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Abstract 
Parallelization techniques are used to improve 
peiformance of Object-Oriented Database (OODB) 
query processing. Several parallelization 
techniques, especially those relating to 
parallelizing path expressions and explicit joins, 
are examined. Data distribution is a major concern 
in parallelization, since performance improvement 
depends on a good data distribution method. Two 
alternatives are described to overcome load 
imbalance: re-distribution and replication. General 
analytic models for a distributed memory parallel 
architecture are presented, and peiformance 
evaluation is carried out. 

1 Introduction 

The expressiveness of object-oriented data 
modelling has been one of the strengths of Object­
Oriented Databases (OODB), which also gives rise 
to highly complex data structures and access 
patterns, with a consequent adverse impact on 
database performance. It is the aim of this paper to 
study improvements in OODB query processing 
through parallelization. 

Parallel architecture for database systems is 
often classified into three categories; shared 
memory, shared disk and shared nothing 
architectures [1, 3]. Shared memory architecture is 
an architecture where all processors share a 
common main memory and secondary memory. 
Processor load balancing is relatively easy to 
achieve in this architecture, because data is located 
in one place. However, this architecture suffers 
from memory and bus contention, since many 
processors may compete for access to the shared 
data. In a shared disk architecture, the disks are 
shared by all processors, each of which has its own 
local main memory. As a result, data sharing 
problems can be minimized, and load balancing can 
largely be maintained. On the other hand, this 
architecture suffers from congestion in the 
interconnection network when many processors are 

trying to access the disks at the same time. A 
shared nothing architecture, which also known as a 
distributed memory architecture, provides each 
processor with a local main memory and disks. The 
problem of competing for access to the shared data 
will not occur in this system, but load balancing is 
difficult to achieve even for simple queries, since 
data is placed locally in each processor, and each 
processor may have unequal load. Because each 
processor is independent of others, it is easy to 
scale up the number of processors without 
adversely affecting performance. 

A number of research prototypes and products 
that utilize parallelization in database systems have 
been produced. For example, Oracle has been 
ported to nCube parallel machines, while Informix 
and Sybase have had their products run on parallel 
machines [2, 3]. Most of these prototypes and 
products mainly deal with relational databases. 

Researchers have recently proposed several 
• parallelization techniques for OODB [5, 6, 14]. 

Both [6] and [14] concentrated on parallelization of 
path expressions. Parallelization of path expressions 
can be achieved by applying either forward or 
reverse traversal technique to the query graph [6]. 
Because the result of this traversal is linear, [6] 
claims that this linearity becomes the bottleneck of 
parallel processing. This approach views the degree 
of parallelization as coarse-grained with the 
sequential processing being the major part. In 
practice, the degree of parallelization can vary from 
coarse-grained to fine-grained parallelization, 
depending on the application environment. 
Although fine-grained parallelization can be very 
complex, it can be made to deliver good 
performance. 

[5] describes a system that has been 
implemented on a transputer network. Their result 
is very similar to the result in [ 6] where it is 
suggested that the performance of parallel 
processing was .hardly ab~e to improve efficiency 
because sequenual processmg was the major part of 
overall processing. This work also considers the 
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coorporation between index maintenance with 
parallel processing, and is shown that update 
processing remains almost constant as the number 
of indices increased. Their data was partitioned 
across a number of disks, and a combination of 
vertical and horizontal partitioning is used in this 
study. 

Another implication of the traversal technique 
in [6] is that there is no access plan, since there is 
only one way of implementing parallelization. In 
contrast, we have identified that there is more than 
one way in applying parallelization to the tree path 
expression queries. Therefore, an access plan can 
be formulated and an efficient execution can be 
chosen. 

In this study we identify that inter-class 
parallelization (known as node parallelization in 
[6]) is not feasible, since not all objects of classes 
along the path must be read and evaluated, and the 
scope of classes is limited by the predicates of the 
previous classes. As we find that inter-class 
parallelization does not improve parallel 
processing, we concentrate on intra-class 
parallelization. To improve data filtering, we 
propose a data distribution scheme where objects of 
classes along the path that are not reachable from 
the root will not be distributed. Consequently, 
objects that will not participate in the output are 
discarded from the beginning, and so improving the 
efficiency of query processing. 

[6] has introduced the access scope of a query 
that includes generalization or class-hierarchy. He 
has also shown that parallelization of class­
hierarchy performed better than others when all 
parallelization techniques are applicable. However, 
the traversal techniques that were proposed did not 
include traversing subclasses. In this study, we 
consider several traversal techniques for different 
types of path expressions. 

The query model presented in [14] is mainly 
dividing the query evaluation into two stages. In the 
first stage, a class projection and a set of selection 
predicates are specified. At the end of the first stage 
a sub-database is produced. Because the form of the 
sub-database is in an object schema form, it can be 
further processed when necessary. The second stage 
is providing a set of attribute projections. This 
results in a tabular or nested tabular form with 
primitive values. Parallelizing a query using query 
graph permits the initiation of query execution at 
several nodes simultaneously, and the intersection 
of all paths will provide the final result of the 
query. The data partitioning mechanism adopted 
was vertical partitioning. A relationship between 
classes is represented by two partitions, each 
representing a one-way relationship. This will result 
in redundant data, and data anomaly can occur. 
However, it claims that this mechanism suits well 

to update parallelization, since updating redundant 
data can be performed in parallel without 
interfering each other. 

