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ABSTRACT 

To satisfactorily describe the capability of multivariate processes, a 

multivariate capability index is required. This paper describes three 

approaches to designing capability indices for multivariate normal 

processes. In particular, three bivariate process capability indices are 

proposed and some simple rules provided for interpreting the ranges of 

values they take. The development of one index involves the projection of a 

-process ellipse, containing at least a specified proportion of products, on to 

its component axes. The second one is based on the Bonferroni inequality. 

The final index utilizes Sidak's multivariate normal probability inequality in 

its construction. Some comparisons of the three indices are provided. An 

approximate test is developed for the Sidak-type capability index. A 

possible method of forming robust multivariate capability indices based on 

multivariate Chebyshev-type inequalities is also considered. 

l Mr. Tang is a graduate student in statistics. 
2 Dr. Barnett is Associate Professor in statistics 

and Head of Department. ·• 



INTRODUCTION 

Since the pioneering work of Kane ( 1986), there have been many 

articles published dealing with process capability indices. Some 

developments in process capability analysis are outlined by Rodriguez 

(1992) in a special issue of the Journal of Quality Technology, entirely 

devoted to the topic. In Marcucci et al. (1988), it was noted that 'an index 

for multidimensional situations .... .is another outstanding problem ..... '. Most 

of the relevant work to date has focussed on the developments of process 

capability indices for single product characteristics. In many manufacturing 

situations, the quality of a manufactured product is more often than not 

determined by reference to more than one product characteristic. Invariably 

manufacturing conditions are such that there is an inter-dependency in the 

development of these product characteristics. To discuss process capability 

under these circumstances then, requires a method that acknowledges this 

inter-dependency and constn1cts an index that incorporates knowledge of 

the covariance structure of the quality characteristics. 

The most commonly used univariate capability indices are the Cp, 

cpk and cpm indices which are defined as:-

C == U-L 
p 6cr , 

C M. {U-µ µ-L} 
pk= zn 3cr,3cr 

and 
c - U-L 

pm - 6i}cr2+(µ-T)2 

where µ , cr, U, L and T = u;L denote the process mean, standard deviation, 
• 

upper and lower specification limits, and target respectively. The first is 

strictly concerned with process potential in that it makes no reference to the 

process mean, µ. However, they all essentially reflect process potential in 
·• 
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that they implicitly assume a perfectly controlled process. For meaningful 

use of these indices to describe actual process behaviour consideration of 

their sampling distributions is necessary. Statistical issues of estimation and 

hypothesis testing and practical matters such as the use and interpretation of 

these indices have been extensively discussed in the literature (see for eg., 

Kushler et al.(1992), Franklin et al.(1992), Pearn et al.(1992), Barnett 

(1990) and Boyles (1991 )). These indices are applicable for situations 

involving two-sided specifications but some adaptations for one-sided 

specifications can also be found in the literature. 

After reviewing existing work on multivariate process capability 

indices, this paper explores further the possibility of assessing multivariate 

process performance by using a single composite measure and describes 

three approaches for doing so. In particular, three bivariate process 

capability indices are proposed and s01ne si1nple rules provided for 

interpreting the values they take. The relative effectiveness of the proposed 

indices as a comprehensive summary of process performance, with respect 

to all of the measured characteristics, is also provided. An approximate test 

for one of the proposed indices is developed. Possible methods of 

developing robust capability indices are also considered. The paper focuses 

-on the commonly encountered situations in which the measured 

characteristics of a process or a product have two-sided specifications 

forming a rectagular specification region. The extension of this work to 

situations involving unilateral or a 1nixture of unilateral and bilateral 

tolerances is a straightforward matter. The total discourse is given in the 

context of discrete item manufacturing. 

3 



A REVIEW OF MULTIVARIATE CAPABILITY 
INDICES 

Chan et al.( 1991) introduced a so-called multivariate version of the 

cpm index which is defined as : 

np 

To do this, they made the assumption that the specification requirements for 

a p-variate process or product are prescribed in the form of an ellipsoidal 

region given by 

' (xp-Tp) A-1(xp -Tp) <c2 

where X P, TP, A and c are respectively the p-characteristic random vector, 

some specified p x I vector, a p x p positive definite matrix and a constant. 

