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SUMMING SERIES ARISING FROM 
INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS 

AMS: 34K05 

ABSTRACT 

By applying Laplace transform theory to solve first order homogeneous differential-difference 

equations it is conjectured that a resulting infinite sum of a series may be expressed in closed 

fo1m. The technique used in obtaining a series in closed form is then applied to other 

examples in teletratlic _theory, renewal processes, risk theory and neutron behaviour which 

may be represented by integral equations. 

KEYWORDS : Differential-difference equations, series. 
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1. INTRODUCTION 

Differential-difference equations occur m a variety of applications including : ship 

stabilization and automatic steering [19], the theory of electrical networks containing lossless 

transmission lines [7], the theory of biological systems [6], and in the study of distribution of 

primes [25]. 

The equation 

f' (t)+af (t-a)+Pf (t)+yf (t-a)+of(t+ a)=O 

is termed a first order linear delay, or retarded, differential-difference equation for 

a = 0, o = 0 and a > 0. For a = 0, o = 0 and a < 0 it is termed an advanced equation. 

In the case o = 0, a > 0 it is referred to as a neutral equation and when a = 0, p = 0, a > 0 an 

equation of mixed type .. 

Stability studies on general delay equations have been carried out in [5], and for neutral 

equations in [13]. Driver, Sasser and Slater [10] consider a first order linear delay equation 

and for a 'small' delay they show that it exhibits certain similarities associated with an 

equation without delay. Numerical studies have also been carried out in which chaos has 

been observed [14]. and Seifert [22] hints strongly at a suspected chaotic interval function 

associated with discontinuous delays. 

A great deal of the studies for the stability of differential-difference equations necessitate an 

investigation of its associated characteristic equation. Some of the early work in this area has t 
been carried out by Pontryagin [21], Wright [28] and more recently by Cooke and van den 

Driessche [9] and Hao and Brauer [16]. 

The purpose of this paper is to show that, by using Laplace transform techniques together 

with a reliance of asymptotics, series representations for the solutions of delay equations may 

be expressed in closed form. The series, in its region of convergence, it is conjectured, 

applies for all values of the delay without necessarily relying on its association with the 

differential-difference equation. 

Unlike some of the series that are listed as high procession fraud by Borwein and Borwein [3] 

the series in this paper will be shown to be exact by the use of Biirmann's theorem. 

The analysis also relies on the exact location of the roots of the associated transcendental 

characteristic equation. This technique is then applied to particular examples. 
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2. METHOD 

Consider the first order linear homogeneous differential-difference equation 

f'(t)+bf(t)+cf(t-a)=O, t~a 

f'(t)+bf(t)=O , /{0)=1, 0$t<a. } (1) 

Talcing the Laplace transform and using the initial condition, results in 

!l'[f(t)]=F(s)= 
1 

(2) 

= 

The inverse Laplace transform 

.fL'-1 [ F(s )]= f(t)= f {-It cne-b(t-,an)(t-an)n H(t-an) (3) 
n=O n. 

where the Heavisid~ unit function 

H(x)={~: for x ~ 0 
for x < 0 

The solution to (1) by Laplace transform theory may be written as 

for an appropriate choice of y such that all the zeros of the characteristic equation 

g(s)=s+ b+ ce-as 

are contained to the left of the line in the Bromwich contour. 

(4) 
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Now, using the residue theorem 

J(t)= L residues of { esr[g(s)r1
} 

which suggest the solution of J(t) may be written in the form 

r 

where the sum is over all the characteristic roots sr of g(s) = 0 and Qr is the residue of F(s) 
at S =Sr. 

The poles of the expression (2) depend on the zeros of the ch.aracteristic equation 

(4), namely, the roots of g(s) = 0. 

The dominant root s0 of g(s) = 0 has the greatest real part and therefore asymptotically 

and so from (3), 

(5) 

After some experimentation it is conjectured that: 

(6) 

\;/ t e R in the region where the series converges. 

Burmann's theorem will be used, a little later, to prove the identity (6). 