In terms of performance, [14] concluded that 
processor speed does not have much impact on 
overall performance, but I/O speed does have a 
significant effect. Communication speed does not 
affect performance for applications with low 
correlation, and the higher the correlation, the more 
impact it will have on performance. Performance 
was measured on application domains, not on single 
queries, and the applications used for experiments 
cover a number of mixture of different types of 
queries, such as queries with aggregation and 
queries with inheritance. 

In the rest of this paper we will address several 
issues. Section 2 examines the kind of 
parallelization available. Section 3 describes how 
these parallelization techniques in OODB query 
processing may be used. Section 4 investigates how 
data are best distributed to processors. Section 5 
describes cost models for query parallel processing, 
and section 6 presents performance evaluation. 

2 Forms of Parallelization 

There are different forms of parallelization 
depending on the scope of the problem. In this 
paper we are going to concentrate on parallelization 
within a query. To speed up the query response 
time, a query consisting of many operations in one 
or more classes, is divided into sub-queries, which 
are then executed in parallel. In this case, there are 
three forms of parallelization available to OODB 
systems: intra-class parallelization, inter-class 
parallelization and hybrid-class parallelization. 

These parallelization techniques are similar to 
the techniques adopted by parallel RDBMS. 
Parallelization in OODB has been influenced by the 
parallelization techniques used widely in the 
parallel relational systems. However, when we go 
deeper, parallelization in OODB is significantly 
different from parallel RDBMS. This is mainly 
because the base data structure of OODB is much 
richer, as it includes complex relationship among 
objects, such as generalization and aggregation 
hierarchies. 

2.1 Intra-Class Parallelization 

Intra-class parallelization is a method where a 
query consisting of one or more predicates in a 
single class is evaluated in parallel. When the query 
has one predicate only, the objects are partitioned 
to all available processors. These processors 
perform the same predicate evaluation for different 
collection of objects. On the other hand, when the 



query involves multiple predicates, each processor 
evaluates all predicates for different collection of 
objects. An alternative way is where each processor 
evaluates one predicate for the full number of 
objects. 

As an illustration, consider the class schema in 
Figure 1. This class schema forms an aggregation 
hierarchy through the association between classes. 
From this class schema. one can invoke the 
following query. 

Quezy 1: 
select JOURNAL 
where JOURNAL.organization = "IEEE"; 

To answer the query, each processor is assigned 
the same predicate, that is checking whether the 
organization is "IEEE". The processor is also 
allocated part of data. In this case, data partitioning 
becomes crucial, because it must guarantee that all 
processors are equally balanced. 

Two data partitioning models exist in parallel 
database systems: vertical and horizontal data 
partitioning [3, 14]. Vertical partitioning partitions 
the data vertically across all processors. Each 
processor has a full number of objects of a 
particular class, but with partial attributes. Because 
each processor has different attributes, when 
invoking a query that evaluates a particular 
attribute value, only processors that hold that 
attribute will participate in the process. Therefore, 
processors that do not hold that particular attribute 
become idle. This model is more common in 
distributed database systems, rather than in parallel 
database systems. The motivation to use 
parallelization in database systems is to divide the 
processing tasks to all processors, so that the query 
elapsed time becomes mmrmum. Processor 
participation in the whole process is crucial. Even 

, 
JOURNAL 

title: string[25] 
volume: integer 
number: integer 
month: Month , " year: Year ' 

ARTICLE 

content ARTICLE 41' I title: string[25] 
organization: string[15] 

I 

author: AUTHOR 
~ 

page_no: integer 
subject: string[80] . ... 

more important, the degree of participation must be 
as even as possible. 

Horizontal partitioning is a model where each 
processor holds a partial number of complete 
objects of a particular class. A query that evaluates 
a particular attribute value will require all 
processors to participate. Hence, the degree of 
parallelization improves. This data partitioning 
method has been used by most existing parallel 
relational database systems. 

When a query involves many predicates on a 
single class, like in Query 2, each predicate is done 
by an operator, and each operator has a full copy of 
the objects to work with. In this case, the number of 
processors is determined by the number of 
predicates in the query. Furthermore, all objects 
may be replicated to all processors. 

Query 2: 
select JOURNAL 
where (JOURNAL.title="*parallel*" and 

JOURNAL.year>=l990 and 
JOURNAL.organization="IEEE"); 

Since evaluating more than one predicate on a 
single class is not much different from evaluating 
one predicate, each processor is allocated with all 
predicates and with different collection of objects. 
If Query 2 is implemented in shared nothing or 
shared disk architectures, objects of class 
JOURNAL may be partitioned to all processors. In 
a shared memory architecture, since the data is 
located at one place, no data partition is necessary, 
but there must be a mechanism that guarantees for 
each processor to work independently and 

· continuously, without any waiting for locks to be 
released on a particular shared object. The locking 
mechanism must not interfere with parallelization; 
otherwise, parallelization will not produce much 
improvement. 

