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ABSTRACT 

Some methods for monitoring and controlling the mean level of a multivariate normal process 
are presented in this paper. Those that do not depend on prior estimates of the process 
parameters are particularly attractive to short-run or low volume manufacturing environments. 
As the given techniques involve sequences of independent or approximately independent 
standard normal variables, the resulting control charts can all be plotted using the same scale 
irrespective of product types, thus simplifying charting administration. A simulation study 
indicates that these control procedures are particularly useful for 'picking up' a sustained shift 
in the process mean vector when subgroup data are used, even if prior information about the 
process parameters are not available. Some illustrative examples are presented. 

INTRODUCTION 

In many industrial situations, it is not uncommon to monitor on-going performance of a 
production process with respect to more than one process or product characteristic 
simultaneously. If the product characteristics are correlated and no consideration is made of 
their joint distribution, the use of separate control charts for each of them can be misleading. 
Specifically, the related variables, when studied separately, may appear to be in statistical 
control while in fact the manufacturing system is out-of-control or vice versa when considering 
the quality characteristics in their multivariate context. Montgomery et al.(1972) and Alt et 
al.(1990) illustrated this for the case of p = 2 variables. Under these circumstances, it seems 
reasonable to consider the use of multivariate quality control procedures which take into 
account the covariance structure of the quality characteristics. 

Most of the statistical process control (SPC) techniques proposed to date for 
controlling the mean of a multivariate normal process are based on Hotelling's (1947) z2 or 

T2 -type statistic. Other multivariate control procedures, including the use of principal 
components and multivariate cusum (MCUSUM) techniques, were reviewed by Jackson 
(1991). A multivariate version of the exponentially weighted moving average chart, referred to 
as the 1vffiWMA chart, has also been presented by Lowry et al. (1992). Apart from these, some 
techniques that are designed to provide protection against changes in the process covariance 
matrix have been presented, for example, in Montgomery et al.(1972) and Alt et al.(1986). 
Recently, various attempts have also been made to develop control techniques which can both 
detect any process irregularities and identify the set of out-of-control variables, taking the 
correlational structure of the quality characteristics into consideration (see for eg., 



Doganaksoy et al.(1991), Hawkins (1993) and Hayter et al. (1994)). However, all of this work 
essentially assumes that the process mean (or target) µ and the process covariance matrix ~ 
are known or that they can be reliably estimated based on sufficient data prior to full scale 
production. Thus, these techniques do not readily lend themselves to applications in the short­
rui:i or low-volume manufacturing environment where data for estimating the process 
parameters are usually scarce or unavailable. 

The main purpose of this paper is to present some 'self-starting' and unified procedures 
for controlling the mean vector of a multivariate normal process where prior estimates of the 
process parameters are not available such as frequently occurs in short-run, low-volume and 
multi-product manufacturing environments. The proposed techniques also facilitate the control 
of long-run processes at an earlier stage when the process parameters have to be estimated 
from the data stream of the current production. For completeness, control procedures are also 
given for the cases where µ, L or both are assumed known in advance of the production 
runs. 

In addition to this introduction, the paper is organized into five sections. In the next 
section, control statistics for use with individual and subgroup data are given according to 
various assumptions about the knowledge of the process parameters. Some numerical 
examples illustrating the use of these techniques are provided in section 3. In s,ection 4, 
simulation results are presented and statistical performance of the proposed techniques 
discussed. A brief account of the computational requirements for implementation of the 
proposed techniques is given in section 5. The final section concludes with a brief summary 
and further remarks. The total discourse is in the context of discrete items manufacture. 

MULTIVARIATE MEAN CONTROL CHARTS 

Like the 'Q' charting approach previously proposed by Quesenberry (1991) for 
controlling univariate normal processes, the techniques presented in this paper involve the use 
of the probability integral tramformation of some (scaled) quadratic forms in order to 
produce sequences of independent or approximately independent standard normal variables. 
These procedures essentially enable charting to commence with the first units or samples of 
production whether or not prior knowledge of the process parameters is available. For the case 
where no relevant data is available prior to a production run, the process parameters µ and ~ 
are 'estimated' and 'updated' sequentially from the current data stream. These dynamic 
estimates, together with the next observation or subgroup are in turn used to determine 
whether the process remains stable. 

The appropriate control statistics based on both individual observations and subgroup 
data are presented in the following subsections. The control statistics are given for the cases 
when both, either or neither of the process parameters µ and L are assumed known in 

advance of the production run. 

(a) Control Charts Based on Individual Measurements 

Let X1, X 2 , ••• be the vectors of measurements on p quality characteristics for products 
produced in time sequence. Assume that these observation vectors are independently and 
identically distributed having been collected from a p-variate normal NP(µ,l:) process. 
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Further, let Xk, Sk and Sµ.k denote respectively the mean vector, the usual and the 'mean­

dependent' covariance matrix of the first k observations as defined below : 

These values can be updated sequentially using the following recursive formulae : 

The following additional notation will be used. 

<I>{•) : distribution function of a standard normal variable 

<1>-1 
( •) : inverse of the standard normal distribution function 

k = 2,3, ..... . 

k = 3,4, ..... . 

k = 2,3, ..... . 

x~(.) : distribution function of a chi-square variable with v degrees of freedom 

Fvi ,v2 ( •) : distribution function of an F variable with v 1 numerator degrees of freedom 

and v2 denominator degrees of freedom 

The appropriate control statistics are now presented as follows: 

Case CD : Both µ and L known 

zk = <1>- 1 [x~C4)] k = 1,2, ..... . 

where 4 = (xk - µ)' L-'(xk - µ) (1) 

Case OD : µ unknown, L known 

zk = <1>-1[x!C7k>] k = 2,3, ..... . 

where 4 = (k;;1)(xk - Xk_,)' L-1(xk - Xk_1) (2) 
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Case (flD : µ known, L unknown 

For this case, two alternative control statistics are considered which, as demonstrated 
later, have slightly different performance. They involve the use of Sµ,k and Sk respectively. 

(a) Uses µ in L estimate 

k=p+l, ..... . 

(3a) 

(b) Uses Sample Variance-Covariance Matrix 

k = p+2, ..... . 

Where T. - (k-1-p)(x )'s-1 (x ) 
k - p(k-2) k - µ k-1 k - µ (3b) 

Case CM : Both µ and L unknown 

k = p+2,. ..... 

Where T. _ (ck-IXk-1-p))(x x )'s-1 (x x ) 
k - kp(k-2) k - k-1 k-1 k - k-1 (4) 

Note that for the cases with some unknown parameters, monitoring the process can 
essentially commence with the first units of production without having to wait until enough 
process performance data has built up. This is crucial for the control of short-run processes 
and processes during 'wann up'. 

As shown above, for case (I), a value of Zk corresponds to Xk for all values of 
k = 1,2,. .. . However, no value of Zk corresponding to the first observation X1 is calculated 
for case (II). This is due to the fact that the unknown process mean vector µ has to be 
estimated from X1 before its constancy can be subsequently monitored, based on further 
observations. For case (III), if the control statistics given by (3a) are used, the monitoring 
procedure begins after p +I observations. For the remaining cases, control is initiated at the 
(p + 2)th observation. In general, if L has to be estimated from the current data stream, the 
starting periods of the control procedure are such that they yield positive definite estimates of 
L. For example, no value is plotted using the control statistics of (3b) or (4) prior to the 
(p + 2)th observation because the sample covariance matrix Sk-I , used in the formula, is not 
of full rank and hence is not invertible fork less than p + 2. 

