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ON SERIES INVOLVING ZEROS OF TRANSCENDENTAL 

FUNCTIONS 

ARISING FROM VOL TERRA INTEGRAL EQUATIONS 

P. CERONE 

Victoria University of Technology, Australia, 3011. 

Series arising from Volterra integral equations of the second kind are summed. The series 

involve inverse powers of roots of the characteristic equation. It is shown how previous 

similar series obtained from differential-difference equations are particular cases of the 

present development. A number of novel and interesting results are obtained. The 

techniques are demonstrated through illustrative examples. 
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1. INTRODUCTION 

Silberstein [ 10] found the sums of two series arising from the differential-difference 

equation 

u' (x) = u(x-11). 

More recently Cerone and Keane [2] generalised the results to obtain the sum of the 

series 'L(pjfk and '1:(1+11Pjrk where pj are the roots of p = e-TJP and summation 

is over all pj. 

The current paper examines summing series of roots of transcendental equations 

arising from integral equations. The development is at first based on a Volterra 

integral equation of the second kind describing the births of a single - sex population. 

This was the initial motivation for the work and it is felt to be instructive and 

illuminating even though more general and straight forward approaches lead to similar 

results. 

In particular, using Laplace transform and residue techniques on integral equations, 

sums of series of the form 

a::;; pj , n a positive integer 

are obtained where, 

the summation is over all the roots pj of the characteristic equation <I>· (p) = 1 

2. BASIC EQUATION AND RESULTS 

The renewal integral equation has been studied by many authors (including Feller [ 4], 

Cox [3] and Tijms [ 12] )and was introduced to the field of population dynamics by 

Sharpe and Lotka [9]. The single-sex deterministic model representing the births B( t) 

at time t is given by the Volterra integral equation of the second kind (see Lotka [7], 

Keyfitz [5] ) 

B(t) = F(t)+ J~B(t-u)<j>(u)du (1) 
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where 

F(t) is the contribution of those alive at the origin of time, 

and <!>(u) is the net maternity function which is of compact support and bounded. 

If <!>(u) were a probability density and F(u) its distribution function then (1) would be 

a renewal integral equation with B(t) being the renewal function. Equation (1) is 

more general since <!>( u )du is the chance of living to age u and giving birth in the next 

interval of length du and so <j>(u) is not necessarily a density. 

The integral equation with which we will at first be interested is (1) with 

(Keyfitz [5] ) 

F( t) = <!>( x + t) 
l(x) 

(2) 

which represents the situation where there is only one ancestor aged x at our chosen 

origin. Here in (2),l(x) is the survivor function which gives the probability of 

surviving to age x of a newborn. 

The solution of ( 1) has been extensively examined in the past and a rigorous 

methodology is presented by Feller [4] using Laplace transform techniques. 

The asymptotic behaviour has been studied by Lopez [6] in relation to population 

modelling and in general by Bellman and Cooke [ 1]. 

We will also use Laplace transform techniques here so that from (1) and (2) we obtain 

after minor manipulation 

B (t) = _1_ p+i~ eP' V(p,x) dp 
x 21ti Jy-i~ 1-f (p) 

(3) 

where 

epx J~ e-P"<j>(u)du v(p,x) 
V(p,x) = x l(x) = l(x) (4) 

and <I>* (p) is the Laplace transform of <!>( x) with y being chosen in such a 

manner as to ensure convergence. 
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Ass uming that the roots of the denominator of (3) are the only poles of the integrand 

and are simple then 

' t > 0 ' (5) 

where 

(6) 

Lopez [ 6] shows that the real root of <I>· ( p) = 1 has the greatest real part and the 

rest occur in complex conjugate pairs (Pollard [8] ) for <!>( u) positive. In realistic 

population dynamics applications <j>(u) is also bounded and of compact support. 

