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FOLDOVER SEARCH DESIGNS WITH ERROR 
AND AUGMENTING RUNS 

Neil T. Diamond* 
Victoria University of Technology 

Summary 

The performance of a class of two-level nonorthogonal resolution 
IV designs with n factors when experimental error is present is 
investigated and the design of augmenting trials discussed and 
illustrated with an example. If a block effect needs to be taken 
into account then only two augmenting trials are required with 
up to five factors and three augmenting trials with up to nine 
factors. 

[( ey Words: Fractional factorial designs ; nonorthogonal designs; reso­
lution IV designs . 

1. Introduction 

The most common resolution IV designs used in practice and discussed in the 
literature are orthogonal. For these designs the main effects are estimable 
and unbiased by two-factor interactions while the two-factor interactions are 
usually aliased with each other. 

•Department of Computer and Mathematical Sciences, Victoria University of 
Technology-Footscray, PO Box 14428, Melbourne Mail Centre, Melbourne, Vic. 3000, 
Australia. Acknowledgements . The author thanks Dr Ken Sharpe for his help and en­
couragement with this work, which is part of the author's Ph.D. currently in progress at 
the Dept . Statistics, University of Melbourne. 
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In a previous paper, (Diamond, 1991), it was shown that the class of 
modified one-factor-at-a-time foldover designs, consisting of all one-letter 
runs and all ( n - 1 )-letter runs for n two-level factors, can be considered 
as search designs (Srivastava, 1975). When there is no error a strongly 
resolvable search design of resolving power k provides, in this context, esti­
mates of the mean and all main effects and allows the search and estimation 
of the real two-factor interactions, assuming the maximum number of real 
two-factor interactions is k; while a weakly resolvable search design only 
allows this for some values of the two-factor interactions. The modified one­
factor-at-a-time fol dover designs are strongly resolvable when k = 1; weakly 
resolvable when k = 2 except when the number of factors is 6; and may not 
be even weakly resolvable when k ~ 3. 

In this paper the above results are extended to cover the case when 
experimental error is present and also to illustrate the design of augmenting 
trials which may be needed if the real two-factor interactions take on certain 
values. 

2. An Exa111ple 

Box, Hunter and Hunter (1978, p.377) illustrated the use of a 25- 1 fractional 
factorial design by re-analysing a 25 design but only using the results of the 
runs in the 25- 1 design. The five factors were 1, feed rate; 2, catalyst; 3, 
agitation rate; 4, temperature; and 5, concentration; while the response was 
the percentage of a raw material reacted in a reactor. For convenience in this 
paper the five factors have been re-labelled B, D, C, A and E respectively. 

Table 1 gives the results of the ten runs in the 25 experiment correspond­
ing to the modified one-factor-at-a-time foldover design. Table 2 gives the 
mean square errors for the regression of the five main effects on the response 
and also for the best five models when fitting one and two interactions in 
addition to the main effects where, for example, {AD, AE} corresponds to 
the model where the main effects A to E are fitted as well as the two-factor 
interactions AD and AE. 

Examination of Table 2 reveals a very interesting feature. The three 
models {AD,AE}, {BD,BE}, and {CD,CE} show a sizeable reduction in 
the mean square error over models involving only one two-factor interaction 
and, in addition, there appears to be a clear gap to other models involving 
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Run Factor Response 
A B c D E (%reacted) 

1 + - - - - 69 
2 - + _ I - - 53 
3 - - + - - 53 
4 - I - - + - 63 
5 - - - - + 56 
6 - + + + + 65 
7 + ' - + + + 81 
8 + + - + + 77 
g + + + - + 42 

10 + + + + - I 98 
'• 

Table 1: Results of the 10 runs in a 25 experiment corresponding to the 
modified one-factor-at-a-time foldover design . 