As this definition involves the sample observations rather than being based 

_on the process parameters (i.e the mean vectorµ P and the covariance 

matrix I:), Peam et al.(1992) stated, quite correctly, that it should be taken 
as an estimator (denoted C pm ) of the following revised index : 

,...., 

p 

Much of the discussion of Chan et al.(1990) was devoted to the test of 
C pm = 1 based on the univariate statistic, 

,...., 

.. 
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which is distributed as a Chi-square variable with np degrees of freedom 

under the multinormal assumption, with µP = TP and L =A. Such a test 

reduces to the simultaneous test of both µ P = TP and L =A against all 

other possible alternatives including those cases where the process is 

incapable, barely capable and more-than-capable. A value greater or smaller 

than expected for the test statistic, D, is merely a consequence of the 

violation of this null hypothesis and does not make any definitive statement 

about the process capability. For instance, if the given specification 

boundary, c2 is considerably smaller than x~(8), the upper 1008 th 

percentile of the Chi-square distribution with p degrees of freedom and the 

value of the test statistic is smaller than expected (which suggests that 
Cpm > 1 ), this does not ensure that the expected proportion of non-defective ......, 

items is more than 1-8 , where 8 represents the acceptable maximum 

proportion of defective items. On the other hand, if c2 is larger than x;(o) 

and the value of the test statistic is greater than the predictable limit, this 
does not necessarily indicate that the process is incapable, although cpm < 1 

,._, 

is suggested. Apart from the issue of interpretability and the unrealistic 

assumption of a specification ellipsoid, it is worth noting that this work is 

more concerned with 'process capability analysis' rather than with the design 

of a unitless capability measure. Other issues of importance were discussed 

by Peam et al.(1992). 

As in Chan et al.(1990), Peam et al.(1992) considered a v-variate 

process with specification requirements formulated as an ellipsoidal region 

add proposed the following capability indices, 
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and 

as generalizations of the univariate cp and cpm indices. If µv =TV and 

:L=A, then c; in the above definitions is equated to x.~(0.0027), otherwise, 

it is computed such that 

In contrast to the C,,m index, these indices correctly reflect process ,...., 

capability in the sense that their values decrease with declining process 

performance. However, as noted in their paper, the essential problem with 

these indices lies in the estimation and computation of them when µv * Tv 
___ ,..,, 

and L * A due to the complexity of the distribution of the quadratic form 
I 

{ ~ - ~) A-1 
{ ~ - 'I:). If these indices are to be of any practical use, 

therefore, computer programs for their estimation or computation must be 

available. 

In view of the fact that it is unlikely to have specifications given as 

ellipsoids, Rodriguez (1992) suggested the direct estimation of the 

proportion of nonconforming items by integration of the multivariate normal 

density function over the specification rectangular region. Boyles (l 994b) 
• 

also considered this alten1ative of estimating process capability and 

discussed its statistical and practical merits over a competing procedure 
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which is based on simple binomial estimates. The total discussion is in the 

context of repeated lattice-structured measurements. 

Unlike others, Hubele et al.(1991) proposed a capability vector for a 

bivariate normal process which consists of three components . The first is 

the ratio of the area of the spec{fication rectangle to that of the projected 

process rectangle, giving an analogue of the univariate CP index. The 

second component, is defined as the significance level computed from a T2 
-

type statistic which measures the relative location of the process centre and 

the target. The last component is designed to capture situations where one 

or more of the process limits fall beyond the corresponding specification 

limits. Although some efforts were made to demonstrate the usefulness of 

this capability vector as a smnmary measure of the process performance, 

interpretation is sometimes difficult. 

Other contributions come from Taam et al.(1993) who proposed a 

multivariate capability index defined as 

MC = VolumeofR1 
pm Volume of R2 ' 

where R1 and R2 represent respectively the mod{fied tolerance region 

(modified according to the process distribution) and the scaled 99.73% 

process region (scaled by the mean squared error, 

L... = E[ (XP -TP)(XP -TP)'] ). If the process follows a multivariate normal 

distribution, then the modified tolerance region here is the largest ellipsoid 

inscribing the original specification region and the scaled process region, 

R2 , is an ellipsoidal region represented by 

(XP -µP)'l:;1(XP - µP) <x!co.0021). Thus, under normality assumptions, this 

index becomes 
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Vol .(R1) 1 

MCP,,, = Vol.{R3) x [t +(µp-Tp)' L-1(µp-Tp)j 

_ MCP 

DT 

where R3 is the natural process ellipsoid containing 99.73% of items, 

MC P = ~:::~~:~ is an analogue of the univariate CP (squared) index which 

measures the process potential and Dr= l+(µP -TP)'L-1(µP-TP) is a 

measure of process mean deviation from target. As stated by Taam et 

al.(1993), this is an analogue of the univariate Cpm (squared) index. Note 

also that this index is sitnilar to v C~,,,, except in the manner in which the 

process potential and the deviation of mean from target are quantified. In 

terms of its ease of computation and general applicability, it is superior to 

the latter. Besides the fact that it can be used for different types of 

specification region (see the exatnple on geometric dimensioning and 

tolerancing (GDT) in the satne paper), this index can be extended to non­

normal processes provided the specifications are two-sided. This, however, 

entails the determination of the proper process and modified tolerance 

region and the resulting computations are likely to be complex. In the same 
~· 

paper, Taam et al.(1993) considered the estimation of this capability index. 

