
VICTORIA ~
UNIVERSITY

• ~
. 0

~

. 0 . ..
•. ...

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Terabyte Database Simulation Model

Kevin H. Liu and Clement H. C. Leung

(73 co:rvw 27)

April 1996

(AMS : 68Pl 5)

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF CO:rvn>UTER AND MATHEMATICAL SCIENCES

P 0 BOX 14428
MCMC

MELBOURNE, VICTORIA 8001
AUSTRALIA

TELEPHONE (03) 9688 4492
FACSIMILE (03) 9688 4050

F ootscray Campus

TERABYTE DATABASE SIMULATION MODEL

-
Kevin H. Liu and Clement H C. Leung

Department of Computer and Mathematical Sciences
Victoria University of Technology, Ballarat Road, Footscray,
PO Box 14428 MMC, Melbourne, Victoria 3000, AUSTRALIA

Email: {kevin, clement}@matilda.vut.edu.au
Fax: +613-688 4050

ABSTRACT

With the query complication and many hardware and software options in
parallel databases, both analytical and simulation model need to be
considered to accurately describe the system behaviour. Terabyte
Database Simulatfon Model is developed at Victoria University of
Technology by the Terabyte Database Group, to carry out further research
on terabyte database, identify potential research problems, and gain
research experiences. This paper will provide a manual for the model.
Facilities of the simulation model are discussed and the analytical model
behind the relational operations is presented. Several research topics are
included in Application Guide such as skew of parallel database, site
allocation of distributed database, and parallel query processing in Object
Oriented database.

1. TDB Simulation Model Overview

Parallelism has been employed in database system to obtain higher performance and
availability. [2,4] However, it also introduces more possible ways to execute one
query on multiple connected processors than on conventional single processor.
Therefore, parallelism complicates not only query processing but also performance
evaluation. Although analytic model can be used, to some extent, accurately to
describe the system, most of the cases, the system is too complex to be modelled by
analytic model alone and the stochastic feature and the bottleneck of the system are
less likely to be reflected in an analytic model. [9,10,11] As a result, simulation is a
better way in terms of the cost, efficiency and preciseness.

1.1 Facilities
The Terabyte Database Simulation Model (TDBSM) is designed to provide a user
friendly environment which facilitates the users carrying out research in parallel
database system particularly in query optimisation, data mining, and parallel
architecture design. The model presents an TDBSM platform (an integrated
development environment) which provides

=> online help,
=> a built-in calendar,
=> a built-in calculator,
=> a built-in ASCII table (facilitates programmers),
=> multiple, movable, and resiz.able windows,
=> fully mouse support and dialogue boxes,
=> put down menus and online status options,
=> menu colour syntax highlighting to accelerate the search,
=> online clock and heap view,
=> and temporarily DOS exit.

1.2 Configuration
TDBSM employs a hybrid architecture where nodes are loosely coupled and each
node may have a number of processors with varied powers, and different
interconnections among the processors within the node. Currently, the Terabyte
Database Group (TDBG) is focusing on query processing and data mining, and most
of the proposed algorithms are hardware independent. As a result, more experiments
will be carried out before decisions are made on topology among the nodes.
However, to reflect the characteristics of the current generation of commercially
available multiprocessors, the group will pay more attention to the fat-tree network
structure interconnections adopted by the Thinking Machine CM-5, the two
dimension mesh interconnections used by the Intel Paragon, and the hypercube
topology employed by nCUBE multiprocessors and Intel iPSC/860.

The simulation . parameters are classified into systems, database sites, and workload
categories. The default values of all parameters are provided through dialog boxes
which can be modified by the user. Due to the limitations of the TDialog Class of
Turbo Vision, checking is not enforced on any parameters. Therefore, users must be
cautious on settings to achieve rational results.

