBOURNE, VICTORIA 8001
AUSTRALIA

TELEPHONE (03) 9688 4492
FACSIMILE (03) 9688 4050

F ootscray Campus

Abstract

Limits to Database Speedup for

Data Partitioned Parallelisation in

Unary Relational Operations

C H. C Leung and K. H. Liu

TERABYTE DATABASE GROUP

Department of Computer & Mathematica/ Sciences,

Victoria University of Technology,

Ballarat Road, PO Box 1././28, Jv1A1C,

Melbourne, Victoria 3000, AUSTRALIA

Data partitioning of a given relation consists of distributing its data tuples

horizontally over the available processors for simultaneous processing. Here, we are

concerned with intra-ol'eration parallelism which consists of the application of a

given unary relational operation to data located across different processors. A

homogeneous distributed memory configuration is used in which inter-processor

communication is kept to a minimum, and all the participating processors are

assumed to operate at the same speed. Stochastic variation is unavoidable in most

data partitioning schemes which can lead to data skew. Such skew comes from the

uneven data load assigned to different processors, and can cause significant erosion in

parallel processing efficiency. Conventional performance estimates often gives an

improvement factor of k, where k is the number of processors participating in the

processing. This study shows that in most data partitioning schemes, the actual ·

performance can d~part significantly from this ideal, and closed-form expressions for

quantifying the execution time, processor utilisation, and load imbalance caused by

skewness are provided.

2

1. Introduction

Data partitioning provides a particularly effective way of achieving performance

improvements for data intensive applications. For large database systems, data

parallelism offers much greater scope for concurrent operation than control

parallelism since the number of data fragments that can be partitioned is generally

much higher than the number of possible control threads which can execute in parallel.

In the processing of database queries at the processor level, three forms of parallelism

can be ident~fied (see Figure I). The first is inter-query parallelism whereby a

number of concurrent queries are processed in parallel. Typically, in this form of

parallelism, a single processor is allocated to a query and no attempt is made to

decompose the individual queries further for parallelisation. The second type is inter

operation parallelism, which goes beyond the first type by decomposing a query into

a number of relational algebraic operations and executing these operations in parallel.

With this form of parallelism, only a single processor is allocated to an operation and

no attempt is made to parallelise the individual operations. The third type of

parallelism is intra-operation parallelism whereby the individual algebraic operations

are also parallelised. Apart from the first type of parallelism, the second and third

type may both be regarded as intra-query parallelism.

Parallelisation of database operations can focus on either the disk component and the

processor component. At the disk Ieve~ parallelism can be introduced by special

purpose hardware which not only allows the reading of multiple tracks or cells in

parallel, but also the filtering off of irrelevant data before they are transferred to main

memory [Leun85, Ozka86]. The substantial difference in processor speed and the

mechanical secondary storage access speed makes the introduction of disk parallelism

especially worthwhile. However, as increasing flexibility is demanded of current

database systems, disk access time is no longer the sole contributor to performance

delays and main memory processing is approaching a magnitude comparable to disk

processing. Here, we concentrate on parallel execution at the processor leve~ and

assume that data is already retrieved from disk, so that I/O delays will not be

considered to be directly relevant. Partly because of the steady increase in DRAM

capacity, main memory based database processing has been increasingly common

[Litw92, Moss92]. Moreover, with increasing database sizes and processor intensive

3

operations, the processor time required for executing complex quenes can be

substantial.

In order to achieve the best performance improvement from parallelisation, it may be

necessary to first transform database queries into forms that are amenable to parallel

processing at the internal lev,el. Heuristics for doing so have been ,considered in

[Leun93]. Here, we focus on performance improvement at the internal leve~ and

mathematical models are employed to study the limits to performance speedup caused

by load imbalance.

Query A

QueryB

Query C

Processor A

Processor B

Processor C

Fig. la Inter-query Parallelism

~
Processor A

Query ... ProcessorB

~ Processor C

Fig. 1 b Inter-operadon Parallelism

~
Processor A

Operation ... Processor B

~ Processor C
.

