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ABSTRACT 

The quest for control and the subsequent pursuit of continuous quality 

improvement in the manufacturing sector, due to increasingly keen 

competition, has stimulated considerable interest in statistical process control 

(SPC). Whilst traditional SPC techniques have proven useful as a means of 

monitoring and controlling the quality of manufactured products in the mass 

production industries, their utility in the low volume manufacturing 

envirorunent has been subject to debate. Various methods and adaptations of 

existing long-run SPC techniques have been proposed for use with short 

production runs. Having presented the problems with the implementation of 

traditional SPC approaches to 'short-run' environments and having surveyed 

the literature, this paper critically reviews proposed techniques, offers some 

additional considerations for short production nms and outlines possible 

avenues for future investigation. 

1 Mr. Tang is a graduate student in Statistics. 
2 Dr. Barnett is Associate Professor in Statistics 

and Head of Department. 



INTRODUCTION 

Assuming sensible business and marketing practices, the success of a 

company will depend largely on the quality of its manufactured products 

and/or on the quality of the service it provides. With increasing demands on 

product quality, any manufacturing operation, regardless of its scale, mode 

of production or type of product, is compelled to monitor and control its 

industrial processes in some manner if it is to remain competitive. 

Innovative engineering and the use of statistical methods are important 

factors in achieving this goal. 

Shewhart control charts have enjoyed considerable popularity as 

control and monitoring tools. These and more recent variations of them, 

enable production operators to detect process troubles or 'out-of-control' 

situations before they become critical. Appropriate corrective action can 

then be initiated to prevent further deterioration in process operation and so 

avert a negative impact on product quality. While these techniques are well 

suited to the mass production industries, their usefulness in low volume 

manufacturing environments is questionable. 

In view of the limitations of traditional SPC techniques, many 

alternatives and adaptations of them have been devised for the express 

purpose of removing the barriers between SPC and short production runs. 

Recently, a review of the literature on the use of SPC in batch production 

has been presented by Al-Salti et al. (1994). Much of their article is devoted 

to a particular aspect of short-run SPC, namely, the use of data 

transformation techniques. This paper, however, after discussing the 

problems of traditional control techniques in 'short-run' environments, gives 

a more comprehensive review of techniques proposed for short runs, 

provides its own contributions to the debate and offers some perspectives 

for the future. 
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PROBLEMS OF TRADITIONAL SPC FOR SHORT 

PRODUCTION RUNS 

Besides the continuance of traditional small job shops, there has been, 

even in the mass production industries, an increase demand for more 

frequent production changes leading to a consequential proliferation of short 

runs. Attempts made to apply traditional control charting techniques in such 

environments are plagued with difficulties (see Al-Salti et al. (1991, 1992), 

Bothe (1988, 1989, 1990)) . The essential problems facing those seeking to 

provide useful statistical tools for application in the short production run 

environment are those of machine 'warm up', control parameter estimation 

and parameter changes between product types. 

Generally, process parameters are unknown and cannot be reliably 

determined prior to production. Under such circumstances, the current 

production output is commonly used to establish the trial control limits. As 

espoused in the quality control literature, for controlling quality 

characteristics on a continuous scale by means of X-Bar and R charts, 

typically, at least twenty five rational subgroups of four or five items each 

should be sampled from the process stream, in order to establish control 

limits. These 'temporary' limits will then be used for future on-going 

monitoring of the process based on similar subgroups and updated 

subsequently as more data become available. Using the common rule, a 

point plotted beyond these limits is deemed an indication of process troubles 

and thus calls for investigations to discover the possible assignable causes. 

For short production runs, however, the control limits for the X-Bar and R 

charts often cannot be located in the usual manner due to lack of data. Thus, 

one might consider estimating the control limits based on a much smaller 

number of subgroups, say, 5. However, it has been adequately demonstrated 

3 



in the literature, that this practice is not reliable because it can increase the 