By the use of the ratio test it can be shown that the series in (6) converges in the region 

lace1+abl< 1. (7) 
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In a similar fashion, the Laplace transform from (2) may be expressed as 

= ~ ~(-It bn-r cr (n) e-ars 
. ~ ~ r ~ 

n=O r=O S 

and the inverse Laplace transform may be written as 

As previous, it is conjectured that 

whenever the double series converges. 

Lemmal The poles of the expression (2) are all simple for the inequality (7). 
' 

Proof: Assume on the contrary that there is a repeated root of 

s+b+ce-as =0 

then by differentiation it is required that 1- ace-as = 0 in which case 

s=.!..ln(ac}. Substituting in (9) results in, In(ac}+ab+ 1=0 
a 

(8) 

(9) 

and therefore ace1
+ab = 1 which violates the inequality (7). Hence all roots of (9) are simple. 

Now the residue '2o of the dominant simple root, s0 = ~ 1s 

1 
where ~+b+ce-a~ =0 

I+ab+a~ 



-6-

and so the expressions (6) and (8) become 

f, (-I)" c" e-b(t-an) (t- an)" 

"~ . n! 

e~' 
=----

l+ab+a~ 
(10) 

whenever the single and double series converge in a mutual region. 

Lemma2 

(i) The single sum and the double sum in ( l 0) are solutions to ( 1) in their region of 

convergence for t > a. 

(ii) The closed form expression in ( 10) is a solution to ( 1) for t > a. 

(iii) · The single and double sum in ( 10) are equal in their mutual region of convergence, 

which is no larger than that region given by (7). 
I 

Proof (i) and (ii) can be shown to be a solutions of ( 1) by substitution. 

(iii) To show i I ( -1 )" b"-r c' (:~) ( t - <~r )" = i (-1 )" c" e -b(t-nn) ( t - ~n )" , 
11=0 r=O n · 11=0 ll · 

expand the left hand side to give. 

for 11 =0 boco(O) (t-0)
0 

0 O! 

n = 1 -b1co(l)(t-0)
1 

_ boc1 (t-a)
1 

0 1! I! 

n=2 b2co(2)(t-0)
2 

+ b'c' (2)(t-a)
2 

+ b0c2(2)(t-2a)
2 

0 2! 1 2! 2 2! 

n = 3 -b3co(3)(t-0)
3 

_ b2c1(3)(t-a)
3 

_ b1c2(3)(t-2a)
3 

_ b0c3(3)(t-3a)
3 

0 3! 1 3! 2 3! 3 3! 

n=4 
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Summing each column results in 

= 
c0 (t-0)0 

[ _!__ - (-b)(t-0) (-b)2(t-0)2 (-b)3 (t-0)3 

+ ...... ] + 
O! O! 1! 2! 3! 

c(t- a) [ _!__ _ (-b)(t-a) (-b }2(t-a)2 (-b )3(t- a)3 

+ ·····] 
+ 

1 ! O! 1! 2! 3! 

+ 
c2 (t-2a)2 

[ _!__ _ (-b)(t-2a) + (-b)2 (t-2a)2 (-b)3 (t-2a)3 

+ ....... ] 
2! O! 1! 2! 3! 

- c3(t-3a)3 
[ _!__ _ (-b)(t-3a) + (-b)2 (t-3a)2 (-b)3 (t-3a) 3 

+ .... .] 
3! O! 1! 2! 3! 

+ .... . 

c0 (t-0)0 
-b(r-o) c(t-a) -b(r-a) c2(t-2a)

2 
-b(r-2a) c3(t-3a)

3 
-b(r-3a) 

= e - e + e - e + 
0 1 1' 21 ' ••••• . . . 3. 

= l(-1)" c"e-b(t-an) (t-an)". 
n=O n ! 

Burmann's theorem [26] will now be used to prove the explicit form of relationship (6). 

Biirmann's Theorem 

Let <I> be a simple function in a domain D, zero at a point Jl of D, and let 

z-ll 0(z)=-
<j>(z) 

1 
• e<fl) = <1>' (fl r 

If f(z) is Analytic in D then Vz e D 

where R - - 1 r dvJT <!>(v)]" f' (t)<I>' (v) dt 
n+l - 27ti Jr i <!>(t) <j>{t)-<j>(v) . 