1.3 Operations and Applications
In addition, the model provides basic unary relational algebraic operations such as
selection, projection (with and without duplicate removal), and aggregation
(minimum or maximum), and binary operations such as nested-loops join, and hash
based join. Moreover, three applications are discussed in detail, Skew in relational
parallel systems, Path expression operation in object-oriented parallel systems and
Load Balancing in distributed systems. The objective is to illustrate how users can
integrate their existing models or proposing algorithms into the model with ease. An
example of data representation (Skew in relational parallel database systems) is
included in Appendix B.

Files ------ Applications Operations
Figure 1

Page2

Figure I shows that applications and operations are co-related through files since
interprocess communication is expensive. All parameters in the model are global
variables so they are visible in any operations and application functions.

This manual is a complete description of the TDBSM. The simulator is entirely
written in C++ and it is compiled using the Borland C++ 3.1 under DOS 5.0. The
model is based on event driven simulation which consists of four main types of
events, keyboard events, mouse events, message events, and nothing event,
respectively.

The remainder of this paper is organised as follows. Section 2 discusses hardware
and software -requirements, and Section 3 contains menus and options references.
Library primitjves of TDBSM are included in Section 4. In Section 5 and 6, we
present application guides and, briefly, show users how to make contributions.
Finally, Section 7 provides our concluding remarks.

2. Hardware and Software Requirements

2.1 Hardware Requirements
In order to use all the facilities of the TDBSM, your PC must have a certain minimum
hardware configuration. Your PC must be of IBM PC compatible family of
computers, including the AT and PS/2, along with all true IBM-compatible 286, 386,
or 486 computers using DOS 3.3 or higher. Besides, you need a hard disk, and at
least 640k RAM.

Mouse system must be installed properly along with your PC. A math co-processor
(80x87) is preferred in your PC to improve performance dealing with floating point
math operations although· it is not compulsory.

To represent the data in graphics, you need a monitor graphics display card. The
model can detect automatically and support several graphics systems. The graphics
cards currently supported are CGA, MCGA, EGA, EGA64, EGAMONO, IBM8514,
HercMono, ATT400, VGA, and PC3270.

2.2 Software Requirements
Directly under the root directory of your hard disk create a subdirectory. Then, copy
all files to this directory using command xcopy a:*. *Is. List files to check there is one
BGI directory and all *.bgi files are in the BGI directory. The following files should
be included,

tdbsimul. exe
tdbsimul. hip
readme.doc

*.obj
*.bgi

executable file of the model,
help file messages,
supplementary information about the system and some last
minute updates,
object modules of the system model,
Borland graphic device drivers used by the system.

Page3

All source files names' listing can be found in Appendix A.

2.3 Getting Started
Type dir to check all object files are in the same directory with the executable file.
Next, give the command tdbsimul.exe to start the model. If there is an error message
that the graphic drives are not found, go to menu "Options-SetBGIPath" and input the
right path through the dialog box.

3. Menus and Options Reference

Due to the space limitations of status line, not all keyboard shortcuts are displayed on
the screen. However, the following standard accelerators in Table I are always
available no m.atter where you are in the simulation model.

Key Combinations Usage
Alt-x quit the TDBSM to Dos
Alt-F3 close the active window
FIO activate the main menu
FS zoom in or out the active window
Ctrl-FS move and resize the active window
F6 activate the next window
Shift-F6 activate the previous window

Table 1

Menu options are discussed below in detail to provide a reference for users.

3.1 System Menu
The system menu is located at the far left of the menu bar. It provides a submenu
with five options. "About" will give a Copyright modal dialog box; "Puzzle" is small
game won by arranging the characters in order (A -- 0) with the few moves; "Ascii"
presents a table which can show the decimal and hexadecimal number of any ascii
characters; "Calendar" and "Calculator" are two facilities supplied to users.