However, they simply replace the unknown mean vector µP and the 

covariance matrix I: in the expression for the proposed index with the usual ,, 
unbiased estimates and use X; co. 0021) as the boundary of the process 

ellipsoid without taking into consideration issues such as unbiasedness, 

efficiency and uncertainty of the resulting capability index estimate. They 

also highlighted some similarities and differences between the proposed 
index ( MC,,m), C pm and the bivariate capability vector proposed by Hubele 

......, 

et al.(1991). A major problem with this index is its likelihood of leading to 

misleading conclusions. For instance, if the measured characteristics are not 

independent and the index value is I (as a result of the process being on-. 
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target and the volume of the process ellipsoid being the same as that of the 

modified tolerance region), there is no assurance that the process under 

consideration is capable of meeting the specifications consistently or can be 

expected to produce 99.73o/o of confonning items. This is in conflict with 

the statement made by Taain et al.(1993) that, 'when the process is centered 

at the target and the capability index is 1, it indicates 99. 7 3 % of the process 

values lie inside the tolerance region.' The deficiency in this comment is 

illustrated in Fi1:,JUre 1 for a bivariate normal process. 

Boyles (1994a) introduced the concept of exploratory capability 

analysis (ECA) which is aimed at capability improvement rather than 

assessment. This should be distinguished from the so-called confirmatory 

capability analysis (CCA) which involves formally assessing whether the 

process under consideration is capable of meeting the given specifications 

or not. ECA, essentially utilizes exploratory graphical data ai1alysis 

techniques, such as boxplots, to reveal or to assist in identifying new 

opportunities for process improvement. Three real examples involving 

repeated measurements with lattice structure were used to illustrate the 

usefulness of the concept. _,, 

In another paper, Boyles (l 994b) proposed ai1 expository technique 

0f analyzing multivariate data using repeated measurements with a lattice 

structure where the number of measurements for the same characteristic on 

each part or product, p, may possibly exceed the number of inspected parts 

or products, n. He developed a class of Direct Covariance (DC) models 

corresponding to a general class of lattices and obtained some positive 

definite estimates of the covariance matrix denoted by i:oc even when 

n ~ p . This property of positive definiteness for the estimated covariance 

matrix permits the computations of multivariate capability indices and 

estimated process yields which depend on 1:-' when n < p or when n is not 

much greater than p, in which case thf! usual sainple covariance is ill-
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conditioned with respect to matrix inversion. He made some efforts to 

justify the use of the proposed model for process capability analysis. In 

particular, he demonstrated the superiority of employing :toe to provide an 

estimate of the proportion of nonconforming units over the use of sample 

covariance and the 'empirical' approach of simple binomial estimates. To do 

this he used sets of data from Boyles (1994a) along with some simulation 

results. 

CONSTRUCTING A MUL TIV ARIA TE 
CAPABILITY INDEX 

With the assumption that the process under focus follows a 

multivariate normal distribution, consider the following approaches to the 

design of a multivariate process capability index. Before proceeding, it 

should be pointed out that, although these approaches have been widely 

discussed in simultaneous interval estimation problems (see for eg., Johnson 

et al. (1988) and Nickerson (1994)), they are used here in a different 

context. 

The first approach entails the constn1ction of a conservative p­

dimensional 'process rectangle' from the projection of an exact ellipsoid 

(ellipse if bivariate) containing a specified proportion of items on to its 

component axes. The edges of the resulting process rectangle (the process 

limits) are then compared with their corresponding specification limits. The 

associated index is defined in such a way that it is 1 if the process rectangle 

is contained within the p-dimensional 'spec[fication rectangle' with at least 

one edge coinciding with its corresponding upper or lower specification 

limits, greater than 1 if the process rectangle is completely contained within 

the specification rectangle and less than 1 otherwise. A bivariate capability 

index developed using this approach js presented in the next section. 
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The second approach is based on the well known Bonferroni 

inequality. Unlike the first one, this approach actually requires only the 

weaker assumption of normality for each individual product characteristic. 

The capability index using this approach is defined in the same manner as 

above. The resulting process rectangular region having at least a specified 

proportion of conforming items is compared with the specification 

rectangle. The value of the proposed capability index reflects conservatively 

the process capability of meeting the specifications consistently. In fact, the 

assessment of process performance based on the Bonferroni inequality has 

been perceived by Boyles (1994b) but it is used in a different way and 

context. It should also be pointed out, despite his statement to the contrary, 

that the given inequality 

where 

}-1t=P~-~ <X1 <Du ,1 <j< PI µ,L) 
l-7t1 =Pr(x1 >-D, ,1 <J < p I µ,L) 

l-7tu =P~Xj <Du ,l<j<pl µ,}:) 

is not generally true. 

