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Series arising from an integral equation are summed. The series involve inverse powers of
roots from the characteristic equation. It is demonstrated how previous similar series
obtained from differential -difference equations are particular cases of the present

development.



INTRODUCTION
Silberstein {3] found the surris of two series arising from the differential -

difference equation s

_p' (x)=u(x-mn).

More recently Cerone and Keane (2] generalised the results to obtain the sum of of series

Z () "X and 2 (1+mp) "k where p; are the roots ofp=e ¥ and summation

is overall p;-

In this paper a method for developing the sum of similar series is derived
from the renewal equation describing births in a one - sex population. A number of

generalisations and extensions are also examined.

Sums of series of the form -

1
, a=#p, , nel

n «
(pj - o) K, -

are obtained where the summation is over all the roots P of 0°(p) =1

§ .
ma =L G o @] o=p.



ASI TION AND RESULTS

Consider the bmhsB(t) at time t from a single ancestor aged x at the zero of

" time. Thus

P(x+t)
{(x)

Bo = £ + [Bewo o ax, M
’ 0

where ¢ (x) is the net maternity function

and / (x) is the probability of surviving to age x of a new homn.

Taking the Laplace transform of (1) we obtain after minor manipulation

prioe e’ J‘ e™ ¢(u) du
BO=— | o —ee— & ®
2mi y- ioe [x)1-¢ (@]

where ¢"(p) is the Laplace transform of ¢(x) and Y is chosen in such a manner as to
ensure convergence. If we now allow t — O+ then since the Laplace transform

gives the mean value at a discontinuity (Bellman and Cooke [~1]), we obtain from (2)
that

yrim € f e™ ¢(u)du
X

%¢(x+) = _.1... J' - dp . (3)
2mi Y- iw 1-¢ (p)

Proceeding in a formal fashion we integrate (3) from t to = to give

THies ) j O(u)du - e ™ J e ™ o(u)du
t

2 [ a1 ] =
t o pll-¢ (@]

t

dp.
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Puttingt=01in gquatioh (4) we obtain

| prio )
M, J' M,- ¢ (p) 4
2 . . ™
_ AL pll-o @)
where M, is the zeroth moment of o.
That is,
M, - M, -1
= =% [ = 9p2 G
T e P1-0 @) .

Evaluation of these integrals usmg residues and noting that the second integral in (5)
gives 1/2 (see Cerone and Keane [2]) gives

1 1 M,+1
5= ) = ©)

2 M, -1

where pj are the roots of q)*(p) =1 and are assumed to be Eimple,

_ |do@
M, [ dp ] P=p,

and the summation is over all the p;-

It is a straight forward matter to deduce from equation (5) that

Aﬁ,i“

1 d 1
= ] = - )
2w . pll-¢ @I

and so from (4)

e € | ™ owa
t

2ni p(l1-¢ (]

Integrating (8) from x to e and putting x = 0 gives

1 J'AM“MO'&(p) P _,

E— )
pr(1-0 @]

2m )
i



Now, for the nth moment
M, = J 0" ¢ () du<,
0

we can develop ¢*(p) into.a Taylor seﬁes' e)"cpansion about p =0 since
L, - n d’n . .
M= (-1)"] — ¢'(p) : (10)
-] dp | p

!
(e

I-Ience we can write

-

M,
¢<p> M -T,—p+o<pz>

‘ M
and so there is a pole at p = 0 in equation (9) with residue i 1&[
“ ™
Further, evaluation of équation (9) gives the sum, S, as
1 M
S, = Z —_— o —t (11)

2
P2 W, (1-My

Continuing in this manner we can obtain in a formal fashion a countably
infinite number of series of the form

S, = Z-Tl— : (12)

For the n® step, with n 2 2 we have }
M 2 M
. 1 _n2 n-2 *
. J.?H [Mo -7 P + (™2 o P ¢ (P)l dp _ 0. (13)
mi L p'I1- ¢ ()]

Developing ¢*(p), in the numerator of equation (13), in a Taylor series
expansion about p = 0 shows a simple pole at p = 0 the contribution from which is
given by

n-1
(O My (14)
@Dl M, -1
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Using equation (14) and obtaining the contribution from P; the roots of

¢ (p)=1in equation (13) gi'vés"fﬁé’sum of the series in (12) by

1 S (n-k'+‘1)"vM o R M '
Sy = —— (-B n-k S +(-1) .19
T M-l kz:’z_ @-or (@-1)! (M, -1)*

Equation (15) holds forn =2, 3, .... The result shown in equation (11) is

obtained on putting n = 2 in equation (15) and remembering that the term in the

sigma sign is taken to be zero.

