
.. VICTORIA UNIVERSITY 
OF TECHNOLOGY 

DEPARTMENT OF 
MATHEMATICS, COMPUTING 

AND OPERATIONS RESEARCH 

ON SERIES INVOLVING 
ROOTS OF TRANSCENDENTAL EQUATIONS 

ARISING FROM INTEGRAL EQUATIONS 

Peter Cerone 
(12MATH1) 
JUNE, 1991. 

TECHNICAL REPORT 

DEPT OF MCOR 
FOOTSCRA Y INSTITUTE OF TECHNOLOGY 
VICTORIA UNIVERSITY OF TECHNOLOGY 

BALLARAT ROAD (P 0 BOX 64), FOOTSCRAY 
VICTORIA, AUSTRALIA 3011 

TELEPHONE (03) 688-4249/4225 
FACSIMILE (03) 687-7632 



ON SERIES INVOLVING 
ROOTS OF TRANSCENDENTAL EQUATIONS 

ARISING FROM INTEGRAL EQUATIONS 

Peter Cerone 
(12MATH1) 
JUNE, 1991. 



ON SERIES INVOLVING ROOTS OF TRANSCENDENTAL 

EQUATIONS 

ARISING FROM INTEGRAL EQUATIONS 

P.CERONE 

Victoria University of Technology, Australia, 3011. 

Series arising from an integral equation are summed. The series involve inverse powers of 

roots from the characteristic equation. It is demonstrated how previous similar series 

obtained from differential -difference equations are particular cases of the present 

development. 
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1. INTRODUCTION 

Silberstein [3] found the sums of t\vo series arising from the differential -

difference equation 

I 

,!:1 (x) = u (x - Tl). 

Mo~ recently Cerone and Keane (2] generalised the results to obtain the sum of of series 

"" (p.) · k and ~ (1+11p.) - k where p. are the roots of p = e · 11P and summation £...J J £...J J J 

is over all Pj· 

In this paper a method for developing the sum of similar series is derived 

from the renewal equation describing births in a one - sex population. A number of 

generalisations and extensions are also examined. 

Sums of series of the form . 

1 
n 

(p. - ex) µ. 
J J 

are obtained where the summation is over all the roots Pj of <I> •(p) = 1 

and µj = - [ -al; <I>• (p) ] p = pj . 
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2. BASIC EOUA TION AND R~SUL TS. 

Consider the births . ~~t)'at time t from a single ancestor aged x at the zero of 

.. - time. Thus 

r 

B(t) = <j>(x+t) + J B(t-x)<)> (x) dx_ , 
- l (x) -.. -

(1) 

0 

where $ (x) is the net maternity function 

and l (x) is the probability of surviving to age x of a new horn. 

Taking the Laplace transform of (1) we obtain after minor manipulation 

-
"f+-i-

epx f e-pu <j>(u) du 

B(t) 
1 f pt x dp (2) =- e 

* 21ti l(x)[l-<I> (p)] 
"(- i-

where cp*(p) is the Laplace transform of <j>(x) and yis chosen in such a manner as to 

ensure convergence. If we now allow t ~ O+ then since the Laplace transform 
" 

gives the mean value at a discontinuity (Bellman and Cooke [1]), we obtain from (2) 

that 

-
px f e-pu <)>(u)du y+i- e 

1 1 f x dp . (3) - <l>(x+) = • 2 27ti 1 - <I> (p) r- ioo 

Proceeding in a formal fashion we integrate (3) from t to co to give 

- "(+ ioo 

f 2
1 I 1 ~(x) dx =-

21ti 
/- i-

• 
p (1 - <I> (p)] 

dp . (4) 
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Putting t = 0 in equation (4) we obtain 

Mo 
"f+'ioo 

·- 1 J. - = 
2 21ti 

"" 
"{-ioo 

where M0 is the zeroth moment of <j>. 