Another approach utilizes the multivariate normal probability 

inequality given by Sidak (1967). It will be seen later, that a capability 

index constructed based on this inequality and using arguments similar to 

the above, provides the best measure runong all those proposed in this 

paper. 
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THREE BIVARIATE CAPABILITY INDICES 

Suppose that the vector of the p product characteristics, 

X P = ( X 1 , X 2 , ••• , X p)' follows a multivariate nonnal distribution with mean 

vector µ P = (µ 1 , µ 2 , ••. , ~L p)' and covariance matrix L. Further, suppose that 

a manufactured product is considered usable if all its measured product 

characteristics are within their corresponding specification limits. Leto 

denote the proportion of unusable items produced that can be tolerated. Our 

aim is to obtain the relationship between the component means, the 

elements of the covariance matrix, o and the specification limits of all the 

measured characteristics by solving the following integral equation : 

so that an index can be defined that reliably reflects the actual process 

capability. Directly attempting to solve this equation is generally inadvisable 

due to computational difficulties, so some approximations are presented. 

(1) Projection of Exact Ellipsoid Containing a Specified Proportion of 

Products 

It is known, for eg., Johnson et al.(1988) that, if Xp - Np(µp,L), the 

quadratic fonn {x,, - µ,,)' I-1(x,, -µ,,)- X~ . Thus, a region containing 

100(1-0)% of the products is the solid ellipsoid given by 
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As given by Nickerson (1994), the projection of the above ellipsoid on 

to each of its component axes is given by : 

lxJ - µ 11 < ~x~(8)[Jth diagonal element of 2:]1 

or 

µi -~x~(8) ai <x1 < µi +Jx~(8) cri ... ... .... (I) 

J=l,2 ... ,p 

Note that rewriting (I) yields the well known I 00(1-8 )% simultaneous 

confidence interval for µ P = (µ 1, µ 2 , .. . , µ J' based on a sample of size 

n = 1 when cr1 ,cr2 , ••• ,cr P are known (Johnson et al.(1988)). As a special 

case, consider developing a capability index for bivariate processes, 

though it can easily be extended to the more general case. Note that, for 

p = 2, x.!(o)= -2ln8. Thus, we have from (I) that, the 'bivariate 

process limits' (i .e the limits beyond which at most I 008 % of items are 

expected to be produced) are, 

j = 1, 2 . 

It follows, that for 

u 2 u, 
J J/(xi,x2 )ca 1ca 2 >1-8, 
L2 LI 

the following conditions need to be simultaneously satisfied:-
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U 1 ~ µ I + CJ I .J-2 In o 

L 1 s; µ I - cr 1 .J-2 ln o 

U 2 ~ µ 2 + cr 2 .J-2 ln o 

L2 s; µ 2 - cr 2 .J-2 ln 8 

or equivalently, 

and 

Accordingly, the bivariate process capability index, C ~~),is defined as 

C(2) _ · j cp1 cp2 l 
pk - Mm I , ,-----'"--, --, 

1 .J-2 ln o + µ, -T. l .J-2 In o + µ2 
- T2 ' 

3 3cr1 3 3cr2 

where C Pi and T1 (j = 1,2) are respectively the univariate process 

capability indices { C P) and the target values for the two product 

characteristics. Note that ifthe process is on-target i.e µl =T1 and 

µi =Ti , 

c(i> = Min{CP 1,CP2 } 

, pk t .J-2 In o ' 

which can be taken as a measure of the process potential. Although this 

capability index is conservative by nature and thus must be carefully 

interpreted, it does provide some insight into the practical capability of 

the process. A value of I or greater can safely be interpreted as the 

process producing at a satisfactory level provided there is no serious 
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departure fr01n nonnality. However, if it has a value smaller than 1, it 

does not necessarily indicate that the expected proportion of usable 

items produced is less than 1-8, unless it is significantly different from 

1. In this case, perhaps some sitnple guidelines or ad hoc rules would 

help to determine if the process capability is adequate. Note the 

interesting fact that, although the covariance structure of the product 

characteristics are considered in the development of the above, the 

proposed bivariate capability index does not involve the correlation 

coefficient p of the two characteristics. It is also noted that the 

proposed index has some similarity to the bivariate capability vector 

proposed by Hubele et al.(1991 ). It differs from the latter, however, in 

that it incorporates both the process potential and the deviation of the 

process mean from target into a unitless measure . Hubele et al's 

capability index consists of three components, one for measuring the 

process location, one for process dispersion (potential) and the other for 

indicating whether any of the process limits is beyond its corresponding 

specification limit(s). Whilst it may be argued that using separate 

indicators for each of the above factors to reflect the process status may 

make the interpretation clearer, this process capability vector involves 

more calculation and does not have any clear advantages over the 

proposed index. 