Parameters Explanation
NoNode the number of nodes in the system
NoRela the number relations in the database
IntCst fixed network time for message initiation per block
TerCst fixed network time for message termination per block
BlkSiz system block size (number of bytes per block)
NetBan network bandwidth (transmission time per block)
nLarge flag to represent the data in graphics

Table 2

3.2 File Menu
As any other software packages, file menu lets you look at the contents of the files,
change file directories, exit to DOS, and quit the simulation model. "Open" will
display the file in a full-sized window with scroll bar available for the sake of

Page4

convenience. Multiple windows can be opened simultaneously, but only one window
is active at one time. Unfortunately, you can not edit the file within the window.
However, you may temporally exit to DOS and use any editors (e.g. DOS editor) to
make modifications. Then, type EXIT to return simulation model.

3.3 Settings Menu
Simulation parameters setting can be done in the menu by dialog box. "System'1

submenu lets you set up systems parameters shown in Table 2.

"DB_Site" submenu lets you set up database sites parameters shown in Table 3.

Parameters Explanation
NoPro , the number of processors per node .
MemSiz , the memory size of local processors
Sek Tim disk seek time per block
LatTim disk latency time per block
XerTim data transfer time from disk to memory in local sites per block
RevTim the time to retrieve one block from buffer
PCTim time to compare two tuples
PETim time to evaluate one predicate involving a single field
PPTim time to insert one tuple to the hash table
PHTim , time to probe one tuple with the hash table
WriTim the time to write one block data to output buffer.

Table 3

"Workload" submenu lets you set up query workload parameters shown in Table 4.

Parameters Explanation
LenPre the length of predicates in the query
NoColn the number of columns to be projected
TupSiz the number of bytes per tuple
R Size IRI -- the total number of records in the relation R -
S Size ISi -- the total number of records in the relation S
selfac Selectivity factor i.e. the ratio of the number of selected records to

the number of records of the specified relation.
UniRat the ratio of tuple that are unique when dealing with projection

without duplicates
Table 4

Click O.K. if you want to save your modifications on the parameters. Otherwise,
close the dialog box or click Cancel to quit.

3.4 Operations Menu
TDBSM provides unary relation algebraic operations such as selection, projection,
and aggregation and binary relational operations such as join. The real database is not
presented because the need of a real running system and the necessary design of the
measurement. In addition~ real database may bring about inaccurate results
representing the general performance of a system. By comparison, analytical and

Pages

simulation model will not only efficiently give solutions based on mathematical
theories but also precisely describe the stochastic behaviour of database operations.

The following cost functions will serve as the basis of the operations over multiple
processors in TDBSM. The assumptions are as below and additional notations are
listed in Table 5.

Assumptions: Loosely coupled multiprocessors are fully connected, skew does not
take into account, and cost is primarily expressed in terms of the elapsed time taken to
carry out an operation. In addition, data are well distributed on the disks initially, i.e.
the reading time for each block is the same. Finally, data are stored among the
memory associated with each processors without replication, i.e. each processor need

. r R Size x TupSiz l bl k f d h h b . . f to transmit - . oc s o ata to eac processor at t e egmrung o
, N x BlkSzz

processing.

Parameters Explanation
Ts the elapsed time for a select operation

T,,1 the elapsed time for a project operation (with duplicates)

Tp2 the elapsed time for a project operation (without duplicates)

TAI the elapsed time for an aggregation operation (min or max)

~ru the elapsed time for a join operation with nested-loops method

~hh the elapsed time for a join operation with hybrid hash method

Rea Tim reading time from disk to local memory of each block of data
N the total number of processors used for parallel processing

rk the input relation R in number of blocks

sk the input relation S ·in number of blocks
Table S

In addition, we derive
ReaTim=SekTim+LatTim+ XerTim (for each block of data),

i=NoNode

N= INoPro;,
i=I

r = rR_Size x TupSizl
k BlkSiz '

and s rs _Size x TupSizl.
k= BlkSiz

Therefore, we have

Page6

Selection

'T' R T" r R Size x TupSizl AT B r R Size x TupSizl .
1. s = ea un x rk + - x 1vet an+ - x RetTun

N x BlkSiz N x BlkSiz

R_Size x LenPre x PETim rselfac x R Size x TupSizl .. + + - xWrzTzm
N N x BlkSiz

Projection
Projection provides a submenu of with and without duplicates removal. Projecting
without duplicate removal is to project the vertical columns instead of select the
horizontal rows in selection. Projecting with duplicates removal can be treated as a
combination of projecting with duplicates and selecting the unique tuples. Therefore,
the former is more expensive than the later since a nested loops search is needed for
the selection of removing duplicates.