Except for (3b), {zk} for each case is a sequence of independently and identically 

distributed (i .i.d) normal variables with mean 0 and standard deviation I under the stable in­
control normality assumption. These distributional properties are shown in Appendix A for 
case (IV) only, which is the most pertinent result for short run SPC. The proofs for other cases 
can be established in the similar manner. The Zk statistics of (3b) are also standard normal 
variables and are approximately independent as k becomes large. However, as the simulation 
study indicates, ignoring the issue of dependence among the Zk' s has no significant effect on 
the false signal rate. In particular, the probability of getting a false signal from any one of the 
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first 50 p-variate measurements was simulated for p = 2, 3 and 5 based on 10,000 runs when 
either 3-sigma limits or only the upper 99.73th probability limit is used. The results appear to 
agree well with the nominal value of 1- 0.997350 = 0.1264. The reason the above criterion is 
chosen as a measure of in-control performance instead of the usual average run length is that 
the control statistics given by (3b) are primarily concerned with short production run situations 
in which the total number of observations rarely exceeds 50. 

As the plot statistics for all cases are sequences of independent (or approximately 
independent) standard normal variables, the resulting control charts can be constructed using 
the same scale and with the same Shewhart control limits ±3. In addition, supplementary run 
rules can be employed to reveal any assignable causes hidden in the point patterns of the 
charts. Although the argument statistics ~ 's can be plotted instead of the transformed 
variables Zk' s, this practice is not recommended if additional computational effort can be 
justified. This is because, for those cases other than case (I), the use of lie' s results in varying 
control limits which can lead to misinterpretation. The use of these procedures is illustrated 
after the appropriate control statistics based on subgroup data have been presented. 

(b) Control Charts Based on Subgroup Data 

In practice, the use of subgroup data is often preferable to individual measurements 
even in situations where only a limited amount of data are available. This is justified on the 
basis that the resulting control charts are more sensitive to substantial shifts in the process 
average and that the subgroup mean (vector) is less affected by departure from the underlying 
normality assumption, by virtue of the central limit theorem. 

A little adaptation of the above formulae yields appropriate control statistics for 
monitoring the stability of the process mean vector based on subgroup data. Discussion will be 
restricted to the case of constant subgroup size, as this is a common phenomenon. Let Xij, n 
and k denote respectively the }th observation vector of the ith subgroup, the common 
subgroup size and the subgroup number, and define the following quantities : 
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where s~> = S~~1•4 = 0. The same technique is now applied to transform the sample mean 

vectors X(;) 's to standard normal variables for each of the cases considered above for the 

individual measurements. 

Case CD : Both µ and L known 

Zk = <t>-'[x.!(Tk)] k = 1,2, ..... . 

where 4 = n(Xck) - µ)' L-1(x(k) - µ) (5) 

Case (Il) : µ unknown, L known 

k = 2,3, ..... . 

where 4 = ( nc~-l) )( x(k) - Xck-J)} L-1 (xck> - Xck-I)) (6) 

Case Cnn : µ known, L unknown 

Two alternative techniques which employ different process covariance matrix estimates 
will be considered for this case. The first one incorporates µ into its 'running' estimate of L 
whereas the other one is based on the pooled estimate S~l1•4 . It will be seen in section 4 that 

these control procedures have comparable performance. 

(a) Uses µ in estimation of L 

k = 2,3,...... , n ~ p 

(7a) 

(b) Uses Pooled Sample Covariance Matrix 

Zk = <t>-1
[Fp,k(n-I)-p+t (T,J] k = 1,2,...... , n > p 

Where 4 = [ n[k~~(::.=;~+l]]( x(k) - µ )' ( s~ )-I ( x(k) - µ) (7b) 

Case CM : Both µ and L unknown 

k = 2,3, ..... . ,n> p 

where T. -(nCk-IXkCn-l}-p+i>)(x - X )'(s<k> )-1
(x - X ) (8) 

k - klp(n-1) (k) (k-1) · poa.d (k) (k-1) 
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Under the assumption that the Xu 1s are independent observation vectors obtained from 

a common process with a NP(µ, L) distribution, the control statistics given by ( 5), ( 6) and 

(7a) are sequences of independently distributed standard normal variables (see Appendix A). 
For those given by (7b) and (8), successive plotted values also arise from a standard normal 
distribution but they are correlated due to the use of the pooled sample covariance matrix. 
Sequences of independently distributed variables can be obtained for these latter cases by 
replacing the pooled sample covariance matrix S~':liet1 by the sample covariance matrix of the 

current subgroup, S(k). This is not considered, however, because it is found that the 

performance of the resulting charts are poor even when some additional run rules are used. 
Furthermore, ignoring the issue of correlation does not appear to have remarkable effect on the 
false signal rates for the control techniques based on statistics (7b) and (8). 

A remark should be made about the computation of the argument statistics for (1) - (8) 
above which involve evaluation of the inverse of a matrix. In fact, each of these arguments can 
be expressed as a quotient of two determinants, thus eliminating the need for inverting either 
the known process covariance matix or some estimates of it (see for eg., Morrison (1976), 
p.134 ). For instance, the argument statistic of (4) has the following alternative expression 

Is (k-l)(k-1-p) (x x )(x x )'I 
k-1 + kp(k-2) k - k-1 k - k-1 

~ = I I -i 
sk-1 

Evaluating an expression of this form is much more convenient than that of its original form 
especially when the number of quality characteristics, p is large. 

For some general guidelines on using the above control charting approach and a 
discussion of its advantages and disadvantages, readers are referred to the article by 
Quesenberry (1991) from which the ideas of this present work originate. 

EXAMPLES 

In this section, use of the proposed techniques are illustrated by some numerical 
examples based on simulated data as well as using data from a previously published article. The 
examples presented here are not intended to cover all possible situations, however, they 
provide some insight into the behaviour of the proposed techniques under various 
circumstances. 

Example 1 

The first illustration uses the formulae for individual measurements. 30 observations 
have been generated from a bivariate normal distribution with the following parameters 

( 
I 1.275] 

L = 1.275 2.25 . 

These data are shown in TABLE 1, along with the computed values of the control statistics (1) 
to ( 4). The corresponding control charts have also been constructed as shown in Figures IA to 
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IE. It should be noted that the use of 3- () control limits in this and subsequent examples is 
merely for the purpose of illustration. In practice, it may be preferable to use narrower control 
limits or only the upper control limit in line with the traditional Hotelling T2 charting 
approach. 