(2) Bonferroni-Type Process Rectang;ular Region 

According to the Bonferroni inequality, for a p-variate process for 

which the marginal distributions are normal, the p-dimensional centered 

process rectangle containing at least 100(1-8)% of items is given by: 

µ·-ZsO'· <x . <µ · +ZsO' · 
j 2p J ) . j 2p ) ' 

j = 1,2, ..... . ,p. 
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where z012p denotes the upper 1OO(oI2p )th percentile of a standard 

normal distribution. By replacing p by 2 in the above, the bivariate 

process limits are obtained. Proceeding as previously, another bivariate 

capability index is obtained and defined as, 

which has a similar interpretation. If p = 1, o = o. 0027 and the process is 

on-target, this type of multivariate capability index reduces to the 

univariate c p ' c;k and cpm indices. It should be noted that this method 

of developing capability indices can be extended to non-normal 

processes by replacing -z814 and z814 by the appropriate quantiles of the 

process distribution. 

(3) Process Rectangular Region based on Sidak's Probability 

Inequality 

As given by Sidak (1967), the multivariate normal probability inequality 

IS :-

where Z 1' s are standard normal variables and c.i' s denote some 

specified constants. For cJ =c (j = 1,2 .. . ,p), this inequality becomes 
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where <I>(•) denotes the cumulative distribution function of the standard 

normal variable. Setting the lower bound, [ 2<1>( c) -1 ]P of the joint 

probability above equal to 1 - 8 results in a p-dimensional process 

rectangle containing at least 100(1-8)% of items given by:-

µ j - cr /l>-1 
( ~[ 1-t{ 1---S)v P ]) < x j < µ j + cr /l>-1 

( ~( 1-t{ 1---S)vp J), 
J=l,2, ... ,p, 

where <1>-1 
( •) represents the inverse of the standard normal distribution 

function. A bivariate capability index is obtainable by replacing p with 2 

and comparing the resulting bivariate process limits with the 

corresponding specification li1nits. This index is defined as :-

In the development of the above indices, it has been assumed 

that the tolerances are bilateral and that the target or nominal 

specification is the midpoint of the specification band, this, of course, is 

not always the case in practice. Under these circumstances, redefinition 

of the indices using similar arguments is straightforward and will not be 

· discussed further. 

As all of the above are of similar form, it is preferable to 

choose the one which is least conservative or that best reflects the 
.. 
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actual process capability. In the following section, some comparisons 

between the three are provided in order to resolve this issue. 

SOME COMPARISONS OF THE PROJECTED, 
BONFERR,ONI AND SID AK-TYPE CAP ABILITY 

INDICES 

Following conventional practice, the relative merits of the proposed 

capability indices can be evaluated based on the following ratios : 

I = Width of I 00( 1- 8 )% projected Interval for jth characteristic 

B:P Width of I 00( 1- 8 )% Bonferroni Interval.for jth characteristic 

_gw 
Z8/2p 

and 

-
Width of I 00( 1 - 8 )% projected Interval for )th characteristic 

Is P - --------------------
: - Width of I 00( 1 - 8 )% Sidak Interval for }th characteristic 

Note that the expressions for I B:P and ls:P remain the same irrespective 

of the product characteristic being considered. One capability index is said 

to be less conservative than the other if its construction is based on a shorter 

interval for the srune o . Thus, according to the definitions above, if I B: p is 
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greater than 1, the Bonferroni-type capability index is better (less 

conseivative) than that which is based on projections. Similarly, a value of 

I S:P greater than I implies that the Sidak-type index is superior to the 

projected one. As for the relative effectiveness of the Bonferroni and Sidak­

type indices, this is measured by the relative magnitude of their 

corresponding I B: p and ls: p values. The values of these indices are 

tabulated in Table I for some selected values of p and 8 . It can be seen 

from this table that, in all the realistic cases considered, both the capability 

indices based on the Bonferroni and Sidak inequalities provide better 

measures than the Projection-type capability index. The table also shows 

that, as the number of measured characteristics, p increases, the better the 

Bonferroni or Sidak-type capability index becomes. Furthermore, as shown 

in the table, the Sidak-type capability index is marginally better than that 

based on the Bonferroni inequality. The following section is devoted to the 

development of a test concerning process capability based on the Sidak-type 

index. 