Number of Interactions MSE 
interactions in model 

0 { } 152.90 
1 {CD} 96.53 

{BE} 115.67 
{AE} 115.67 
{BD} I 125.19 
{AD} ' 125.19 ' 

2 {CD,CE} 1.79 i 

{AD,AE} 5.50 
{BD,BE} 5.50 

'I 

{AE, BC} 52.00 
{AC,AE} 52.00 

Table 2: Mean square errors for the model with main effects only, and the 
best five models involving the main effects and, in addition , one and two 
interactions respectively. 
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two two-factor interactions . If we assume that there are at most two non-zero 
two-factor interactions then it appears likely that one of these three models is 
the correct one. Analysis of the full 25 , with the regression parameterization 
used in this p~er, shows that the true model is in fact {AD,AE} with AD 
= 6.625 and AE = -5 .5. 

The fact that these three models are the best is in line with the findings in 
the previous paper. There it was shown that when the true model consists of 
two interactions with one letter in common and the interaction effects equal 
in magnitude but opposite in sign, then searching for the true model in the 
error-free case is not possible since the component of the observation vector 
orthogonal to the mean and main effects lies in the subspaces corresponding 
to a number of different models . The example illustrates that , even when the 
interaction effects are only approximately equal in magnitude and opposite 
in sign, it will be difficult to distinguish between the models corresponding 
to the intersecting subspaces on the basis of the data if error is present. As 
shown in a later section it is possible to design augmenting trials to resolve 
these ambiguous results. 

3. Perfor1nance of the Designs with Error 

In the example a number of models had similar mean square errors. In this 
section an analysis of the expected value of the mean square error when 
fitting a false model will be undertaken and applied to the modified one­
factor-at-a-time foldover design . 

Consider the case where we are fitting a model M2 when the true model 
is in fact M1. In the context considered in this paper M1 and M2 would 
involve the mean, all main effects and ki(i = 1, 2) < (n - 1) two factor 
interactions respectively where the two factor interactions are different for 
M1 and 1112. 

The true and false models can be rewritten as 

Xo/30+X1/31 + t:1 

Xo/30 + X2/32 + £2 

where X 0 (2n x (n + 1)) consists of the columns of the design matrix corre­
sponding to the mean and ma.in effects, X1 (2n x ki) and X2(2n x kz) con-
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sist of the remaining columns of the design matrices respectively and £ 1 ,....., 

N(O, cr2 I) since Af1 is the true model whereas c:2,....., N(Xifli - X2/32, cr2I). 
Both models can be rewritten as 

M1: y.o 

M2: y.o 

X1.o/31 + €1 

X2.o/32 + €2 

where y.o, X1.0 and X2.o, the matrices of residuals of y,X1 and X2 regressed 
on Xo respectively are given by 

Y·O (I - Xo(XbXo)-1 Xb)Y 

X1 .o (I - Xo(XbXo)-1 Xb)X1 

X2.o (I - Xo(XbXo)-1 Xb)X2. 

When model A12 is fitted then y.0 is projected onto the manifold generated 
by the columns of X 2·0. Then the estimated error vector €2 is given by 

where the projection operator is 

The residual sum of squares is then given by 

RSS 
~1 ~ 

C:2C:2 

(/3~X~.0 + c:~)(I - P)(X1.o/31 + €1) 

since (I - P) is idempotent. Hence 

E(RSS) E(/3~X~.0 + £~)(! - P)E(X1.o/31 + t:1 ) + trace(cr2 (I - P)I) 

/3~X~.o(I - X2.o(X~.0X2 .o)-1 X~.0 )X1.o/31 + (n - k2 - l)cr2
. 

In table 3 the expected values of the mean square errors have been cal­
culated using the above formula for the cases where if there were no error 
then more than one model could fit the data exactly. 
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n True Model False Models E(MSE) for 
False Models 