At each step of the procedure once an expression has been found for the

n'™ series, it can be shown that
Y+ i
— J' —;—927— =0 forn=23, ... (16)
™M . P 1-0 ()

since from (13) and (15) we have

1 (n)
Sn=Z " = - Rcsp___o an

p; K.

where Res ;n?__ o is the contribution of a pole of order n at p-=0 so that

-1
@ _ 1 |4 1
Res o = oD — - (18)
dp- |10 ®]]|p=0.

The above result signifies that each of the coefficient integrals of the

moments M in equation (13) is zero.

Equations (17) and (18) give a different, although equivalent, representation

for S as equation (15). These expressions hold for n > 1. The sum S, is given by

equatdon (6).
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We note at this stage that the abave procedure would have to be modified

if 6 (0) = 1.

It is further of interest to note that series of the general form
' 1

o, (o) = (19)

n

can be summed by the above development, where ¢ *(a) # 1. This may be

accomplishéd by multiplying equation (3) by € **x ™1 n 2 1 before integration.
An easier way, is to take n = 1 to obtain a generalisation of (6) as
L, (ax)+1 1 1
°'1(°‘)=Z—'1—"‘ =.%. _°____=§.+__.__ (20)
(p; - K, Ly ()1 Ly(a)-1

where L_(a) = J- e ** X" ox) dx.
0

Formal differentiation of equation (20) with respect to ¢ would give

expressions for G_(a) as

n-1 -
1 d 1
@ = ), —L— = o] [ ] @)

(- )" da™! | Ly@-1

or alternatively by
!

g, (@) = S (o) , n=2,3, «. . (22)

1
n-1

It is of interest to note that (21) is similar to (17) and (18) with Res @ Further we may

p=at

note that since S, = ¢_(0) we may obtain the previous results for S by using

equations (20) and (21) and putting o0 = 0, after the differentiation.



-8-
Alternatively corresponding expressions to equations (15) and (16) could be

obtained by replacing S_by ¢ . (@), M_by L (a) and Res n

(n) (n)
=0 by Res o=t

PARTICULAR RESULTS

To reproduce the results of Silberstein [3] and Cerone and Keane [2]
“we need to take '

¢(x)=H(x-n) (23)
where H(u) is the Heaviside unit function defined as one for u > 0 and zero

otherwise.

With ¢(x) as in (23) and using (20) we obtain

d—— =3 (24)

L+,

where the summation is over all the roots p, of pe"P =1 and we have

allowed oo — 0.
If the M, are not finite then the results for the sum of the S_ series would
need to be modified. This can be done by replacing the M, by L, (o) and

allowing o« ->0.

Thus from equation (11) or (21) we have
1 , L, (@)
S, = lim Z —— = lim —
a >0 (pj - 0.) u.j o —->0 (1 - Lo(a))

and so

Z__._l____=1. 25)

p; (1+7p)
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Generalisations can be obtak.ed by taking other forms of ¢(x) such as

—S————

¢(x) = x* H(x - b) H(c - x) . (26)

As a demonstration we will consider

o(x) = x H(x -1) . | 27
Now, the Laplace Transform of (27) gives

g ' * p,1 1

0@ =P (=+=)
T P 2
: p

and so from (20) we need to take o -> 0 since M, is not finite, giving,

1 +p; 1 i L) +1

2 2 o
(1+p) +1 >0 L(o)-1

where Lo(ct) = ¢ (c0).

Hence,
1+ P;

1
-, (28)
a +pj)2 + 1 2

where the summaton is over p; the roots of pteP=p+1. We note that both results
(24) and (28) could have been obtained from equation (6) by allowing M, -> oo,
This cannot be done in situations involving other moments since then the rate at
which M| -> e matters. In such cases we would need the explicit expression

for L (o) so that the limit as & -> 0 could be taken.