TABLE 1. Simulated Data and Values of The Control Statistics based on Individual 
Measurements for Example 1 

Control Statistic 
Obs. No. Variable 1 Variable 2 (1) (2) (3a) (3b) (4) 

1 10.39 15 .70 -1.27 NA NA NA NA 
2 9.02 14.19 -0.08 -0.28 NA NA NA 
3 9.28 13 .71 -0.50 -0.62 0.07 NA NA 
4 . 8.67 14.04 0.61 -0.19 0.52 0.06 -0.32 
5 9.22 14.99 0.40 -0.55 0.46 0.24 -0.21 
6 8.82 11.54 1.98 1.99 2.09 1.64 1.56 
7 9.07 14.14 -0.24 -1.39 -0.37 0.17 -1.52 
8 11.70 17.31 0.73 1.50 0.47 1.29 1.83 
9 10.92 16.35 -0.35 0.22 -0.60 -0.57 -0.07 

10 9.64 14.84 -1.15 -1 .80 -1.21 -1.24 -1.91 
11 8.31 12.85 0.70 0.18 0.45 0.44 -0.01 
12 9.56 14.23 -1.16 -1.55 -1.29 -1.30 -1.56 
13 10.39 14.74 -0.22 0.15 -0.14 -0.16 0.19 
14 10.11 15.84 -0.43 -0.30 -0.36 -0.42 -0.33 
15 9.53 13.79 -0.42 -0.57 -0.39 -0.44 -0.55 
16 11.15 16.77 0.05 0.46 0.01 0.06 0.45 
17 8.03 11 .89 1.24 0.88 1.05 1.03 0.72 
18 9.68 14.04 -0.67 -0.86 -0.62 -0.66 -0.72 
19 9.57 14.11 -0.95 -1.48 -1.00 -1.00 -1.39 
20 9.05 13 .58 -0.29 -0.98 -0.40 -0.38 -1.01 
21 12.40 18.15 1.59 1.98 1.37 1.49 1.80 
22 10.17 15.17 -2.14 -1.37 -2.12 -2.13 -1.49 
23 8.41 13.00 0.58 0.22 0.38 0.37 0.07 
24 10.31 16.11 -0.33 -0.07 -0.03 -0.06 0.08 
25 9.66 13.57 0.19 0.05 0.55 0.50 0.44 
26 9.50 13.78 -0.44 -0.80 -0.35 -0.36 -0.62 
27 10.91 17.65 1.22 1.44 1.40 1.38 1.52 
28 10.59 16.43 -0.20 0.03 -0.23 -0.25 -0.11 
29 9.71 14.05 -0.62 -0.73 -0.54 -0.56 -0.55 
30 9.48 13.85 -0.60 -0.87 -0.66 -0.68 -0.86 
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Note that for the cases with some unknown parameters, the corresponding statistics 
were computed using the values of µ and .L as given above. Note also that since p = 2, 

calculations of the plotted values of the control statistics (2), (3a), (3b) and ( 4) have been 
started with the 2nd, 3rd, 4th and 4th observations respectively. The latter statistic is 
particularly ·useful as it enables exercise of control over new, start-up or short-run processes 
without requiring accumulation of a considerable amount of process data for estimation of the 
unknown parameters. 

As shown in the figures, none of the plotted points exceed the control limits for each of 
the control charts. This is as expected because the data for this example can be regarded as 
having been collected from an in-control process. It is also interesting to note that after the 
first few observations, the movement of the charted points are very similar for all cases. This is 
especially true for the two charts based on formulae (3a) and (3b ). This phenomenon is typical 
for in-control multivariate normal processes. 

Example 2 

Next, to demonstrate the behaviour of the control charts based on subgroup data for a 
stable process, 120 observations have been generated from a trivariate normal distribution with 

and 
( 

0.0625 0.1062. 5 0.0. 5 J 
.L = 0.10625 0.25 0.136 

0~5 0.136 0.16 

These observations are grouped into samples of size n = 4 and the corresponding values of the 
control statistics (5), (6), (7a}, (7b) and (8) were calculated and plotted in Figures 2A to 2E. 
Note that except for the case with known parameters and when the statistic (7b) is used, 
charting begins with the 2nd subgroup. 

Again, as shown in the figures, the point patterns of the resulting control charts are 
almost identical after the first few points. This similarity in the point patterns will generally be 
the case for other in-control processes and the appearance of the control charts will be more 
similar as the subgroup size increases. FoJJowing Quesenberry's (1991) suggestion, since µ 

and .L are not likely to be known precisely, the safer approach to charting is to use ( 4) and (8) 
which do not assume known values for the process parameters. 
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Example 3 

In this example, two charts are shown in order to compare the control techniques based 
on subgroup data for the cases when the parameters µ and L: are assumed known and when 

they are both unknown. Figures 3A and 3B show these control charts for 30 samples of 3 
observations each from a bivariate process where the mean of the 1st variable increases by 1.5 
standard deviations after the 8th sample. The first 8 samples were generated from a N 2 (µ,L:) 
process distribution with 

µ=G~J and = ( 0.25 0.375) 
L: 0.375 I 

whereas samples 9 to 30 were simulated from N 2 (µnew, L:} where 

= (10.75) 
µnew 23 . 

Note that the correct values of µ and L: to use for computing statistic (5) are those 

before the shift occurs. The figures show that whilst the shift is large enough to trigger out-of­
control signals from both charts as soon as subgroup 9 is observed, that based on unknown 
parameters gradually settles into a pattern indicative of in-control conditions. This is due to the 
fact that the corresponding control statistic utilizes the current data stream to estimate the 
unknown values of the process parameters sequentially, causing the effect of parameter 
changes to 'dilute' as more out-of-control data are incorporated into the parameter estimates. 
It should be noted, that if an outlier or out-of-control observation (or subgroup) is present, 
that observation should be removed from subsequent computations. If this is not done, the 
parameter estimates will be distorted, causing an out-of-control process to appear in-control or 
vice versa. 
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Example 4 

As a preliminary investigation of the effect of changes in process standard deviations on 
the individual values control charts, 3 0 observations are considered that have been generated 
fron:i a trivariate normal process where the standard deviations of two of the variables double 
after the 13th observation. Observations 1 to 13 were generated from N3(µ,L) with 

and 
( 

0.01 

L= 0.042 

0.0825 

0.042 0.0825] 
1.44 -0.18 

-0.18 2.25 

while the remaining subsequent observations were generated from N3(µ, Lnew) where 

( 

0.01 0.084 0.165] 
Lnew = 0.084 5.76 -0.72 

0.165 -0.72 9 

The individual values control charts for the case when both or neither of the process 
parameters are assumed known were constructed based on these simulated data and these are 
displayed in Figure 4A and 4B respectively. As shown in the figures, the change in the process 
standard deviations causes a spike on both the control charts at the 21st observation. 
However, the signal from the latter is less pronounced than that corresponding to the known 
parameter case. This example demonstrates that the individual values control chart which does 
not assume known values of the process parameters can also be used to detect changes in the 
process covariance matrix L. 
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Example 5 

To see how the control technique with unknown parameters that is based on subgroup 
data performs in comparison to an existing method, consider the data given by Alt et al.(1976). 
These authors presented formulae to compute the control limits for the T2 -type control chart 
based on a small number of subgroups, both for retrospective and future testing of the mean 
level of a multivariate normal process and used the data to illustrate the use of these so-called 
small sample probability limits. The data consists of measurements on p = 2 quality 
characteristics which are grouped into subgroups of size n = 10. Due to limited space, the 
summary data are not reproduced here. However, for ease of comparison, the values of the 
T2 -type statistic, the stage 1 (retrospective) and stage 2 (future) control limits are given in 
TABLE 2, together with the results obtained using the technique (8) proposed in this paper. 
Note that the stage 1 and stage 2 control limits are set at ex.= 0. 001 and ex.= 0. 005 
respectively. 