, 
AUTHOR ""' 

' 
' surname: string[20] , 

firstname: string[20] AFFILIATION " 
' work: AFFILlATION ' name: string[25] qualification: string[15] 

specialization: string[15] departinent: string[15] 
address: string[25] ... ... country: string[20] 

Figure 1: Class Schema 



2.2 Inter-Class Parallelization 

Inter-class parallelization is a method where a 
query involving multiple classes and each class 
appeared in the query predicate is evaluated 
simultaneously. Consider Query 3 as an example. 

Query 3: 
select JOURNAL 
where ( 
JOURNAL.organization = "IEEE" and 
JOURNAL.contenttitle ="*object-oriented*" and 
JOURNAL.content.author.qualification="PhD" and 
JOURNAL.content.author. work.country="UK"); 

There are four classes involved in Query 3, each 
with its own predicate. The query shows that each 
predicate is considered as an independent task, and 
the objects of a particular class are attached to the 
predicate to be evaluated. As a result, the entire 
query is composed of many independent tasks, 
which run concurrently. 

The execution of a query may be divided into a 
number of sequential phases [9]. Within each 
phase, a number of operations are executed in 
parallel, and the results from one phase will be 
passed to the next for further processing. 
Depending on how the results need to be finally 
presented, a consolidation operator may be required 
to arrange the results in an appropriate final form. If 
necessary, the consolidation operator will re­
distribute the output objects for further processing. 
However, the final consolidation operation is not 
parallelisable so it involves the bringing together of 
parallel results for final presentation. 

The task of the consolidation operator can vary 
from collecting the result of two operators at a time 
to collecting the result of all operators at once. 
Thus, the degree of inter-class parallelization can 
be classified into four categories; left-deep tree 
parallelization, bushy tree parallelization, right­
deep tree parallelization, and flat-tree 
parallelization [4]. Figure 2 illustrates these four 
types of trees, where a node represents a predicate 
evaluation of a class. Using Query 3 above, node A 
can be regarded as the first predicate evaluation 
(organization="IEEE"), node B as the second 
(title="*object-oriented*"), and so on. Furthermore, 
the result of each predicate is subsequently joined. 
For example, AB indicates the result of joining 
process (implicitly or explicitly) between the first 
and the second predicates. 

It is obvious from the parallelization trees 
shown in Figure 2, that the purpose of 
parallelization is to reduce the height of the tree. 
The height of a balanced bushy-tree is equal to log2 
N, where N is the number of nodes. When each 
predicate evaluation is independent of each other, 

bushy-tree parallelization is the best, since the 
reduction of the height of the tree is quite 
significant. However, in the case where each 
predicate evaluation is dependent on the previous 
ones (e.g., in path expressions), bushy-tree 
parallelization is inapplicable. 

ABCD 

left-deep tree bushy-tree 

ABCD 

right-deep tree flat-tree 

Figure 2: Parallelization Trees 

Left-deep tree and right-deep tree are similar to 
sequential processing with a reduction of one phase 
only. These parallelization techniques are suitable 
for predicate evaluations that must follow 
sequential order; that is, the result of a predicate 
evaluation will become an input to the next 
predicate evaluation. This mechanism is like a 
pipeline-style parallelization. Left-deep trees are 
not much different from right-deep trees, except for 
the order of processing the predicates. When a 
,query follows a particular direction to process the 
predicates for efficiency reasons, only one of these 
methods can be used. In contrast, when the query 
disregards the direction, the query optimizer must 
be able to decide which method will be used that 
will produce a minimum cost. 

Flat-tree parallelization is a tree of height one. 
Here, the consolidation operator can be very 
heavily loaded, since the result of all predicate 
evaluations is collected at the same time. Hence, 
parallelization will not effect much improvement. 
However, this technique works well for queries 
with a single class and many predicates, because no 
join operation is needed. 

2.3 Hybrid-Class Parallelization 

Hybrid-class parallelization is actually the 
combination between inter and intra-class 
parallelization, where a query involving many 
classes and predicates, and each predicate of each 
class is evaluated by many different processors. In 



practice, this form of parallelization is more likely 
to happen. 

Processing Query 3 above will result each of 
four predicates to be executed in parallel. 
Furthermore, each predicate can be evaluated by 
many processors. If, for example, 12 processors are 
available to execute Query 3, each predicate will be 
executed by 3 processors, e.g., processors 1 to 3 
will be concentrating on the first predicate 
(organization="IEEE"), processors 4 to 6 on the 
second predicate (title="*object-oriented*"), etc. 
Additionally, each predicate will be allocated one 
third of the associated class; e.g. processor 1 will be 
working on the first third of objects from class 
JOURNAL, processor 2 on the second third, and 
processor 3 on the last third. It applies to the 
subsequent predicates as well; e.g., processor 4 will 
be working on the first third of objects from class 
ARTICLE, processor 5 on the second third, etc. It 
can be expected that this form of parallelization 
will result a major performance improvement. 