As a further example consider

o(x)=H(y-x) , y#1 (29)
so that

1-¢ P

¢'(p) =



-1 0-

and so

. oyned
M, = ‘

A+l

The restriction on ¥ is made so that ¢ (0) = 1.

Since the M are finite, the expi'essions obtained for S can be used directly to give

from (6) and (15), |
1 1 1
5= == 1 - ¥+l (30)
pj uj 'ij +1-7 y-1
and
T o R Pt -
S = — —_— S+ ) s =2,3,4, ..
n -1 IZZ m-k+1)! k ol - 1)2 | n 3 (3D

S, = D, — | (32)
p, (¥p;*+1-7)

and summation is over all P; therootsof p=1-¢e YP, y= 1. Further,

breaking (32) into partial fractions would produce sums of series of the form
Z 1
-—k' .
P;

In particular using (30), (31) and (32) with n = 2 gives

o _x
P; 2(1-7)

Taking ¢(x) to be represented by a histogram would give a generalisation of

the results obtained from ¢(x) given by equation (29).

Thus if,

0(x) = S: o H(x-b) H(b,, - %) (33)

=0



then
. S L
o (.= o Y 5 (34)
where -
o — , =0
Y, = \%-%_, , 0<r<R
-, , =R

Assuming M, = ¢ (0)

]
)
-
[}
flngs
<
(o
#
—

then

M -1
p. L. b, 0
10 1+2‘ybeJ

and the sum for S_ is given by

n-k+l

(- 1) " M,
Sa -1 Z —wor Mhee S Y

where

-

[1+Zybepj j

Taking R = 1, by =0, b, = will reproduce the results obtained previously

for d(x) = H(y - x).
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SOME SIMPLE DERIVATIONS®OF THE RESULTS OF SECTION 2
Consider the ir;tegral equation
A :
B(t) = F(t) +J. B(t - x) ¢(x) dx (35)
0

with P(;) = e ** then we may readily obtain, using Laplace Transform techniques,
that

o - Pty
BY = — | L (36)
L e @010 ()] -
That is, evaluating (36) using the theory of residues gives
ot Pt
B = ——— + ), ——— 37
1-(1)((1) (pj‘a) p'J
where we are assuming that the roots of ¢*(p) =1 are simple and that o (o) = 1.
Evaluation of (36) and (37) at t = 0 gives, since the Laplace transform
gives the mean value at a discontinuity,
Y+ iee
L dp 0.2 (38)
mi L P-o[1-9°E)]
and
1 1
O\ =g - —— - (39)
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Differentiation with respect to ¢ gives from (38)

¥+ e .
1  dpe
-—J as = 0 n=23,.  (40)
2mi

Yo @0 [1-0 ()]

and from equaﬁon (39), o, () as given by equation (21).

Equation (21) could be obtained directly from evaluating equation (40) to

give
1
g, (@) = E —— = - Res™ |, n=2,3,.. @&
n p=c . .

Further, equations (40) and (41) can be obtained from (35) by taking

- F@t) = -l et

. 0, n>1
and noting F(0+)={1 , n=1-

An alternate way to derive the sums of the series would be to take F in
equation (35) as
%t f(x + 1)

Thus, with the integral equation

t
b(t) = e™f(x +t) + j b(t - X) $(x) dx (42)
0

and assuming f to have a Taylor series expansion about t = 0 we would obtain

upon using equation (33),

Y+ i

oo n)
%f(x) =.—1_-' J nt;(-l i » dp : (43)
2rti n=0 (p-a) [1-9(p)]

Y- iee
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Hence using residues we get from equation (43),

1 2w [ 1
5 fk) = Z £Vx) Z lnﬂ + Res“:;l (44)
=0 " P

where Resm'_ . s the residue at p = ¢ from a pole of order n+1 of the

integrand in (43).

Equating coefficients of f®(x), since f(x) is an arbitrary function, we obtain from

equation (44), 6, (ct) as given by equations (39) and (41).
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