TABLE 2. Values of Alt et al.'s Test Statistic, Small Sample Probability Limits and 
Control Statistic (8) for Example 5. 

Subgroup Alt et al. 's Stage 1 
UCL 

Revised Value 
of Alt et al. 's 

Control Statistic 

Revised Stage 1 Control Statistic 
No. Stage 1 

Control Statistic 

1 0.009 1.3268 
2 1.147 1.3268 
3 0.136 1.3268 
4 4.901* 1.3268 
5 0.632 1.3268 

Subgroup Alt et al.'s Stage 2 
No. Stage 2 i UCLt 

Control Statistic 

6 0.392 1.5906 
7 0.197 1.5906 
8 4.594* 1.5906 
9 0.190 1.5906 
10 0.226 1.5906 
11 0.410 1.5906 
12 0.460 1.5906 

0.327 
0.264 
0.034 

NA 
0.057 

UCL (8) 

0.9546 
0.9546 
0.9546 

0.9546 

NA 
1.0758 

-1.4909 
5.0192* 

-0.5821t 

0.7766 
0.5906 
4.8528* 
0.404St 
0.3248 
1.0596 
0.9490 

* These numbers exceed their respective UCLs indicating the presence of assignable causes. 
t These and subsequent values are calculated after removing the out-of control subgroups immediately 

preceding them. 
: These are based on subgroups 1, 2, 3 and 5. 

As shown in the table, the use of the proposed technique also results in an abnormally 
large value of the control statistic for subgroup 4 as when Alt et al. 's method is used, indicating 
that the process was out-of-control when this sample was taken. Similarly, subgroup 8 is also 
detected as being out-of-control using both control procedures. 
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CONTROL PERFORMANCE 

It is shown in Appendix B, that the statistical performance of the techniques presented 
above depend on the following parameter(s) (scalar, vector or matrix) for each of the given 
types of process changes (besides the change point r) : 

(a) A sustained shift in the Mean Vector from µto µnew whilst L remains unchanged, 

(b) A sustained shift in Covariance Matrix from L to Lnew whilst µ remains unchanged, 

(c) A simultaneous sustained shift in Mean Vector from µto µnew and Covariance Matrix from 

L to Lnew , 

and 

I 

Note that :L2 here denotes the symmetric square root matrix of L such that 

:L=:L~:L~ (see Johnson et al.(1988), p.51) and :L-~ =(:L~r
1

• The importance of these 

results is clear when one realizes that the effort for determining the control performance of the 
proposed techniques is greatly reduced . For instance, in order to determine the performance 
under the first type of process changes, it may be assumed, without loss of generality, that 

µ = (0,0, ... ,0)', L =I and µnew subsequently considered in the form of µnew= (A.,0, ... ,0) for 

various values of A. . 
In this section, we will consider only the simplest type of process changes, namely, a 

persistent change in the process mean vector. The performance of the proposed techniques are 
evaluated on the basis of probability of detection within m = 5 successive observations or 
subgroups by means of simulation. This is chosen as the performance criterion instead of the 
common measure of ARL because, as demonstrated in the examples using simulated data, the 
first few observations or subgroups after the change appear to predominantly determine 
whether those techniques with unknown parameters are capable of 'picking up' the shift. In 
other words, if the mean shift is not detected within the first few observations or subgroups 
after its occurence, it is even more unlikely that this will be 'picked up' by subsequent 
observations or subgroups because of the 'diluting' effect. Another reason is, the run length 
distributions for the techniques with some unknown parameter are not geometric so that ARL 
is clearly not a suitable performance criterion (see Quesenberry ( 1993) ). Furthermore, this 
paper is particularly concerned with short production runs or low volume manufacturing and 
as such early response of the techniques to any process anomalies or irregularities is a crucial 
factor. 

It should be pointed out that only an upper control limit is used in the simulation. This 
is chosen because the control techniques are intended primarily for 1picking up' changes in the 
mean vector and it appears that any change in the mean vector is likely to result in unusually 
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large values for the control statistics. However, in practice, it might be preferable to use both 
the lower and upper control limits because the former can provide protection against 
occasional changes in the variance-covariance matrix and other process disturbances which 
may cause abnormally small values for the control statistics. The limit is set at the 99.73th 
percentage point so that the false alarm rate for the proposed techniques equates to that of the 
traditional Shewhart charts with 3-sigma limits. As a partial check of the simulation, we have 
included results for those cases with known parameters. 

The results for the individual values control techniques obtained through 10,000 
simulation runs are tabulated in TABLE 3 for various combinations of p, A. and r. In TABLE 
4, the results for those techniques based on subgroup data are given. Note that the subgroup 
size used in each case is n = p + 1 . This is the minimum common sample size that must be 
used if L is unknown except for technique (7a). Note also that, the exact probabilities for 
techniques (1) and (5) are obtainable from the noncentral chi-square distribution tables or 
standard statistical software packages. The simulation results for these techniques are found to 
agree well with the theoretical values. For instance, the theoretical probabilities for technique 
(I) are 0.0569, 0.3452, 0.8571 and 0.9972 respectively for A.= 1, 2, 3 and 4 when p = 3. 
These are very close to the corresponding figures in Table 3. 

As shown in TABLE 4, the control techniques based on subgroup data for the cases 
with at least some unknown parameters can be expected to perform as well as the technique 
with known parameters under this type of process change especially when the noncentrality 
parameter, A. is larger than or equal to 2. For instance, using control statistic (7b) and (8) with 
a subgroup size of n = 6 when p = 5, the probabilities of 'picking upr a mean shift of A. = 2 
which occurs after the 10th subgroup, within 5 consecutive subgroups, are respectively 0.9966 
and 0.9402. For smaller values of A., these control techniques can also be expected to perform 
reasonably well relative to the technique corresponding to the known parameter case. For 
example, these probabilities are 0.3812 and 0.2834 respectively when statistics (7b) and (8) are 
used, as compared to 0.4513 for the known parameter case. As for control based on individual 
observations, those techniques with some unknown parameters have poor performance relative 
to that based on known parameters when A. and r are small and p is large. However, the 
performance of these individual values control charts improve with increasing value of A. and 
r. As shown in Table 3, the probability of detecting a shift of A.= 5 for a bivariate process 
within 5 successive observations using statistic ( 4) which does not assume known values for 
the process parameters is 0.8514 if r = 20 . Apart from these, a number of points can be noted 
from the tables. It is found that except for control statistic (7b ), the proposed techniques 
decline in performance according to the number of unknown parameters on which they are 
based. Specifically, those based on known values of the process parameters have the best 
performance, followed by those with unknown mean vector µ, those with unknown covariance 
matrix L and those with both process parameters unknown. Note also that, for the same A. 
and r, the performance of the individual values control techniques become worse as p 
increases. 
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TABLE 3. Probability of Detection Within m = 5 Subsequent Observations. 