3 Implicit and Explicit Join Operations 

Join operation is one of the most expensive 
operations in RDBMS, and still is in OODB. 
Because of the nature of object structure, in OODB 
join operation is categorized into implicit and 
explicit joins [7]. Implicit join, also known as path 
expression, is a kind of joining process between two 
classes through association connection. The joining 
itself is actually "pre-computed", since the 
association is established even before the query is 
invoked. This is the consequence of object data 
modelling, which permits this kind of link. 

Explicit join in OODB is similar to that of 
RDBMS, where objects are joined based on one or 
several common attributes, but with more 
complexity as it is possible to join objects based on 
not only simple primitive attributes, but also 
objects. Thus, comparison operators to check the 
equality or non-equality of simple attributes and 
complex objects will be more complicated [11]. 

3.1 Path Expressions 

Before we discuss how parallelization of path 
expression can be done, first we defme several 
types of path expressions. The classification is 
based on the query schema, not the database 
schema. Figure 3 shows three types of path 
ex~essions; linear, tree, cyclic/semi-cyclic path 
expressions. Each node represents a class and the 
link between nodes represents the relationship 
between classes through aggregation hierarchies. 
The properties of each type of path expressions are 
as follows: 

linear path expression: 
• properties: 

maximum out-in degree = 1 
irreflexive 
antisymmetric 

• traversals: 
forward 
backward 

Tree path expression: 
• properties: 

out-in degree>= 1 
irreflexive 
antisymmetric 

• traversals: 
pre-order 
post-order 
level-order 

Cyclic/Semi-Cyclic path expression: 
• property: 

closed walk, or semi closed walk 
• traversal: 

parallel traversal 

a. linear path expression b. tree path expression 

c. cyclic/semi-cyclic path expression 

Figure 3: Path Expressions 

It can be seen that linear path expression is a 
special case of tree path expression with maximum 
out-in degree being 1. 

In this paper, we are dealing with linear and tree 
path expressions, as most queries are in these 
forms. Parallelizing these queries is done by 
choosing the right form of parallelization and the 
degree of parallelization, in order to gain the 
maximum benefit 

For linear path expression queries, intra-class 
parallelization in the form of left-deep tree is the 
most suitable, while bushy-tree and flat-tree 
parallelizations are not appropriate. To see this, 
consider Query 3 as an example. Suppose that class 
JOURNAL has 2,000 objects. If on average each 
journal has 6 ARTICLEs and each article has an 
average of 2 AUTHORs, the numbers of objects of 



classes ARTICLE and AUTHOR that are connected 
to a particular journal are 12,000 and 24,000 
respectively. The overall numbers of articles and 
authors are more than the above figures, since many 
articles do not appear in any journal (e.g., in 
conference proceedings), and there are many 
authors of non-journal's articles. Using either 
bushy-tree or flat-tree parallelization, each 
predicate is evaluated concurrently. Therefore, the 
first predicate (organization="IEEE") is evaluated 
against 2,000 objects of class JOURNAL. The 
second and the third predicates (title = "*object­
oriented*" and qualification = "PhD") are not 
evaluated against 12,000 and 24,000 objects of 
classes ARTICLE and AUTHOR, but more than 
these. This is certainly not efficient, because there 
are many unnecessary readings and evaluations. To 
avoid unnecessary reading, left-deep tree 
parallelization can be used. 

In left-deep tree parallelization, predicate 
evaluation starts from the first class and then 
follows the link to cover the whole path. 
Consequently, reading the subsequent classes will 
narrow to those objects that are selected from the 
previous classes only. Thus, the numbers of 
readings and evaluation of the second and the third 
predicates will be less than 12,000 and 24,000, 
because some of them are discarded by the previous 
evaluations. The efficiency of this method relies on 
the size of the root class. If the last class of the path 
expression is smaller than the root class, the right­
deep tree parallelization can be used, provided that 
the links between classes are bi-directional links. 

To parallelize a query with tree path expression, 
we can use either level parallelization or left-deep 
tree parallelization. Level parallelization is in the 
form of bushy-tree parallelization where each level 
indicates one phase. Additionally, consolidation 
operator combines the result of each branch of the 
tree to form the final result. Level parallelization is 
based on the query tree. Each level processes pairs 
of adjacent nodes. A query like in Figure 3b 
requires four phases. This is shown in Figure 4a, 
where each node in the level-tree parallelization 
represents a node in the tree-path expression. As in 
Figure 2, each node represents a local predicate 
evaluation of a particular class. At the end of phase 
1, A and B are combined, and so are A and C. 
Because they are independent from each other, they 
can be done in parallel. Phase 2 processes AC, 
which is obtained from the first phase, with D and 
E. , Again, these two processes are executed in 
parallel. At the end of the second phase, we get 
ACD and ACE. Phase 3 combines the two results 
from the second phase to form ACDE. Finally, 
phase 4 joins task AB of phase 1 with the result of 

phase 3, and the final result can be presented to the 
user. 