If we now allow t ~ 0 +then, since the Laplace transform gives the mean value at a 

discontinuity (Bellman and Cooke [l], Widder [14] ), we obtain from (3) and (4) 

1 1 Jy+i00 v(p,x) d 
2 <I>( x +) = -2 . . 1 f ( ) p' 1tl y-100 - p 

(7) 

where <j>(x+)=lim<j>(x+e), e>O. 
e~O 

Assuming that the roots of <I>· (p) = 1 are the only poles of (7) (which has been shown 

to be the case by Lopez [6] for population dynamics applications) then 

(8) 

and in particular with x ~ 0 + 

(9) 

Integration of (7) from t to oo, gives upon interchanging the order of integration, 

which is permissible since <I> is positive and exponentially bounded, 

v(O,t) =-l-J1+i00 v(O,t) - v(p,t) d 
2 21ti 1-ioo P[ 1 - <I>• (p)] p ' t > O ' 

(10) 

where v(p,t) is as defined in (4). 
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Theorem 1: Let pi be the simple and non-zero roots off (p) = l,f (p) ~ o(~} 

M0 = fo
00 

<l>(u)du = f (0) < oo, 

and µ j is as given in equation (6), then 

S = ~-1-=_!._ M0 +l 
I~ • ' 

pjµj 2 M 0 -1 
where the summation is over all p

1
• 

Proof : Allowing t -t 0 + in equation (10) gives 

Mo =-l-Jr+i- Mo -f(p) d 
2 21ti r-ioo p[l-f(p)] p. 

(11) 

(12) 

We note that if <I>· ( 0) = 1 so that M 0 = 1 then we obtain the degenerate result that was 

also obtained by Cerone and Keane [2] viz., 

. 1 Jr+iR dp 1 
hm- -=­
R~o 21ti r-iR p 2' 

(13) 

since there is a contribution of_!._ from integration in an anticlockwise direction 
2 

along a semicircular contour to the left of the line integral and a contribution of 1 from 

the residue. 

We shall thus assume that M 0 =f(0)::I:1 and so from (12) 

M0 1 Jr+i00 M 0 -1 1 Jr+i00 dp 
-=- . dp+- -. 

2 21ti r-i- p( 1-<I> (p)) 27ti r-i00 p (14) 

We may evaluate the integrals using the theory of residues to give 

(15) 

where the terms on the right are contributions from the pole at zero, the simple poles 
p

1 
of <1>*(p) = 1 for the first integral and the last term is as given by (13). A simple 

rearrangement of (15) gives the desired result, (11 ). 
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1 tis a straight forward matter to deduce from (14) upon using (13) that 

(16) 

and so from (10) 

1 Jy+;.,, v(p, t) 
- dp=O 
21ti y-;.,, P[ 1 - <!) ( p)] 

(17) 

where v(p,t) is given by (4). 

We note that putting t = 0 in ( 17) gives 

1 Jy+i04 <!>° (p) - dp=O 
21ti -,-;.,, P[ 1- <!>° ( p)] 

(18) 

which agrees with the results (13) and (16) since (18) is (13) - (16). 

Theorem 2: Let l<!>(t)I:::;; Ke-N for K,A 2:: 0, constants. 

Further let l 0 (t) = <!>(t), J0 (p,t) = v(p,t), as given in (4), 

and In(t)= J,"" ln_1(x)dx, ln(p,t)= J,"" Jn_1(p,x)dx, n=l,2, ... 

Then 
( )

n-1 

J.
"" x- t 

In(t) = <!>(x) ( ) dx , n = 1,2, ..... . 
I n-1 ! 

(19) 

for n = 1,2,.... .. (20) 

Proof : A straight forward induction argument and a change of order of integration, 

permissible from the postulates, produces the desired results (19) and (20). 
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Theorem 3 : Let I<!>( t )I :::;; Ke-"-t for K , /..., ~ O , constants. 

Then 

satisfies the recurrence relation 

(1-M )S = ~(-l)n+k Mn-k S (-It Mn-I _ 2 o n ~ ( k) k + ( ) ( ) , n - ,3, ..... 
k=2 n - ! n - 1 ! 1 - M

0 

where Mn= J
0

00 

uncp(u)du < 00 , the nth moments of cp with M
0

:;t1. 

Proof : From equation ( 17) we have 

_l_Jr+ioo Jn-I (p,t) d = 0 
21ti r-ioo P[ 1- f (p)] p ' n = 2, 3, ..... 

where from equation (20) 

with In(t) being given by (19) and v(p,t) by (4). 