Control Statistic 

A. r p (I) (2) (3a) " (3b) (4) 

1 10 2 0.0720 0.0492 0.0328 0.0327 0.0245 
3 0.0537 0.0399 0.0260 0.0260 0.0223 
5 0.0417 0.0306 0.0197 0.0179 0.0172 

20 2 0.0736 0.0588 0.0437 0.0432 0.0367 
3 0.0545 0.0432 0.0363 0.0364 0.0304 
5 0.0403 0.0345 0.0267 0.0265 0.0247 

2 10 2 0.4430 0.2560 0.0807 0.0792 0.0541 
3 0.3437 0.2033 0.0553 0.0519 0.0364 
5 0.2500 0.1428 0.0342 0.0312 0.0228 

20 2 0.4357 0.3230 0.1660 0.1702 0.1353 
3 0.3456 0.2525 0.1172 0.1164 0.0925 
5 0.2508 0.1830 0.0755 0.0746 0.0614 

3 10 2 0.9153 0.7050 0.1887 0.1720 0.1325 
3 0.8550 0.6014 0.1191 0.1080 0.0827 
5 0.7477 0.4752 0.0570 0.0514 0.0408 

20 2 0.9124 0.8074 0.4011 0.3976 0.3314 
3 0.8533 0.7220 0.2863 0.2854 0.2333 
5 0.7530 0.5920 0.1747 0.1662 0.1385 

4 10 2 0.9993 0.9687 0.3735 0.3339 0.2728 
3 0.9966 0.9354 0.2483 0.2045 0.1967 
5 0.9880 0.8762 0.1026 0.0882 0.0722 

20 2 0.9994 0.9921 0.7040 0.6954 0.6213 
3 0.9960 0.9796 0.5624 0.5548 0.4837 
5 0.9900 0.9456 0.3576 0.3482 0.2962 

5 10 2 1 0.9996 0.6114 0.5532 0.4880 
3 1 0.9982 0.4292 0.3628 0.3076 
5 1 0.9930 0.1560 0.1208 0.0984 

20 2 1 1 0.9096 0.9004 0.8514 
3 1 1 0.8122 0.7986 0.7366 
5 0.9999 0.9988 0.5866 0.5630 0.5074 

6 10 2 1 1 0.8180 0.7594 0.6980 
3 I I 0.6304 0.5430 0.4832 
5 1 0.9998 0.2624 0.1900 0.1568 

20 2 I I 0.9862 0.9834 0.9702 
3 1 1 0.9500 0.9432 0.9162 
5 I I 0.8094 0.7870 0.7468 
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TABLE 4. Probability of Detection Within m = 5 Subsequent Subgroups. 

Control Statistic 

A. r p n (5) (6) (7a) (7b) (8) 

l 10 2 3 0.2970 0.1794 0.1670 0.2102 0.1276 
3 4 0.3411 0.1981 0.1918 0.2381 0.1356 
5 6 0.4549 0.2692 0.2938 0.3638 0.2063 

20 2 3 0.2925 0.2128 0.2088 0.2192 0.1712 
3 4 0.3410 0.2521 0.2469 0.2787 0.2025 
5 6 0.4513 0.3256 0.3367 0.3812 0.2834 

2 10 2 3 0.9864 0.8772 0.7356 0.8680 0.6512 
3 4 0.9966 0.9399 0.8637 0.9582 0.7996 
5 6 1 0.9908 0.9716 0.9966 0.9402 

20 2 3 0.9880 0.9460 0.8992 0.9440 0.8566 
3 4 0.9966 0.9774 0.9582 0.9816 0.9402 
5 6 0.9984 0.9952 0.9997 0.9926 

3 10 2 3 1 1 0.9924 0.9990 0.9796 
3 4 I 1 0.9991 1 0.9979 
5 6 1 1 1 1 1 

20 2 3 1 1 1 I- 0.9994 
3 4 I 1 1 1 0.9979 
5 6 I I 1 1 1 

COMPUTATIONAL REQUIREMENTS 

In this work, evaluation of the standard normal distribution, its inverse, chi-square and 
F distribution function are required in order to compute the trasformed Zk statistics. In 
addition, computation of the argument statistics ~ 's involve matrix multiplication and 
inversion. To implement the proposed control scheme, therefore, requires computing facilities 
and complex algorithms. Fortunately, these algorithms are widely available and have been built 
into most of the commercial statistical software packages. The simulated data and the charts in 
this paper were generated and made by the authour using programs written in S-plus. 

CONCLUSIONS AND FURTHER REMARKS 

Some methods have been presented for controlling the mean vector of a multivariate 
normal process. The techniques involve a non-linear probability integral transformation of 

some T 2 -type statistics to sequences of independent or approximately independent standard 
normal variables. Thus, the resulting control charts can all be plotted in the same scale and 
with the same Shewhart control limits ±3 irrespective of product types. Properly implemented, 
this standardization of the charting procedures can result in significant savings in time and 
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costs of charting. Those techniques presented for the case with no prior knowledge of process 
parameters are particularly attractive for short production runs and low volume manufacturing 
environments. These control procedures also enable the monitoring of new or start-up 
processes soon after production commences. 

As demonstrated by the examples, the proposed techniques yield similar control chart 
patterns for a stable in-control process whether or not prior estimates of the process 
parameters are available. However, for a sustained shift in a parameter, whilst being capable of 
detecting the change, the control charts based on unknown parameters will eventually settle 
into an in-control pattern. The sooner the change occurs after the commencement of 
production, the lower the intensity of the signal and hence it is more likely to go undetected. 
The last example demonstrates that the control technique based on subgroup data and 
unknown parameters possesses comparable performance to an existing technique. 

The power of the proposed techniques were determined by means of simulation for 
given sizes of sustained shift in the process mean vector. The results show that the techniques . 
based on subgroup data have desirable performance whether or not the process parameters are 
assumed known. in advance of the production run. As for individual values control techniques, 
the performance of those which do not assume known values for the process covariance matrix 
L or both the process parameters, improves with increasing value of the non-centrality 
parameter and point at which the change occurs. This is true irrespective of the number of 
quality characteristics considered. 

This paper has been devoted solely to statistical process control and monitoring of 
the mean of multivariate processes. In practice, it is also of value to monitor the process spread 
as measured by the variance-covariance matrix L which may be subject to occasional changes. 
Although some methods have been proposed for this purpose (see for eg., Alt et al.(1990)), 
the assumption is made that L is known or can be estimated based on sufficient relevant data. 
As such, these methods cannot be readily used in manufacturing situations where the total 
output of the production processes are low. In view of this, efforts should be made to develop 
new control procedures that do not depend on prior knowledge of L. Another issue of 
practical importance is the identification of variables which are responsible for out-of-control 
conditions as signalled by the appropriate multivariate control charts. Although this problem 
has received considerable attention recently, the techniques proposed for this are again based 
on the assumption that knowledge of L is available prior to production. 
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APPENDIX A 

Distributional Properties of The Control Statistics 

As the arguments involved in establishing the distributio~al properties of all the control 
statistics are similar, this section will only consider the proof for that given by ( 4). Suppose 
X 1,X 2 , ••• ,X, are independent p-variate random observation vectors which have the same 
covariance structure and are distributed as 

j = 1,2, ... ,r 

where ~ denotes the unknown non-singular variance-covariance matrix. Next, define 

V =X .-X 
) ) 

j = 1,2, . .. ,r 

where 
- 1 ' 
X=-LXi. 