Phase 

4 

3 

2 

1 

a. bushy-tree b. left-deep tree 

Figure 4: Parallelizing tree path expression 

Using left-deep tree parallelization, a tree path 
expression must be converted into a linear path 
expression by using one of the available traversal 
techniques. Using pre-order traversal, the above 
query can be transformed into A-B-C-D-E. Figure 
4b shows how tree path expression can be done in 
left-deep tree style. It also shows that path 
expression itself does not improve parallelization at 
all. Therefore, we must rely on intra-class 
parallelization, not inter-class parallelization. 

3.2 Explicit Joins 

Explicit join can be performed between two or 
more classes based on one or more common 
primitive attributes or common objects. Explicit 
join can also be executed within one class. Joining 
based on primitive attributes is similar to relational 
join. In this regard, object can be considered as a 

· tuple or a complex/nested tuple. To optimize this 
kind of join, many joining techniques have been 
developed, such as nested-loop, hash, and sort­
merge joins [3] [4]. Parallelizing explicit joins is 
best by applying bushy-tree parallelization, where 
each class involved in the query is first restricted by 
local predicate evaluation before joining takes 
place. This is similar to performing select before 
join in the relational model to minimize the size of 
the input relations. All local predicate evaluations 
are done in parallel. Then, each pair of classes is 
joined together to form the fmal result. A simple 
rule in optimizing explicit join based on primitive 
attributes is to apply local predicate as soon as 
possible, and to delay joining process as late as 
possible. The reason being to discard unnecessary 
objects before joining, because join will result a 
large number of objects. 



,. 
ARTICLE 

, 
BOOK 

title: string[25] 
' 

AUTHOR , title: string[25] 
author: AUTHOR , 

surname: string[20] ' author: AUTHOR 
page_no: integer t publisher: string[25] 
subject: string[80] firstname: string[20] 

year: Year 
~ 

work: AFFILIATION 
qualification: string[15] 

~ 

specializ~tion: string[lS 
\.. ~ 

Figure 5: Explicit Join 

To illustrate explicit join based on a common 
object, refer to Figure 5. Both classes ARTICLE 
and BOOK point to class AUTHOR. Query 4 joins 
classes ARTICLE and BOOK based on the 
common class, i.e., class AUTHOR. Each base 
class is considered as a complex object. This 
implies that an object ARTICLE together with its 
associated object AUTHOR is regarded as a unit, 
while an object BOOK also with its associated 
object AUTHOR is regarded as another unit. 
Joining both units is then similar to joining two 
simple objects. 

Query 4: 
select ARTICLE, BOOK 
where (ARTICLE.author= BOOK.author); 

Because the comparison involves non-primitive 
attributes, comparison operators must include 
object comparison, such as object equality and non­
equality. A convenient way to compare object 
equality is by comparing their Object Identifiers 
(OID) [11]. 

When a query involves both path expression and 
explicit join, the path expression is evaluated first, 
and then the explicit join. Parallelizing this kind of 
query is the same as parallelizing each part; path 
expression and explicit join. 

4 Data Distribution 

Data distribution is one of important aspects in 
parallel systems. Traditional data distribution 
scheme for parallel database systems is based on 
horizontal partitioning. Several data partitioning 
strategies exist, such as range, hash and round­
robin partitioning [3]. These data distribution ' 
strategies deal with single relations and are not 
adequate for parallel OODB systems, since objects 
are related to other objects through aggregation and 
inheritance hierarchies. Thus, new data distribution 
schemes must be defined. 

We define two data distribution schemes in 
OODB: single class distribution and associative 
distribution. Single class distribution is a scheme 
where each class is distributed regardless its 
relationship to other classes, while associative 

distribution is a method where objects related to 
each other are allocated on the same processor to 
speed up associative search. In this paper we will 
concentrate on associative distribution. At this stage 
we consider aggregation hierarchies only, although 
the same concept can be applied to generalization 
hierarchies. 

In defining our data distribution model, we 
adopt a distributed-memory architecture as shown 
in Figure 6 with one coordinator processor and its 
disk, and a number of worker processors. Each 
worker processor is equipped with its own local 
main memory. This structure, configured as a star 
topology, has been implemented using transputers 
and further details may be found in [9]. When there 
is a need to distribute objects from one worker 
.processor to the other, the system configuration can 
be altered to a fully connected network topology. 
The processing method is to distribute the process 
over the available interconnected processing 
devices in the environment. We assume that the 
data is already retrieved from the disk. This main 
memory based structure for high performance 
databases is increasingly common, especially in 
pODB, because query processing in OODB 
requires substantial pointer navigations, which can 
be easily accomplished when all objects present in 
the main memory [10, 12]. 

Host 
Computer 

Worker-I 

Coordinator 

Worker-3 

Worker-2 

Figure 6: Basic System Structure 
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The user initiates the process by invoking a 
query through the host. To answer the query, the 
coordinator distributes the data from the host to the 
worker processors. Each worker processor performs 
local computation, and then sends the result back to 
the host, which subsequently will present it to the 
user. 

