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BINOMIAL TYPE SUMS 

Abstract 

Using ideas from residue theory, a method is developed which in turn allows a specific finite 

Binomial type sum to be expressed in closed form. The binomial type sum has applications in 

the areas of network reliability and discrete distributions. 

AMS: 05A10, 40C99 

Introduction 

Some ideas of residue theory are used in expressing a finite sum in closed polynomial form. 

The sum to be considered is 

(-lt+m ~)-lY(n)rn+m 
(n+m)! r=O r 

and it arises in the study of differential-difference equations in the work of Sofo and Cerone 

(to appear). 

Binomial sums have been considered by Gould (1994) and the sum of the powers of natural 

numbers has been considered by de Bruyn (1995). Binomial type sums considered in this 

paper are related to Stirling numbers of the second kind, which in tum are related to Bernoulli, 

second order Eulerian and Bell numbers. However, the readers need not be acquainted with 

any of these special numbers as the authors develop a recurrence relation to determine the 

finite sum. The binomial type sum considered here has applications in the areas of network 

reliability, see for example the work of Prekopa et al. (1991) and in the representation of a 

discrete distribution, see the work of Brandt et al. (1990). 

Firstly, in this paper, an infinite double sum is obtained from which a recurrence relation is 

developed. Then it is shown that the double sum may be expanded in a Maclaurin series. 

Secondly it is proved that the finite sum above can be written as a polynomial inn of degree 

m, and some examples are given. Finally a generalisation of the above finite sum is given. 
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·Background and problem statement 

Volterra integral equations of the form 

'V(t) = F(t) + J;'V(t-x)<j>(x)dx (1) 

occur in a wide area of applications, (e.g. Tijms (1986)), as do differential-difference equations 

of the first order with a shift parameter, (e.g. Bellman and Cooke, (1963)). 

Taking the Laplace transform of (1) and putting F(t) = 8(t), the Dirac delta impulse function, 

will produce an expression of the form 

'I'( ) - 1 
p -1-<l>(p) 

(2) 

Taking the Laplace transform of a differential-difference equation of the first order will 

produce a result like (2). 

Now consider the rectangular wave <j>(x) = H(a-x) = l-H(x-a), where H(x) is the 

Heaviside function. The Laplace transform of <j>( x) is: 

1 -ap i. {<j>(x)} = <l>(p) = -e 
p 

and the n -th moment of <j>( x) is given by 

Substituting (3) into (2) results in 

'I'( ) - p p - 1 -ap p- +e 

An expansion of (5) gives 

(3) 

(4) 

(5) 

(6) 
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It may be noticed that 'l'(p) can be written in the form 'l'(p) = LJ3m(a)pm 
m=O 

where 

In this paper the finite sum over r in equation (7) will be investigated. 

A Recurrence Relation for J3m (a) 

J3m (a) may be given alternatively, from (5), as 

J3m(a) = lim[-1 ~{ \ )}] ; m = 1,2,3 ..... . 
p~O m ! dpm 1-<I> p 

and in particular J3 0 (a) = 1 
( ) = - 1

-;a * 1. 
1-<I> 0 1-a 

Furthermore, using the ideas developed by Cerone (1994), 

I - . dm [ <l>(p) ] . - . m.J3m(a)-lim- l+ ( ) , m-1,2,3 ...... . 
p~O dpm 1-<I> p 

r dm [ <l>(p) ] 
= /!] dpm 1-<l>(p) 

Hence, using (4) and (8) then, (9) may be written as 

that is, the J3m (a) are given by the recurrence relation 

(7) 

(8) 

(9) 

(10) 

m-1 m-(k-1) 

(1-a)J3m(a)= I/-lt-k ( ~( _ ))
1
.J3k(a); m=l,2,3.... (11) 

k=O m k 1 . 

1 
with J3 0 (a) = -. 

1-a 
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From (7), 
oo n+m 

~m(a)= I/-lf+m (a )
1
.s(m,n) 

n=O n+m . 

where s(m,n)= l(-1r(;)r"+m. 
r=O 

00 j 

Puttingj = n+ m gives ~m(a) = I/-l)i ~s(m,j-m) 
j=m J. 

m oo j 

=(-It~s(m,O)+ L (-l)i ~s(m,j-m). 
m. j=m+l J . 