r j=I 

We wish to test the hypothesis 

H 0 : µ 1 = µ 2 = ...... =µ(say) vs. HA: not all µ/s are equal 

Under H 0 and the assumption of a constant process variance-covariance matrix, 

where 

® denotes the (left) Kronecker Product (see Graybill (1983), p.216) and 

.!'.::!. _J_ _l. 
r r r 

_ l. L::!. _ l. 
r r r 

C= 

_.l .!::l. 
r r rxr 

Some linear combinations of the p x 1 component vectors VP V2 , •••••• , V, that are 

uncorrelated are now obtained using the standard principal components approach. Consider 
the following linear combinations : 
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Y1 =a11V1 +a12V2+ ...... +a,rVr 

y2 = a21 vi + a22 v2 + ..... . +a2r vr 

In matrix notation, these are represented by the following equation : 

Y=rV=(I®A)V 

where I is a p x p identity matrix and 

A= 

Thus, 

...... a" 

Ly= r:Lvr' 

=:L®ACA' 

rxr 

(Al) 

(A2) 

Recall that the aim here is to produce vectors Y1, Y2 , •••••• , Yr which are uncorrelated. This is 
the case if A in (A2) is chosen to diagonalize the symmetric matrix C. One choice for A is 

A= 

I 
.Jr 
I 

J2 
I 

J6 
_I_ 
.,/4(4-1) 

_I_ 
Jr(r-1) 

I 
.Jr 
-I 

J2 
1 

J6 
I 

.,/4(4-1) 

0 
..1 0 J6 

I -3 
.,/4(4-1) J4(4-I) 

0 

I 
.Jr 
0 

0 

0 

-(r-1) 
Jr(r-1) 

where the rows of the matrix are the normalized eigenvectors of C. Substituting A into (Al) 
results in the following linear combinations : 
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YI= 0, 

Y2 = fi-(V1 - V2) = "fi-(X1 - X2) 

Y3 = -J6{V1 + v2 - 2V3) = -J6(X1 + x2 - 2X3) 

Note that the transformation results in a new set of uncorrelated random vectors 
Y2 , Y3 , • ••••• ,Yr, one less than the set of original random vectors. This is due to the fact that 
the transformation is subject to a constraint, namely, the sum of the component vectors 
V1, V2 , ••••• ., Vr is equal to a zero vector leading to rank('Lv) = rp - p = r(p- 1). It is also 

clear from (A2}that Lv is a 'quasi-diagonal' matrix with diagonal submatrices L except for 
the first one which is a zero matrix. 

Since the resulting transformed vectors Y2 , Y3 , •••••• , Yr are linear combinations of 
multivariate normal vectors and L v is a quasi-diagonal matrix as mentioned above, they are 
mutually independent with common variance-covariance matrix L . As the kth observation 

vector X k, the (k-1 )th sample mean vector X k-i and the sample variance-covariance matrix 

based on the first k observations sk-1 are independent, 

I 

= •c~-1)[~ x; -(k- I)X, J (s k- ir1[ ~x; -(k-J)X, J 

= ( kkl )( x k - x k-1) I ( s k - 1 )- l ( x k - x k-1) k = p + 2, ..... . 

are easily seen to be distributed as (Anderson (1984), p.163) 

A - (k-2)p F 
k (k _ I _ p) p ;k-1- P 

To establish mutual independence of successive Ak 's, it is first proved that they are 

pairwise independent. Clearly, 

are mutually independent. The notation W v (•IL.) here denotes the Wishart distribution with v 

degrees of freedom and parameter L . Let D be a non-singular matrix such that D~D' =I 

and define 
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Thus, 

and their independence is preserved. Due to the invariance property of the transformation, 

Noting that 

(k- 2)S* = (k- l)S* - y•y•· 
k-1 k k k 

and using identity (2.5.6) for matrix inverses (see Press(l 982), Binomial Inverse Theorem, 
p.23), Ak may be expressed as follows : 

A = (k-2) 
k (k-1) 

_ (v;·(s;)-1v;)
2 

v;· (s;) 1 v; + --'-------'---­
(k - 1)- v;·(s;)-1 v; 

As y;'(s:r1
Y; is independent of s: (see Srivastava and Khatri (1979), Theorem 3.3.6, 

p.94) and v;+1 , it is also independent of any function of s: and v;+1 • Thus, v;·(s;r1v; 1s 

independent of Ak+1 = v;:1(s:r1v;+1 and it follows immediately that Ak (a function of 

v;· ( s: r1 
Y; ) is independent of Ak+I . Similarly, it can be shown that any pair of Ak 's are 

pairwise independent. Note that 

and since Y;'(s:r1v; is independent of s: , v;+1 and v;+2 , it is clear that Ak is also 

independent of Ak+i . By induction, Ak+m and Ak+n ( m 7:- n) are independent. 
Using the result of pairwise independence, it is now possible to proceed to show that 

they are mutually independent. As v;·(s;r1v; , s; , v;+1 and v;+2 are mutually 

independent, their joint probability density function is 

where g, h, q and z represent their marginal probability density funtions respectively. The 

moment generating function of 
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A y*' s·-• y* 1'( * * * ) k+2 = k+2 k+I k+2 = J 3 Sk, yk+I> yk+2 

where J;, / 2 and J; are some fuctions of the indicated arguments, is given by 

Jet1Ak+r2Ak+1+t3Ak+2 O(A A A )dA dA dA 
- k' k+l• k+2 k k+l k+2 

all possible 
( Ak .Ak+l .Ak+2) 

Integrating over the original space gives, 

MA1c .A1r.+1·A1c+2 (ti ,t2,l3) 

= f t1Ji(v;·s;-1v;)+1i11(s;.v; .. 1 )+13fj(s~ . Y; .. 1.v: .. 2)f(Y*'s*-ly* S* y* y* )d(Y*'s*-Iy*)dS* -"'7* -"'7* 
e k k k• k• k+I• k+2 k k k kUl.k+IUl.k+2 

all possible 
( v;·1;.-1v; .sk .v;.1.v;.2) 

= 
all possible 

( 
• • •-1 • • • • ) 

YtS.t Y.t.St .Yt+1•Y.t+2 

As Y;s;-1Y; and s; are independent and the region (or space) for two independent variables 
over which the joint density is not zero must 'factor' (see Lindgren (1973), p.96 and Hogg et 
al.(1971), p.78), from the above, 

M (t t t) A,1:,A1t+1•A1t+2 l• 2, 3 J e ''" (v:s;-•v;) g( v;·s~-· v; )d(v;· s~-•v; ). 
all possible 
v;'s~-1v; 

J r2fi(s~.v;+1)+t3J3(s~.v;+1 ·v;+2) h(s*) (v* ) (v* )ds* dY* dY* 
e k q k+l z k+2 k k+l k+2 

all possible 

{ s; .r1c·+1 · rk·+2) 

·: Ak+l andAk+2 are independent 

where MA MA and MA are the moment generating functions of Ak, Ak+i and Ak+2 t ' t+I k+l 

respectively. Hence, Ak, Ak+i and Ak+2 are mutually independent. The proof can be extended 
to any set of Ak' s in a similar manner. 

(Q. E. D.) 
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APPENDIXB 

(a) Dependence of Statistical Performance on the Non-Centrality Parameter, A. 

Assume that the process variance-covariance matrix, L is constant but that the 
process mean vector may change from µ to µnew at an arbitrary point in time. It is shown 

below that for the same change point, r, the joint distribution of the ~ 's (or equivalently, 

Z1c 's) and hence the statistical performance of the control techniques presented in section 2 

depends on µ , µnew and L only through the value of the noncentrality parameter, 

To establish the proof for the above, use is made of the following lemmas and theorems which 
are adapted from Crosier (1988) and Lowry (1989). 