Our associative data distribution strategy is 
based on query path expression. Data distribution 
occurs only when a query is invoked by a user. The 
distribution is based on the root class and its 
associated classes along the path expression. We 
call this scheme filtered data distribution scheme. It 
implies that objects along the path that are not 
reachable from the root class will not be 
distributed. This method does not require any 
checking, because distributing a root object and its 
associated objects is done by navigating pointers 
from the root to all its associated objects. When 
there is no pointer left, the scheme will skip to the 
next root object. In this case, objects that do not 
appear in the query predicates are discarded from 
the beginning. For example, using Query 3, 
ARTICLES that do not appear in any JOURNAL 
will not be distributed to the worker processors. 
Furthermore, AUTHORs of non-JOURNAL 
ARTICLES will not be distributed either. Algorithm 
1 presents the parallel data distribution algorithm 
using round-robin method. 

Parallel Round-Robin Data Distribution: 
LET P be processor number 
LET N be number of worker processors 
LET R be the root class 
PARFORP= 1 TON 

INITIALIZE .counter I[P] to P 
WlilLE object I[P] of R exists 

GET object I[P] and all its assoc. objects 
DISTRIBUTE to P 
ADDNtoI[P] 

ENDWIDLE 
END PAR FOR 

Algorithm 1: Data Distribution Algorithm 

Using filtered data distribution technique, there 
will occur a problem when processing objects after 
the first phase. It is possible that after applying the 
first predicate to the root class, only a proportion of 
the objects in the next class is selected, resulting in 
some worker processors being overloaded while 
others underloaded. There are two possible ways to 
overcome this problem. First, re-distribute objects 
from the overloaded processors to the underloaded 
processors. Second, to have full data replication 
from the beginning, and on the subsequent phases 
of query processing, cascade unnecessary objects. 
In both cases, balance will always be maintained. 

4.1 Data Re-Distribution 

At the end of each phase, each worker processor 
informs the coordinator the number of objects it 
holds. On the basis of this information, the 
coordinator will calculate the ideal number of 
objects per processor, and produce two lists: 
overloaded processors and underloaded processors. 
Both lists include the number of objects the 
processor will re-distribute or receive, and these 
instructions are sent back the workers. 

On the basis of the two lists provided by the 
coordinator, each worker will re-distribute or 
receive depending on which list the worker 
processor is on. The ideal re-distribution strategy is 
to re-distribute the current objects only. In this way, 
re-distribution cost is kept minimal. Algorithm 2 
presents the parallel data re-distribution algorithm. 

Because re-distribution is done in parallel, the 
elapsed re-distribution time depends on the most 
overloaded processor. The number of objects that 
must be re-distributed by this processor is the 
difference between the number of objects it has and 
the number of objects it should have. 

4.2 Full Data Replication 

Full data replication method requires each worker 
processor to have enough memory to hold all 
objects. If this requirement is fulfilled, this method 
can be used, although the initial distribution time 
must be taken into account. 

When distributing objects to worker processors, 
objects that will be processed by a particular 
worker processor are tagged. Like the re­
distribution scheme, each worker processor informs 
the coordinator the number of objects it has after 
finjshjng one phase. The coordinator replies with 
two lists: overloaded and underloaded lists to all 
worker processors. Instead of distributing or 
receiving, the worker processors remove or add tags 
to allocated objects. Therefore, no physical data re­
distribution is needed, and processor load balancing 
is always achieved. 

5 Cost Models 

In order to measure the effectiveness of 
parallelization of OODB query processing, it is 
necessary to provide cost models that will be used 
to perform quantitative analysis. The cost models 
defined in this section are for queries that are 
expressed in linear path expression fashion using 
the left-deep tree parallelization. The cost is 
primarily expressed in terms of the elapsed time 
taken to answer a query. The notations used are as 
follows: 



Parallel Data Re-distribution: 
PAR FOR each overloaded processor P 

WIBLE there is object to distribute from processor P DO 
FOR each underloaded processor P' 

LOCK processor P' 
IF locking success THEN 

IF there is object to receive by P' THEN 
IF no. of obj to distribute from Pis not less than no. of obj to receive by P' THEN 

LET T be no. of objects to receive by P' 
CALCULATE no. of objects that has still to be distributed from P 
SET underloaded processor P' to full 

ELSE 
LET T be no. of objects to distribute from P 
CALCULATE no. of objects thathas still to be received by P' 
SET no. of objects to distribute from P to zero 

END IF 
FORI=l TOT 

DISTRIBU'IE object from P to P' 
END FOR 

END IF 
UNLOCK processor P' 
IF nothing else to distribute from P THEN 

BREAK FOR 
END IF 

END IF 
END FOR 

ENDWIIlLE 
ENDPARFOR 

C, 

Algorithm 2: Data Re-distribution Algorithm 

number of classes, 
number of objects of the root class, 
number of objects selected from of the 
ith class, 
initial number of worker processors, 
number of worker processors used in the 
ithphase, 
probability of an object of the ith class 
of having a link to objects of another 
class, 
average fan-out degree of the ith class, 
average skewness degree of the ith class, 
variable processor overhead incurred in 
transmitting of an object, 
fixed processor overhead incurred in 
preparing a stream of data for 
transmission, 
selectivity which gives the probability 
(or proportion) that a given object of the 
ith class is selected, 
time to retrieve an object from buffer, 
time to evaluate a predicate involving a 
single attribute, 
time to form. the result and write it to 
output buffer, 
total data distribution time, 

Tr total reading time, 
Tv, total predicate evaluation time 
T w• total writing time, 
Te, total elapsed time for an operation. 

