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Abstract 

Limits to Database Speedup for 

Data Partitioned Parallelisation in 

Unary Relational Operations 

C H. C Leung and K. H. Liu 

TERABYTE DATABASE GROUP 

Department of Computer & Mathematica/ Sciences, 

Victoria University of Technology, 

Ballarat Road, PO Box 1././28, Jv1A1C, 

Melbourne, Victoria 3000, AUSTRALIA 

Data partitioning of a given relation consists of distributing its data tuples 

horizontally over the available processors for simultaneous processing. Here, we are 

concerned with intra-ol'eration parallelism which consists of the application of a 

given unary relational operation to data located across different processors. A 

homogeneous distributed memory configuration is used in which inter-processor 

communication is kept to a minimum, and all the participating processors are 

assumed to operate at the same speed. Stochastic variation is unavoidable in most 

data partitioning schemes which can lead to data skew. Such skew comes from the 

uneven data load assigned to different processors, and can cause significant erosion in 

parallel processing efficiency. Conventional performance estimates often gives an 

improvement factor of k, where k is the number of processors participating in the 

processing. This study shows that in most data partitioning schemes, the actual · 

performance can d~part significantly from this ideal, and closed-form expressions for 

quantifying the execution time, processor utilisation, and load imbalance caused by 

skewness are provided. 
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1. Introduction 

Data partitioning provides a particularly effective way of achieving performance 

improvements for data intensive applications. For large database systems, data 

parallelism offers much greater scope for concurrent operation than control 

parallelism since the number of data fragments that can be partitioned is generally 

much higher than the number of possible control threads which can execute in parallel. 

In the processing of database queries at the processor level, three forms of parallelism 

can be ident~fied (see Figure I). The first is inter-query parallelism whereby a 

number of concurrent queries are processed in parallel. Typically, in this form of 

parallelism, a single processor is allocated to a query and no attempt is made to 

decompose the individual queries further for parallelisation. The second type is inter

operation parallelism, which goes beyond the first type by decomposing a query into 

a number of relational algebraic operations and executing these operations in parallel. 

With this form of parallelism, only a single processor is allocated to an operation and 

no attempt is made to parallelise the individual operations. The third type of 

parallelism is intra-operation parallelism whereby the individual algebraic operations 

are also parallelised. Apart from the first type of parallelism, the second and third 

type may both be regarded as intra-query parallelism. 

Parallelisation of database operations can focus on either the disk component and the 

processor component. At the disk Ieve~ parallelism can be introduced by special 

purpose hardware which not only allows the reading of multiple tracks or cells in 

parallel, but also the filtering off of irrelevant data before they are transferred to main 

memory [Leun85, Ozka86]. The substantial difference in processor speed and the 

mechanical secondary storage access speed makes the introduction of disk parallelism 

especially worthwhile. However, as increasing flexibility is demanded of current 

database systems, disk access time is no longer the sole contributor to performance 

delays and main memory processing is approaching a magnitude comparable to disk 

processing. Here, we concentrate on parallel execution at the processor leve~ and 

assume that data is already retrieved from disk, so that I/O delays will not be 

considered to be directly relevant. Partly because of the steady increase in DRAM 

capacity, main memory based database processing has been increasingly common 

[Litw92, Moss92]. Moreover, with increasing database sizes and processor intensive 
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operations, the processor time required for executing complex quenes can be 

substantial. 

In order to achieve the best performance improvement from parallelisation, it may be 

necessary to first transform database queries into forms that are amenable to parallel 

processing at the internal lev,el. Heuristics for doing so have been ,considered in 

[Leun93]. Here, we focus on performance improvement at the internal leve~ and 

mathematical models are employed to study the limits to performance speedup caused 

by load imbalance. 

Query A 

QueryB 

Query C 

Processor A 

Processor B 

Processor C 

Fig. la Inter-query Parallelism 

~ 
Processor A 

Query ... ProcessorB 

~ Processor C 

Fig. 1 b Inter-operadon Parallelism 

~ 
Processor A 

Operation ... Processor B 

~ Processor C 
. 