Since, s(m,O)= t,<-1r(~}0- = 0, m ;0 0, then 

00 j 
~ · a ~m(a)= ~(-1)1-. 

1 
s(m, j-m) 

j=m+l J · 

and so the problem lends itself in trying to express ~m (a) as a Maclaurin series. 

From (7) and (12), Pm (a) may be expanded in a Maclaurin series 

(12) 

(13) 

and the coefficients ~m (q)(O) can be calculated from the recurrence relation in (11), as follows. 

From the left hand side of (11) 

-{(1-a)Pm(a)}- ~ -(1-a).~m (a),q-0,1,2, ..... 
dq _ q (q) dq-r (r ) . _ 

daq £:t r daq-r . 

and this term is zero only for r = q and r = q -1, so that 

(14) 

Further, from the right hand side of (11) 
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The last expression can be written as the sum of two terms corresponding to the a0 term for 
r = q - m + k - 1 and to the ai , j ?:. 1, term for r > ( q - m + k - 1). .,, 

Hence, 

!!!__[Ic-1r-k am-k+l Pk(a)]= lC-1r-k( q )P~q-m+k-l)(a) 
daq k=o (m-k+l)! k=o q-m+k-l 

+ I:c-1r-ki(q) am-k+l-(q-r) .pr)(a). 
k=O r=o r (m-k+l-(q-r))! 

(15) 

Now, setting a= 0 in (14) and (15) gives, after equating the right hand sides, the following 

recurrence relation for the coefficients of the Maclaurin series (13), 

p(q)(o)-qp(q-l)(o) = ~c-1r-k( q k 1).p~q-m+k-l)(o), q=0,1,2, .... (16) 
m m £..i q-m+ -

k=O 

These coefficients are demonstrated in Table 1. 

q\m 0 1 2 3 4 5 6 7 
' 

0 1 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 

2 2! -1 0 0 0 0 0 0 

3 3! -6 1 0 0 0 0 0 

4 4! -36 14 -1 0 0 0 0 

5 5! -240 150 -30 1 0 0 0 

6 6! -1800 1560 -540 62 -1 0 0 

7 7! -15120 16800 -8400 1806 -126 1 0 

8 8! -14120 191520 -126000 40824 -4914 254 -1 

. 

Table 1 : Coefficients of p~l ( 0) 

Some observations that may be made from (16) and table 1 are as follows: 

....... 
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The Polynomial 

It will now be shown that the coefficients of the power series for ~m (a) have the following 

property. 

Theorem: . (-l)"+m n ( ) 
The fimte sum Pm ( n) = ( ) 2,. ( -1)' n rn+m is a polynomial in n of 

n+m ! r=o r 

degree m. 

Proof: From (7), 

~m(a) = i~~+nl(O) am+n + i(-l)"+m an+m t(-1Y(n)rn+m. (17) 
n=l (m+n)! n=m+l (n+m)! r=O r 

From (11), 

m = 1,2,3, .... 

(-Itam+I [ 1 (m+l)a2 (m+l)ma3 (a+2) (m+l)m(m-l)a4 (l+2a) 
= -+ 2 + 2 3 + 3 4 

(m+l)!(l-a) l-a 2a(l-a) l2a (l-a) 24a (l-a) 

(m+l)m(m-l)(m-2)a
5
(6+32a+8a 2 -a3

) (m+l)!am ( )] 
+ 4( s + ...... + 1( )mXa 3 ! 5 ! a l - a) 2am- 1- a 

where the function X(a) is a polynomial in a, to be detennined from the particular ~m-l (a). 

That is, 

( ) 
(-ltam+I [c )m-1 (m+l)a(l-at-2 (m+l)ma(a+2)(l-at-3 

~ a = l-a + + + 
m ( m + 1) !( 1- a r+l 2 12 

(m+ I)m(m-I)a(l +2a)(l-at-4 (m+ l)m(m-I)(m-2)a( 6+32a+8a2 -a3 )(I-at-s _:.___;__.: __ _;___;,_ _________ +------------------------------~ 
24 3!5! 