Thus from (24) and (25) we have 

n-2 L (-l)j pn-j-2 In-j-I (t)+(-1r-1 v(p,t) 
1 Jy+ioo ·-o 

-
1

- dp=O 
21ti y-ioo Pn[l-f(p)] ' 

n=2,3 ... . 

Now, there is a simple pole at p = 0 in (26) since 

00 

v(p,t) = I(-IY prlr+l(t) 
r=O 

and f (O):;t 1. The expansion (27) is allowed since In(t) can be easily 

demonstrated to be exponentially bounded given that <!> is. 

(21) 

(22) 

(23) 

(24) 

(26) 

(27) 
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The contribution from the pole at p = O is, from (26) 

(-l)2(n-1) fn(t) • 
1-f(O) 

Further, the contribution from the roots of <I>· (p) = 1 gives 

Hence combining (28) and (29) results in 

~ v(pj,t) -/ (t)S = ~(-l)n+j I .(t)S . +(-l)n In(t) 
."-' .nµ . I n ~ n-l-1 1+2 1-m*(O) 

P1 1 l=o "' 

(28) 

(29) 

(30) 

Evaluation of (30) at t = 0 and using the facts from (19), (4) and (23), that 

then 

n-3 M ( l)n M 
(1- M )S - ~(-l)n+j n-j-2 S + - n-i (31) 

0 n-~ (n-j-2)! j+2 (n-l)!(l-M
0
)° 

The substitution k = j + 2 in (31) gives the desired result (22). 

When n = 2 in (22) it is understood that the sum is zero giving S2 = ( M1 
)' • 

1-M 0 

From equation (26) it may be deduced that 

1 r+i- dp = 
21ti r-;- pn(l-f(p)] O ' 

(32) 

_l_Jr+i- v(p,t) = 0 
21ti y-i- pn [ 1- <j> • ( p)] ' 

and hence 

1 Jy+i- f (p) 
-. . n[ *( )] dp = 0 , n = 2,3... . (33) 2m r-r- p 1-<j> p 
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It follows from (32) that, 

(34) 

where 

is the contribution from a pole of order n at p = 0. 

Theorem 4: Equations (34) and (35) give a different, although equivalent, 
representation for Sn than that given by equation (22). These expressions hold for n > 1. 

Proof :Firstly, the sum S0 and S1 are given by (9) and (11) respectively. 

To prove the theorem it is suffici~nt to show that, for n = 2, 3, .. ... , 

* dn-1 ( 1 ) n-1 (n -1) dn-k • dk-I ( 1 ) ( 1 ) dn-I • 
(1-<\l (p)) dpn-1 1-f(p) = 6 k-1 dpn-k <\> (p) dpk-l 1-f(p) + 1-f(p) dpn-1 <\> (p),(36) 

since Mn=(-1r[dn"q)(p)] · 
tf p p=O 

Evaluation of (36) at p = 0 would give the required result. 
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Now, 

~( 1 )- dn-1 ( f (p) ) 
dpn-1 1-f (p) - dpn-1 1+ 1-<j} (p) 

- dn-1 ( <j} (p) ) 
- dpn-1 1-<j} (p) 

n-1 (n -1) dn-1-k * dk ( 1 ) 
=~ k dpn-1-k<l>(p)dpk 1-q}(p) 

n (n -1) dn-k * dk-1 ( 1 ) 
= t; k-1 dpn-k <I> (p) dpk-1 1-q}(p) 

n-1 (n -1) dn-k * dk-1 ( 1 ) 
= ~ k-1 dpn-k <I> (p) dpk-1 1-f(p) 

(n -1)( 1 ) dn-I • (n -1) * dn-l ( 1 ) 
+ 0 1-f (p) dp"-1 <I> (p) + n -1 <I> (p) dpn-1 1-<I> * (p) . 

A simple rearrangement produces result (36) and hence the theorem is proved. 

It is important to note that although Theorem 4 shows the sum of the series (21) to be 

equivalently given by (22) and (34) - (35), the recurrence relation representation (22) 

is much easier to apply in practice. 