Fig. le Intra-operation Parallelism 
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2. Relationship with Other Work 

Skew existence causes load imbalance, curtails the scalability of multiprocessor 

systems, and degrades the system performance dramatically. Skew management 

involves two basic steps, skew estimation and skew handling. Skew estimation 

attempts to identify the existence of the skew among parallel processors and, if exist, 

estimate the extent of the skew. Based on this knowledge, the skew handling then 

attempts to avoid or resolve skewed load distribution using various approaches. A 

classification of the skew estimation and handling approaches are presented in Figure 

2. The main features of each approach as well as existing algorithms are discussed 

briefly below. 

Skew Management 

Skew Estimation ·Skew Handling 

Parametric Non-parametric 

~~ 
~handling Dynamic handling 

Nosk&N/; / 
Low skew Dynamic load allocation 

~ ""' 
High skew 

Hybrid skew Dynamic load reallocation 

Fig. 2 

Most works have been concerned with skew handling whereas a relatively small 

number are related to selectivity and skew estimation. [Chri83, Seli79, Sesh92, 

Sun93]. Statistica~ methods and probability play an important role in skew 

estimation. Statistical methods can be classified into parametric and nonparametric 

methods depending on how much is known about the shape of the distribution. If 
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there are only a few unknown parameters with a known basic distribution, the 

methods involved are referred to parametric methods. On the other hand, in many 

cases an experimenter does not know the form of the basic distribution and needs 

statistical techniques which are applicable regardless of the form of the density 

[Mura88]. 

Skew handling can be classified into static handling methods and dynamic handling 

methods. All methods have their limitations, assumptions, and usually targeted at 

specific situations. Moreover, most of the proposed algorithms involve considerable 

computation and communication overheads. Static skew handling aims at 

declusteting the total workload evenly over parallel processors before operation 

processing begins, and static skew handling algorithms have been studied m 

[DeWi92b, Grae94, Hua91, Kits90, Omie91, Schn89, Wolf93a, Wolf93b] 

Unlike static skew handling, dynamic skew handling attempts to either allocate 

workload dynamically during operation execution or reallocate the workload from the 

busy processor to others. The algorithms divide the work into parts which normally 

exceed the number of processors. The first k (the number of processors) parts will be 

sent to candidate processors, and others wait in a queue. If one of the processors 

finishes work early, it will be assigned another part from the queue. This process 

repeats until the queue is empty. The idea behind this method is partitioning the load 

and wait for skew to occur, and dynamic skew handling algorithms have been studied 

in [Kell91, Lu92]. 

Most of the existing skew handling algorithms cannot deal with situations in which 

there is no intrinsic data skew, and in general no consideration is given to 

determining the stochastic nature of skew behaviour. In this study we focus on skew 

estimation and we concentrate on skewness caused by data partitioning [DeWi92a] of 

unary relational operations. The skewness arising in binary operations is the subject of 

a separate study [Leun94c], and the parallelising of object-oriented databases is 

studied in [Leun94b]. It is felt that skew estimation should be emphasised along 

with skew handling, so that the workload of the system as a whole can be properly 

balanced and the system performance can be effectively optimised. 
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4. Skewness in Data Partitioning 

The processing of a database query can generally be decomposed into three phases : 

data loading, processing, and consolidation. Data loading is concerned with the 

loading of data to the memory of a processor before processing can take place. The 

environment here is assumed to be a distributed memory configuration consisting of a 

number of heterogeneous processors. Processing consists of the manipulation of the 

data in memory so as to produce the desired result. Consolidation is concerned with 

the putting t<?gether of the results of processing and present them to the users in a 

form acceptable to them. For example, the removal of duplicate tuples resulting from 

projections is assumed to be done at consolidation. In this paper, we shall only 

concentrate on the processing phase as this is where the introduction of processor 

parallelism is most appropriate. The data loading and the consolidation phases usually 

require some inter-processor communication, while such communication may be 

avoided or kept to a minimum in the processing phase. 

In the case of unary operations such as select, parallelism is effected primarily through 

data partitioning. Assuming there are k processors, then the single relation X could be 

distributed over these processors, so that the ith processor is responsible for 

processing X; tuples allocated to it. In a perfectly balanced load allocation each X; = 

,!XIA of tuples, where IXl is the cardinality of X Figure 3 shows a situation where the 

relation X is partitioned into three parts and distributed to k = 3 processors. Under 

ideal allocation, an operation would yield an improvement by a factor of k, since the 

processing of the k subrelations could take place in parallel, and they all take the same 

amount of time to complete. 