Projection without duplicate removal

T R T. r R Size x TupSizl 1\r B r R Size x TupSizl R T"
pl = ea im x rk + x 1vet an+ - x et im

N x BlkSiz N x BlkSiz

R_Size x NoColn x PETim rR Size x TupSizl W .T. + + - x n1m
N Nx BlkSiz

Projection with duplicate removal (projection + selection)

,.,.. ,.,.. R Size x (R Size+ 1) x PETim
J.p2=1.p1+ +

2 .

r

UniRat x R Size x TupSizl Wi .,.,... - x n.1. zm
N x BlkSiz

Aggregation (minimum or maximum)
Unlike other unary operations, aggregation over multiple processors has not been
investigated in depth especially for many complex functions, such as dividing the
whole population into a number of groups and collecting statistics in each group
(Grouped by I Count). In this section, the simple operation (minimum or maximum)
is considered and we assume one level parallelism, i.e. at the beginning, relation is
partitioned into the number of parallel processors and, at the end of the processing,
processors will transmit the result (one tuple) to one and only one processor which
will carry on further comparisons.

. r R Size x TupSizl 1\r B r R Size x TupSizl R T" TA.
1

= Rea Tun x rk + - x JYet an+ - x et im
N x BlkSiz N x BlkSiz

(R Size-l)xPCTim rlxTupSizl 1.r B rNxTupSizl R T. + - + x vet an + x et im
N BlkSiz BlkSiz

() Pc,.,.. r 1 x TupSizl rrr. ·T· + N - 1 x 1. im + . x n rz 1. rm
BlkSzz

Page7

Join

Join is one of the most expensive and frequently used relational operations. It has
been an active research area for decades. Initially, we will implement two algorithms,
parallel nested loops join and parallel hash based join method. Although the hash
based join leaves a good impression from the analytic model, it does suffer from
choosing hash functions and avoiding hash collision. Parallel nested loops join is
employing range partitioning and nest loops join is carried out in each individual
processor, whereas parallel hash based join is using hash partitioning and hash join is
processed at each processor.

Join Equation (assuming both operand relations are unsorted on the join attribute,
R _Size is larger than S _Size, Mem _ Siz is larger than S _Size, and parallel nested
loops method with simple range partitioning is employed)

. rR Size x TupSizl . T.in = ReaT1m x rk + - x NetBan + ReaT1m x sk +
N x BlkSiz

s x NetBan+ (I +sk) ?< RetTim + R_Size x S_Size x PCTim
k N N

+ - - r x rz.1.zm
r

selfac x R Size x S Size x TunSizl Wi .,.,,.
N x BlkSiz

~oin Equation (assuming R_Size is larger than S_Size, and parallel hash based
method with hash partitioning is employed with uniformity partitions)

. rR Size x TupSizl . T.ihh = ReaTim x rk + - x NetBan + ReaTim x sk +
N x BlkSiz

rs Size x TupSizl ~k +sk)x RetTim S Size x PHTim
- x NetBan+ + - +,

NxBlkSiz N N

R Size x PPTim ·rselfac x R Size x s Size x TupSizl Wi .,.,,. - + x rz.1. zm
N Nx BlkSiz

Note: the partitions of the smaller relation is used to build the hash table

3.5 Applications Menu
The existing algorithms among the TDBG are integrated into the model to form this
menu. Thus, the algorithms are classified into Architecture design, Data mining, and
Query processing and data placement according to the subgroups interest. The main
topics of query processing and data placement are transaction updating, skew in
relational parallel database, path expression operation of object-oriented parallel
database, and load balancing in distributed database. Moreover, the skewness are
modelled using Random allocation, Interval simulation, and Double hashing
according to the characteristics of input relation(s).