The v - integral is taken along a contour r in D from Jl to Z, and the t - integral along a 

closed contour C in D encircling r once positively. 
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Application of Biirmann's Theorem 

The characteristic equation ( 4) may be shown to have a simple dominant zero at s = O for 

b+c = 0 and (l+ab)>O. Thus from (6) 

f, (-l)" (-b )" e-b(r-an) (t- an)" = 
n=O n! 

1 
l+ab 

Let t = - a't , ab = - p , and hence from above 

~( -p)" ('t+n)" - ~ £.J pe - . 
n=O n! 1-p 

Equation ( 11) is shown to be true by applying Burmann's theorem. 

exr. 
Let f(z)=­

l-z 
0(z) = <I>~) = er. , <P(z)=ze-r. 

erx 
and it may be shown that R,,+1 ~ 0 as n~ oo. From f(t) = -, 

1-t 
I 

f'(t) = erx(-2._+ 
1 

)2 ) =erx[:f(x+l+j)tj]· 
1-t (1-t j=O 

(11) 

00 

and so f' (t){0(t)Y = e'(r+x)'l'(t) where w(t) = I(x+1+ j)tj. 
j=O 

The coefficients in this expression are the same as those in a Taylor series expansion 

'l'U>(o) = j!(x+l+ j). 

Now let B,(t) = :;, [!' (1){9(1)r] = :;,~, [ e~"»iv(t)] 
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:. B,(O) = (r+ x)'-'('~ 1)<x+ l)+(r+ xY-'('~ 1)(x+2)+(r+ xY-'('; 1)<x+3)+ ..... 

(
r-1)( ('-1) · ..... + ,_ 2 r+ x){r-2)!(x+ r-1)+ r-l (r-l)!(x+ r). 

Put y = x + r giving 

Br{O) = yr-l (y- r+ 1) + yr-2 (r-1)(y- r+ 2)+ yr-3{r-2){r- l){y- r+ 3)+ ... 

... +(r-1) !y(y-1)+ (r-1) !y 

= yr -(r-l)yr-l +(r-1)yr-I -(r-1)(r-2)yr-2 +(r-1)(r-2)yr-2 

-(r-l)(r-2)(r-3)yr-3 + ........... +y2(r-1) !-{r-1) !y +(r-1) !y 

=yr =(x+rY. 

Hence it follows that 
exr. 00 (ze-zY 
-=l+L, (x+rY 
1-z r=I r ! 

Region of Convergence 

The sum converges in the region lpe1-Pf 1, and so considering p as a complex 

variable, p = x + iy then 

The region is shown in figure 1. 

y Value 

2. 5 3 

I 

Figure 1: The region [ e2
(I-x) ( x2 + y2) J2 < 1 
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On the boundary p = 1, from (11), the series 

f e-(i;+n) (t+nt 
n=O n! 

diverges. 

Consider the divergent series i l. , then by the limit comparison test 
n=l n . 

1. ( -('t+n) ( t + n r J 0 1m e n > 
n-+oo n ! 

on utilizing Stirling's formula n ! - (: r ../21tn as n ~ oo. 

The divergence of the above series can also be ascertained from the closed form 

representation of a modified right hand side in (11). 

The Double Pole 

The characteristic equation (4) may be shown to have a dominant double zero at s = 0 for 

b + c = 0 and 1 +ab = 0. From the general theory of linear functional differential equations 

[15] it follows that there exists constants ex and ~ such that 

lim . [/(t)-cxt] = ~· 
t-+oo 

From residue theory, the constants ex and ~ can be shown to be 3.. and 
2 

respectively, in 
a 3 

which case 

lim [t(t)- 2t] = 2. 
Hoo a 3 

The Degenerate Case 

From (10) and (2) it can be seen that 

This result can be ascertained directly from the differential-difference equation (1). 
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3. APPLICATIONS 

A number of examples are investigated in which the method of the previous section is 
applicable. 