I I 

~5 {AB,AC} 
1 

{BD, CD}, {BE, CE}, ... <T2 + 32{n-4l{AB+AC}2 
{3n-8Hn-3} 

I 

~5 {AB,CD} {AC, BD}, {AD, BC} 2 + B(AB-CD)2 

<T {n-3} 

5 I {AB,AC} {BC, DE} u 2 + 2(AB - AC)2 

5 {AB,CD} {AE, BE}, {CE, DE} u2 + ~(2AB - CD)2 

6 {AB} {CD,EF} ()2 

6 {AB,CD} {EF} u 2 +~(AB - CD)2 

I 

I 

8 {AB, CD} {EF,GH} u 2 +~(AB - CD)2 

Table 3: E(!v!SE) for vanous false models for the modified 
one-factor-at-a-time foldover design involving n factors. 
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M {b24 , b34} ,.,,.,,., ,.,,.,,., 
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Figure 1: Geometric interpretation of the estimation of the two-factor inter­
actions BD and CD when the real two-factor interactions are in fact AB 
and AC, following a modified one-factor-at-a-time foldover design. 

Table 3 shows, for example, that if the true model is {AB, AC} and if 
AB = -AC then the expected value of the mean square errors will be u 2 for 
( n - 2) models. A geometric interpretation of this result and an alternative 
derivation of E(RSS) is given below and represented in Figure 1. 

The manifold orthogonal to the mean and main effects corresponding 
to the true model {AB, AC} is spanned by the vectors bi2 and bi3 and is 
denoted by M { b12, bi3}, while the manifold orthogonal to the mean and 
main effects corresonding to the false model {BD, CD} say is spanned by 
the vectors bz.1 and b31 and is denoted by M { b24, b34}, where the bij take 
the values (4 - 2n)/n in the i th and j th rows and 4/n elsewhere. The 
intersection of M {,812, ,813} and M {,824, ,834} is given by c(b12 - bi3) for 
arbitrary c, which is the same as c(b2,1 - b31) . Assuming for simplicity the 
error free case the projection of the component, of the observation vector 
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orthogonal to the mean and main effects, ABb12 + ACb13, onto bi2 - bi3 
is given by (AB - AC)(b12 - b13)/2. The fitted false model component 
orthogonal to the mean and main effects is given by the vector (AB -
AC)(b12 - bi3)/2 plus the projection of (ABb12 + ACb13 - (AB -AC)(b12 -
b13)/2) onto (b24 + b34) since (b24 + b34) is obviously orthogonal to (b24 -b4) . 
Then RSS1l 2 = (AB+ AC)ll(b12 + bi3)!1(sin 0)/2 where 0 is the angle formed 
by (b12 + b13) and (b24 + b34). Hence 

where 

1 
RSS = 4(AB + AC)2ll(b12 + b13)112(1 - cos2 0) 

cos()= (b12 + b13). (b24 + b34) 
Cllb12 + b13ll)(llb24 + b34II) 

and evaluating this, and since the degrees of freedom is ( n - 3), we obtain 

MSE = 32(n - 4)(AB + AC)
2 

(3n - 8)(n - 3) 

Since the modified one-factor-at-a-time foldover design is symmetric in 
all the factors, the results in Table 3 also apply when factor labels are 
interchanged. For example, taking n = 5 and interchanging B with D and 
C with E, we can see that if AD= -AE for the true model {AD, AE} then 
the falso models {BD,BE} and {CD,CE} will also have E(MSE) = o-2, 
agreeing with the example covered in the previous section. 

The results in table 3 can be used in a number of ways . For example, 
assume that there exists a good estimate of the standard deviation o- . Then 
the standardized residual sum of squares ( RSS / o-2) follows a noncentral chi­
square distribution with noncentrality parameter 

The noncentrality parameter is of course zero for the true model. For each 
model we can calculate the RSS and separate those models that agree with 
the data from those that do not using the following method: For each com­
peting model calculate (RSS /o-2). If this value is less than the 95th percentile 
of a central chi-square distribution with the appropriate degrees of freedom 
then the model is considered consonant with the true model. Obviously the 
true model has a 0.05 probability of being labelled non-consonant, while 
the probability should be greater than or equal to 0.05 for each of the false 
models. 
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Number of h 
factors , n 

5 1.84 
6 1.64 
7 1.59 
8 1.57 
9 1.57 

Table 4: Values of h such that I AB+ AC I~ her forms a 95% consonance 
region for {BD, CD} . 