In fact, the application menu is aimed as a library and it will grow as the time goes on.

Page 8

3.6 Windows Menu
The menu is dealing with window management commands. Multiple windows can be
opened at the same time with one and only one activated, and each window has scroll
bars, a zoom button, and a closing button. "Resize/move" lets you change the
position and size of the window. ENTER is to confirm your choice, SIDFT-Arrow
keys are to resize, and Clicking and Dragging the title of the window are to quickly
reposition. "Zoom" lets you select the size of the active window from maximum and
default sizes. "Next" will make the next window active. "Close" lets you close active
window. "Tile" will tile all your opening windows. "Cascade" lets you stack all open
windows.

3. 7 Options Menu
The menu lets- you make environment settings and all the submenu items have default
values. Certainly you can change the settings through dialog box. The BGI path tells
the system where is the Borland graphics device drivers and there will be device
errors without them detected properly. Before using graphics representation, make
sure that path is right through "SetBGIPath". "Mouse" lets you choose the speed of
system responding to mouse click and you can activate the right mouse button by
checking the Reverse Mouse Button. "Colours" can let you choose your colour
preference for every component of TDBSM platform. When you select the item or
group, set foreground and background colours, and do not forget to click OK to save
changes. In addition, you may save and, later, retrieve the current desktop by using
"Save Desktop" and "Retrieve Desktop".

4. Library Primitives

IDBSM is build on C++ Object-Oriented programming . (OOP) language. The
distinguishing features of OOP go to polymorphism, encapsulation, and inheritance.
Therefore, the biggest advantage of OOP is to reuse code as much as possible. If you
are interested in developing algorithms and their visual representation, you can have
more efficient code by knowing the following library primitives.

4.1 Constructor and Destructor
The main function in the simulator is very simple,

int main (int argc, char **argv)
{

TDBSimu tdbProgram(argc, argv);
tdbProgram.run();
return O;

},
since the constructor will take care of all the initialisation and destructor will destroy
the object or class. Thus, you only need to call the run() which is a member function
ofTDBSimu class (a derived class of TApplication defined in the TDBSimu.h header

file).

There are many types of constructors and copy constructor is used in the simulator,
TDBSimu::TDBSimu(int argc, char **argv):

Page9

TProg I nit(& TDBSimu: :initStatusline, & TDBSimu: :initMenuBar,
& TDBSimu: :initDeskTop)

{
... (Body) ...
}.

Although a few lines of code, you can have a fairly good and consistent user interface
which has one top line for menu bar, one bottom line for status line, and a shaded
background against the rest of the application appears. In addition, all the data
initialisation may be done here by writing relevant code in the function body, i.e.
constructor lets you provide a default setting for all parameters and variables used in
the model.

In contrast, destructor is even easier than constructor because it only has one type and
does not return.any values. TDBSM employs

TDBSimu::-TDBSimu()
{

}

graphAppDone();
delete bgiPath;

to close the graph mode if it is active, free the driver memory, and delete the Borland
graphics device drivers path before terminating the program.

Keep in mind that a class may have multiple constructors and may only have one
destructor, and properly using them can have efficient codes for your algorithm
design.

4.2 TView
Any objects seen on the screen are views and TView is the most fundamental and
central class of any applications build on top of Borland Turbo Vision. In other
words, all classes in TDBSM are derived from TView class. Going a bit further, it
means when you develops your proposing algorithms or submodels, you will never
modify the source code of the existing classes directly, instead you extend classes by
deriving new classes from them. See reference [1] for detail.