Theorem 4 effectively shows that the recurrence relation (22) could be obtained 

from taking (33) instead of (32) leading to 

It is further of interest to note that series of the general form 

(37) 
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and R (n) 1 [ dn-l ( 1 )] 
esp=a = (n-1)! dpn-1 1-f(p) p=a 

(39) 

respectively. Contrarily allowing a --t 0 gives the previous results since Sn = CJn (0). 

The technique will be used subsequently by working with CJ" (a) to obtain results 

even when moments are not finite . 

Before proceeding to some simple derivations of the results which will be followed by 

examples, modifications to the above procedures will be discussed when 

M 0 = <!> • ( 0) = 1. A similar argument would follow for 4 (a)=<!>· (a)= 1. 

Theorem 5: For the conditions as in Theorem 3 with <J)(O) = M0 =1 then 

- ~ 1 
Sn= £..i-n-

Pi ~O pj µ j 

satisfies the recurrence relation 

and 
- I 1 
S1 =---

2 M1 

(40) 

(42) 

Proof : From (16) with f ( 0) = I there is a double pole at p = 0 giving a contribution 

1 f h h . . . of-. The contribution from the non-zero roots o t e c aractenstlc equatton 
M1 

give S1. A rearrangement produces (42). 

For n = 2, 3, .. . .. the effect of a simple and a double pole at p = 0 gives a 

contribution, from (26) and using (27), 

(43) 

respectively. Evaluation of the residues from the poles pj * 0 from <!> • (p) =I gives 

(44) 
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Combining (43) and (44) and evaluation at t = O gives 

and hence 

Ml Sn= rc-1r+k+I n-k+I Sk+ -1 Ml Mn+I - M2 Mn . n-1 M ( )n+I [ J 
k=2 ( n - k + 1) ! M1 

2 
( n + 1) ! 2 n ! 

Adjusting the summation index by 1 gives (41). 

An alternative representation for Sn may be obtained from (32) as 

- -(n+I) 
Sn =-Resp=O , n = 2,3, ..... , (45) 

where R(n+I) 1 [ dn ( p )] 
esp=O = n ! dpn 1-<f ,(p) p=O 

is the contribution from a pole of order n+ 1 at p = 0. 

A similar argument to the one followed in the proof of Theorem 4 shows that ( 41) 

and (45) are equivalent representations of Sn. 

3. SOME SIMPLE DERIVATIONS OF THE RESULTS OF SECTION 2_ 

Consider the Volterra integral equation 

B(t) = F(t)+ J; B(t-x)<j>(x)dx. (46) 

With F(t) = ecxr then we may readily obtain, using Laplace Transform techniques, 

that 

1 Iy+ioo eP' dp 
B(t) =-

21ti r-ioo (p-a)[l-f (p)] ' 
(47) 

where y is chosen to the right of a and the roots of <I>* (p) = 1. 
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That is, evaluating (47) using the theory of residues gives 

ru P~ 

B(t) e + ~ e J 

1-""·(a) .LJ ( ) "' pj-a µj 
(48) 

where we are assuming that the roots of <I>· (p) = 1 are simpl,e and that <I>· (a) * 1. 

Since the Laplace transform gives the mean value at a discontinuity (Widder [14] ), 

evaluation of (47) and (48) at t = 0 produces, 

1 Jr+i00 dp F(O+) 1 
21ti r-i.,. (p-a)[l-f(p)] = 2 = 2 (49) 

and 

(50) 

Equation (50) agrees with (11) on putting a= 0 and noting 0'1 (0) = S1 • 

Differentiation of (49) with respect to a results in 

1 rr+ioo dp = 0 
2mJr-i.,. (p-af[l-f(p)] ' n=2,3,...... (51) 

from which the result 

= - Res(n) 
p=a (52) 

is obtained on using (37), (39) and (34), (35). The differentiation of (49) is 

permissible since if ( 49) exists then so does (51 ). 

Equation (52) could have been obtained directly from (51) by differentiation with 

respect to ex and using the result 

n = 2,3, .... (53) 
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We note that I an (a )I< la 1 (a )I and so differentiation is justified. As discussed 

previously, the an(a) also satisfy (22) with Mn being replaced by Ln(a) as given by 

(38). 

