
VICTORIA ~
UNIVERSITY

•
::
" z
z

~
0
0
~

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

Parallel Query Processing in Object-Oriented

Database Systems

C.H.C. Leung and D. Taniar

(47COMP16)

December, 1994

(AMS : 68Pl 5)

TECHNICAL REPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
(P 0 BOX 14428) MELBOURNE MAIL CENTRE

MELBOURNE, VICTORIA, 3000
AUSTRALIA

TELEPHONE (03) 688 4249 I 4492
FACSIMILE (03) 688 4050

Footscray Campus

Parallel Query Processing in Object-Oriented Database Systems

C.H. C. Leung D. Taniar

Terabyte Database Research Group
Department of Computer and Mathematical Sciences

Victoria University of Technology
Melbourne, Australia

email: {clement, taniar j@matilda. vut. edu. au

Abstract
Parallelization techniques are used to improve
peiformance of Object-Oriented Database (OODB)
query processing. Several parallelization
techniques, especially those relating to
parallelizing path expressions and explicit joins,
are examined. Data distribution is a major concern
in parallelization, since performance improvement
depends on a good data distribution method. Two
alternatives are described to overcome load
imbalance: re-distribution and replication. General
analytic models for a distributed memory parallel
architecture are presented, and peiformance
evaluation is carried out.

1 Introduction

The expressiveness of object-oriented data
modelling has been one of the strengths of Object­
Oriented Databases (OODB), which also gives rise
to highly complex data structures and access
patterns, with a consequent adverse impact on
database performance. It is the aim of this paper to
study improvements in OODB query processing
through parallelization.

Parallel architecture for database systems is
often classified into three categories; shared
memory, shared disk and shared nothing
architectures [1, 3]. Shared memory architecture is
an architecture where all processors share a
common main memory and secondary memory.
Processor load balancing is relatively easy to
achieve in this architecture, because data is located
in one place. However, this architecture suffers
from memory and bus contention, since many
processors may compete for access to the shared
data. In a shared disk architecture, the disks are
shared by all processors, each of which has its own
local main memory. As a result, data sharing
problems can be minimized, and load balancing can
largely be maintained. On the other hand, this
architecture suffers from congestion in the
interconnection network when many processors are

trying to access the disks at the same time. A
shared nothing architecture, which also known as a
distributed memory architecture, provides each
processor with a local main memory and disks. The
problem of competing for access to the shared data
will not occur in this system, but load balancing is
difficult to achieve even for simple queries, since
data is placed locally in each processor, and each
processor may have unequal load. Because each
processor is independent of others, it is easy to
scale up the number of processors without
adversely affecting performance.

A number of research prototypes and products
that utilize parallelization in database systems have
been produced. For example, Oracle has been
ported to nCube parallel machines, while Informix
and Sybase have had their products run on parallel
machines [2, 3]. Most of these prototypes and
products mainly deal with relational databases.

Researchers have recently proposed several
• parallelization techniques for OODB [5, 6, 14].

Both [6] and [14] concentrated on parallelization of
path expressions. Parallelization of path expressions
can be achieved by applying either forward or
reverse traversal technique to the query graph [6].
Because the result of this traversal is linear, [6]
claims that this linearity becomes the bottleneck of
parallel processing. This approach views the degree
of parallelization as coarse-grained with the
sequential processing being the major part. In
practice, the degree of parallelization can vary from
coarse-grained to fine-grained parallelization,
depending on the application environment.
Although fine-grained parallelization can be very
complex, it can be made to deliver good
performance.

[5] describes a system that has been
implemented on a transputer network. Their result
is very similar to the result in [6] where it is
suggested that the performance of parallel
processing was .hardly ab~e to improve efficiency
because sequenual processmg was the major part of
overall processing. This work also considers the

http://matilda.vut.edu.au

coorporation between index maintenance with
parallel processing, and is shown that update
processing remains almost constant as the number
of indices increased. Their data was partitioned
across a number of disks, and a combination of
vertical and horizontal partitioning is used in this
study.

Another implication of the traversal technique
in [6] is that there is no access plan, since there is
only one way of implementing parallelization. In
contrast, we have identified that there is more than
one way in applying parallelization to the tree path
expression queries. Therefore, an access plan can
be formulated and an efficient execution can be
chosen.

In this study we identify that inter-class
parallelization (known as node parallelization in
[6]) is not feasible, since not all objects of classes
along the path must be read and evaluated, and the
scope of classes is limited by the predicates of the
previous classes. As we find that inter-class
parallelization does not improve parallel
processing, we concentrate on intra-class
parallelization. To improve data filtering, we
propose a data distribution scheme where objects of
classes along the path that are not reachable from
the root will not be distributed. Consequently,
objects that will not participate in the output are
discarded from the beginning, and so improving the
efficiency of query processing.

[6] has introduced the access scope of a query
that includes generalization or class-hierarchy. He
has also shown that parallelization of class­
hierarchy performed better than others when all
parallelization techniques are applicable. However,
the traversal techniques that were proposed did not
include traversing subclasses. In this study, we
consider several traversal techniques for different
types of path expressions.