4.3 TMenu, TSubmenu, and TMenultem
It goes without saying that as the time goes on, the applications and relational
operations in the TDBSM will also grow. However, the extending menu is so easy
that take you less effort (a few modifications in one member function -- initMenuBar),
and you only need recompile the source code.

The menu line at the top of the screen is the menu bar, the titles on the menu bar are
submenus, and each submenu consists of several menu items. The definition of menu
is done through initMenuBar member function which is only one statement,

return new TMenuBar (r, *new TSubMenu(...)+
*new TMenultem (...)+

*new TMenu'ltem (...)+

Page 10

*new TSubMenu(...)+
*new TMenultem (...)+

*new TMenultem (...)+
*new TSubMenu(...)+

...);
where r is the location of the menu.

4.4 TDialog
So far, there are views (objects seen on the screen) and mute objects (proposing
algorithms and standard relational operations), but still lack the engine to drive the
whole simulator. In TDBSM, it is the events communicating through dialog boxes
and handled by the member function ofTDBSimu -- handleEvent(TEvent &event).

Dialog box object in TDBSM includes labels and controls. The former can be
activated but can not accept any input values, while the later may receive input lines
or check and it has several styles (Button, RadioButtons, CheckBoxes, ListBox, and
InputLine).

To execute the dialog, you need to call the setData() member function of TDialog
class to pass the data to the dialog as did in TDBSM,

sdialog->setData(&Data);
ushort result=TProgram::deskTop->execView(sdialog);
if (result==cmOK)

sdialog->getData(&Data);
and call the desktop evec View() function which will return a value telling you the
terminating status (OK or Cancel). If user presses OK, system calls getData()
function to save changes.

As any objects in C++, they are created dynamically and have to destroyed to free all
resources.

TObject::destroy(sdialog);

4.5 Default values setting
Finally, there is a better way to provide default values for parameters setting through
dialog boxes considering struct and its constructor such as following.

struct TextData { II declaration of the dialog box
variables

char sNoNode[numlen];
char sNoRela[numlen];
char slntCst[numlen];
char sTrmCst[numlen];
char sNetBan[numlen];
char sBlkSiz[numlen];
ushort nlarge;
TextData(); II constructor

};

Page 11

TextData::TextData()
{

}

strcpy(sNoNode, "100");
strcpy(sNoRela, "200");
strcpy(s I ntCst, "300");
strcpy(s TrmCst, "400");
strcpy(sNetBan, "500");
strcpy(sBlkSiz, "600");
nLarge=O;

II initialise the dialog box variables

Do not confuse Struct with Class. Both of them can have constructor, but the former
is used only for storing data which by default are public while the later not only stores
data but also the actions on the data (functions) which by default are private.

S. Applications Guide

5.1 Limits to Database Speedup for Data Partitioned Parallelisation in
Relational Operations
A major obstacle to performance improvement in parallel database processing is the
presence of skew, which in extreme cases, can contribute to performance degradation
to a level below that of uniprocessing. In [8], a new taxonomy of skew for parallel
database systems is presented, with attention focused on the relational model
operating in a shared-nothing distributed memory environment in SPMD mode.
Three types of skews are identified: data skew, load skew, and operations skew.

The Load Skewness is introduced when data is partitioned over multiprocessors. A
homogeneous distributed· memory configuration and unary relational operations have
been chosen to study the skew effect which is brought about by intra-operation
parallelism. The conventional performance estimates are far from accuracy and the
closed-form expressions are proposed in [5]. The skewness complicates in binary
relational operations and the skew estimation of join is discussed in [6].

The input variables of the skew application include the number of parallel processors,
the cadinality of the relation(s), and the number of experiments per run. When the
tuples generated, their destinations depend on random numbers. The output from the
application is the load of the maximum loaded processor(s).