_,, 

TESTING THE CAPABILITY OF A BIVARIATE 
PROCESS 

In practice, the assessment of process performance is often based on 

sample estimates of some capability indices which are subject to 

uncertainty. Unless the sample size is reasonably large, it is inappropriate to 

draw definite conclusions from these process capability estimates. Of 

course, the need for process stability before computation should also be 

emphasized, otherwise the interpretation of these indices is distorted, 

regardless of how large the sample is. If meaningful interpretation of the 

estimated capability is sought, it is important to take the srunpling 
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fluctuations of these estimates into consideration. A common approach is to 

employ confidence intervals. If point estimates are to be used, it is desirable 

that estimation is unbiased and that the minimum sample size required for 

an acceptable margin of estimation error is adhered to. Another approach is 

based on testing hypotheses . Either approach generally requires knowledge 

of the sampling distributions which are complicated. To circumvent this 

problem, we develop an approximate test for the Sidak-type index (8Ci,~). 

Consider the problem of testing the following hypotheses : 

H . Sc(2) >I 
0 . pk - vs . H . Sc(2) <I 

a pk 

Under the null hypothesis, H0 , the process is capable and the worst scenario 

is when both the Sidak-type process and specification rectangles coincide, 
in which case 8c~r =I . On the other hand, the alternative hypothesis, Ha 

corresponds to situations where at least one edge of the process rectangle is 

beyond its corresponding specification limit. The test proposed here is 

designed to capture such a situation. 
_,, 

A reasonable choice of the test statistic for this problem is, 

where 

and X . and S . denote respectively the mean and standard deviation of the 
' 1 J 

jth product characteristic based on a sample of size n. The decision rule is 

to reject Ho in favor of Ha if 
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"' sc (2) < k 
pk 

where k is some positive constant depending on the significance level of the 

test (a.) and is determined from 

Max Pr{ sC~> < k I Ho is true} =a. 

The maximum value on the left-hand side of the above equation occurs 

when µ J = TJ and Uj - Lj = 2c cr1 for j = 1, 2 (the worst situation under Ho). 

Thus, we have, 

or 

I 2 

Pr ' n 
}=1 

I (n-l)S2 I 
___ 1 +--

cr~ c/;i 
=1-a 

............... (2) 

According to the Bonferroni inequality, 

{ 
2 [ (n-1;s: +-I (X,-µ,)2 <1.]}~l- ~Pr{-1- (n-i;s: +-I (X1-µ1)

2 ~l.} 
Pr n Jnl-1 O' c.rn CJ I .r,, k L.J ~ cr, cJn aJJn k 

1=1 J J j=l 

................ (3) 
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A conservative test of the hypotheses stipulated above may now be 

obtained by replacing the left-hand side of (2) with the right-hand side of (3) 

givmg, 

2 
~Pr 1 
L..J ; .Jn 1 
}=1 

As 

I 
.Jn I 

(n-l)SJ +_I_ 

a~ c..Jn j = 1,2 

are identically distributed, it follows that, 

Pr 1 (n-l)S2 

1 (xj-µJr >l u 

.Jn 1 
}+ 

a~ c/;z a ;-Fz - k 2· J 

_,, 

V = (n-l)s: (- r W X-µ - J J 

.If 0"2 and - a
1
!Fn ' 

J 

the problem reduces to finding the ( 1- ~)th quantile of 

I JV+ 1 JW M cfn , 

which is a linear combination of the square root of two independent Chi­

Square variables with n-1 and 1 degrees of freedom respectively. A closed­

fonn representation of the probability density of this linear combination is 

22 



not available. However, it is possible to obtain the approximate values of 

the required quantiles and thus the critical values, k, using Comish-Fisher 

expansions. Johnson et al. (1970) outlined the method of obtaining these 

expansions and provided a formula which expresses the standardized 

quantiles of any distribution in terms of its standardized cumulants and the 

corresponding standard nonnal quantiles. However, it is found that there are 

some inconsistencies in the results obtained by using the expression 

provided by these authors. As an alternative, numerical solutions are 

obtained from the following integral equation:-

00 

J Fn-{ (n-1)(11 k--.Jw I c£)2]J1(w)dw = 1- ~, 
0 

' 

where fv( •) and F;,( •)respectively denote the probability density and the 

cumulative distribution function of a Chi-Square variable with v degrees of 

freedom. The approximate critical value, k, is obtained in this way using 

Mathematica software and given to 4 significant digits in Table 2 for 
·-" 

various combinations of tolerable pro-portion of unusable items (8 ), sample 

size (n) and significance level (a). 

ROBUSTNESS TO DEPARTURES FROM 
NORMALITY---- SOME CONSIDERATIONS 

Various attempts have been made to extend the definitions of the 

standard univariate capability indices to situations where the process 

distribution is non-normal and corresponding estimation procedures have 

been proposed. These are intended to correctly reflect the proportion of 
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items out of specification irrespective of the fonn of the process 

distribution. No attempts have appeared in the literature, however, to 

develop multivariate capability indices which are insensitive to departures 

from multivariate nonnality. Some robust univariate capability indices and 

procedures for assessing process perfonnance currently available are briefly 

reviewed and an approach outlined for designing robust multivariate 

capability indices. 