(m+l)!a ] + .......... + 
2 

X(a) and so, 
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+(m+1)m(m-1)(m-2)~(-l)k(m-5)[6 k+r 32 k+2 8 k+3 _ k+4 ] (m+l)!aX(a)} 
3151 .£..i k a + a + a a + .... .. . 

· · k=O 2 

- (-1)
2
m ~(n+m) n+m+l{ m-1[ 1 m+l (m+l)m (m+l)m(m-l)(m-2) ] - ""-' a a - +--- + + 

(m+l)!n=O n 2 12 3!5! .... 

+am-2[(m-l)- (m+ l)(m-2) + (m+ l)m(m-1) + ............... ] 
2 12 

+ .......... ao[ ..................... ]}. 

Thus, ~m (a) may be expressed in the form 

13. (a)=~( n: m ){ a••2• F;(m) + a••2m-t F,(m)+ ...... +a••m+t F. (m)} 

where the ~(m),j = 1,2, .... ,m, are functions dependent on the fixed parameter m only. 

The summation indices are now adjusted to obtain coefficients of common powers of a in the 

following manner. 

A (a) = ~ (n + 1 )an+m+l R ( m) + ~ (n + 2 )an+m+l E ( m) 
Pm £..i n - m + 1 1 £..i n - m + 2 . 2 

n=m-1 n=m-2 

Loo (n + m - l}n+m+IF ( ) Loo (n + m}n+m+l F ( ) + ....... + 1 m-1 m + m m ' n- n n=I n=O 
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and SO, 

+ ............. .. . 

Grouping of terms gives 

A ( ) ~ n+m+t[(n+l ) ( ) (n+2 ) ( (n+m-1) (n+m) J !-',.,. a = f:;,a n-m+l F;. m + n-m+2 Fi m)+ ...... + n-1 F,,,_,(m)+ n F,.,.(m) 

and SO, 

~ n+m [( n ) (n + 1 ) (n + m -2) (n + m -1) . J ~,,.(a)= nf:+~ n-m F;_(m)+ n-m+l Fi(m)+ ....... + n-2 Fm_,(m)+ n-1 F,.,.(m) 

m 

+ _Lan+mGm+l-n(m) (19) 
n=l 

where the functions Gj(m), like Fj(m), are dependent only on the fixed parameter m. 

From the right hand side of (17) and (19) it may be seen that, 

m m~ m 
~ A(m+n)(O) a - ~ m+kG (m) 
~1-'m ( )! ~a m+I-k 
n=I m+n · k=l 

(20) 

and equating the powers of am+ j, where j = m + 1, m + 2, ..... 

(-l)"+m ~(-lY(n)r"+m = ~(n+k )F. (m) . 
( + ) ,~ r ~ n-m+k k+I n m . r=o k=O 

(21) 
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Now since, 

. , 

(
n+k )= (n+k)(n+k-1) ........ (n+k-m+l). _ 
n-m+k 1 ,k-0,l,2, ..... ,(m-l) 

m. 

is a polynomial in n of degree m and the ~+i ( m) functions depend on the fixed parameter m, 

then the right hand side of (21) is a polynomial inn of degree m. 

Hence, 

Pm(n) = (-1r+m f,(-1y(n)r"+m 
(n+m)! r=o r 

(22) 

is a polynomial in n of degree m, and the theorem is proved. 

Finite differences may be used to determine a specific polynomial, however the following 
procedure establishes a recurrence relation to determine the values of ~+i (m) in (21). 

Relations between ~~)(O),Gk(m) and ~+1 (m) 

From (18) and (19) it can be seen that, on equating coefficients of am+j ,j = 1,2, ..... ,m gives, 

and therefore 

m-k(m+ jy, Gk(m) = L . j+k(m), k = 1,2,3, ..... m. 
j=O ) 
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The functions F;(m) ; j = 1,2, ... :m, in (21) can now be recursively obtained from 

MF=G (23) 

where M is an ( m x m) upper triangular matrix, F and G are ( m x 1) column vectors. 

Similarly, from (20) 

~<m+k)(O) 
Gm-k+1(m) = (~+k)! ; k=l,2,3, ..... m. 