For a particular false model M2, a set of values of the true model pa­
rameters /31 can be calculated for which the probability of declaring M2 

consonant with M1 is greater than 0.05. We will call such a set a 95% 
consonance region for M2. The region is calculated by setting A so that 

where x(v ; A) stands for the noncentral chi-square distribution with degrees 
of freedom v and noncentrality parameter A, v = error degrees of freedom 
for model M2, and x2a(v) stands for the lOOa percentile of the central x2 

distribution with degrees of freedom v . 
With M1 given by {AB, AC} and M2 given by {BD, CD} the conso­

nance regions are of the form I AB+ AC I~ her . Table 4 gives the values of 
h for the modified one-factor-at-a-time foldover design with 5 ~ n ~ 9. If 
the values of the two-factor interactions fall outside the consonance region 
then the probability that the false model can be separated from the true 
model on the basis of the data will be more than 0.95. 

4. The Design of Aug1nenting runs 

Daniel (1962;1976 Chap .14) discussed the design of augmenting trials to de­
termine the real two-factor interactions in a significant two-factor interaction 
string arising from a two-level resolution IV design. We can use a similar 
idea following the use of a modified one-factor-at-a-time foldover design to 
determine which one of the competing models that cannot be separated on 
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the basis of the data is the true model. The designs considered here can also 
be viewed as examples of "Probing designs" introduced by Srivastava(1989). 
The emphasis here, however, is quite different in that we deal only with the 
class of modified-one-factor-at-a-time foldover designs, both the error-free 
and error cases are covered as is the case when a block term is required. 

It suffices to consider only one case in detail corresponding to the n 
factor design in 2n runs when the two non-zero interactions have one letter 
in common and opposite effects. We will initially assume the error-free case 
and without loss of generality relabel the factors so that the i th of the 
( n - 2) competing models consists of the interaction between the i th and 
( n - 1) th factors and the interaction between the i th and the n th factors, 
1 Si S (n - 2). 

For the interaction between the k th and the I th factors (1 S k < I S n) 
the corresponding column in the initial design, orthogonal to the mean, is 
bkt and for the augmenting design Bk1. Both bk1 and Bk1 take the value ( 4/ n) 
in rows where factors k and l take the same levels, and the values (4-2n)/n 
elsewhere. 

In order to separate the i th and j th model (1 S i < j S (n - 2)) the 
column vector 

Cij = Bi(n-1) - Bin - Bj(n-1) + Bjn 

must not be equal to 0, and hence for the augmenting design to be effective 
all the Cij must not equal 0. Furthermore, if a block effect needs to be 
allowed for, which is most often the case in industrial experimentation, then 
the Cij must not be proportional to the unit vector. 

Note that 

Bl(n-1) - Bln - Bj(n-1) + Bjn 

[B1(n-l) - Bin - Bi(n-1) + Bi(n)] 

which equals Cij· Moreover Cij = 0 if and only if C1j = C1i, and Cij = xl 
if and only if C1 j = Cii + xl, that is they differ by a constant amount. 

Hence we need only examine the matrix 

in order to determine if the augmenting design will separate the (n-2) com­
peting models. 

The elements of Cij can only take the values -4, 0 or 4. The value -4 is 
taken when the sign sequence of the factors i, j, (n - 1) and n is ( +, -, -, +) 
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or(-,+,+,-), the value 4 is taken when the sign sequence is(+ , -,+,-) 
or(-,+,-,+), and the value 0 taken otherwise. The r rows of the matrix 
C can be reordered so that the first r1 S r rows take only the values O's and 
4's, while the last r2 = r - r1 rows take only the values O's and -4's, since 
only these two possibilities exist. 

Since the elements in each row can only take two possible values and 
there are r rows, the number of distinct columns of C is 2r. One of these 
columns consists of all O's and hence (n - 3) S 2r - 1 or r ?:: log2 (n - 2), 
if a block effect does not have to be taken into account. Note also that one 
of the columns consists of all O's in the first r 1 rows and -4's in the last 
r2 rows, while another column consists all 4's in the first r 1 rows and O's in 
the last r2 rows. If a block effect needs to be allowed for only one of these 
columns can be used and hence (n - 3) S 2r - 2 or r ~ log2 (n - 1) . 