Lemma 1 

If x: = l\1X1c, x;· = M(X1c -µ), X~ = MX1g and x; = M(X1g -µ); k =1,2, .... , j =1,2, ... ,n 

where M is a p x p matrix of full rank, then the relevant ~ statistics have the same values 

whether they are computed from X1c, (X1c - µ), X1g and (X1g· - µ) or the corresponding 

transformed vectors x:, x:·' x~ and x~~' i.e, the ~ statistics are invariant with respect to 

these transformations. In other words, a full rank linear transformation of the observation 
vectors or their deviations from target (known mean vector) has no effect on the ~ statistics. 

Proof : Immediate. 

Lemma 2 

If x: = l\1X1c, X;* = M(X1c - µ), X~ = MX1g and x; = M(X1g -µ), k =1,2, .... , j =1,2, ... ,n 

where M is a p x p matrix of full rank, then 

µ· =E(x:)=E(x~)={µ~ ~~ 
µnew - µ,,,.. 

, k-5,r 

,k>r 

, k-5,r 

,k>r 
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where r is the change point i.e the observation or subgroup number after which the process 
mean vector changes from µ to µ n ... • Thus, 

'( .. .. )' L .. -1 ( ' • • ) ( )' -1 ( ) µnew - µold µnew - µold = µn..., - µ L µn.,.. - µ 

( 
.... •• )' ~ •• -1 ( ... •• ) ( )' ~-· ( ) µ_., - µold L... µnew - µold = µ,,.,.. - µ £.... µnew - µ 

Proof : Immediate. 

This result implies that the non-centrality parameter has the same value whether computed 
from the original dependent variables or from some linearly independent combinations of them 
(or their deviations from targets or known means) . 

Lemma 3 

If (µ 1new - µ 1)' :L-1(µ 1n .... - µi} = (µ 211.,. - µ 2} L-1 (µ 2,,.... - µ 2) , there exists a nonsingular 

matrix M such that 

Proof: 

(µlnew - µl) = M(µ2new - µ2) 

MLM
0

=L 

First, transform each variable of the form (xAft•r -X 8 ,10,..) to Y, principal components scaled 

to have unit variances where X B•foro and X After respectively denote observation vectors before 

and after the change in mean vector. Let E{Y) = V, by lemma 2, 

V1'V1 = V~ V2 where V1 = D-tP(µ 111.,. - µ 1) 

V2 = D-tP(µ 2_ - µ2) 

and P is an orthogonal matrix that diagonalizes Lex -x ) giving 
After Before 

Hence, there exists an orthogonal matrix Q such that 

Upon substituting V1 = n -!P(µ 111.,..,, - µ 1) and V2 = D-tP(µ 211.,. - µz) into the equation above, 

M is obtainable as follows : 
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Now, it is shown that M LM' = L . We have 

ML ' 'I I ' I' I 

(X-1fi.,,.-Xs4ore) M = p D2QD-2P LcxA}ier-XBe/ore) p D-2 Q D2 P 
, I I I I 

= P n2Qn-2nn-2Q·n2P 

=P'DP 

=L ( X After - X Before ) 

=> M(2L)M' = 2L 

=> MLM' =L 

(Q.E.D.) 

This lemma 1s also applicable to cases with known µ, namely, if 

(µ 1n ... - µ)' L-1(µ 1n ... - µ) = (µ 2n ... - µ)' L-1(µ 2n.,. - µ), there exists a nonsingular matrix M 
such that 

(µlnow - µ) = M(µ2new - µ) 

MLM'=:L 

The proof for this is similar to the above except that µ 1 and µ 2 should both be replaced byµ . 

Theorem 1 

For the cases with unknown µ, if (µ 1n.,.. - µ 1 )' L-1 (µ 1new - µ 1) = (µ 2,.... - µ 2 } L-1 (µ 2,,.,.. - µi), 

( 1 ( ) {µ1 ,k~rJ ( ( ) {µ 2 ,k~rJ then f ~· E Xk or Xki = = f ~ 'sE Xk or XkJ. = k where 
µ1,,... ' k > r µ2n.... ' > r 

( 1 ( ) {µI ,k ~ 'J · f ~I E xk or xk;. = denotes the joint pdf of~' s given 
µ!new ,k>r 

{µ k<r 
E(xk) = E(xk;.) = 

1 
' -

µJn... ,k > r 

( 1 ( ) {µ., ,k ~ 'J . . . and f Tk' E xk or xkj = - denotes the JOmt pdf of 1fc 's given 
µ211ew ,k > r 

( ) ( ) {
µ 2 , k 5: r 

E xk = E xkj = 
µ2n.... ,k > r 
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where r is the change point. This theorem implies equivalent performance of the control 
techniques under the two alternative probability densities. 

Proof: 

Note that the ~ 's of (2), ( 4), (6) and (8) are expressible either in terms of random vectors of 

the form (xp-xq) for p-::t:.q or (xpi-x'll°) for p-::t:.q, i,}=1,2, ... ,n and p=q, i-::t:.J, 

i,j = 1,2, ... ,n. Letpdf 1 refer to the multivariate normal density specified by 

,k 5: r 

,k >r 

and pdf 2 refer to the multivariate normal density specified by 

E(Xk) = E(xlef) = {µ 2 

µ2new 

,k 5: r 

,k>r · 

Ifpd/2 is expressed in the transformed variates Zk = MXk (or Z/ef = MX/ef) where 

M = p'ntQn-tp is as given in lemma 3, then Var(zk) = Var(zlef) = M-LM' = L and 

if p,q 5: r or p,q > r 

if p > r, q 5: r 

ifp5:r, q>r 

It can also easily be shown that the covariance of the transformed variates ( Z P - Z q) and 

(z s - Z 
1

) under pdf 2 is the same as the covariance of ( X P - Xq) [ ( X pi - Xq;)] and 

(Xs - X,} [(Xsu -Xtv)] under pdj 1, i.e 

underpd/2 underpd/1 

{
Cov[(zpi -zq;),(zsu -Ziv)]= Cov[(xpi -x'll°),(xsu -Xiv)]} 
under pdf 2 under pdf 1 

for all p, q, sand t (p, q, s, t, i, j, u and v). Hence, pdf 2 expressed in the transformed variates 
z k ( Z kj) is the same as pdf I expressed in X k ( X kj) variates, i. e 
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(Bl) 

By lemma 1, the values of the ~ 's are invariant with respect to the transformation from Xk 
(Xk) to Zk (Zk) so that 

(B2) 
Combining (BI) and (B2) gives 

Therefore, the joint distribution of ~ 's given µ 1 and µ 1now (and !:) is the same as the joint 
distribution of ~ 's given µ 2 and µ2new (and L) if 

(Q.E.D.) 

Theorem I can be adapted to cases with known µ, namely, if 

{µlntw - µ} L-I {µlnew - µ) = {µ211ew - µ} L -1 {µ 2n ... - µ) , then 

( ·4 ( ) {µ ,k5.r) ( ( ) {µ ,k5.r) f ~ E Xk orXkj = =f ~'sE Xk orXki = 
µlnew ,k > r µ 2n ... ,k > r 

The proof for this is similar to the above except that Xk (Xk1) and µin ... - µj, i = 1,2 should 

be replaced by Xk - µ (Xk1 - µ)and µinew - µ respectively. 