The query model presented in [14] is mainly
dividing the query evaluation into two stages. In the
first stage, a class projection and a set of selection
predicates are specified. At the end of the first stage
a sub-database is produced. Because the form of the
sub-database is in an object schema form, it can be
further processed when necessary. The second stage
is providing a set of attribute projections. This
results in a tabular or nested tabular form with
primitive values. Parallelizing a query using query
graph permits the initiation of query execution at
several nodes simultaneously, and the intersection
of all paths will provide the final result of the
query. The data partitioning mechanism adopted
was vertical partitioning. A relationship between
classes is represented by two partitions, each
representing a one-way relationship. This will result
in redundant data, and data anomaly can occur.
However, it claims that this mechanism suits well

to update parallelization, since updating redundant
data can be performed in parallel without
interfering each other.

In terms of performance, [14] concluded that
processor speed does not have much impact on
overall performance, but I/O speed does have a
significant effect. Communication speed does not
affect performance for applications with low
correlation, and the higher the correlation, the more
impact it will have on performance. Performance
was measured on application domains, not on single
queries, and the applications used for experiments
cover a number of mixture of different types of
queries, such as queries with aggregation and
queries with inheritance.

In the rest of this paper we will address several
issues. Section 2 examines the kind of
parallelization available. Section 3 describes how
these parallelization techniques in OODB query
processing may be used. Section 4 investigates how
data are best distributed to processors. Section 5
describes cost models for query parallel processing,
and section 6 presents performance evaluation.

2 Forms of Parallelization

There are different forms of parallelization
depending on the scope of the problem. In this
paper we are going to concentrate on parallelization
within a query. To speed up the query response
time, a query consisting of many operations in one
or more classes, is divided into sub-queries, which
are then executed in parallel. In this case, there are
three forms of parallelization available to OODB
systems: intra-class parallelization, inter-class
parallelization and hybrid-class parallelization.

These parallelization techniques are similar to
the techniques adopted by parallel RDBMS.
Parallelization in OODB has been influenced by the
parallelization techniques used widely in the
parallel relational systems. However, when we go
deeper, parallelization in OODB is significantly
different from parallel RDBMS. This is mainly
because the base data structure of OODB is much
richer, as it includes complex relationship among
objects, such as generalization and aggregation
hierarchies.

2.1 Intra-Class Parallelization

Intra-class parallelization is a method where a
query consisting of one or more predicates in a
single class is evaluated in parallel. When the query
has one predicate only, the objects are partitioned
to all available processors. These processors
perform the same predicate evaluation for different
collection of objects. On the other hand, when the

query involves multiple predicates, each processor
evaluates all predicates for different collection of
objects. An alternative way is where each processor
evaluates one predicate for the full number of
objects.

As an illustration, consider the class schema in
Figure 1. This class schema forms an aggregation
hierarchy through the association between classes.
From this class schema. one can invoke the
following query.

Quezy 1:
select JOURNAL
where JOURNAL.organization = "IEEE";

To answer the query, each processor is assigned
the same predicate, that is checking whether the
organization is "IEEE". The processor is also
allocated part of data. In this case, data partitioning
becomes crucial, because it must guarantee that all
processors are equally balanced.

Two data partitioning models exist in parallel
database systems: vertical and horizontal data
partitioning [3, 14]. Vertical partitioning partitions
the data vertically across all processors. Each
processor has a full number of objects of a
particular class, but with partial attributes. Because
each processor has different attributes, when
invoking a query that evaluates a particular
attribute value, only processors that hold that
attribute will participate in the process. Therefore,
processors that do not hold that particular attribute
become idle. This model is more common in
distributed database systems, rather than in parallel
database systems. The motivation to use
parallelization in database systems is to divide the
processing tasks to all processors, so that the query
elapsed time becomes mmrmum. Processor
participation in the whole process is crucial. Even

,
JOURNAL

title: string[25]
volume: integer
number: integer
month: Month , " year: Year '

ARTICLE

content ARTICLE 41' I title: string[25]
organization: string[15]

I

author: AUTHOR
~

page_no: integer
subject: string[80]

more important, the degree of participation must be
as even as possible.

Horizontal partitioning is a model where each
processor holds a partial number of complete
objects of a particular class. A query that evaluates
a particular attribute value will require all
processors to participate. Hence, the degree of
parallelization improves. This data partitioning
method has been used by most existing parallel
relational database systems.

When a query involves many predicates on a
single class, like in Query 2, each predicate is done
by an operator, and each operator has a full copy of
the objects to work with. In this case, the number of
processors is determined by the number of
predicates in the query. Furthermore, all objects
may be replicated to all processors.

Query 2:
select JOURNAL
where (JOURNAL.title="*parallel*" and

JOURNAL.year>=l990 and
JOURNAL.organization="IEEE");

Since evaluating more than one predicate on a
single class is not much different from evaluating
one predicate, each processor is allocated with all
predicates and with different collection of objects.
If Query 2 is implemented in shared nothing or
shared disk architectures, objects of class
JOURNAL may be partitioned to all processors. In
a shared memory architecture, since the data is
located at one place, no data partition is necessary,
but there must be a mechanism that guarantees for
each processor to work independently and

· continuously, without any waiting for locks to be
released on a particular shared object. The locking
mechanism must not interfere with parallelization;
otherwise, parallelization will not produce much
improvement.