Fig. le Intra-operation Parallelism

4

2. Relationship with Other Work

Skew existence causes load imbalance, curtails the scalability of multiprocessor

systems, and degrades the system performance dramatically. Skew management

involves two basic steps, skew estimation and skew handling. Skew estimation

attempts to identify the existence of the skew among parallel processors and, if exist,

estimate the extent of the skew. Based on this knowledge, the skew handling then

attempts to avoid or resolve skewed load distribution using various approaches. A

classification of the skew estimation and handling approaches are presented in Figure

2. The main features of each approach as well as existing algorithms are discussed

briefly below.

Skew Management

Skew Estimation ·Skew Handling

Parametric Non-parametric

~~
~handling Dynamic handling

Nosk&N/; /
Low skew Dynamic load allocation

~ ""'
High skew

Hybrid skew Dynamic load reallocation

Fig. 2

Most works have been concerned with skew handling whereas a relatively small

number are related to selectivity and skew estimation. [Chri83, Seli79, Sesh92,

Sun93]. Statistica~ methods and probability play an important role in skew

estimation. Statistical methods can be classified into parametric and nonparametric

methods depending on how much is known about the shape of the distribution. If

5

there are only a few unknown parameters with a known basic distribution, the

methods involved are referred to parametric methods. On the other hand, in many

cases an experimenter does not know the form of the basic distribution and needs

statistical techniques which are applicable regardless of the form of the density

[Mura88].

Skew handling can be classified into static handling methods and dynamic handling

methods. All methods have their limitations, assumptions, and usually targeted at

specific situations. Moreover, most of the proposed algorithms involve considerable

computation and communication overheads. Static skew handling aims at

declusteting the total workload evenly over parallel processors before operation

processing begins, and static skew handling algorithms have been studied m

[DeWi92b, Grae94, Hua91, Kits90, Omie91, Schn89, Wolf93a, Wolf93b]

Unlike static skew handling, dynamic skew handling attempts to either allocate

workload dynamically during operation execution or reallocate the workload from the

busy processor to others. The algorithms divide the work into parts which normally

exceed the number of processors. The first k (the number of processors) parts will be

sent to candidate processors, and others wait in a queue. If one of the processors

finishes work early, it will be assigned another part from the queue. This process

repeats until the queue is empty. The idea behind this method is partitioning the load

and wait for skew to occur, and dynamic skew handling algorithms have been studied

in [Kell91, Lu92].

Most of the existing skew handling algorithms cannot deal with situations in which

there is no intrinsic data skew, and in general no consideration is given to

determining the stochastic nature of skew behaviour. In this study we focus on skew

estimation and we concentrate on skewness caused by data partitioning [DeWi92a] of

unary relational operations. The skewness arising in binary operations is the subject of

a separate study [Leun94c], and the parallelising of object-oriented databases is

studied in [Leun94b]. It is felt that skew estimation should be emphasised along

with skew handling, so that the workload of the system as a whole can be properly

balanced and the system performance can be effectively optimised.

6

4. Skewness in Data Partitioning

The processing of a database query can generally be decomposed into three phases :

data loading, processing, and consolidation. Data loading is concerned with the

loading of data to the memory of a processor before processing can take place. The

environment here is assumed to be a distributed memory configuration consisting of a

number of heterogeneous processors. Processing consists of the manipulation of the

data in memory so as to produce the desired result. Consolidation is concerned with

the putting t<?gether of the results of processing and present them to the users in a

form acceptable to them. For example, the removal of duplicate tuples resulting from

projections is assumed to be done at consolidation. In this paper, we shall only

concentrate on the processing phase as this is where the introduction of processor

parallelism is most appropriate. The data loading and the consolidation phases usually

require some inter-processor communication, while such communication may be

avoided or kept to a minimum in the processing phase.