Total elapsed time for an operation (Te) is 
denoted as the sum of total data distribution time, 
total reading time, total predicate evaluation time, 
and total writing time. 

Te=Td+Tr+Tv+Tw 
(5.1) 

Data Distribution Time 
There are two main components in calculating 

the elapsed data distribution time; variable and 
fixed processor overhead costs. The variable 
processor overhead cost depends on the number of 
objects that is distributed to the worker processors, 
while the fixed processor overhead cost depends on 
the number of worker processors used for that 
particular operation. The fixed cost is related to the 
cost of opening the channels between the 
coordinator and the participating worker processors. 

Using the filtered data distribution scheme, the 
total data distribution time is: 



Tl m r1 
Td =[ -+ L -ki ].b +ni.c 

nl i=2 m 
(5.2) 

where r/ is the number of objects in the ith class 
included for distribution, and is given by the 
product of the probability of an object of the 
previous class of having a link to objects of the 
cmrent class, the size of the previous class, and the 
fan-out of the previous class. For example, if there 
are 2,000 journals (r'1=2,000) , each journal must 
have articles (A.1=1), and on average each journal 
has 6 articles lf1=6), the number of objects in the 
class ARTICLE (r'2) can be calculated using 
equation (5.3) and is given 12,000 objects. 

r1 = A(i -1>.r'(i -1>.f Ci -1> 
(5.3) 

Initially r' 1 is the same as r 1, since all objects of 
the root class are distributed. The full derivation of 
the equations presented in this section is given in 
the Appendix. 

Reading Time j 

The elapsed reading time of each phase of the 
query processing is equal to number of objects to be 
read divided by number of participating worker 
processors. When skewness is present, the 
maximum number of objects in one processor will 
determine the reading time. 

Tl m 

Tr=[-+ L 
n1 i=2 

<1(i -1)71 
---ki ].tr 

ni 
(5.4) 

Number of worker processors of the subsequent 
phases of query processing is non-deterministic, 
since the distribution scheme is not known until 
run-time. However, it is possible to obtain the 
average number of busy processors using the 
following formula [8]. 

[ 
1 ]C1(i - l)r1 

m = nci -1>-n<i -1> 1----
n (i -1> 

(5.5) 

Predicate Evaluation Time 
· Predicate evaluation time is very similar to the 

reading time, since all objects read must be 
evaluated against local predicate. Additionally, the 
cost model for predicate evaluation also includes 
the predicate length l. 

[ 
Zin ~ 

Tv = - + """' 
nl i =2 

Writing Time 

licJ ( i - 1) r'i 
--ki ].tv 

ni 

(5.6) 

When there is no projection, selected objects of 
all classes along the path expression must be 
written to the output buff er. Number of objects 
selected by the last predicate is less or equal to the 
number of objects read in the last phase. 

O'm(O' (m -l)r~)m 
Tw = [ , km ].tw 

nm 
(5.7) 

6 Performance Evaluation 

The purpose of the evaluation is to evaluate the 
effectiveness of data distribution on performance. 
Using the cost models described earlier, we can 
estimate the result of an operation. In the 
evaluation, we use Query 3 as an example. The size 
of class JOURNAL is 2,000 objects (r1). On 
average, each journal has 6 ARTICLEs lf1 ), each 
article has 2 AUTHORs lf2). and every author has 
an AFFILIATION (/3) . We assume that the 
predicate selectivity probability is that only 40% of 
the journal is IEEE journal (a1), 10% of the 
selected journals are on the area of object-oriented ( 
ai), 70% of the author of the selected articles have 
a PhD (a3), and 20% of the selected authors work 
in the UK (a4>. 

Data skewness has been one of major problems 
in parallel processing which can manifest as load 
skew in parallel processing. In this evaluation, we 
would like to find out the effect of data skew to 
performance. The degree of skewness ranges from 
1.0 (no skew) to 2.8. The skewness degree of 2.0 
indicates that there is at least one processor that 
holds objects twice as much as it should have. 

The system parameters used in this evaluation 
are the same as that in [9], which has successfully 
experimented a basic relational query processing in 
a transputer system. In that system, the 
measurements are obtained from the standard 
transputer clock that measures the time in ticks 
(equal to 64 microseconds). The basic times for 
processing Query 3 are t,.=0.41 ticks, tv=l.69 ticks 
and tw=0.46 ticks. We used 10 worker processors, 
with the re-distribution scheduling time is 4.23 
ticks, while the variable and the fixed distribution 
overhead costs are 1.52 ticks and 0.07 ticks 
respectively. 