,
AUTHOR ""'

'
' surname: string[20] ,

firstname: string[20] AFFILIATION "
' work: AFFILlATION ' name: string[25] qualification: string[15]

specialization: string[15] departinent: string[15]
address: string[25] country: string[20]

Figure 1: Class Schema

2.2 Inter-Class Parallelization

Inter-class parallelization is a method where a
query involving multiple classes and each class
appeared in the query predicate is evaluated
simultaneously. Consider Query 3 as an example.

Query 3:
select JOURNAL
where (
JOURNAL.organization = "IEEE" and
JOURNAL.contenttitle ="*object-oriented*" and
JOURNAL.content.author.qualification="PhD" and
JOURNAL.content.author. work.country="UK");

There are four classes involved in Query 3, each
with its own predicate. The query shows that each
predicate is considered as an independent task, and
the objects of a particular class are attached to the
predicate to be evaluated. As a result, the entire
query is composed of many independent tasks,
which run concurrently.

The execution of a query may be divided into a
number of sequential phases [9]. Within each
phase, a number of operations are executed in
parallel, and the results from one phase will be
passed to the next for further processing.
Depending on how the results need to be finally
presented, a consolidation operator may be required
to arrange the results in an appropriate final form. If
necessary, the consolidation operator will re­
distribute the output objects for further processing.
However, the final consolidation operation is not
parallelisable so it involves the bringing together of
parallel results for final presentation.

The task of the consolidation operator can vary
from collecting the result of two operators at a time
to collecting the result of all operators at once.
Thus, the degree of inter-class parallelization can
be classified into four categories; left-deep tree
parallelization, bushy tree parallelization, right­
deep tree parallelization, and flat-tree
parallelization [4]. Figure 2 illustrates these four
types of trees, where a node represents a predicate
evaluation of a class. Using Query 3 above, node A
can be regarded as the first predicate evaluation
(organization="IEEE"), node B as the second
(title="*object-oriented*"), and so on. Furthermore,
the result of each predicate is subsequently joined.
For example, AB indicates the result of joining
process (implicitly or explicitly) between the first
and the second predicates.

It is obvious from the parallelization trees
shown in Figure 2, that the purpose of
parallelization is to reduce the height of the tree.
The height of a balanced bushy-tree is equal to log2
N, where N is the number of nodes. When each
predicate evaluation is independent of each other,

bushy-tree parallelization is the best, since the
reduction of the height of the tree is quite
significant. However, in the case where each
predicate evaluation is dependent on the previous
ones (e.g., in path expressions), bushy-tree
parallelization is inapplicable.

ABCD

left-deep tree bushy-tree

ABCD

right-deep tree flat-tree

Figure 2: Parallelization Trees

Left-deep tree and right-deep tree are similar to
sequential processing with a reduction of one phase
only. These parallelization techniques are suitable
for predicate evaluations that must follow
sequential order; that is, the result of a predicate
evaluation will become an input to the next
predicate evaluation. This mechanism is like a
pipeline-style parallelization. Left-deep trees are
not much different from right-deep trees, except for
the order of processing the predicates. When a
,query follows a particular direction to process the
predicates for efficiency reasons, only one of these
methods can be used. In contrast, when the query
disregards the direction, the query optimizer must
be able to decide which method will be used that
will produce a minimum cost.

Flat-tree parallelization is a tree of height one.
Here, the consolidation operator can be very
heavily loaded, since the result of all predicate
evaluations is collected at the same time. Hence,
parallelization will not effect much improvement.
However, this technique works well for queries
with a single class and many predicates, because no
join operation is needed.

2.3 Hybrid-Class Parallelization

Hybrid-class parallelization is actually the
combination between inter and intra-class
parallelization, where a query involving many
classes and predicates, and each predicate of each
class is evaluated by many different processors. In

practice, this form of parallelization is more likely
to happen.

Processing Query 3 above will result each of
four predicates to be executed in parallel.
Furthermore, each predicate can be evaluated by
many processors. If, for example, 12 processors are
available to execute Query 3, each predicate will be
executed by 3 processors, e.g., processors 1 to 3
will be concentrating on the first predicate
(organization="IEEE"), processors 4 to 6 on the
second predicate (title="*object-oriented*"), etc.
Additionally, each predicate will be allocated one
third of the associated class; e.g. processor 1 will be
working on the first third of objects from class
JOURNAL, processor 2 on the second third, and
processor 3 on the last third. It applies to the
subsequent predicates as well; e.g., processor 4 will
be working on the first third of objects from class
ARTICLE, processor 5 on the second third, etc. It
can be expected that this form of parallelization
will result a major performance improvement.

3 Implicit and Explicit Join Operations

Join operation is one of the most expensive
operations in RDBMS, and still is in OODB.
Because of the nature of object structure, in OODB
join operation is categorized into implicit and
explicit joins [7]. Implicit join, also known as path
expression, is a kind of joining process between two
classes through association connection. The joining
itself is actually "pre-computed", since the
association is established even before the query is
invoked. This is the consequence of object data
modelling, which permits this kind of link.