That is, 

= 1 

21ti 

"ft"i-

J 

• 
Mo - <I> (p) 

dp • 
p(l - <I> (p)] 

M - 1 1 __ o ___ dp+-

p[l - 4> (p)] 21ti 

"f+i- . 

f ~ . P 
(5) 

Evaluation of µiese integrals usiilg residues and noting that the second integral in (5) 

gives 1/2 (see Cerone and Keane (2]) gives 

. ~ 1 1 Mo+ 1 
-· S=L..J-=-

1 p. µ. 2 M0 - 1 
J J 

(6) 

where Pj are the roots of <1>*(p) = 1 and are assumed to be .simple, 

µ = - d <I> (p) 
[ 

* ] 
j dp p = Pj 

and the summation is over all the Pj. 

It is a straight forward matter to deduce from equation (5) that 

1 
• 

p (1 - <I> (p)] 

dp 1 
= 

2 
(7) 

and so from (4) 
00 

"f+'ioo 
epr. J e -pu <I>( u )du 

1 f dp =0. • 21ti 
"ti-

p (1 - 4> (p)] 
(8) 

Integrating (8) from x to oo and putting x = 0 gives 

(9) 
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Now, for the nth moment 

-
~ J u n <I> (u) du< oa , 

0 

we can develop <I>• (p) into.a Taylor series expansion about p = 0 since 

~·= <-on ·{ d·. "'.(p)] (10) 
. dp p=O 

. . 

Hence we can write 

<I>• (p) = M0 - ~ p + O(p 2J 

and so there is a pole at p = 0 in equation (9) with residue 

Further, evaluation of equation (9) gives the sum, S2 as 

S2 = I 1 
p.2 µ. 

J J 

Ml 
= 

Continuing in this manner we can obtain in a formal fashion a countably 

infinite number of series of the form 

s = ~ 2-
n £..J n 

p. µ. 
J J 

For the nth step, with n ~ 2 we have -. 

[ 
M M 1 n-2 n-2 

Mo -1! P + ··· + (-l) (n-2)1 
1 

p•-2_ <I>. (p)] dp = 0. 

21ci n • 
p [1 - cl> (p)] 

(11) 

(12) 

(13) 

Developing <!>*(p), in the numerator of equation (13), in a Taylor series 

expansion about p = 0 shows a simple pole at p = 0 the contribution from which is 

given by 

( -l)n-1 

(n-1)! 

M n - 1 

M0 -1 
(14) 
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U sing equation (14) and obtaining the contribution from p. the roots of 
J . 

<t>*(p) = 1 in equation (l3) gives i1ft.sum of the series in (12) by 

1 
.- n -1 

L 
k=2 

M · M 
( -l~)(n - k +I)° n _ k Sk + (-l)n ___ n_-_1 __ 

(n - k)! (n-1)! (M
0 

-1)2 
(15) 

Equation (15) holds for n = 2, 3, ... . The result shown in equation (11) is 

obtained on putting n = 2 in equation (15) and remembering that the term in the 

sigma sign is taken to be zero. 

At each step of the procedure once an expression has been found for the 

nth series, it can be shown that 

1 

21ti r- -p"_[_l d __ :-.-(p-)] 
"(- i-

= 0 for n = 2, 3, 

since from (13) and (15) we have 

Sn= L +-
Pj µj 

= - R 
(n) 

es P = 0 

where Res ~n~ 0 is the contribution of a pole of order n at p -='0 so that 

Res(n) = 1 ~ 1 
[ 

n-1 [ ]] 

p=O (n-1)! dpn-1 1-4)(p) p=O. 

The above result signifies that each of the coefficient integrals of the 

moments M in equation (13) is zero. 

(16) 

(17) 

(18) 

Equations (17) and (18) give a different, although equivalent, representation 

for Sn as equation (15). These expressions hold for n > 1. The sum S1 is given by 

equation (6). 
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We note at this stage that the abo..ve procedure would have to be modified 

if<!> (0) = 1. 

It is further of interest to note that series of the general form 

=L n 
(p . - <X) µ . 

. .. J J 

1 
(19) 

* . can be summed by the above development, where q, (<X) * 1. This may be 

accomplished by multiplying equation (3) by e -« x x n-1 , n ~ 1 before integration. 

An easier way, is to take n = 1 to obtain a generalisation of ( 6) as 

O' 1 (a) = L 1 = ~ Lo (a) + 1 
(p. - a)µ. L0 (a) - 1 

J J 

-
where Ln (<X) = J e ·ax xn ¢(x) dx. 