In the case of unary operations such as select, parallelism is effected primarily through

data partitioning. Assuming there are k processors, then the single relation X could be

distributed over these processors, so that the ith processor is responsible for

processing X; tuples allocated to it. In a perfectly balanced load allocation each X; =

,!XIA of tuples, where IXl is the cardinality of X Figure 3 shows a situation where the

relation X is partitioned into three parts and distributed to k = 3 processors. Under

ideal allocation, an operation would yield an improvement by a factor of k, since the

processing of the k subrelations could take place in parallel, and they all take the same

amount of time to complete.

In this method, we are assuming that the data are fragmented by row - i.e. horizontal

fragmentation - and the data distribution is based on splitting a single relation into k

smaller relations. In fact, this method of splitting up a relation is easily accomplished

since each tuple is usually stored as a record in external memory and forms a logical

unit of transferable data.

7

x

----• Processor

----•• Processor

----~• Processor

Fig. 3 Data Partitioning

A number of data partitioning methods are available [DeWi92a]. However, some

degree of skewness is present in most of these methods. In particular, with range

partitioning and hashing, there frequently exists some elements of randomness due to

either the partitioning algorithm or the intrinsic data values or a combination of both

factors. Such randomness will give rise to uneven distribution of data volumes,

resulting in imbalanced workload.. · This will contnbute to situations where some

processors are heavily utilised, while others may be idle for a large proportion of the

time. This will erode the benefits of parallel processing, and in extreme cases, may

lead to a deterioration in performance as compared to uniprocessor processing

[Leun92].

If we denote by N; the random variable representing the number of X-tuples routed to

processor P;, then the execution time of the entire operation will be determined by

the average of

since the execution time is governed by the worker which has to process the largest

number of X-tuples.

8

Thus, the average total execution time T is given by

T =wE(N max),

where w represents the amount of processing incurred per tuple. To determine

E(N max), we proceed as follows. The process of routing X-tuples to different

processors can be viewed as partitioning the integer x into a maximum of k parts.

For a given partition cr of x into r parts

with X; ;;:: 1, and r::; k, it corresponds to the following situation: irrespective of the

identity among the k workers, one of them is assigned x1 tuples, another worker is

assigned x2 tuples and so on, with (k-r) workers having no tuple assigned to them.

From this consideration, it can be shown that [Leun94b] the average maximum

loading is given by

where g(r) is the number of subgroups in the partition of x, obtained by grouping

together all parts of the same magnitude, and r; is the number of members in

subgroup i, and

(k)r =k(k-I) ... (k-r+I),

and

with Il $ representing the set of all partitions of x into at most k parts.

One of the main considerations in calculating E (N max) is the systematic enumeration

of partitions of x. Algorithms for generating unrestricted partitions with no

constraints on the ·number of parts may be found in [Page79]. However, in our

situation, we need to partition x into no more than k parts. Here, we use the

9

convention that the parts are arranged in ascending order. For a partition into a fixed

number of m parts, we start with m-1 parts of unity, followed by the last part of size

x-m+ 1. Next, we generate new partitions having the same number of parts by

successively equalising the rightmost two parts, with the result that these two parts

differing by at most one. Such equalising is then extended leftwards to the (m-2)th

part until the rightmost three parts differ by at most one. This equalising process of

subtracting one from a part and adding it to a part on its left in generating new

partitions continues while observing the constraint that no descending sequence is

introduced within a partition. By systematically varying m, then all partitions of x

into at most k parts may be obtained, and so E (N max) and hence T may be evaluated.

Although the above formula provides an exact evaluation of the execution time, it

will entail considerable computational overhead. As an illustration, Appendix I shows

the detailed calculation for k = 5, and x = 8, where the number of tuples is

deliberately kept small to ensure manageability for illustration purposes. In this

example, the average actual loading obtained is 3 .18, while the average ideal

loading is 8/5 = 1.6. In this case, the average actual loading is nearly twice the

average ideal loading, which results in a severe over-estimation of performance.