These results indicate that a two run augmenting design will be sufficient 
in the error free case for a 5 factor experiment if a block effect is required 
and for a 6 factor experiment if a block effect is not required. If we have 
conducted a 9 factor experiment in 18 trials then only 3 augmenting runs 
will be required. This latter result is potentially important since with the 
usual orthogonal resolution IV fractional replicates an increase from 16 to 
32 trials is required when the number of factors increases from 8 to 9. 

The use of the augmenting runs is illustrated with the reactor data ex­
ample considered earlier. If we choose the matrix 

c = ( 4 4) 
-4 0 

then, from examination of the corresponding sign sequences, the first run 
can be chosen to be ad and the second run to be bd. Using the corresponding 
response yields of 94 and 61 for these two runs from the original 25 design, 
the competing models, including now a block term, were fitted to the 12 ob­
servations. Table 5 gives the residual mean squares for the three competing 
models. 

Clearly, in this case, the augmenting trials have allowed the identification 
of {AD, AE} as the correct model. Of the 231 possible pairs of augmenting 
trials, 24 give eligible C matrices. The 24 pairs consist of any two runs 
from the set {ad, bd, cd} or any two runs from the set { ae, be, ce}, where 
each of the selected runs can be exchanged for its fol dover . Since a blo<;.k 
term is fitted, the separation of the competing models depends only on the 
difference between the responses of the augmenting runs and hence, when 
error is present, we prefer the 12 pairs where only two factors change levels, 
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Interactions MSE 
in model 

{CD, CE} 33.30 
{AD , AE} 8.35 
{BD, BE} 147.19 

Table 5: Mean square errors for the three competing models after the addi­
tion of the two augmenting runs ad and bd. 

True Model A/<r 
0 0.5 1 1.5 2 2.5 3 3.5 

{AD , AE} 13 84 438 792 929 957 960 952 
{BD,BE} 15 104 433 779 933 937 948 948 
{CD, CE} g 5 61 431 833 951 939 964 

Table 6: The number of simulations out of 1000 where the correct true model 
was identified, when the first two-factor interaction effect in the true model 
had a value of A and the second two-factor interaction effect had a value of 
-A, following the addition of the augmenting runs ad and bd . 

such as {ad, bd} and {bee, ace}, rather than the 12 pairs where three factors 
change levels , such as {ad, ace} and {bd, bee}. 

If <T is known to be 3.5, then for models to be regarded as consonant 
with the true model the MSE needs to be less than 31.9. Of the 12 pairs 
of eligible augmenting runs with only two factors changing levels , 10 would 
have successfully identified {AD, AE} as the true model. The success of 
this separation depends on the parameter values of the real two-factor in­
teractions , the value of the standard deviation and also on which model is 
actually the true one. For example, for {ad, bd} the separation will be less 
clear if {CD, CE} turns out to be the true model. This is demonstrated 
by the simulation summarized in Table 6 giving , for various values of A/<r , 
the number of simulations out of 1000 where the correct true Model was 
identified, when one of the real two-factor interaction effects had a value 
of A and the other had a value of -A. If the models are not separated 
after the initial augmenting runs then a further augmenting pair, giving less 
separation if either {AD, AE} or {BD, BE} are the true models , should be 
chosen. 
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5. Conclusion 

The orthogonal resolution IV fractional replicates yield the most efficient 
estimates of the main effects and are relatively simple to design and analyse. 
However in most cases the two-factor interactions are aliased in strings, and 
if one or more of these strings are significant then augmenting trials will be 
required. 

The designs considered in this paper involve a small sacrifice in the 
efficiency of the estimation of the main effects. The major advantages are 
the fewer number of runs required and the ability to identify and estimate 
a small number of real two-factor interactions as long as the two-factor 
interactions do not take certain values. Even if they do, then it is possible 
to design an augmenting set, involving only two trials with up to five factors 
and three trials with up to nine factors that will enable the identification 
and estimation to be done. 
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