Chan et al. (1988) suggested the use of a tolerance interval approach 

similar to that of Guenther (1985) to estimate, with a certain level of 

confidence, the interval within which at least a specified proportion of items 

is contained. This estimated interval is then used in place of the normal­

theory based interval (some multiple of cr) in the expressions for Cp, Cpk 

and Cpm· The 100( 1-a )% confidence ~ -content tolerance interval is 

designed to capture at least I 00 ~ % of the process distribution, 100( 1-a )o/o 

of the time by using appropriate order statistics. However, it was found by 

Chan et al. (1988) that the natural choice of~, 0.9973 and a, 0.05 results 

in the requirement of taking sample sizes, n of 1000 or larger. To 

circumvent this problem, they proposed the use of a tolerance interval with 

smaller p, specifically, that with p = o. 9546 and p = 0.6826 in place of 4cr and 

2cr respectively in the expressions for c,n L~k and c-;,,m, and provided the 

corresponding 95% confidence estimators for sample sizes less than 300. 

Although this modification greatly reduces the minimum sample size 

required, Peam et al. (1992) pointed out that 'it depends on the (somewhat 

doubtful) assumption that the ratios of distribution-free tolerance interval 

lengths for different P are always approximately the same as that for normal 

tolerance intervals'. Furthennore, the proposed extensions retain the process 

mean, µin the original definitions of c;k and cpm rather than replacing it by 

the median. This complicates the interpretation of the resulting indices since 
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the median may differ considerably from the process mean for heavily 

skewed distributions. 

Another approach to analysing process capability for non-normal 

processes (especially unimodal and fairly smooth distributions) is based on 

systems or families of distributions. Having redefined the standard CP and 

cpk indices as 

U-L c =------
p p -P 

0.99865 0.00135 

and 

C _ M. { U - M M - L } 
pk - 1n , 

Po.99865 - M M - Po.00135 

= Min { U - Po.5 Po.5 - L } 
Po.99865 - Po.5 ' Po.5 - Po.00135 ' 

where P0 denotes the I OOo th percentile of the distribution, Clement (1989) 

proposed fitting a Pearson-type curve to the observed data using the method 

of moments and the percentiles required for computation of these indices 

are then obtained from the fitted distribution. The required standardized 

percentiles were tabulated for various combinations of the coefficients of 

skewness and kurtosis . Some potential difficulties with this approach were 

given by Rodriguez (1992). In view of the complexity and difficulty of 

interpreting the equations for fitted Pearson and Johnson-type curves, 

Rodriguez (1992) suggested the fitting of a particular parametric family of 

distributions such as the Gamma, Lognonnal or Weibull distribution to the 

prpcess data. For checking the adequacy of the distributional model, he 

recommended the use of statistical methods based on the empirical 

distribution function (EDF) including the Kolmogorov-Smirnov test, the 

Cramer Von Mises test and the Anderson-Darling test. As for the graphical 
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checking of distributional adequacy, he stated that this can be accomplished 

by means of Quantile-Quantile plots or probability plots. In the same paper, 

he also briefly described the use of Kernel Density estimates for process 

capability analysis, especially for non-normal distributions. 

Peam et al. (1992) suggested a possible approach to obtain a robust 

capability index by defining an index 

where e is chosen such that 

U-L 
Ce=---

8cr ' 

P8 = Pr[µ-9cr < X < µ+9cr], 

is as insensitive as possible to the fonn of the distribution of X. He showed 
., 

that, for Pe = 0. 99 the choice of 8 = 5.15 is quite adequate for a wide range 

of distributions. 

For non-nonnal multivariate processes, it seems reasonable to use 

capability indices constructed based on multivariate Chebyshev-type 

inequalities (see Johnson et al. (1976)) to reflect the process performance as 

no normality assumption is required. The most basic type of these 

inequalities is obtained by combining the Bonferroni and Chebyshev 

inequalities as follows :-

For our purpose here, the Bonferroni inequality is given by 

> I -±Pr{ x10~µ1 > k} 
J=l 

.............. (4) 

Upon applying the Chebyshev inequality to each tenn in the summation on 

the right-hand side of (4), the following is obtained:-
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·········· ·· ···· (5) 

Note that, for the same k, the lower bound for (5) is smaller than that for 

(4). However, this does not imply that the capability index constructed 

based on inequality (5) is less conservative than that which is based on ( 4). 