Explicit join in OODB is similar to that of
RDBMS, where objects are joined based on one or
several common attributes, but with more
complexity as it is possible to join objects based on
not only simple primitive attributes, but also
objects. Thus, comparison operators to check the
equality or non-equality of simple attributes and
complex objects will be more complicated [11].

3.1 Path Expressions

Before we discuss how parallelization of path
expression can be done, first we defme several
types of path expressions. The classification is
based on the query schema, not the database
schema. Figure 3 shows three types of path
ex~essions; linear, tree, cyclic/semi-cyclic path
expressions. Each node represents a class and the
link between nodes represents the relationship
between classes through aggregation hierarchies.
The properties of each type of path expressions are
as follows:

linear path expression:
• properties:

maximum out-in degree = 1
irreflexive
antisymmetric

• traversals:
forward
backward

Tree path expression:
• properties:

out-in degree>= 1
irreflexive
antisymmetric

• traversals:
pre-order
post-order
level-order

Cyclic/Semi-Cyclic path expression:
• property:

closed walk, or semi closed walk
• traversal:

parallel traversal

a. linear path expression b. tree path expression

c. cyclic/semi-cyclic path expression

Figure 3: Path Expressions

It can be seen that linear path expression is a
special case of tree path expression with maximum
out-in degree being 1.

In this paper, we are dealing with linear and tree
path expressions, as most queries are in these
forms. Parallelizing these queries is done by
choosing the right form of parallelization and the
degree of parallelization, in order to gain the
maximum benefit

For linear path expression queries, intra-class
parallelization in the form of left-deep tree is the
most suitable, while bushy-tree and flat-tree
parallelizations are not appropriate. To see this,
consider Query 3 as an example. Suppose that class
JOURNAL has 2,000 objects. If on average each
journal has 6 ARTICLEs and each article has an
average of 2 AUTHORs, the numbers of objects of

classes ARTICLE and AUTHOR that are connected
to a particular journal are 12,000 and 24,000
respectively. The overall numbers of articles and
authors are more than the above figures, since many
articles do not appear in any journal (e.g., in
conference proceedings), and there are many
authors of non-journal's articles. Using either
bushy-tree or flat-tree parallelization, each
predicate is evaluated concurrently. Therefore, the
first predicate (organization="IEEE") is evaluated
against 2,000 objects of class JOURNAL. The
second and the third predicates (title = "*object­
oriented*" and qualification = "PhD") are not
evaluated against 12,000 and 24,000 objects of
classes ARTICLE and AUTHOR, but more than
these. This is certainly not efficient, because there
are many unnecessary readings and evaluations. To
avoid unnecessary reading, left-deep tree
parallelization can be used.

In left-deep tree parallelization, predicate
evaluation starts from the first class and then
follows the link to cover the whole path.
Consequently, reading the subsequent classes will
narrow to those objects that are selected from the
previous classes only. Thus, the numbers of
readings and evaluation of the second and the third
predicates will be less than 12,000 and 24,000,
because some of them are discarded by the previous
evaluations. The efficiency of this method relies on
the size of the root class. If the last class of the path
expression is smaller than the root class, the right­
deep tree parallelization can be used, provided that
the links between classes are bi-directional links.

To parallelize a query with tree path expression,
we can use either level parallelization or left-deep
tree parallelization. Level parallelization is in the
form of bushy-tree parallelization where each level
indicates one phase. Additionally, consolidation
operator combines the result of each branch of the
tree to form the final result. Level parallelization is
based on the query tree. Each level processes pairs
of adjacent nodes. A query like in Figure 3b
requires four phases. This is shown in Figure 4a,
where each node in the level-tree parallelization
represents a node in the tree-path expression. As in
Figure 2, each node represents a local predicate
evaluation of a particular class. At the end of phase
1, A and B are combined, and so are A and C.
Because they are independent from each other, they
can be done in parallel. Phase 2 processes AC,
which is obtained from the first phase, with D and
E. , Again, these two processes are executed in
parallel. At the end of the second phase, we get
ACD and ACE. Phase 3 combines the two results
from the second phase to form ACDE. Finally,
phase 4 joins task AB of phase 1 with the result of

phase 3, and the final result can be presented to the
user.

Phase

4

3

2

1

a. bushy-tree b. left-deep tree

Figure 4: Parallelizing tree path expression

Using left-deep tree parallelization, a tree path
expression must be converted into a linear path
expression by using one of the available traversal
techniques. Using pre-order traversal, the above
query can be transformed into A-B-C-D-E. Figure
4b shows how tree path expression can be done in
left-deep tree style. It also shows that path
expression itself does not improve parallelization at
all. Therefore, we must rely on intra-class
parallelization, not inter-class parallelization.

3.2 Explicit Joins

Explicit join can be performed between two or
more classes based on one or more common
primitive attributes or common objects. Explicit
join can also be executed within one class. Joining
based on primitive attributes is similar to relational
join. In this regard, object can be considered as a

· tuple or a complex/nested tuple. To optimize this
kind of join, many joining techniques have been
developed, such as nested-loop, hash, and sort­
merge joins [3] [4]. Parallelizing explicit joins is
best by applying bushy-tree parallelization, where
each class involved in the query is first restricted by
local predicate evaluation before joining takes
place. This is similar to performing select before
join in the relational model to minimize the size of
the input relations. All local predicate evaluations
are done in parallel. Then, each pair of classes is
joined together to form the fmal result. A simple
rule in optimizing explicit join based on primitive
attributes is to apply local predicate as soon as
possible, and to delay joining process as late as
possible. The reason being to discard unnecessary
objects before joining, because join will result a
large number of objects.