For large k, however, it is possible to obtain closed-from approximations as follows.

From [Trun88], it is shown that the variable

has the following limiting cumulative distribution function

H(z) = exp(-e-::) .

Thus,

E (N max) ~ E (Z) + Ink .

1n(1+:)
The distribution H(z) is known as the Gumbel distribution [Mood73]. Its expectation

10

is given by

E(Z) = y,

where y is Euler's constant. Thus, the approximation takes the form

For x >> k, w~ have

E(Nmax):::: y +In:

ln(l+-)
x

k k
ln(l+-):::: -.

x x

The error in introducing this approximation, from [Gold64], is bounded by

which is less than S x io-3 if k < x/10. Thus, the approximation will be correct to two

decimal places whenever the tuple to processor ratio is more than 10. Therefore, we

have

x
E(N max)~ -(y +Ink).

k

The average execution time is

xw
T:::: -(y + ln k).

k

The additional multiplicative factor for this situation is

(y +Ink),

(1)

(2)

which may be regarded as the skew factor. A cruder approximation will be to drop

11

Euler's constant but this is unlikely to be acceptable. Even for :MPP (massively

parallel processing) systems with, say, k = 2 10
, we have lnk= 6.93; the constant 0.58

is clearly significant in relation to ln k.

As for the processor with minimum loading

it is shown in [Trun88] that for large k and x, the variable

asymptotically tends to the exponential distribution with unit mean, so that we have

· x+k
E(Nmin)~~,

which for x >> k, may be taken to be

x
E(N .):::::-

mm k2

The approximate average shortest execution time is thus

The load imbalance is

xw
t:::::

k2

T
I= - = k(y +lnk),

t

in the present situation. Since for sufficiently large k,

y ~ lnk ,

12

we have,

I $ 2klnk

or I = 0 (k ln k) . The processor utilisation p is given by the fraction of time within

T that a processor is engaged in active processing. For a given processor in the

collection, this is bounded by

t
-$ p $ l
T

Using the previous relationship, this gives

3000000

2500000

2000000

Maximum

Loading 1500000

1000000

500000

500

I
----$p $1
k(y +Ink)

t WlthSk.W

• NoSkew

Fig.4 k=4

1000 10000 100000

No. of Tuples (x)

1000000 10000000

13

Fig. 5 k= 10

3000000

2500000 • With Skew

• No Skew

2000000

Ma.x~um 1600000
Loading

1000000

500000

0

1000 10000 100000 1000000 10000000

No. of Tuples (x)

Figures 4 and 5 compares the number of tuples allocated to the processors under ideal

loading and actual loading where skew is present fork= 4, and k = 10 respectively.

We observe that the under-estimation of performance by assuming perfectly balanced

loading is again quite significant.

Summary and Conclusion

We have examined the effect of load skew on the performance of parallel unary

relational operations based on the SIMD paradigm operating in a homogeneous

distributed memory configuration. We see that the horizontal partitioning of a given

relation often leads to uneven distribution of workload among the participating

processors, and since the overall execution time is governed by that of the most

heavily loaded processor, erosion of the performance benefits gained through parallel

processing frequently results. This places a limit on the average speedup achievable

14

in unary parallel relational operations. This paper shows that in most data partitioning

schemes, the actual performance can depart significantly from the ideal loading

condition where each processor receives the same number of data tuples for

processing. We also find that the number of processors increases, the load imbalance

between the least utilised and the most utilised processors will tend to increase as

0 (k Ink). Closed-form expressions for quantifying the execution time, processor

utilisation, and load imbalance caused by skewness are provided.

Acknowledgment

This work has been supported in part by the ESPRIT Parallel Computing Action

Initiative under Project 4082.