false alarm rate substantially. In fact, a quantitative analysis by Proschan et 

al. (1960) indicates, that for a sample size of four, the number of subgroups 

necessary to compute the conventional 3-cr control limits for- an X-Bar 

chart, based on either average subgroup range (R-bar) or pooled variance, 

should not be less than seven to ensure that the chance of a false signal on 

each future subgroup does not exceed 1 %. It was also given that an X-Bar 

chart based on the pooled variance requires at least nineteen subgroups each 

of size four to yield a probability of type I error less than 0.005. Similar 

information on the lack of reliability of both conventional X-Bar and R 

charts when the control limits are based on a small number of subgroups can 

be found in Hillier (1969). However, as noted in Quesenberry (1993), these 

authors did not address the issue of dependence among future occurrences of 

'out-of-control' signals, hence their results are of limited usefulness in 

assessing the overall performance of the charts. Equivalently, the indicated 

probabilities of a false signal can be interpreted as the theoretical average 

values obtained from repeated applications of the same formulae for 

computing the control limits based on the same number of calibration 

subgroups and subgroup size, thus they do not reflect the actual performance 

of the charts. Taking the issue of dependence into consideration, 

Quesenberry conducted a simulation study of the properties of the run length 

distribution in order to evaluate the overall performance of both the 

conventional X-Bar and X charts with estimated control limits. His results 

indicate that the rate of false alarms after short runs increases, and much 

larger sets of calibration data than usually recommended are required to 

estimate the control limits so that they perform like known limits. However, 

these requirements can rarely be met for small batch manufacturing, 

particularly with frequent new designs and orders. 
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The problems of lack of process performance data are further 

aggravated by process 'wann up', which is perhaps the most important and 

yet least considered obstacle to meaningful and successful application of 

traditional control charts in small lot production. This phenomenon is a 

common and dominant feature of short-run processes, as instability after set

up or reset often constitutes a large proportion of production run time. 

Neglecting this fact and using sample data from such a period to obtain 

control limits will often lead to erroneous conclusions regarding past, current 

and future states of the process. Murray et al. (1988) demonstrated this 

using simulation, specifically, if process variability increases during the 

sampling period, an out-of-control process will often appear to be in control, 

as reflected by either a standard deviation or range chart with the usual 

decision rules imposed. 

Another practical reality '~hat characterizes short run environments, is 

the diversity of products made. If separate control charts are maintained for 

each type of product, the system becomes unwieldy. 

SPC TECHNIQUES FOR SHORT PRODUCTION RUNS 

Following identification of the problems discussed above, various 

approaches for handling the control of quality of low volume production 

have been presented in the literature. These approaches are built upon the 

principles of statistical quality control which aim for defect prevention 

instead of segregation of bad items from good ones. These, along with some 

possible methods are now critically examined and their attributes and 

deficiencies discussed. 

1. Adjusting Control Limits Based On The Number Of Subgroups 
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In the event of only a small nmnber of subgroups being available yet 

where early control of the process is still desirable, Hillier (1964,1967,1969) 

and Yang et al. (1970) proposed adjusting the control limits, both for 

retrospective testing and for future control in such a way that the 

predetermined probability of a type I error is preserved. However, it should 

be pointed out that, in the latter case, the limits so adjusted do not always 

ensure that the resulting probability of a type I error for each future subgroup 

is as desired, although its expected value is. This is due to the fact that, 

instead of treating quantities calculated from the previous in-control 

subgroups such as x (grand average of the subgroup means), r (average 

subgroup range), v (average subgroup variance) and s (overall standard 

deviation) as constants, these are assumed to be variables, along with the 

means, ranges and variances of future subgroups for deriving the adjusted 

control chart factors. Furthermore, as opposed to setting the limits by the 

conventional method, even if the estimates of the process parameters are 

accurate, the resulting probability of a type I error associated with the 

modified limits may differ . considerably from the desired value ! In the 

former case, although the probability of a type I error, a for each 

preliminary subgroup is maintained, the joint probability of false alarms from 

the m retrospective subgroups is not simply given by l - ( l - a. r due to the 

dependence of the plotted points. This can have a substantial impact either 

on the actual rate of erroneously indicating 'out-of-control' situations or on 

the actual ability of the chart to detect the presence of special causes while 

the preliminary subgroups are drawn. Other drawbacks are the number of 

calculations required and the likelihood of misinterpreting the information 

contained in the control charts, arising from changing control limits after 

every couple of subgroups (Ermer et al. (1989)). 

A generalization of this approach to the control of the mean vector of 

a multivariate nonnal process, bas,ed on the well known . Hotelling's T 2 
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statistic, was presented in Alt et al. (1976). Some issues of importance 

regarding the use of such a composite measure to monitor process stability 

in situations involving multivariate data were raised, for example, in 

Hawkins (1991, 1993). 