In this method, we are assuming that the data are fragmented by row - i.e. horizontal 

fragmentation - and the data distribution is based on splitting a single relation into k 

smaller relations. In fact, this method of splitting up a relation is easily accomplished 

since each tuple is usually stored as a record in external memory and forms a logical 

unit of transferable data. 
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x 

----• Processor 

----•• Processor 

----~• Processor 

Fig. 3 Data Partitioning 

A number of data partitioning methods are available [DeWi92a]. However, some 

degree of skewness is present in most of these methods. In particular, with range 

partitioning and hashing, there frequently exists some elements of randomness due to 

either the partitioning algorithm or the intrinsic data values or a combination of both 

factors. Such randomness will give rise to uneven distribution of data volumes, 

resulting in imbalanced workload.. · This will contnbute to situations where some 

processors are heavily utilised, while others may be idle for a large proportion of the 

time. This will erode the benefits of parallel processing, and in extreme cases, may 

lead to a deterioration in performance as compared to uniprocessor processing 

[Leun92]. 

If we denote by N; the random variable representing the number of X-tuples routed to 

processor P;, then the execution time of the entire operation will be determined by 

the average of 

since the execution time is governed by the worker which has to process the largest 

number of X-tuples. 
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Thus, the average total execution time T is given by 

T =wE(N max), 

where w represents the amount of processing incurred per tuple. To determine 

E(N max), we proceed as follows. The process of routing X-tuples to different 

processors can be viewed as partitioning the integer x into a maximum of k parts. 

For a given partition cr of x into r parts 

with X; ;;:: 1, and r::; k, it corresponds to the following situation: irrespective of the 

identity among the k workers, one of them is assigned x1 tuples, another worker is 

assigned x2 tuples and so on, with (k-r) workers having no tuple assigned to them. 

From this consideration, it can be shown that [Leun94b] the average maximum 

loading is given by 

where g(r) is the number of subgroups in the partition of x, obtained by grouping 

together all parts of the same magnitude, and r; is the number of members in 

subgroup i, and 

(k)r =k(k-I) ... (k-r+I), 

and 

with Il $ representing the set of all partitions of x into at most k parts. 

One of the main considerations in calculating E ( N max) is the systematic enumeration 

of partitions of x. Algorithms for generating unrestricted partitions with no 

constraints on the ·number of parts may be found in [Page79]. However, in our 

situation, we need to partition x into no more than k parts. Here, we use the 
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convention that the parts are arranged in ascending order. For a partition into a fixed 

number of m parts, we start with m-1 parts of unity, followed by the last part of size 

x-m+ 1. Next, we generate new partitions having the same number of parts by 

successively equalising the rightmost two parts, with the result that these two parts 

differing by at most one. Such equalising is then extended leftwards to the (m-2)th 

part until the rightmost three parts differ by at most one. This equalising process of 

subtracting one from a part and adding it to a part on its left in generating new 

partitions continues while observing the constraint that no descending sequence is 

introduced within a partition. By systematically varying m, then all partitions of x 

into at most k parts may be obtained, and so E ( N max ) and hence T may be evaluated. 

Although the above formula provides an exact evaluation of the execution time, it 

will entail considerable computational overhead. As an illustration, Appendix I shows 

the detailed calculation for k = 5, and x = 8, where the number of tuples is 

deliberately kept small to ensure manageability for illustration purposes. In this 

example, the average actual loading obtained is 3 .18, while the average ideal 

loading is 8/5 = 1.6. In this case, the average actual loading is nearly twice the 

average ideal loading, which results in a severe over-estimation of performance. 

For large k, however, it is possible to obtain closed-from approximations as follows. 

From [Trun88], it is shown that the variable 

has the following limiting cumulative distribution function 

H(z) = exp(-e-::) . 

Thus, 

E ( N max ) ~ E ( Z) + Ink . 