(A) Bruwier Series 

Bellman and Cooke [ 1] refer to 

00 vn 
J(t) = L, - (t+ncoY 

n=O n! 

as the Bruwier series, which is a solution to the advanced equation 

f' (t)-vf(t+co) = 0 , J(O) = 1. (12) 

Comparing (12) with (1) it can be seen that b = 0, c = - v, a = -co and from the 

series at (6) 

00 vn e~ 
L, -, (t.+cont = 
n=O n · 1-CO~ 

where ~ is the dominant real root of ~ -ve~ = 0 and when lvcoel < 1 , the region of 

convergence of the series. 

(B) Teletraffic example 

Erlang [11] considers the delay in answering of telephone calls. The problem is to 

determine the function f { t), representing the probability of the waiting time not 

exceeding time t . Hence for an MI MI I regimen Erlang shows 

The probability that, at the moment a call arrives, the time having elapsed since the 

preceeding call confined between y and y + oy, is e-y dy. The probability that the 

waiting time of the preceeding call has been less than { t + y- a) is f { t + y - a), where 

a is the connection time of a call. Differentiating the integral equation with respect to 

t and partially integrating the result gives the differential-difference equation 
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f' (t)- f(t)+ f(t-a)=O , t '?:.a 

f'(t)-J(t)=O , f(O)=l, O~t<a. 

The system (13) is compared with (1) where b= -1andc=1. 

Hence a solution of (13) is, from section 2 

J(t) = i (-l)" e'-a" (t- an)" = 
n=O n! 1-a+a~ 

} (13) 

in the region of convergence lae1
-a I < 1 and ~ is the dominant real root of 

~ - 1 + e-a~ = 0. 

It can be shown that the characteristic equation of (13), 

s-l+e-as =0 

has the following real root distribution: 

(i) One root at s = 0 for a $ 0, 

(ii) One negative root plus s = 0 for 0<a<1, 

(iii) A double (repeated) root at s = 0 for a= 1, 

(iv) One positive. root plus s = 0fora>1. 

In view of the convergence criteria for the single sum lae1
-a I< 1 , the following results 

apply for all real values of t . 

e~' 
for a> 1 

1-a+a~ 
f(-l)"e'-an (t-an)" = 
n=O n! 1 

for a< 1 
1-a 

which on putting t = - at , the sum can be written as 

I (ae-a )" ( t + n)" 
11~0 n! 

= 

at(l-~) e 
1-a+a~ 

ein 

1-a 

where~ is the positive root of~ -1 + e-a~ = 0. 

for a>l 

for a<l 

(14) 
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Erlang [I I] considered only the case 0 <a< I. 

In the case when a= I there is a double pole which results in, from a previous 

statement, lim [J{t)-2t] = 2. 
Hoo 3 

This fact has also been noted, in a different context, by Feller [12]. 

Bloom [2] proposes the problem of evaluating 

lim {J(t)-2t} 
1-+oo 

given that , for t a positive integer 

The W.M.C. problems group [27] and Holzsager [17] both solve this problem, and in 

particular Holzsager considers f ( t), \:;/ t > 0. Now, f ( t) satisfies the differential-

difference equation 

f'(t)=f(t)-f(t-1) ' t~l 

using the theory of linear functional differential equations, Holzsager shows that 
' 

lim {J(t)-2t} = 2 . 
Hoo 3 

This work relates only to the asymptotic of the finite sum whereas in this paper it is 

shown that the infinite sum is equal to the asymptotic expression for all t . 

(C) Neutron behaviour example 

In the slowing down of Neutrons Teichmann [23] introduces Laplace transform 

techniques to analyze the 'renewal' equation. This example involves the Placzek 

function 

F(s) 
1- e-(s+l)Uo 

= (s + 1)(1-a)-1 + e-uo(s+l} 
(15) 

before inversion, where a is a constant depending on the mass of the moderating 

nuclei and u0 = - In a is the maximum lethargy change in a single collision. 
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Using the techniques of the previous section Keane's (18] result is confirmed as 

_ 

00 ewt(l-a) (-1)" [(t-u0n)" n(t-u0n)"-
1

] -;_: 

f(t)- L 1- ' (1- )" + (1- r-1 e H(t-uon) 
n=O U n. U U 

where t is lethargy and H(t - u0n) is the n01:mal Heaviside function. 