King (1954) has also presented a similar approach for analysis of past 

data using X-Bar charts with control limits based on r except that the 

control chart factors are derived in such a way that the joint probability of a 

false alarm, Y is as required instead of the individual probability of a false 

signal for each initial subgroup. He gave a nomogram for a selected range of 

common subgroup sizes and numbers of subgroups from which an 

appropriate value of the control chart factor can be obtained for the case 

where y = 0.05. The derivation of these control chart factors involves 

knowledge of the sampling distribution of 

which is theoretically difficult to obtain though its approxime percentiles are 

attainable. Except when liinits are constructed based on three or four 

subgroups, the given factors were obtained from random sampling 

experiments by ignoring the random fluctuations of R . As such, the validity 

of the given factors is questionable. Furthermore, this method can only be 

useful if nomograms or tables for other values of y , which might be 

preferable in practice, are widely available. 

2. Control Charts Based On Individual Measurements 

If the problem is one of short production runs and lack of data, a 

possible solution might be use of individual readings in place of averages. 
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The use of individual readings is natural anyway if there is no natural 

subgrouping of the observed data. Two basic types of chart employing 

individual measurements are: 

(i) Individual values and Moving Range (I-I\1R) charts or X-I\1R charts. 

(ii) Target Individual-Moving Range (Target I-I\1R) charts or the ~

I\1R charts. 

These charts attempt to maximise the information obtained from the limited 

amount of available data. They are suitable for situations where : 

(a) processes have limited output within a single set-up, 

(b) processing time per unit item is long or the data accumulation rate is 

slow, 

( c) testing or measurement is expensive or time consuming, 

( d) testing is destructive. 

The first of these two charting methods has been around for many 

years and is well documented (see for eg., Burr (1976) and Grant et al. 

(1980)). Originally, it was designed primarily for use with batch-type 

chemical processes (see for eg., Bicking (1962)). Burr (1954) suggested this 

as one of the possible methods which can cater for short production runs. In 

his proposal, he advocates use of 2-a- control limits rather than the 

conventional 3-rr limits for the individual values chart to compensate for its 

lack of sensitivity to mean shifts. The method has also been considered by 

Nugent (1990) for use in short run manufacturing environments. 

The second, as its name implies, differs slightly from the first in that 

the target or the n01ninal specification is subtracted from the measurements 

before they are plotted (see Nugent (1990) and Ermer et al. (1989)). In his 

paper, Ermer et al. (1989) highlighted some practical merits of this charting 

method in comparison to other existing 'short run' techniques. However, this 
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method will not work in circmnstances where no target is available, as 

frequently occurs with products having a one-sided tolerance. 

For both types of chart, the control limits are determined based on 

successive moving ranges of size 2. Several other estimators of process 

spread that can be used with individual values charts were given and 

compared (in terms of relative efficiency under the stable in-control 

assumption) by Roes et al. (1993). In the same paper, the authors also 

proposed the approach as reviewed under (1) above for setting the control 

limits both for monitoring of future process performance based on individual 

observations and retrospective testing of the possible presence of out-of

control conditions while the calibration sample is drawn with a slight change 

to the latter. Although it is well known that unbiased estimation based on 

standard deviation is of greatest efficiency for a stable normal process, the 

average moving range ( mr) is used to provide an estimate of the inherent 

process variability because it is not only computationally simple but it can 

also safeguard against the likely events of trends, cycles or other irregular 

patterns in the calibration data (i.e it minimizes the inflationary effects from 

these conditions and hence the inherent process variability will not be 

overestimated). Thus, situations are avoided where 'out-of-control' processes 

appear to be in-control. However, besides re-emphasizing the fact that 

displaying a moving range chart will only cause confusion due to correlation 

between consecutive moving ranges, Roes et al. (1993) substantiated 

Nelson's (1982) view with a probabilistic justification, that doing so has no 

real added value because the chart of individual values contains almost all 

the information available. If the measurements generated by the process are 

known to be independently normally distributed and a state of statistical 

control has been achieved, as de1nonstrated by the retrospective use of I-MR 

or Target I-MR charts, Cryer et al. (1990) suggested that, for future process 

monitoring, control limits for the individual values charts should be 
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estimated based on the sample standard deviation instead of the average 

moving range, due to its relatively superior efficiency. The control limits for 

MR charts can of course be determined in a similar manner though 

subsequent monitoring of the process variability is based on moving ranges. 