Theorem 2 

For the cases with unknown µ , let X 1k' s (Xlk/ s) be independent observation vectors from 

pdf I and X 2k 's (X2k/ s) be independent observation vectors from pd/ 2. Let pdf I be 

multivariate normal with mean vector µ 1 and µ 1n.,.. before and after the change and variance­
covariance matrix !:1. Let pd/ 2 be multivariate nonnal with mean vector µ 2 and µ 2_ before 
and after the change and variance-covariance matrix L:2 . Denote the change point by r. If 

(µ1r- - µi)' L~1 (µ1n.... - µ1) = (µ2,,.w - µ 1 )' L~1 (µ 2n.,. - µ 1 ), then /i(~' s) = /2(~' s) where 

Ji ( ~ 's) and / 2 ( ~ 's) represent the joint distribution of ~ 's given pdf I and pdf 2 

respectively. 
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Proof: 

Let X~k = n;tP1X1k (x~ki = n;tP1X11c:;) and x;1c = n;tp2x21c (x;k.I. = n;tp2x2ki) 
wh~re P1 and P2 are matrices that diagonalize :E( _ ) (or :E( ) ) and L( ) (or 

X1p X1 9 X1p1-X1q1 X2p-X29 

L(x
1
,.-x

1
q1) ), p * q respectively, i.e 

Then, 

and 

n~tpl (µlnew - µ1) ,p > r, q:::; r 

E(x~p-x~q)=µ~p-µ~q = n~tp1(µ1-µlnew) ,p:::;r, q>r 

0 elsewhere 

n;tp2(µ2new - µJ ,p > r, q:::; r 

E(x;p - x;q) = µ;p - µ;q = n;tP2(µ 2 - µ2n.,.) ,p:::; r, q > r 

0 elsewhere 

By lemma 2, 

and 

(µ;P - µ;q} L(~;P-Xi9)(µ;p -µ;q) = (µ2new -µ2)' L{~ 2p-Xiq)(µ2,..,. - µ2) 

=> (µ;p - µ;q} r 1 (µ;p - µ;q) = t(µ2new - µ2)' 1:;1 (µ2_. - µ2) 

for p > r, q s r or p :::; r, q > r . Because the values of ~ 's are invariant with respect to the 

transformations, the condition (µ 1,,""' - µ1)' 1:;1(µ 1,, ... - µ1) = (µ 2_ -µ 2 )' :L;1(µ 2new - µ2 ) is 

equivalent to (µ~P-µ~q}r1 (µ~P-µ~q)=(µ;P-µ;q)'r1 (µ;P-µ;q) for p>r, qsr or 

p:::; r, q > r. Since (x~P - X~q) and (x;P -x;q) are principal components of (x 1P -X1q} 
and ( X 2 P - X 2q} scaled to have the same variance-covariance matrix, the identity matrix I , by 

theorem 1, the joint distribution of T,. 1 s given pdf I is the same as the joint distribution of T,. 's 
givenpd/2. 

(Q.E.D.) 
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This theorem can also be adapted to the cases where µ is known, namely, if 

(µin .... - µ)' L;1{µ1n..w -µ) = (µ2new - µ)' L;1
(µ2n ... - µ),then 

1(~'JE(xk orxkj)={µ ·::~ ,L1J =f(Tk'sE(xk or~kj)={µ ·::s;r ,L2J. "I µ1,,.... , . µ2- , > r 

The proof for this is along the same line of argument as above except that X;k (X;kJ) and 

µ;_ - µ; should be replaced by X;k - µ (X;kJ - µ)and µinew - µ respectively for i = 1,2. 

(b) Dependence of Statistical Performance on Q for a Change in Process Covariance 
Matrix 

Suppose that the process under consideration changes in covariance matrix from L to 
Lnew after the rth observation, whilst the mean vector µ remains constant. It is shown below 

that the joint distribution of the ~ 's (or equivalently, Zk 's) for each of the control techniques 
depends on µ, L and L new through the symmetric matrix 

As an alternative, it can also be shown that the statistical performance of the control 
I I 

techniques depend on µ, L and Lnew through the symmetric matrix L-2 Lnew L-2
. 

Lemma 4 

I I I I 

If Lfnew L;1 Lfnew = Linew L;1 Linew , then there exists a full rank matrix D such that 

DL 2 D' =L1 
and D L 2new n· = L1new . 

Proof 

I I I I I ""l h "" (""l ""_l ) ~ (~! ~-! )' From Lfnew L; L~new = L~new L; .LJ~nt.'W, we ave .LJ1 = L.Jtnew "-'2~ew "-'2 "-'fnew "-'2~ew · 

Since D L 2 n' = L 1, D = Lfnew "L;!ew. It can easily be verified that D = Lfnew L~L also 

satisfies the equation D 'L 2 new n· =Li new. Furthermore, it can readily be seen that 
I I 

D = Lfnew L~!ew is of full rank. 
(Q.E.D.) 

Theorem 3 

Let pdfl be the probability density function of the independent multivariate normal observation 
vectors Xk 1s (or XkJ's) with mean vector µ 1, covariance matrix '2:1 and Linew before and 

after the change. Let pdj2 be the probability density function of the independent multivariate 
normal observation vectors Xk 's (or XkJ 's) with mean vector µ 2 , covariance matrix L 2 and 
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L 2new before and after the change. Denote the change point 
l I I I 

LfnewL~1 Lfnew=LinewL;1 I:tew, then J;(1'ic 1s)=J;(1'ic's) where J;(~/s) 
represent the joint distribution of ~ 1 s given pd.fl and pdj2 respectively. 

Proof 

by r . If 

and J;(T,/ s) 

The proof here is similar to that of theorem 1 except that M should be replaced by 
I I 

D = Lfnew L~~ew as given in lemma 4. 

(c) Dependence of Statistical Performance on l\ and Q for a Change in Mean vector 
and Covariance Matrix 

Suppose that the process under consideration changes in mean vector from µ to µnew 
and covariance matrix from L to L after the rth observation X . It is shown below that new ' r 
the joint distribution of the ~ 1 s (or equivalently Zk 1 s) for each of the control techniques 

depends on µ, µnew, L and Lnew through the 'non-centrality vector' 

l\ = L-i(µnew -µ) 

and the symmetric 'standardized covariance matrix' 

Theorem 4 

Let pd.fl be the probability density of the independent multivariate normal observation vectors 
Xk's (or Xki's)withparameters (µ 1,I:1) and (µinew•Linew) beforeandafterthechange.Let 

pdj2 be the probability density of the independent multivariate normal observation vectors 

Xk's (or xk].'s) with parameters (µ2,L2) and (µ2new•L2new) before and after the change. 

Denote the change point by r. If 

then fi ( 1'ic 's) = f
2 

( 1'ic 's) where J; ( ~' s) and f 2 ( ~ 's) denote the joint distribution of I:c 1 s 
given pd.fl and pdfl respectively. This theorem implies equivalent performance of the control 
techniques under the two alternative probability densities. 

Proof 

The proof here is similar to that of theorem 2. 
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