The contribution from the residue of (15), from the simple dominant pole at s = 0, 

when (1-a+alna) * 0 is 

1 

A 
= 

1 

l+~lna 
1-a 

Using the previous results, it will now be shown that 

From (6), for b = 0andc=1 results in 

I 

= 

-~t 
(1-a)e 1-a 

A 
(16) 

( ) = ~ (-1)" (p- an)" = e11P where 11 + e-ari = 0. (17) 
g p ~ n! l+llll 

Rewriting the left hand side of (16) gives 

Uo(n+l)e l~oa]" -~ e I-a 

1-a 

"o 

= g(t)- g(t-u0 )e- 1-a, (18) 

and it is required to show that (18) is identically equal to the right hand side of (16). 

Let 

-~ 
te I-a 

p=l-a 

so that from (17) 

Uo u --
a=-0-e i--a and B--~ th Be-B en a= , 

1-a 1-a 

_flt e-B 

et-a 
g(t) =--

1 + ll11 
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F -TJBe-B 
rom Tl + e = 0 put a'Tl = - E then E = aeE and hence Ee-E = Be-B , which 

is satisfied by the relationship E = CJ.13. 

Now from (18) 

a 
--t e I-a 

a 
1+--lna. 

1-a. 

-~(t-u0 ) -~ e 1-a e 1-a 

a. 
1+--lna. 

1-a. 

a 
--t 

- (1- a.)e 1-a 
as required. a 

1+--lna. 
1-a. 

(1-u0 -a) 

Equations (18) and (16) hold, in the region of convergence ~e 1-a < 1. 
1-a. 

From (15) a double pole occurs at s = 0 when 1-a+ a In a=(), therefore 

lim [t(t)- 2a. t] = 3_ (a.(2a.+ l))· 
Hoo 1 - a 3 1 - a 

(D) A Renewal ~xample 

In determining the availability of a renewed component Pages and Gondran [20] 

consider the case of a constant failure rate. 

Given that A(t) is the availability of a Markovian component, A. is the constant 

failure rate, and g(t) is a density function, then the integro-differential equation 

satisfied by A(t) is 

!£A(t) = -M(t)+(l-Ao)g(t)+A.1'g(u)A(t-u)du , A(O)=Ao. 
dt 0 

Taking the Laplace Transform results in 

A(s) =~{A(t)} = Ao +(1-Ao)g(s) 
s +A. - A.g(s) 

Considering the case of constant repair time, that is Mean Time To Repair, M.T.T.R., 

IS a ' then g(t) = o(t- a) ' where o(t) is the Impulse fonction. 
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Hence, 

-{ ) Ao+ (1-Ao)e-as 
As = 

s+A.-A.e-as 
(19) 

and by inversion 

00 A." 
A(t) = L -

1 
{Aoe-Mt-an)(t-an)" H(t-an)+ (1-Ao)e-J.(t-a(n+I))(t-a(n+l))" H(t-a(n+l))} 

n=O n. 

where H(x) is the Heaviside function. 

From (19) the residue at the dominant root s = 0, of the characteristic equation 
- 1 

s + A - A.e-as = 0 for a > 0 and 1 +a.A. :;t: 0 , ts 
I+aA. 

hence, by utilizing the previous section, the result becomes 

! A." {Aoe-Mt-an)(t-an)" +(l-Ao)e-J.(1-a(11+1>)(t-a(n+I))"} = 1 
n=O n! 

1 
. l+aA 

in its region of convergence laA.e1
+aJ. I < 1 and "if t e R. 

The value of the availability limit sum is independent of the initial value Ao and the 

closed form solution is independent of the value of t . 