Figure 7 shows the result of the evaluation, 
which also shows the comparison between the 



elapsed time for processing the query without re­
distribution and with re-distribution. The result of 
the data full replication elapsed time is not shown 
since it is too high and unreasonable to compare 
with the first two methods. The data full replication 
strategy will be comparable if the communication 
cost is low. 

As can be seen from the result that with re­
distribution is better then without re-distribution in 
most cases, except where there is no skew. 
Although the improvement of re-distribution 
method is less than 10%, re-distribution is still 
desirable in most cases. It is expected that the 
future data distribution scheme will make the re­
distribution method more efficient by providing a 
better processing method. 
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Figure 7: Experimental result 
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Figure 8: Parallel speedup 

The second evaluation strategy was to compare 
parallel processor performance with uniprocessor 
performance. The purpose of this evaluation is to 
show how effective parallel processing is. Linear 
speed up has been an indicator to show how 
effective parallel processing can be. In order to 
achieve this result, the evaluation used 5 to 20 
processors, with skewness degree ranges from 1.2 
to2.0. 

Figure 8 shows that the skewness effected the 
improvement greatly. In fact, when a processor has 
objects twice as much as it should have, the 
performance downgraded for up to 50%. It also 
shows that linear speedup was unattainable. It is 
expected that the future parallel OODB will break 
the skew barrier, so that a linear can be obtained. 

7 Conclusions and Future Worlcs 

In this study we have shown how parallelization 
can be done in OODB query processing. Although 
in this paper we concentrate on linear path 
expressions, our parallelization techniques can be 
applied to other types of path expressions and 
explicit joins. Sequential processing that is part of 
overall parallel processing has been known as the 
major bottleneck in the efficiency improvement of 
parallel processing performance. In this study, we 
show that this can be overcome by applying intra­
class parallelization. Using this method, the 
processing strategy does not rely on the association 
of classes that has been the main source of the 
sequential processing, but on splitting objects of a 
class into several partitions that can be accessed 
'simultaneously. The filtered data distribution shows 
that it can be used efficiently as it allows natural 
data filtering process. 

The result of performance evaluation indicates 
that considerable benefits can be gained through 
parallelization. With careful data re-distribution 
strategy, reasonable performance improvement can 
be achieved. It also shows that a near linear speed 
up can be attained using our data distribution 
technique, although data skewness is still the main 
limitation. 

Future plans for this work include defining a 
better data distribution scheme that covers not only 
data distribution, but also index distribution in 
order to speed up associative search, together with 
flexible network interconnection. Currently we are 
investigating parallelization techniques that can be 
applied to cyclic and semi-cyclic queries. The 
technique is expected to incorporate explicit joins 
with path expressions. Optimization strategies for 
these types of queries are also under investigation. 
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Appendix - Derivation of the Cost 
Models 

The distribution time is composed of variable and 
fixed costs. The variable distribution cost depends 
on the number of objects being distributed, while 
the fixed distribution cost depends on the number of 
processors. Therefore, the distribution fixed cost 
(fc) is: 

fc = ni.c 
(A.1) 

The cost to distribute objects of the root class 
(re) is: 

Tl 
rc=-b 

m 
(A.2) 

Initially, each processor will receive an equal 
number of root objects. However, when distributing 
the objects of the subsequent classes along the path, 
some processors will likely to have more objects 
than others, when skew presents. As a result. the 
most overloaded processor will set the maximum 
time to transfer objects in that phase. Number of 
objects being distributed is determined by the fan­
out degree and the probability of an object of the 
previous class to have a link to the cmrent class. 
Hence, number of objects of the subsequent classes 
along the path (r'i) that need to be distnouted is: 



r'i = Aci -I>. r'(i -n.f Ci -n 
(A.3) 

The variable distribution cost (vdc) for the 
subsequent classes is then: 

_...1_ -[ 'Nr'Ifi '>ar'if 2 lvn-1r:n-if;n-1 ljh 
KL - kt+ b+. .. . JG,. 

n2 m nn 

(A.4) 

The sum of equations (A 1) .to (A.4) forms the 
total distribution cost. That is: 

71 m r1 
Tti =[ -+ L -ki ].b +ni.c 

n1 i=2 ni 

(A.5) 

The reading cost is similar to the distribution 
cost, except that it includes the probability of an 
object to be selected (a). Number of objects of the 
current class that needs to be read is restricted by 
the selectivity of objects from the previous class. 

Tr= [ ~+ !.. <!(i -l)r1 /a ].tr 
ni i=2 ni 

(A.6) 

The predicate evaluation cost is also similar to 
the reading cost, with an addition of the length of 
the predicate in each class (l). 

[ 
l1ri ~ 

Tv = --+L 
ni i=2 

li<!(i -l)r1 
---ki ].tv 

ni 

(A.7) 

The writing cost involves all selected objects along 
the path. 

[ 
Gm(Gcm -t)r:n)m 

1
_ ] 

Tw = 11.m .tw 
n~ 

(A.8) 