References

[Chri83] Christodoulakis S, Estimating block transfers and join sizes, Proceedings

of the 1983 ACM SIGMOD Conference on the Management of Data, San Jose, May

1983, pp40-54

[DeWi92a] DeWitt D.J., Gray, J. Parallel Database Systems. Comm. ACM, Vol. 35,

No. 6, 1992, pp. 85-98.

[DeWi92b] DeWitt D.J., Naughton J.F., Schneider D.A., Seshadri S., Practical

Skew Handling in Parallel Joins, Proceedings of the 18th International Conference

on Very Large Data Bases, Vancouver, British Columbia, Canada 1992

[Gold64] Goldberg, R Methods of Real Analysis, Blaisdell, 1964.

[Grae94] Graefe G., Sort-Merge-Join: An idea whose time Has(h) passed,

Proceedings the 10th International Conference on Data Engineering, Feb. 14-18,

1994, Houston, Texas

[Hua91] Hua K. ·A., Lee C., Handling Data Skew in Multiprocessor Database

Computers Using Partition Tuning, In Proceedings of the 17th International

Conference on Very Large Data Bases, Page 525-535, Barcelona, September, 1991

15

[Ioan93] Ioannidis Y. E., Christodoulakis S., Optimal Histograms for Limiting

Worst-Case Error Propagation in the size of join Results, ACM Transactions on

Database Systems, No.4, Dec 1993

[Kell91] Keller A. M., Roy S., Adaptive Parallel Hash Join in Main-Memory

Databases, Proceedings of the first International Conference on Parallel and

Distributed Information Systems, Dec 1991

[Kits90] Kitsuregawa M., Ogawa Y., A New Parallel Hash Join Method with

Robustness for Data Skew in Super Database Computer (SOC), Proceedings of the

16th International Conference on Very Large Data Bases, 1990, pp. 210-221

[Leun85] Leung, C. H. C. and K. S. Wong, "File processing efficiency on the

content addressable filestore," Proc. 11th Int. Conj on Very Large Data Bases,

Stockholm, August 1985, pp. 282-291.

[Leun92] Leung, C. H. C. and H. T. Ghogomu. Configuration optimisation in

parallel database processing, Proc. International Conference on Parallel Computing

and Transputer Applications, Barcelona, September 1992, inParallel Computing and

Transputer Applications, M. Valero, E. Onate, M. Jane, J.L. Larriba, and B. Suarez

(Eds.), pp. 1239-1248, IOS Press/CIMNE, Barcelona 1992.

[Leun93] Leung, C.H. ·C. and H. T. Ghogomu A high-performance parallel database

architecture, Proc. 7th ACM International Conference on Supercomputing, Tokyo,

July 1993, pp. 377-386.

[Leun94a] Leung, C. H. C. and D. Taniar. Parallel query processing in object

oriented database systems. Working Paper, Terabyte Database Group, Victoria

University of Technology, 1994. (accepted for publication, Proc. 6th Australasian

Database Conference ADC '95)

[Leun94b] Leung, C. H. C. and K. Liu. Skewness analysis of parallel join execution.

Working Paper, Terabyte Database Group, Victoria University of Technology, 1994.

[Litw92] Litwin, W. and T. Risch. Main memory oriented optimisation ofOO queries

16

using typed Datalog with foreign predicates. IEEE Trans. Data and Knowledge Eng.,

Vol. 4, No. 2, 1992, pp. 517-528.

[Lu92] Lu H. J., Tan K. L., Dynamic and Load-balanced Task-Oriented Database

Query Processing in Parallel Systems, Advances in Database Technology -

EDBT'92, 3rd International Conference on Extending Database Technology,

Vienna, Austria, March, 1992 Proceedings, Springer-Verlag

[Mood73] Mood, A. Graybill and D. Boas, An Introduction to the Theory of

Statistics, McGraw-Hill, 1973.