5.2 Site Allocation for Parallel Query Execution in Locally Distributed
Databases
The application is dealing with exploiting parallelism for distributed query
processing. Unlike parallel database systems, the communication cost plays an
significant role in total processing cost of distributed database systems because of data
fragmentation and data replication. See reference [3] for detail.

Page 12

The input of the site allocation model are number of sites, number of base relations,
with or without replication, overlapping factors, number of joins per query, cardinality
of relations, length of a tuple, join methods. Moreover, you need unit time for data
probing, hashing, joining, and initiation. The output from the model includes average
number of phases and site utilisation.

5.3 Parallel Query Processing in Object-Oriented Database Systems
The object-oriented model (OOM) provides a more natural way to represent the large
datasets and their complex relationships. As there has not been a standard developed
for OOM, reference [7] gives an overview of the object-oriented data model and
query, some parallelisation techniques and their implementations are discussed, and
query optimisation issues of OOM are presented. The simulation is carried out on
path expression operation.

The input of the path expression object-oriented operation application includes the
number of processors, the number of classes, the number of objects of the root class,
and the average degree of skewness where value one means no skew. Moreover, you
need predicate selectivity for the output and the length of predicate to describe the
coming work load. In addition, the cost unit for variable distribution, fixed
distribution, reading, evaluating, writing, and scheduling must be set before you can
obtain rational results.

The output of the application goes to elapsed time and linear speedup factor. Taking
account of the possibility of re-distribution, elapsed time is given in terms of with or
Without re-distribution, with full data replication, and with uniprocessor.

6. How To Contribute

Any members of TDBG or Computer and Mathematical Science Department who
have written C routines or C++ classes coping with standard database operations or
proposing algorithms are encouraged to integrate their methods or models into
TDBG's simulation model.

The merging steps are as follows,

• add a menu option in initMenuBar() function in the tdbsimu3.cpp file
e.g. PEJoin

• create the corresponding function in tdbsimu2. cpp file with the body of
main() function in your source code

e.g. TDBSimu: :pejoin()
• add the function prototype (declaration) in the tdbsimu.h file

e.g. pejoin()
• put all other codes except main() function to a new file

e.g. costS 1.cpp
• create a header file with function prototypes which used in the main()

function, and include this header file in tdbsimu2.cpp and the new function file
e.g. costS 1.h

Page 13

• make to recompile and link.

7. Concluding Remarks

To study the behaviour of parallel computer database systems and gain deep
understanding of the system, there are several approaches to achieve the objective.
First, use benchmarks which are general database sets or high level programming
language written programs that can represent a given class of applications. Second,
use prototype which is a first form from which copies, reproductions, or further
developments can be produced. Third, employ simulation to provide conditions
which are encountered only in real operations. Fourth, study a real system by
conducti~g experiments on an existing computer system to identify the current
contentions and the potential future problems.

Among them, the benchmark is the simplest but limited to existing systems, often
, with hardware and software requirements, and the proposed systems must be
available in its entirety (configuration). Moreover, the benchmark is less likely to use
in a changing environment where system might get ,complicated in every minute. It
goes without saying that not every research group can afford a real running system.
And also, the measurement of real systems need design carefully. In addition, how to
represent and identify the general performance of real database systems is a key
question since most of the database systems behaviour are stochastic. Therefore,
prototyping and simulation are the most cost-effective ways to study and research a
database system particularly for small or medium sized research groups.

We believe the two methods are not mutually exclusive but sequentially related, i.e.
prototyping is treated as the first step of simulation. By comparison, the former takes
less effort, can run experiments faster, and is easier to modify to achieve desired
objectives whereas the later can show more details of the system such as the
bottleneck.

In other words, we suggest to have a prototype first to identify the potential research
problems and help participants gain experience dealing with one particular system.
Next, the corresponding simulation may be built up depending on the resource
constraints.