0 

1 1 
=-+----

2 . Lo (a) - 1 
(20) 

Formal differentiation of equation (20) with respect to <X would give 

expressions for cr (a) as n 

=L 1 1 dn-1 

[Lo(~)- i] (21) O'n(<X) = n (n-1)! n-1 (p. - <X) µ. d<X 
J J 

or alternatively by 

1 ' O'n (<X) = 1 O' 1 (<X) n = 2, 3, ••• . (22) 
n- n-

It is of interest to note that (21) is similar to (17) and (18) with Res (n) • Further we may 
p=<X 

note that since S = cr (0) we may obtain the previous results for Sn by using n n 

equations (20) and (21) and putting a= 0, after the differentiation. 
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Altematively corresponding expressions to equations (15) and (16) could be 

obtained by replacing Sn by O'n (a.), Mn by Ln (a.) and Res~ by Res ~a 

3. PARTICULAR RESULTS 
) 

To reproduce the results of Silberstein [3] and Cerone and Keane [2] 

, . we µeed to take 

q>(x) = H(x - T\) 

where H(u) is the Heaviside unit function defined as one for u > 0 and zero 

otherwise. 

With <j>(x) as in (23) and using (20) we obtain 

L i i 
1 +T\p. = 2 

J 

where the summation is over all the roots Pj of pe1lP = 1 and we have 

allowed a. __,. 0. 

(23) 

(24) 

If the ~ are not finite then the results for the sum of the Sn series would 

need to be modified. This can be done by replacing the~ l?Y Ln (a.) and 

allowing a. -> 0. 

Thus from equation (11) or (21) we have 

1 
lim 

L1 (a.) S-limL = 2- 2 2 
a ->0 (p. - a.) µ. a.->O (1 - L0(a.)) 

J J 

and so 

L l 
1 (25) = . 

p. (1 + T\P·) 
J J 
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Generalisations can be obta;K.ed by taking other forms of q>(x) such as 

Q>(x) = xn H(x - b) H(c - x) . 

As a demonstration we will consider 
... .. ..... 

<!>(x) = x H(x -1) . 

Now, the Laplace Transform of (27) gives 

. Q>.(p) = e·P(!..+-2..) 
.. p p2 

and so from (20) we need to take a.-> 0 since Mo is not finite, giving, 

1 +p . 
J 

2 
(1 + p.) + 1 

J 

* where L0(a) =<I> (a) . 

Hence, 

~ l+p. .£.J __ 2J...__ 

(1 + P) + 1 

1 tin 
= -

2 a ->0 

1 
= -2 

(26) 

(27) 

(28) 

where the summation is over Pj the roots of p2 eP = p + 1. W~ note that both results 

(24) and (28) could have been obtained from equation (6) by allowing Mo-> oo. 

This cannot be done in situations involving other moments since then the rate at 

which ~ -> oo matters. In such cases we would need the explicit expression 

for Ln (a) so that the limit as a-> 0 could be taken. 

As a funher example consider 

q>(x) = H(y- x) , y-:;: 1 (29) 

so that 

• 
<I> (p) = 
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and so 

Y-.!~l 
=-

n+l ... ..... -

The restriction on y is made so that 4> * (0) :i: 1. 

Since the ~ are finite, the expressions obtained for S can be used directly to give . n 

from (6) and (15), 

sl = L 1 1 y+ 1 -
y- 1 

(30) 
'YPj + 1 - 'Y 

= -2 

and 

S = -2_ ~ (-y)(n-k+l) S + (-y)" 

n y-1 k= 2 (n-k+l)! k n! 
1 

2 
(y- 1) 

n = 2, 3, 4, ... (31) 

with 

s = n 

~ __ 1_ 
£... n-1 

p j (y Pj + 1 - y) 

and summation is over all Pj the roots of p = 1 - e- r P, y ~ 1. Further, 

breaking (32) into partial fractions would produce sums of series of the form 

L~· 
p. 

J 

In particular using (30), (31) and (32) with n = 2 gives 

L2-=- x. 
Pj 2(1 - y) 

(32) 

Taking <j>(x) to be represented by a histogram would give a generalisation of 

the results obtained from <j>(x) given by equation (29). 

Thus if. 