Further, equations (51) and (52) can be obtained from ( 46) by taking 

and noting that 

F(O+)={~ , n > 1 
, n= 1 

An alternate way to derive the sums of the series would be to take F in equation 

(46) as 

Thus, with the integral equation 

b(t) = ew J(x+t)+ J; b(t-x)cp(x)dx 

and assuming f to have a Taylor series expansion about t = 0 we would obtain 

1 1 Jy+i~ ~ fm)(x) 
-21(x)=-2 . . I ( r+l[1 f( )]dp. 1tl y-r~ m=O p - Cl - p 

(54) 

Hence using residues we get from equation (54) 

where Res~':~) is the residue at p =a from a pole of order m+ 1 of the integrand 

in (54). 

Since J(x) is an arbitrary function then, equating coefficients of fml(x) we obtain 

from equation (55), a,,(a) as given by equation (50) and (52) with n = m+ 1. 
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It is important to emphasise that although the results could have been obtained directly 

through the techniques outlined in the present section, the insights gained from 

section 2 that led to the recurrence relations (22), ( 41) (and their generalisations 
for crn(a)) would not have been possible. The current section's results may indicate 

a relaxation of some of the postulates of section 2. 

A number of examples will now be presented to highlight and elucidate the results 

obtained. 

4. PARTICULAR RESULTS 

(A) Examples Involving Heavside Functions 

Consider 

giving 

and so 

<j>(x)=H(y-x) 

l-e-'YP 
f(p)=­

p 

'Yn+I 
M=-

n n+ 1 ' 

Now from (21), for y ~ 1, 

1 
Sn= L_P_/_-1(,__yp_j_+-l--y~) 

(56) 

(57) 

with pj the roots of p = 1- e-'YP , satisfies (11) and (22) giving, for example 

and 
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Further, breaking (57) into partial fractions would produce sums of series of the form 

In particular from the above expressions for SI and s2 ' 

Taking <I>( x) to be represented by a histogram would give a generalisation of the 

results obtained from <j>(x) given by equation (56). 

Thus if, 

R-1 

<l>(x)= LUrH(x-br)H(br+I -x) 
r=O 

then series of the form 

would satisfy (11) and (22) for M 0 = f (0) :;t 1 where 

r=O 
O<r<R. 
r=R 

(58) 

Taking R == 1,b
0 

= O,b1 == "( in (58) would reproduce the results obtained for <l>(x) as 

given by (56). 
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Another special case of (58) would be if 

<1>(x)=H(x-rt) 

in which instance we note that the moments are not finite. 

As envisaged in the previous section we need to work with a')a) and 

Ln(a) < 00 • Allowing a~ Owill produce the required results. 

(59) 

From (11) (on substitution of cr1 (a) for S1 and Lo (ex.) for M0 ) or from (50) 

we have 

(60) 

where 

On taking a~ 0 in (60) reproduces the result of Silberstein [10] and Cerone 

and Keane [2] namely 

s -~ 1 = 1 
I - £..J 1 + flpj 2 

(61) 

where the summation is over all the roots pj of pertP = 1. 

From a modified form of (22) with n = 2 

(62) 

where from (38) and (59) 

-001 

Li (ex.) = ~ ( 1 +art). 
a 

Thus, from (62) 
(63) 

Further generalisations to both (61) and (63) were obtained by Cerone and Keane [2]. 
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(B) Exponential$ 

The case provides both a simple and instructive example. 

Consider 

$(x)=Ae-µ.x , A,µ> 0 (64) 

d "'.( ) A. .. an so 'I' p =-- givmg from (6) and (23) 
p+µ 

(65) 

and 
n! 

Mn =A µn+I , respectively. (66) 

It should be noted that this example gives only one root of the characteristic 
equation f {p)=l, namely, pi =A-µ. 

Further, from (21) and (66), 

(67) 

A straight forward induction argument shows that (67) satisfies the recurrence 
relation (22) where the Mn are as given by (66). The degenerate case of n = 1 

requires special mention. It may be seen from (18) that the contribution from p = 0 

and pi =A - µ cancel to give a degenerate case. Also from (12) the singularity at 

p = O can be seen to be removable and so a relationship between the residue at 

p = 0 and that at p = pi is not possible. 