Page 14

Appendix A: Source File Names Listing

Header Files
ascii.h
bgi.h
bgii.h
calculator.h
calendar.h
cost51.h
dialog.h
fileopen.h
hc_view.h
graphapp.h
mouse.h
gpuzzle.h
sk_simu.h
sksiml.h
tdbhelp.h
tdbsimu.h
tvcmds.h

Standard Include Header Files
borlandc\include
borlandc\tvision \include

Program Files
ascu.cpp
calculator.cpp
calendar.cpp
cost51.cpp
fileopen.cpp
hc_ view.cpp
mouse.dig
gpuzzle.cpp
sk_simu.cpp
tdbsimul .cpp
tdbsimu2.cpp
tdbsimu3.cpp
utls.cpp

Libraries
borlandc\lib
borlandc\tvision\lib

II ascii table
11 calculator
II calendar
11 path expression operation
II open file
11 clock and heap
11 mouse selection
II game
II skewness
11 main program one
11 main program two
11 main program three
11 graphics utilities

II C++ library
II Library for application framework Turbo Vision

Page 15

Appendix B: Example of Data Representation -- Skew in Parallel
Databases

The following 11 figures (Figure Bl-Bll) output directly from one run of the running

program.
• Each 30-bar in the figure represents one processor
• The length of the 30-bar represents the number of tuples in that processor
• Two vertical lines with coordinates on them provide scale of workload

e.g. 60 means 60 tuples

Page 16

Figure BS: the fifth experiment with 20 processors and 1000 tuples

Page 17

Page 18

experiment

the tenth experiment wiih 20 processors and 1000 tuples

average offfieMinimum anaMaiimum values ofllie a ove ten experimentS oftliis run
• There are two pointS in the figure (minimum value and maximum value) for each

• The relative positions of the pointS in the figure are detennined by their maximum
and minimum values and standard deviation from the mean load

• In the figure, White colour stands for Mean workload
• In the figure, Yellow colour stands for Maximum workload
• In the figure, Green colour stands for Minimum workload

As we mention before, more experiments can be carried out in one run to reduce the
variation.

Page 19

References

[1] Borland International, "Turbo vision for C++ 3.1: user's guide", 1992

[2] DeWitt D., et al, "The Gamma database machine project", IEEE Trans. on Knowledge and
Data Engineering, Vol.2, No.I, March 1990

[3] Jiang Y. and C. H. C. Leung, "Site allocation for parallel query execution in locally
distributed databases", Proceedings of the 7th IASTED International Conference on Parallel and
Distributed Computing and Systems, Washington D. C., October 1995

[4] Leung C.H. C. and H. T. Ghogomu, "A high-performance parallel database architecture",
Proceedings 7th ACM International Conference on Supercomputing, Tokyo, 1993

[5] Leung C. H. C. and K. H. Liu, "Limits to database speedup for data partitioned
parallelisation in unary relational operations", submitted for publication, 1994

[6] Leung C.H. C. and K. H. Liu, "Skewness analysis of parallel join execution", submitted for
publication, 1994

[7] Leung C. H. C. and D. Taniar, "Parallel query processing in object-oriented database
systems", submitted for publication, 1994

[8] Liu K. H., Leung C. H. C., and Y. Jiang, "Analysis 'and taxonomy of skew in parallel
database systems", High Performance Computing Symposium '95, Montreal, Canada, July 1995

[9] Mcgeoch C., "Analysing algorithms by simulation: variance reduction techniques and
simulation speedups", ACM Computing Surveys, Vol.24, No.2, June 1992

[10] Metba M. and D. J. DeWitt, "Dynamic memory allocation for multiple-query workloads",
Proceedings of the 19th Very Large Databases Conference, Dublin, Ireland, 1993

[11] Patel J. M., Carey M. J., and M. K. Vernon, "Accurate modelling of the hybrid hash join
algorithm", Proceedings ACM Sigmetrics Conference on Measurement & Modeling of Computer
Systems, Tennessee, U.S.A., may 1994, PP56-67

Page 20