Now, putting q = m + k 

~(q)(O) 
Gzm-q+I (m) = m ' 

q. 
q = m+I,m+2, ...... 2m, 

and for the counter j = 2m - q + 1 

~~m+I-j)(O) 
Gj (m) ; j = m,m-1,m-2, ...... ,3,2,I, 

(2m+l-j)! 

where the ~~)(O) values can be obtained from (16). 

Therefore (23) may be written as 

MF= ~~m+I-k)(O) I (2m+ 1-k) ! ; k = 1,2,3, ..... m, or 

(~) (m~l) (m;z) ................ (z:=D ]\(m) ~~m)(O) I (2m) ! 

~~m+l)(O) /(2m+ 1)! 
(~) ( m ~ 1) ............... .(2:=;) Fz(m) 

= (24) 

(~) (m~l)(m~2) Fm_z(m) ' ~:+3l(O)/(m+3)! 

(~) (m;l) Fm_
1
(m) ~~m+Z)(O) I (m + 2) ! 

(~) Fm(m) ~~+1l(O) I (m + 1) ! 
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This matrix setup therefore allows a recursive evaluation of the functions 

~(m); j = 1,2,3, .... m, in terms of the coefficients ~~)(O) in the Maclaurin series (13). 

From the work of the previous section F; (m) takes the form 

(m+l)!F;(m) =-l+ m+l (m+l)m +O+ (m+l)m(m-l)(m-2) + ....... (25) 
2 12 6! 

and for a particular value of m, that same number of terms are used on the right hand side of 

(25). 
1 1 1 

Therefore F; ( 1) = - - , F; ( 2) = - , F; ( 3) = 0, F; ( 4) = - - , Fi ( 5) = 0, .... and because of the 
2 12 6! 

f01m of the polynomial in table 2, for every m;;?:: 3 and odd only, it is conjectured that 

.F;(m) = 0. Of course all F;(m) values can be evaluated from (24). 

Examples 

(A) Let m = 3 and from (21) and (22) 

R() (-lf+
3

~(-l)r(n)rn+3=~(n+k )F. (3) 
3 n ( 3) 1 "'-' r "'-' n - 3 + k k+l n+ . r=O k=O 

From (24) and table 1, 

(
3) 17 (3) = ~~4)(0) = _ _!_. (3)R (3)+ (4)R (3) = ~;s)(O) - 30 . R (3) =- 10 
0 r 3 4! 4!' 0 2 1 3 5! 5! ' 2 5! 

and hence 

( 
n ) (n+l)( 10) (n+2)( 1) n

2

(n+l) ~(n) = n-3 (O)+ n-2 -5! + n-1 - 4! =- 2.4! 

and (-1r :tc-1r(n)rn+3 = n
2

(n+l). 
(n+3)!r=o r 2.4! 
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(B) The following example uses the idea of a multi.nominal distribution. 

Consider n different coloured marbles in each of (n + 3) bags. In how many ways 

can one draw a marble from each bag such that all coloured marbles are represented 

in the 'hand' of (n + 3) marbles? 

From the multinominal distribution, the total number of ways this can be done is: 

= (n+ 3) ![n2(n + 1)] 
2.4! 

(27) 

From the inclusion - exclusion principle, the total number of ways can be written down 

as 

However, from the work of the previous section 

(-1)" ic-1r(n)r"+3 =~(n)= n2(n+l) 
(n+3)! r=O r 2.4! 

so that 

which is equivalent to (27). 

For the general case of n coloured marbles and (n + m) bags the expression at 

(26) becomes unwieldy and it is believed to be far better to use the methods of the 

previous sections. 
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Table 2, below lists the sum (22) in closed polynomial form for the values 

of m = O,l,2,3,4,5,6, 7,8,9. 

m 

1 
n/2! 

n(3n+ 1)/ 4! 

n2 (n+l)/2.4! 

n(15n3 +30n2 +5n-2)/23.6! 

n2 (n+1)(3n2 +7n-2)/24 .6! 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

n( 63n5 +315n4 + 315n3 -9ln2 -42n+16) / 23
• 9 ! 

n2 (n+1)(9n4 +54n3 +5ln2 -58n+16)/24 .9! 

n(135n1 +1260n6 +3150n5 +840n4 -2345n3 +540n2 -404n-144) /3.27 .10! 

n2 (n+1)(15n6 +165n5 +465n4 -17n3 -648n2 +548n-144)/3.28 .10! 