1n(1+:) 
The distribution H(z) is known as the Gumbel distribution [Mood73]. Its expectation 
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is given by 

E(Z) = y, 

where y is Euler's constant. Thus, the approximation takes the form 

For x >> k, w~ have 

E(Nmax):::: y +In: 

ln(l+-) 
x 

k k 
ln(l+-):::: -. 

x x 

The error in introducing this approximation, from [Gold64], is bounded by 

which is less than S x io-3 if k < x/10. Thus, the approximation will be correct to two 

decimal places whenever the tuple to processor ratio is more than 10. Therefore, we 

have 

x 
E(N max)~ -(y +Ink). 

k 

The average execution time is 

xw 
T:::: -( y + ln k). 

k 

The additional multiplicative factor for this situation is 

(y +Ink), 

(1) 

(2) 

which may be regarded as the skew factor. A cruder approximation will be to drop 
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Euler's constant but this is unlikely to be acceptable. Even for :MPP (massively 

parallel processing) systems with, say, k = 2 10
, we have lnk= 6.93; the constant 0.58 

is clearly significant in relation to ln k. 

As for the processor with minimum loading 

it is shown in [Trun88] that for large k and x, the variable 

asymptotically tends to the exponential distribution with unit mean, so that we have 

· x+k 
E(Nmin)~~, 

which for x >> k, may be taken to be 

x 
E(N . ):::::-

mm k2 

The approximate average shortest execution time is thus 

The load imbalance is 

xw 
t:::::

k2 

T 
I= - = k(y +lnk), 

t 

in the present situation. Since for sufficiently large k, 

y ~ lnk , 
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we have, 

I $ 2klnk 

or I = 0 ( k ln k) . The processor utilisation p is given by the fraction of time within 

T that a processor is engaged in active processing. For a given processor in the 

collection, this is bounded by 

t 
-$ p $ l 
T 

Using the previous relationship, this gives 
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2500000 

2000000 

Maximum 

Loading 1500000 

1000000 

500000 

500 

I 
----$p $1 
k(y +Ink) 

t WlthSk.W 

• NoSkew 

Fig.4 k=4 
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No. of Tuples (x) 

1000000 10000000 
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Fig. 5 k= 10 

3000000 

2500000 • With Skew 

• No Skew 

2000000 

Ma.x~um 1600000 
Loading 

1000000 

500000 

0 

1000 10000 100000 1000000 10000000 

No. of Tuples (x) 

Figures 4 and 5 compares the number of tuples allocated to the processors under ideal 

loading and actual loading where skew is present fork= 4, and k = 10 respectively. 

We observe that the under-estimation of performance by assuming perfectly balanced 

loading is again quite significant. 

Summary and Conclusion 

We have examined the effect of load skew on the performance of parallel unary 

relational operations based on the SIMD paradigm operating in a homogeneous 

distributed memory configuration. We see that the horizontal partitioning of a given 

relation often leads to uneven distribution of workload among the participating 

processors, and since the overall execution time is governed by that of the most 

heavily loaded processor, erosion of the performance benefits gained through parallel 

processing frequently results. This places a limit on the average speedup achievable 
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in unary parallel relational operations. This paper shows that in most data partitioning 

schemes, the actual performance can depart significantly from the ideal loading 

condition where each processor receives the same number of data tuples for 

processing. We also find that the number of processors increases, the load imbalance 

between the least utilised and the most utilised processors will tend to increase as 

0 ( k Ink). Closed-form expressions for quantifying the execution time, processor 

utilisation, and load imbalance caused by skewness are provided. 
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APPENDIX I : Allocation of 8 Tuples to 5 Processors 
(Exact Calculation) 

, 

I Occurrence probability Maximum loading Average ma'<imum 
' 

5/390625 8 40/390625 

160/390625 7 1120/390625 

560/390625 6 3360/390625 

1120/390625 5 5600/390625 

700/390625 4 2800/390625 

1680/390625 6 10080/390625 

10080/390625 5 50400/390625 

16800/390625 4 67200/390625 

12600/390625 4 50400/390625 

16800/390625 3 50400/390625 

6720/390625 5 33600/390625 

50400/390625 4 201600/390625 

33600/390625 3 100800/3 90625 

100800/390625 3 302400/3 90625 

12600/390625 2 25200/390625 

8400/390625 4 33600/390625 

67200/3 90625 3 210600/390625 

50400/390625 2 100800/390625 

1 - 3.18 

I 