It can be seen that 

! A." e-Mt-an)(t-an)" = t A." e-J.(1-a(n+l))(t-a(n+l))" = 1 
n=O n ! n=O n ! 1 + aA 

by putting t - a = T in the second sum. Utilizing (8) and putting t = -a't results iii 

whenever the double sum converges. 
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From ( 19) a double pole occurs at s = 0 when 1 + a'A = 0 , and in this case 

lim {A(t)+~t} = ~(3Ao -2). 
r-+~ a 3 

(E) Ruin Problems in compound Poisson processes 

The integro-differential equation 

R' (t) = (a){ R(t)- f'R(t- x)dF(x)} 
c Jo 

I 

(20) 

is derived by Tijms [24] and Feller [12] and has applications to collective risk theory, 

storage problems and scheduling of patients. Here, a is the Poisson parameter and 

c1 a positive rate. 

Taking the Laplace transform of (20), it follows that 

R(s)= ft7 {R(t)} = R(O) . l. 
1-~(1-F(s)) s 

C1S 

Given that F is a distribution concentrated at the point a , µ is the expectation of F 

and R(O) = 1-kµ , where k=~ results in 
C1 

R(s) = 
s-k+ke-as 

1-kµ (21) 

Comparing (21) with (2), b = - k , c = k results in 

R(t) = (1-kµ) ! (-lr k" ek(r-anl(t~an)" H(t-an). 
n=O n · 

The characteristic equation s-k + ke-as = 0 has a simple real dominant root at 

s = O , for 1-ak -:;:. 0 and therefore 

!: (-lr k" ek(t-an)(t-an)" = 
n=O n. 

1 

1-ak 

. f lak el-akl < 1. and in the region o convergence 

\:/t ER 
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Figure 2: Ske~ch of the Ruin function R(t). 

The Ruin function R(t) is continuous Vt~ 0, differentiable Vt~ 0 \ {t =a} and 

approaches its limiting value 
1 

1-ak 

From (21) a double pole occurs at s = 0 when 1-ak = 0, therefore 

lim {R(t)+~(l-kµ)t} = ~(1-kµ). 
~- a 3 

4. ZEROS OF THE TRANSCENDENTAL EQUATION 

Equation (4) is the transcendental equation associated with the differential-difference 

equation (1). The zeros of this equation are well documented and since many research papers 

have been interested in the stability of the solution of the differential-difference equation, 

conditions are given for the existence of complex conjugate roots with negative real part. 

From Bellman and Cooke [l] a necessary and sufficient condition for (4) to have roots with 

negative real part is 

(i) ab> 1. 

(ii) -ab<ac<~~2 +(ab)2 where~ istherootof~+abtan~=O 0<~<1t 

or ~ = 1t if ab = 0. 
2 
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Lemma3 

Equation ( 4) has at most 2 real zeros. 

Proof: From (4), let z =as , a= ab , ~ = ac , a> 0 , g(as) = G(z) and so 

G(z) = z+a+~e-z =0 (22) 

1 
Let Y(z) = 13(z+a)ez = -1 then at the turning point z* = -(l+a.), 

Y(z*} = - ~)+a. Hence, since l~et+ul < 1, if Y {z*}<-1 there exists at most 2 real roots as 

can be seen from figure 3. 

y(z) 

0 

-1 

Figure 3 : The real roots of G(z) 

Lemma4 

Equation (22) has a.finite number of complex roots with positive real part. 

Proof. Let z = x+iy , then from (22) 

x+a+~e-xCosy = O} 
y- ~e-xSiny = 0 

(23) 

The zeros of G(z) depend continuously on ~ , and for ~ > 0 all zeros will be in the half plane 

Re (z) =::;; ~· If G(z) = G' (z) = 0 there will be a double root at z + 1+a=0 and therefore 

zeros cannot bifurcate or merge, as ~ varies, in the half plane x > -1. 
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Utilizing similar arguments to that of Cooke and Grossman [8] it can be seen that if z = z(~) 

is an isolated simple zero with Re (z) ~ 0, then it moves to the right of the half plane for 
increasing p , since 

and 

dz 

d~ 
= 

Re(:) = 

dGI dP z+a 
=----

dG/dz ~(l+z+a) 

(x+a)(x+a+ 1)+ y2 

(x+l+a)2+y2 > 0. 