<j>(x) = a. H (x - b) H (b 
1
- x) 

r ~ r + 
(33) 

-
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then 

.p'(p) = r-Y, e -pb,. 
r=O p 

_: ... -. 
where 

a. 
' r=O r 

'Yr = a. - a. r - 1 O<r<R r 

- a. r-1 ' r=R 

.. - Now~ using equations (10) and (33) gives 

R 

M = ~" bn+l 
n n+ 1 .LJ 'Yr r · 

r=O 

N 

Assuming M0 = <I>• (0) = - L Yr br ;e: 1 
r=O 

then 

s1 = L-2..._ L 1 
= 

R p. µ. L -p.b J J 1+ 'Y. b e J r 
r r 

r=O 

and the sum for Sn is given by 

-

= 
1 
2 

1 
Sn = M - 1 

0 

n - 1 

L (- l)n-k+l ( -l)n 

(n-k)! Mn - k Sk + (n-1)! 

where 

k=2 

Sn = L ----/----
p. n-1 [l + ~ Y. b e- Pj br] 

J .LJ r r 
r=O 

M0 + 1 

M0 -1 

M n-1 

Taking R = 1, b0 = 0, b1 = y will reproduce the results obtained previously 

for <j>(x) = H(y - x). 

(34) 
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4. SOM£ SIMPLE DERIVATIONS-OF THE RESULTS OF SECTION 2 

Consider the integral equation 

t 

B(t) = F(t) + f B(t - x) cj>(x) dx 

0 

(35) 

with F(t) =eat then we may readily obtain, using Laplace Transform techniques, 

that 

1 
B(t) = -

21ti 

y+ i-

f 
.,. i-

• 
(p - ex) (1 - cp (p)] 

That is, evaluating (36) using the theory of residues gives 

B(t) = 
at 

e 
• 

1 - <!> (ex) 

P· t 
~ e i 

+ £..J­
(p. - ex)µ. 

J J 

where we are assuming that the roots of cp*(p) = 1 are simple and that cp*(cx) * 1. 

Evaluation of (36) and (37) at t = 0 gives, since the Laplace transform 

gives the mean value at a discontinuity, 

and 

1 

21ti 

"(+ i-

f dp 
. (p - Cl) [l - <l>*(p)] 

y-1-

1 

• 
1 - <!> (Cl) 

F(O+) 1 
=--= -2 2 

(36) 

(37) 

(38) 

(39) 
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Differentiation with respect to ex gives from (38) 

1 

21ti 

y+ i-

f 
y- i-

d~ = 0 . ·- - n • 
(p - ex) fl - <l> (p)] 

and from equation (39), ~0(ex) as given by equation (21). 

n = 2, 3, ,,, (40) 

Equation (21) could be obtained directly from evaluating equation (4d) to 

give 

O'n (ex) = L __ l_n_ 

(p. - ex) µ. 
J J 

= - Res(n) , n = 2, 3, ... 
p=a 

Further, equations (40) and (41) can be obtained from (35) by taking 

F(t) = en-I e at 

{
o . 

and noting F(O+) = 1 
n>l 
n=l 

An alternate way to derive the sums of the series would be to take F in 

equation (35) as 

eatf(x + t) 

Thus, with the integral equation 
t 

at f b (t) = e f(x + t) + b(t - x) <j>(x) dx 

0 

(41) 

(42) 

and assuming f to have a Taylor series expansion about t = 0 we would obtain 

upon using equation (33), 

1 
2'f(x) 

1 

21ti 

'(+i-

f 
y- i-

~ f 0
)(x) 

£..J n+l • 
n=O (p - ex) [l - $ (p)] 

dp . (43) 
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Hence using residues we get from equation (43), 

~f(x) = f f•>(x) [t• • 1 n+t 
n=O ,_.. . . (p. - <X) µ. 

. . . J J 

+ Resn + 
1

] 
p=a 

(44) 

. ~ . -·· . 

n+l · 
where Res is the residue at p = a from a pole of order n+ 1 of the 

p=a 

integrand in ( 43). 

Equating coefficients of f(n>(x), since f(x) is an arbitrary function, we obtain from 

equation (44), crn(<X) as given by equations (39) and (41). 
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