,.
ARTICLE

,
BOOK

title: string[25]
'

AUTHOR , title: string[25]
author: AUTHOR ,

surname: string[20] ' author: AUTHOR
page_no: integer t publisher: string[25]
subject: string[80] firstname: string[20]

year: Year
~

work: AFFILIATION
qualification: string[15]

~

specializ~tion: string[lS
\.. ~

Figure 5: Explicit Join

To illustrate explicit join based on a common
object, refer to Figure 5. Both classes ARTICLE
and BOOK point to class AUTHOR. Query 4 joins
classes ARTICLE and BOOK based on the
common class, i.e., class AUTHOR. Each base
class is considered as a complex object. This
implies that an object ARTICLE together with its
associated object AUTHOR is regarded as a unit,
while an object BOOK also with its associated
object AUTHOR is regarded as another unit.
Joining both units is then similar to joining two
simple objects.

Query 4:
select ARTICLE, BOOK
where (ARTICLE.author= BOOK.author);

Because the comparison involves non-primitive
attributes, comparison operators must include
object comparison, such as object equality and non­
equality. A convenient way to compare object
equality is by comparing their Object Identifiers
(OID) [11].

When a query involves both path expression and
explicit join, the path expression is evaluated first,
and then the explicit join. Parallelizing this kind of
query is the same as parallelizing each part; path
expression and explicit join.

4 Data Distribution

Data distribution is one of important aspects in
parallel systems. Traditional data distribution
scheme for parallel database systems is based on
horizontal partitioning. Several data partitioning
strategies exist, such as range, hash and round­
robin partitioning [3]. These data distribution '
strategies deal with single relations and are not
adequate for parallel OODB systems, since objects
are related to other objects through aggregation and
inheritance hierarchies. Thus, new data distribution
schemes must be defined.

We define two data distribution schemes in
OODB: single class distribution and associative
distribution. Single class distribution is a scheme
where each class is distributed regardless its
relationship to other classes, while associative

distribution is a method where objects related to
each other are allocated on the same processor to
speed up associative search. In this paper we will
concentrate on associative distribution. At this stage
we consider aggregation hierarchies only, although
the same concept can be applied to generalization
hierarchies.

In defining our data distribution model, we
adopt a distributed-memory architecture as shown
in Figure 6 with one coordinator processor and its
disk, and a number of worker processors. Each
worker processor is equipped with its own local
main memory. This structure, configured as a star
topology, has been implemented using transputers
and further details may be found in [9]. When there
is a need to distribute objects from one worker
.processor to the other, the system configuration can
be altered to a fully connected network topology.
The processing method is to distribute the process
over the available interconnected processing
devices in the environment. We assume that the
data is already retrieved from the disk. This main
memory based structure for high performance
databases is increasingly common, especially in
pODB, because query processing in OODB
requires substantial pointer navigations, which can
be easily accomplished when all objects present in
the main memory [10, 12].

Host
Computer

Worker-I

Coordinator

Worker-3

Worker-2

Figure 6: Basic System Structure

http://page_.no

The user initiates the process by invoking a
query through the host. To answer the query, the
coordinator distributes the data from the host to the
worker processors. Each worker processor performs
local computation, and then sends the result back to
the host, which subsequently will present it to the
user.

Our associative data distribution strategy is
based on query path expression. Data distribution
occurs only when a query is invoked by a user. The
distribution is based on the root class and its
associated classes along the path expression. We
call this scheme filtered data distribution scheme. It
implies that objects along the path that are not
reachable from the root class will not be
distributed. This method does not require any
checking, because distributing a root object and its
associated objects is done by navigating pointers
from the root to all its associated objects. When
there is no pointer left, the scheme will skip to the
next root object. In this case, objects that do not
appear in the query predicates are discarded from
the beginning. For example, using Query 3,
ARTICLES that do not appear in any JOURNAL
will not be distributed to the worker processors.
Furthermore, AUTHORs of non-JOURNAL
ARTICLES will not be distributed either. Algorithm
1 presents the parallel data distribution algorithm
using round-robin method.

Parallel Round-Robin Data Distribution:
LET P be processor number
LET N be number of worker processors
LET R be the root class
PARFORP= 1 TON

INITIALIZE .counter I[P] to P
WlilLE object I[P] of R exists

GET object I[P] and all its assoc. objects
DISTRIBUTE to P
ADDNtoI[P]

ENDWIDLE
END PAR FOR

Algorithm 1: Data Distribution Algorithm

Using filtered data distribution technique, there
will occur a problem when processing objects after
the first phase. It is possible that after applying the
first predicate to the root class, only a proportion of
the objects in the next class is selected, resulting in
some worker processors being overloaded while
others underloaded. There are two possible ways to
overcome this problem. First, re-distribute objects
from the overloaded processors to the underloaded
processors. Second, to have full data replication
from the beginning, and on the subsequent phases
of query processing, cascade unnecessary objects.
In both cases, balance will always be maintained.