Table 2 : Some examples of Pm (n) in closed form 

These polynomials are related to the Stirling polynomials, see Graham et al. ((1989), by 

n' 
Pm(n) ( · ) S(n+m,n) 

n+m ! 

where S(p, q) is the Stirling number of the second kind. From table 2, ~ ( 4) = 513. Using 

the table on page 835 of Abramowitz and Stegun (1965), S(7,4)=350 and hence 

P(4) = 4 ! .350=~. 
3 7! 3 

In the next section a generalization of (22) is given whereby noninteger values may be 

summed. 
A Generalization 

Consider 

Qm(n,x) tl)'~ i<-1Y(n)(x+rt+m 
n+m !r=o r 

(28) 

where m,n are natural numbers and xis a real number. 
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The following lemma is needed. 

Lemma 

R;(n)= ~(-I)'(~)e ={~-I}'n! i=0,1,2, ...... ,(n-1) 
(29) z =n 

Proof 

From the expression (1-y)" = ~(~)<-1)'y', 

differentiating i times gives 

:ii {(1-yf} = (-lYn(n-1) .. .... (n-i+l)(l-y)"..;i = ic-1t(~)kil-i ; for i=0,1,2, .. .. (n-1), 
y k=O 

and so putting y = 1, results in 

Further for i = n , differentiating n times gives 

(-l}'n!= ~(-!)'(~}·. 

From (28) 

Qo(n,x) = (-l)" ic-1r(n)(x+r)" =ii (-lY+" (n)(n)x"-krk (30) 
n ! r=o r r=o k=O n ! r k 

-Expanding and adding down columns results in 

Qi(n,x) = x" (-1)" (n)i(-ll(n)ko + x"-
1

(-l)" (n)i(-l)k(n)k1 + x"-
2
(-l)" (n)t(-l)k(n)kz n ! 0 k=o k n ! 1 k=o k n ! 2 k=o k 

x 0 
( -1 )" (n) " k (n) n + ....... + n ! n ~(-1) k k • 
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Now, utilising the above lemma, from (29) 

_xn(-IY(n) x
1(-1Y( n) x

0
(-IY(n) n Q0(n,x)- 0 .O+ ........ + 

1 
.O+ . (-1) n! 

n! n! n- n! n 

and hence, from (30) 

Q0 (n,x)= (-ir i(-1y(n)(x+rY =l. 
n! r=o r 

(31) 

The result in (31) can be integrated m times with respect to x to produce the result 
Qm(n,x)at (28). 

The closed form of (28) can now be obtained as follows, integrating (31) and using the initial 

condition Q1 ( n, 0) = Pi ( n) = !!:. , from table 2 for m = 1, results in 
2 

Q, (n, x) = (-I)~ :±, (-I)'(n)(x + r y+i = .!.(n + 2x) 
(n+ 1 ! r=o r 2 

Using this procedure, table 3 below is given listing Qm ( n, x) which gives (28) in closed form. 

From (28) 

so that the coefficients of xi can be expressed as 

a . = (-1r+m (n~m)i(-1Y(n)rn+m-i;0-5.j-5.(n+m), 
1 (n+m)! 1 r=o r 

(32) 

and therefore Qm (n, x) appears to be a polynomial in x of degree (n + m). 
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However, from (32), a i = 0 for m + 1 s; j s; n + m using the lemma (29), and hence (2m (n, x) is 

a polynomial in x of degree m. From the work of the previous section and above, Qm (n,x) is 

a polynomial in n and x of degree m for both n and x. 

m 

0 

1 

2 

3 

4 

1 

(n+2x)/2 
(3n2 +n(1+12x)+12x2

)/ 4I 

(n3 +n2 (1+6x)+n(2x+12x2 )+8x3 )! 2.4! 

(15n4 +30n3 (l +4x)+5n2 (1 +24x)(3x+ l))+ 2n(-1+60x2 (1 +4x)) 

+240x4 )/23 .6! 

Table 3: Some examples of Qm (n,x) in closed form -
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Conclusion 

A technique has been developed whereby Binomial type sums of powers can be expressed in 

closed form. An application to the multinominal distribution has been given. 
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