For the same lower bound, 1-8, the process rectangle based on the 

multivariate Chebyshev-type inequality (5) is always larger (as a result of 

larger k) than that of ( 4) irrespective of the underlying distribution. Note, 

however, that the Bonferroni-type capability index proposed in this paper is 

obtained by imposing a nonnality condition on the marginal distributions of 

the process and thus it can be either too liberal or too stringent as a 

performance measure for non-nonnal processes. For instance, a value 

greater than I for this index does not guarantee that the expected proportion 

of non-defective items is more than 1-8 if the process distribution is heavy­

tailed (such as a multivariate-! distribution) unless it is significantly different 

from 1. 

There are some improvements to the above multivariate Chebyshev­

type inequality, however, the expressions involved are complicated, causing 

the construction of multivariate capability indices based on them to be 

difficult except for situations where there are relatively few variables. It is 

also found that these capability indices are only marginally better than that 

based on inequality (5). Thus, it is reasonable to use (5) whenever the use of 

distribution-free capability indices is warranted. 
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CONCLUSIONS AND FURTHER REMARKS 

In this paper, three bivariate capability indices have been proposed 

based on the relative area and position of the conservative process rectangle 

containing at least a specified proportion of items, and the specification 

rectangle. The development of the first involves the projection of a process 

ellipse containing a specified percentage of products on to its component 

axes whereas the other two are based on the Bonferroni and Sidak 

inequalities respectively. Some calculations that fairly compare the three 

reveal that the latter two are superior to the fonner and that the Sidak-type 

capability index is marginally better than that based on the Bonferroni 

inequality. A reasonable test for the Sidak-type index has also been 

proposed and critical values provided for some chosen levels of 

significance, sample sizes and acceptable percentages of nonconforming 

items. The computation of these indices is easier than other proposed 

indices and capability analysis methods. However, as with other 

multivariate capability indices, it has not yet been possible to obtain the 

unbiased estimators and appropriate confidence intervals for the proposed 

indices except to note that for large sample sizes, it seems appropriate to 

replace the parameters involved with the usual sample estimates. 

Further research in this area should perhaps focus on developing 

exact multivariate capability indices which accurately reflect the process 

status (i.e the expected proportion of usable items produced) and the 

expected costs incurred. There may also be situations where not all the 

measured characteristics are equally important in determining the product 

quality and it seems, therefore, reasonable to develop some index which 

takes this factor into consideration. A final concern about multivariate 

capability indices is their robustness to departures from nonnality. A 
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conservative type of distribution-free capability index may be obtained by 

use of the multivariate Chebyshev-type probability inequalities as 

demonstrated. Although this is no better (more conservative) than the 

Bonferroni-type capability index, the process rectangle containing at least a 

specified proportion of items used for defining the index can be constructed 

easily for any type of process distribution. If the underlying distribution for 

each quality characteristic is known to belong to some well-known system 

or family of distributions and hence appropriate quantiles may be obtained, 

it is advisable to consider the use of the capability index constructed based 

on the Bonferroni inequality ( 4) although in some cases, this might not be 

practical. 
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Table 1. 

p 8 I 
_ ~x~(8) 

B:P -
Zs12p 

2 0.0025 1.0726 1.0727 
0.005 1.0767 1.0768 
0.01 1.0811 1.0815 
0.02 1.0859 1.0867 
0.05 1.0921 1.0945 

3 0.0025 1.1325 1.1326 
0.005 1.1397 1.1398 

0.01 1.1475 1.1479 

0.02 1.1561 1.1570 

0.05 1.1677 1.1708 

5 0.0025 1.2319 1.2320 

0.005 1.2438 1.2440 

0.01 1.2569 1.2574 

0.02 1.2713 1.2724 

0.05 1.2917 1.2953 

10 0.0025 1.4218 1.4219 

0.005 1.4419 1.4421 

0.01 1.4641 1.4646 

0.02 1.4886 1.4899 

0.05 1.5243 1.5283 
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Table 2. Critical Values for Testing sc~~ 

a 

n 0.01 0.025 0.05 0.1 

10 * 0.5763 0.6093 0.6397 0.6770 
t (0.5636) (0.5960) (0.6258) (0 .6624) 

15 0.6284 0.6590 0.6869 0.7206 
(0.6158) (0.6461) (0.6737) (0 .7070) 

20 0.6630 0.6918 0.7178 0.7490 
(0.6507) (0.6794) (0 .7052) (0.7362) 

25 0.6884 0.7158 0.7403 0.7695 

(0.6765) (0.7038) (0.7283) (0.7574) 

50 0.7594 0.7820 0.8020 0.8254 

(0.7489) (0 .7717) (0 .7918) (0.8154) 

100 0.8178 0.8359 0.8516 0.8698 

(0.8091) (0.8275) (0.8434) (0.8619) 

* unbracketed values correspond to 8 = o. o 1. 

t bracketed values correspond to 8 = o. 05. 
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Figure 1. 

Natural Process Ellipse 
centered at target having 
the same area as MTR Specification rectangle 

Modified T oleran e region (MTR) 

35 