4.1 Data Re-Distribution

At the end of each phase, each worker processor
informs the coordinator the number of objects it
holds. On the basis of this information, the
coordinator will calculate the ideal number of
objects per processor, and produce two lists:
overloaded processors and underloaded processors.
Both lists include the number of objects the
processor will re-distribute or receive, and these
instructions are sent back the workers.

On the basis of the two lists provided by the
coordinator, each worker will re-distribute or
receive depending on which list the worker
processor is on. The ideal re-distribution strategy is
to re-distribute the current objects only. In this way,
re-distribution cost is kept minimal. Algorithm 2
presents the parallel data re-distribution algorithm.

Because re-distribution is done in parallel, the
elapsed re-distribution time depends on the most
overloaded processor. The number of objects that
must be re-distributed by this processor is the
difference between the number of objects it has and
the number of objects it should have.

4.2 Full Data Replication

Full data replication method requires each worker
processor to have enough memory to hold all
objects. If this requirement is fulfilled, this method
can be used, although the initial distribution time
must be taken into account.

When distributing objects to worker processors,
objects that will be processed by a particular
worker processor are tagged. Like the re­
distribution scheme, each worker processor informs
the coordinator the number of objects it has after
finjshjng one phase. The coordinator replies with
two lists: overloaded and underloaded lists to all
worker processors. Instead of distributing or
receiving, the worker processors remove or add tags
to allocated objects. Therefore, no physical data re­
distribution is needed, and processor load balancing
is always achieved.

5 Cost Models

In order to measure the effectiveness of
parallelization of OODB query processing, it is
necessary to provide cost models that will be used
to perform quantitative analysis. The cost models
defined in this section are for queries that are
expressed in linear path expression fashion using
the left-deep tree parallelization. The cost is
primarily expressed in terms of the elapsed time
taken to answer a query. The notations used are as
follows:

Parallel Data Re-distribution:
PAR FOR each overloaded processor P

WIBLE there is object to distribute from processor P DO
FOR each underloaded processor P'

LOCK processor P'
IF locking success THEN

IF there is object to receive by P' THEN
IF no. of obj to distribute from Pis not less than no. of obj to receive by P' THEN

LET T be no. of objects to receive by P'
CALCULATE no. of objects that has still to be distributed from P
SET underloaded processor P' to full

ELSE
LET T be no. of objects to distribute from P
CALCULATE no. of objects thathas still to be received by P'
SET no. of objects to distribute from P to zero

END IF
FORI=l TOT

DISTRIBU'IE object from P to P'
END FOR

END IF
UNLOCK processor P'
IF nothing else to distribute from P THEN

BREAK FOR
END IF

END IF
END FOR

ENDWIIlLE
ENDPARFOR

C,

Algorithm 2: Data Re-distribution Algorithm

number of classes,
number of objects of the root class,
number of objects selected from of the
ith class,
initial number of worker processors,
number of worker processors used in the
ithphase,
probability of an object of the ith class
of having a link to objects of another
class,
average fan-out degree of the ith class,
average skewness degree of the ith class,
variable processor overhead incurred in
transmitting of an object,
fixed processor overhead incurred in
preparing a stream of data for
transmission,
selectivity which gives the probability
(or proportion) that a given object of the
ith class is selected,
time to retrieve an object from buffer,
time to evaluate a predicate involving a
single attribute,
time to form. the result and write it to
output buffer,
total data distribution time,

Tr total reading time,
Tv, total predicate evaluation time
T w• total writing time,
Te, total elapsed time for an operation.

Total elapsed time for an operation (Te) is
denoted as the sum of total data distribution time,
total reading time, total predicate evaluation time,
and total writing time.

Te=Td+Tr+Tv+Tw
(5.1)

Data Distribution Time
There are two main components in calculating

the elapsed data distribution time; variable and
fixed processor overhead costs. The variable
processor overhead cost depends on the number of
objects that is distributed to the worker processors,
while the fixed processor overhead cost depends on
the number of worker processors used for that
particular operation. The fixed cost is related to the
cost of opening the channels between the
coordinator and the participating worker processors.

Using the filtered data distribution scheme, the
total data distribution time is:

Tl m r1
Td =[-+ L -ki].b +ni.c

nl i=2 m
(5.2)

where r/ is the number of objects in the ith class
included for distribution, and is given by the
product of the probability of an object of the
previous class of having a link to objects of the
cmrent class, the size of the previous class, and the
fan-out of the previous class. For example, if there
are 2,000 journals (r'1=2,000) , each journal must
have articles (A.1=1), and on average each journal
has 6 articles lf1=6), the number of objects in the
class ARTICLE (r'2) can be calculated using
equation (5.3) and is given 12,000 objects.

r1 = A(i -1>.r'(i -1>.f Ci -1>
(5.3)

Initially r' 1 is the same as r 1, since all objects of
the root class are distributed. The full derivation of
the equations presented in this section is given in
the Appendix.

Reading Time j

The elapsed reading time of each phase of the
query processing is equal to number of objects to be
read divided by number of participating worker
processors. When skewness is present, the
maximum number of objects in one processor will
determine the reading time.