( C) Polynomial $ 

m 

Let $( x) = ~ then $ • (p) = p-(m+I) and the moments Mn are not finite. 
m! . 

However, from (38) Ln (a)< 00 for a.> 0 and so crn{a.) will satisfy (22) with Mn 

replaced by Ln (Cl) where 

(68) 



and 
21ti . 
-1 
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Pl. = em+I }
0 

- 0 1 2 m , - , , , ..... , . 

Further from (39), (52), (68) and (69) 

Form= 0, Po= 1, and so on using (68) and (70), cr"(a) 1 
(1-a)"· 

(D) Dirac Delta <I> 

Consider the example where <j>(x) is a Dirac delta, namely 

<l>(x)= a o(x-b ), 

defined as zero everywhere except at x = b, giving <I>· (p) = a e-bp 

and Mn= ab". 

(69) 

(70) 

(71) 

(72) 

We notice that the roots of the characteristic equation are given explicitly as 

·-0+1+2 ' ]- ,_ ,_ , ..... 

and µj =b. 

Hence from (21), (73) and (74) 

and so 

where 
Ina 

a=-
21t 

.. bn-1 

Sn= L [l (2 ') T j=-oo n a - 7tl J 

[~] 
.. f,(-l)k(2~)a"-2k j2k 

_1_ + 2 I ..:;...k=-=-0 _____ _ 

a" j=I [cx2 + j2r 

and [x] represents the integer part of x. 

(73) 

(74) 

(75) 

(76) 
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In particular, for n = 1 in (75), using (11), (72) and (76) gives on rearrangement 

.. 1 7t 1 L 2 .2 = - coth 7ta - --2 , 
j=t a + J 2a 2a 

(77) 

agreeing with the result in Whittaker and Watson [13]. 

.. 2 

Allowing a ~ 0 in (77) gives L j-2 = ~ which has been obtained previously 
j=I 6 

using Parseval's theorem by Titchmarsh [11] (and originally by Euler using results 

from the theory of equations). 

Taking n = 2 in (75) and using (22), (72) gives 

~ a2 - j2 7t2 I 
L ---'--~ = - cosech2 7ta---
j=t [ a 2 + /]2 2 2a

2 (78) 

and on using (77) 

.. ·
2 

(7t)
2 

[coth 7ta J L 1 
2 = - - cosech27ta . 

j=I [a 2 + j2] 2 7tCX 
(79) 

Substitution of (79) into (78) produces 

00 

1 ( 7t )
2 

[coth7ta 2 J 1 ~ 2 = - + cosech 7ta - --4 • 

f:f. [a2 + /] 2a 7ta 2a 
(80) 

The result in (80) could be obtained directly from (77) by differentiation with respect 

to a. Also taking the limit as a~ 0 in (80) gives 

.. 4 

L ·-4 7t 
1 --- . 

j=I 90 
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A similar procedure with n = 3 would give from (75), (22) and (72) 

00 a 2 - 3 j2 7t3 1 
~ = - cosech 2rra cothrra - --
"-' [ 2 ·2 ]

3 2 4 j=1 a + 1 a 2a 

leading to 

and ~ 1 7t
2 

{ cothrra 2 I } 
"-' [ ] 3 = ( )4 3 + ( 3 + 2 rra cothrra) cosech rra - - 6 
j=I a 2 + j2 2a rra 2a 

Further such series may be obtained from (75), (22) and (72) (together with a lot of 

perseverance!) 

The above series could have been obtained by the alternate procedure of 

differentiating (77) with respect to a. This can be done systematically using a 

suitable software package. The recurrence relation represented by (22) gives the 

series in a straight forward way as demonstrated. 

5. CONCLUSION 

Series of roots of transcendental equations have been summed using residue theory. 

Previous results have been shown to be special cases of the current development. 

The insights and analysis that led to the recurrence relation (22) for summing the 

series would not, it is believed, have been possible if the approach of section 3 had 

been followed. Examples have been provided to elaborate and elucidate the 

techniques developed. 
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