[Mura88] Muralikrishna M., DeWitt D. J., Equi-Depth Histograms for Estimating

Selectivity Factors for Multi-Dimensional Queries, Proceedings SIGMOD

International Conference on Management of Data, Chicago Illinois, June 1988

[Moss92] Moss, J. Working with Persistent Objects: To Swizzle or not to Swizzle,

IEEE Trans. Software Eng., Vol. 18, 1992, pp. 657-673 .

[Omie91] Omiecinski E., Performance Analysis of a Local Balancing relational

hash-join algorithm for a main-memory databases, Proceedings of the first

International Conference on Parallel and Distributed Information Systems, Dec

1991, pp58-67

[Ozka86] Ozkarahan, E. : Database Machines and Database Management. Prentice

Hall, Englewood Cliff, New Jersey, 1986.

[Page79] Page, E .S. and L. Wilson, An Introduction to Computational

Combinatorics, Cambridge University Press, 1979.

[Schn89] Schneider D. A., DeWitt D. J., A Performance of Four Parallel Join

Algorithms in a Shared-Nothing Multiprocessor Environment, Proceedings of the

1989 ACM SIGMOD International Conference on the Management of Data,

Portland, Oregon, Vol. 18, No. 2, June 1989, ppl 10-121

[Seli79] Selinger P.G., Astrashan M.M., Chamberlin D.D., Lorie R.A., Price T.G.,

Access path selection in a relational database management system, Proceedings of

17

the ACM SIGMOD International Conference on the Management of Data, Boston,

Mass., June, 1979, pp23-34

[Sesh92] Seshadri S., Naughton J.F ., Sampling Issues in Parallel Database Systems,

Advances in Database Technology - EDBT92, 3rd International Conference on

Extending Database Technology, Vienna, Austria, March, 199 2 Proceedings,

Springer-Verlag

[Sun93] Sun W., Ling Y. B., Rishe N., and Deng Y., An Instant and Accurate Size

Estimation Method for Joins and Selection in a Retrieval-Intensive Environment,

Proceedings of the 1993 ACM SIGMOD International Conference on Management

of Data, Washington D. C., May 1993.

[Trun88] Trunov, A. "Limit theorems in the problem of distributing identical

particles in different cells," Proc. Steklov Institute of Mathematics, Issue 4, 1988, pp.

157-175.

[Wolf"93a] Wolf J. L., Dias D. M., and Yu P. S., A Parallel Sort-Merge Join

Algorithm for Managing Data Skew, JEE£, Transactions On Parallel And

Distributed Systems, Vol. 4, No. 1, January 1993

[Wolf93b] Wolf J. L., Yu P. S., Turek J. and Dias D. M., A Parallel Hash Join

Algorithm for Managing Data Skew, JEE£, Transactions On Parallel and

Distributed Systems, Vol.4, No. 12. December 1993

Partition

8

1+7

2+6

3+5

4+4

1+1+6

1+2+5

1+3+4

2+2+4

2+3+3

1+1+1+5

1+1+2+4

1+1+3+3

1+2+2+3

2+2+2+2

1+1+1+4

1+1+1+2+3

1+1+2+2+2

Sum

18

APPENDIX I : Allocation of 8 Tuples to 5 Processors
(Exact Calculation)

,

I Occurrence probability Maximum loading Average ma'<imum
'

5/390625 8 40/390625

160/390625 7 1120/390625

560/390625 6 3360/390625

1120/390625 5 5600/390625

700/390625 4 2800/390625

1680/390625 6 10080/390625

10080/390625 5 50400/390625

16800/390625 4 67200/390625

12600/390625 4 50400/390625

16800/390625 3 50400/390625

6720/390625 5 33600/390625

50400/390625 4 201600/390625

33600/390625 3 100800/3 90625

100800/390625 3 302400/3 90625

12600/390625 2 25200/390625

8400/390625 4 33600/390625

67200/3 90625 3 210600/390625

50400/390625 2 100800/390625

1 - 3.18

I