Tl m

Tr=[-+ L
n1 i=2

<1(i -1)71
---ki].tr

ni
(5.4)

Number of worker processors of the subsequent
phases of query processing is non-deterministic,
since the distribution scheme is not known until
run-time. However, it is possible to obtain the
average number of busy processors using the
following formula [8].

[
1]C1(i - l)r1

m = nci -1>-n<i -1> 1----
n (i -1>

(5.5)

Predicate Evaluation Time
· Predicate evaluation time is very similar to the

reading time, since all objects read must be
evaluated against local predicate. Additionally, the
cost model for predicate evaluation also includes
the predicate length l.

[
Zin ~

Tv = - + """'
nl i =2

Writing Time

licJ (i - 1) r'i
--ki].tv

ni

(5.6)

When there is no projection, selected objects of
all classes along the path expression must be
written to the output buff er. Number of objects
selected by the last predicate is less or equal to the
number of objects read in the last phase.

O'm(O' (m -l)r~)m
Tw = [, km].tw

nm
(5.7)

6 Performance Evaluation

The purpose of the evaluation is to evaluate the
effectiveness of data distribution on performance.
Using the cost models described earlier, we can
estimate the result of an operation. In the
evaluation, we use Query 3 as an example. The size
of class JOURNAL is 2,000 objects (r1). On
average, each journal has 6 ARTICLEs lf1), each
article has 2 AUTHORs lf2). and every author has
an AFFILIATION (/3) . We assume that the
predicate selectivity probability is that only 40% of
the journal is IEEE journal (a1), 10% of the
selected journals are on the area of object-oriented (
ai), 70% of the author of the selected articles have
a PhD (a3), and 20% of the selected authors work
in the UK (a4>.

Data skewness has been one of major problems
in parallel processing which can manifest as load
skew in parallel processing. In this evaluation, we
would like to find out the effect of data skew to
performance. The degree of skewness ranges from
1.0 (no skew) to 2.8. The skewness degree of 2.0
indicates that there is at least one processor that
holds objects twice as much as it should have.

The system parameters used in this evaluation
are the same as that in [9], which has successfully
experimented a basic relational query processing in
a transputer system. In that system, the
measurements are obtained from the standard
transputer clock that measures the time in ticks
(equal to 64 microseconds). The basic times for
processing Query 3 are t,.=0.41 ticks, tv=l.69 ticks
and tw=0.46 ticks. We used 10 worker processors,
with the re-distribution scheduling time is 4.23
ticks, while the variable and the fixed distribution
overhead costs are 1.52 ticks and 0.07 ticks
respectively.

Figure 7 shows the result of the evaluation,
which also shows the comparison between the

elapsed time for processing the query without re­
distribution and with re-distribution. The result of
the data full replication elapsed time is not shown
since it is too high and unreasonable to compare
with the first two methods. The data full replication
strategy will be comparable if the communication
cost is low.

As can be seen from the result that with re­
distribution is better then without re-distribution in
most cases, except where there is no skew.
Although the improvement of re-distribution
method is less than 10%, re-distribution is still
desirable in most cases. It is expected that the
future data distribution scheme will make the re­
distribution method more efficient by providing a
better processing method.

1

15

Speeda_., 10

5

-+-wltn.t~
dsbil:uliai

-a-wth~
dsbil:uliai

12 1.4 1.6 1.8 2 22 2.4 2.6 2.8

SkEMness Degee

Figure 7: Experimental result

0 5 10 15 a>

t-b.dRocessors

-+-S1Gw=1

-ll-Sk1w=1.4

__._Sklw=1.6

---*-Sklw=1.8

~~o

Figure 8: Parallel speedup

The second evaluation strategy was to compare
parallel processor performance with uniprocessor
performance. The purpose of this evaluation is to
show how effective parallel processing is. Linear
speed up has been an indicator to show how
effective parallel processing can be. In order to
achieve this result, the evaluation used 5 to 20
processors, with skewness degree ranges from 1.2
to2.0.

Figure 8 shows that the skewness effected the
improvement greatly. In fact, when a processor has
objects twice as much as it should have, the
performance downgraded for up to 50%. It also
shows that linear speedup was unattainable. It is
expected that the future parallel OODB will break
the skew barrier, so that a linear can be obtained.

7 Conclusions and Future Worlcs

In this study we have shown how parallelization
can be done in OODB query processing. Although
in this paper we concentrate on linear path
expressions, our parallelization techniques can be
applied to other types of path expressions and
explicit joins. Sequential processing that is part of
overall parallel processing has been known as the
major bottleneck in the efficiency improvement of
parallel processing performance. In this study, we
show that this can be overcome by applying intra­
class parallelization. Using this method, the
processing strategy does not rely on the association
of classes that has been the main source of the
sequential processing, but on splitting objects of a
class into several partitions that can be accessed
'simultaneously. The filtered data distribution shows
that it can be used efficiently as it allows natural
data filtering process.

The result of performance evaluation indicates
that considerable benefits can be gained through
parallelization. With careful data re-distribution
strategy, reasonable performance improvement can
be achieved. It also shows that a near linear speed
up can be attained using our data distribution
technique, although data skewness is still the main
limitation.