Suppose a pure imaginary root exists, then z = iy and a manipulation of (23) results in 

y2 = ~1 -a2 

For P increasing from a to oo these exists an increasing sequence 

with Sin~p2 
- a 2 > O 

such that for Pe(pk(a), Pk+i (a)) equation (22) has precisely k complex roots with positive 

real part. Also, whenever P =Pk (a) there exists a pair of complex conjugate imaginary roots 

± i Yk such that 

7t 
( 4k + 1) - < Yk < (2k + 1)7t , k = 0, 1, 2, 3,. ... 

2 

It appears from (23) that a zero must remain in the region where Siny>O and Cosy< 0. 

In the specific case where a = 0 then 

7t 
P=Yk = (4k+l)- k=O, 1, 2, 3, .. .. . . 

2 
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5. NUMERICAL EXAMPLES 

The roots of the characteristic equation 

can be located using Mathematica. 
Let s = x+iy then 

R(x,y)=O 
I(x,y)=O 

-21-

s+b+ce-as=O 

= x+b+ce-axCosay 
= y-ce-axSinay. 

(24) 

Note that in (24) if for any x, y is a solution then so is -y. Hence the non-real zeros occur in 

complex conjugate pairs. 

Putting t = - a't, then (10) can be restated as 

oo ("'+ )" -at(b+~1 } ( )" ( )r( ) L (aceab)" ~ n = e = e-akf, ~ :t .£ . ; ('t+rt 
n=O n ! 1 + ab + a~l n=O n . r=O b 

(25) 

where ~1 is the dominant root of the characteristic equation. 

(a,b,c) ~1 't Single Sum at (25) 

I 

.5, .2, .6 -1.421013107061 2 8.705206947716 
II -2 .757217409662 

8, -1, 6 .997954008152 2 1.050471634335 
II -2 .983898536807 

-4, 3, 1 -3.000006144061 2 .999926274283 ' 

II -2 1.000024576849 

.1,2,-2 0 2 .558600038363 
II -2 1.243187248034 

.15,-4,4 0 2 8.300292306841 
II -2 . 7 52985529781 

! 

.99, -1, 1 0 2 724.274298516101 
It -2 13.806292373109 

Table 1: Examples of sums. 
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In table l, the single sum converges to the closed form term at (25) to within a truncation 
error Of E = 10-12

• 

Using the technique developed by Braden [4] the single positive sum needs at least 245 terms 
so that its sum is within a truncation error of e = 10-12 for (a, b, c) = ( .15, - 4, 4) and over 

one million terms for (a, b, c) = (. 99, - 1, 1) and t = 2 . 

The double sum in (10), when it converges, generally requires many more terms in it's series 

than does the single sum to converge to some prescribed truncation error. In Table 1 the 

double series converges only for the cases (a, b, c) = (.5, .2, .6) and (.1, 2, -2). 

Using Mathematica a three dimensional plot of the surfaces R(x,y) = z and I(x,y) = z can 

be obtained as demonstrated in figures 4 and 5 respectively. 

10000 

5 000 
z 

y 

x 

0 

Figure 4: 
01----

The Surface z = R(x,y} for (a,b,c)=t.5,.2,.6). 

Figure 5: The Surface z=l(x,y) for (a,b,c)=(.5,.2,.6). 
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CONCLUSION 

A technique has been demonstrated whereby series may be represented in closed form. An 

association was made between a differential-difference equation and its characteristic 

equation, however a starting point may simply be taken as a Laplace transform equation of the 

type 

F(s)=---
1
-­

P,, (s )+ Qn (s )e-as 

for Pn (s) and Qn (s) polynomials in s . 

· In a follow up paper more general systems of the type 

~ (:}-o' t<»(1)- f(t-a) = c(t) 

and 

f (R)(-It iR-k)(t-ka) = h(t) 
k=O k 

will be considered, together with equations that have more than one delay and equations of 

neutral and mixed types. 
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