Future plans for this work include defining a
better data distribution scheme that covers not only
data distribution, but also index distribution in
order to speed up associative search, together with
flexible network interconnection. Currently we are
investigating parallelization techniques that can be
applied to cyclic and semi-cyclic queries. The
technique is expected to incorporate explicit joins
with path expressions. Optimization strategies for
these types of queries are also under investigation.

References

[1] B. Bergsten, M. Couprie, and P. Valduriez.
Overview of Parallel Architectme for
Databases, The Computer Journal, Volume
36, Number 8, pages 734-740, 1993.

[2] R. Bloor. The Coming of Parallel Servers,
DBMS Magazine, Volume 7, Number 5, pages
14-16, May 1994.

[3] D. DeWitt and J. Gray. Parallel Database
Systems: The Future of High Performance
Database Systems, Communications of the
ACM, Volume 35, Number 6, pages 85-98,
June 1992.

[4] G. Graefe. Query Evaluation Techniques for
Large Databases, ACM Computing Surveys,
Volume 25, Number 2, pages 73-170, June
1993.

[5] J.P. Gray, et. al. Distributed Memory Parallel
Architectme for Object-Oriented Database
Application, Proceedings of the Third
Australian Database Conference, pages 168-
181, Melbourne, 1992.

[6] K-C. Kim. Parallelism in Object-Oriented
Query Processing, Proceedings of the Sixth
International Conference on Data
Engineering, pages 209-217, 1990.

[7] W. Kim. A Model of Queries for Object­
Oriented Databases, Proceedings of the
Fifteenth International Conference on Very
Large Data Bases, pages 423-432,
Amsterdam, 1989.

[8] V.F. Kolchin, et. al. Random Allocations,
Wiley, 1978.

[9] C.H.C. Leung and H.T. Ghogomu. A High­
Performance Parallel Database Architectme,
Proceedings of the Seventh ACM International
Conference on Supercomputing, pages 377-
386, Tokyo, 1993.

[10] W. Litwin and T. Risch. Main Memory
Oriented Optimization of 00 Queries Using
Typed Datalog with Foreign Predicates, IEEE

'Transactions on Knowledge and Data
Engineering, Volume 4, Number 6, pages.
517-528, December 1992.

[11] Y. Masunaga. Object Identity, Equality and
Relational Concept. Deductive and Object-

Oriented Databases, W.Kim, et. al., (eds),
pages 185-202, 1990.

[12] J.E.B. Moss. Working with Persistent Objects:
To Swizzle or Not To Swizzle, IEEE
Transactions on Software Engineering,
Volume 18, Number 8, pages 657-673, August
1992.

[13] E. Ozkarahan. Database Machines and
Database Management, Prentice-Hall Inc.,
1986.

[14] A.K. Thakore and S.Y.W. Su. Performance
Analysis of Parallel Object-Oriented Query
Processing Algorithms, Distributed and
Parallel Databases 2, pages 59-100, 1994.

[15] P. Valduriez. Parallel Database Systems: Open
Problems and New Issues, Distributed and
Parallel Databases 1, pages 137-165, 1993.

Appendix - Derivation of the Cost
Models

The distribution time is composed of variable and
fixed costs. The variable distribution cost depends
on the number of objects being distributed, while
the fixed distribution cost depends on the number of
processors. Therefore, the distribution fixed cost
(fc) is:

fc = ni.c
(A.1)

The cost to distribute objects of the root class
(re) is:

Tl
rc=-b

m
(A.2)

Initially, each processor will receive an equal
number of root objects. However, when distributing
the objects of the subsequent classes along the path,
some processors will likely to have more objects
than others, when skew presents. As a result. the
most overloaded processor will set the maximum
time to transfer objects in that phase. Number of
objects being distributed is determined by the fan­
out degree and the probability of an object of the
previous class to have a link to the cmrent class.
Hence, number of objects of the subsequent classes
along the path (r'i) that need to be distnouted is:

r'i = Aci -I>. r'(i -n.f Ci -n
(A.3)

The variable distribution cost (vdc) for the
subsequent classes is then:

...1 -['Nr'Ifi '>ar'if 2 lvn-1r:n-if;n-1 ljh
KL - kt+ b+. .. . JG,.

n2 m nn

(A.4)

The sum of equations (A 1) .to (A.4) forms the
total distribution cost. That is:

71 m r1
Tti =[-+ L -ki].b +ni.c

n1 i=2 ni

(A.5)

The reading cost is similar to the distribution
cost, except that it includes the probability of an
object to be selected (a). Number of objects of the
current class that needs to be read is restricted by
the selectivity of objects from the previous class.

Tr= [~+ !.. <!(i -l)r1 /a].tr
ni i=2 ni

(A.6)

The predicate evaluation cost is also similar to
the reading cost, with an addition of the length of
the predicate in each class (l).

[
l1ri ~

Tv = --+L
ni i=2

li<!(i -l)r1
---ki].tv

ni

(A.7)

The writing cost involves all selected objects along
the path.

[
Gm(Gcm -t)r:n)m

1
_]

Tw = 11.m .tw
n~

(A.8)