As for X charts, run rules such as that of Nelson (1984) can be 

effectively applied to the individual values charts to identify non-random 

variations or systematic process changes, hence providing better protection 

against potential process problems. Of course, there is an increased false 

alarm rate associated with these additional control rules but if power of the 

charts is of paramount importance and outweighs the costs of searching 

needlessly for non-existing assignable causes, the use of these rules can be 

useful. 

The major practical benefits that can be gained by using individual 

readings instead of averages are : 

(a) Measurements can be seen, compared to specification limits and 

easily understood. 

(b) Substantial savings in time and cost may be accrued as a result of 

less sampling, testing or measurement. 

( c) Improved employee involvement in decision making and problem 

solving which could be catalytic in bringing about quality and 

productivity improvements, as a result of operators having better 

appreciation of the techniques in use. 

Individual values charts with conventional control limits should, 

however, be considered with reference to statistical efficiency. First, and 

most importantly, their sensitivity to substantial shifts in process average is 

less than that of the usual X charts. In addition, Shainin (1954) has made 

comparisons between various control plans including the use of individual 

values charts and X charts, in tenns of average fraction defective produced, 
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for equal 'hunting' and for the same expected number of pieces inspected. In 

particular, he has shown that, if the tolerance equals 6.4cr, on average, X 

charts with a subgroup size of four result in a lower percentage of defectives 

than individual values charts for a process mean shift of 1 er and 2cr. 

Although greater sensitivity may be gained by the use of narrower limits or 

additional warning lines, such sensitivity is gained at the expense of 

increasing the chance of false lack of control indications. 

The second problem with individual values charts centres around the 

normality assumption of the process distribution. If the underlying 

distribution is not normal, this will tend to distort the interpretation of the 

control limits. On the other hand, X values will tend to normality fairly 

rapidly by virtue of the Central Limit Theorem, provided the underlying 

distribution isn't too 'bazaar'. 

3. Mixing Production Lots and Normalizing Process Output Data 

Recent developments in the use of statistical process control in multi

component and low-volume manufacturing environments have focussed 

mainly on studying and monitoring the process irrespective of the type of 

parts or products being manufactured. The basic idea with this approach is 

that values for different products or components being assessed on the basis 

of the same quality characteristic but with different design specifications, (i.e 

belonging to the same product family) can be plotted together on the same 

chart, provided that they are the output of a homogeneous process. 

Homogeneity means that the components should, technically, be machined 

under similar conditions, for example, in terms of cutting tools, tool holders, 

component holding methods and setting-up methods etc (Al-Salti et al. 

(1991)). The same principle applies to chemical manufacturing processes 

where similar che1nicals are produced in small batches on an, 'as needed' 
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basis. Emphasis on process homogeneity is important in order to reduce or 

eliminate the effect of variability due to extraneous sources, thus ensuring 

only inherent variation exists. This avoids erroneous appraisal of the process 

and any process irregularities can be more readily detected. In addition, the 

measurement process should be adequate enough, in terms of accuracy, and 

carried out in a consistent manner for every measured component. 

Several papers (Al-Salti et al. (1991, 1992), Armitage et al. (1988), 

Bothe (1988,1989,1990a,1990b), Burr (1989), Crichton (1988), Davich 

(1989), Montgomery (1991 ), Nugent (1990), Thompson (1989)) have given 

accounts of this approach. It is accomplished by means of data 

transformations which effe,ctively eliminate the differences between the 

types of products or components. A list of possible transformation 

techniques that cover a claimed majority of manufacturing situations, along 

with conditions of use, is presented by Al-Salti et al. (1992). A 

comprehensive comparison of control charts based on the given techniques 

for a set of industrial data is also provided in the same paper. Other 

techniques involving data transfonnations can be found in Crichton (1988), 

Armitage et al. (1988), Burr (1989), Thompson (1989), Al-Salti et al. (1991) 

and Farnum (1992). 

Of all the existing control charting methods using transf onnation 

techniques, the most extensively discussed have been the commonly called 

Nominal and Standardized charts (see for eg., Bothe 

(1988,1989,1990a,1990b) and Robinson (1991)). The common feature 

characterising these methods is that process data for different parts are 

rescaled with appropriate factors, so that they all fit on to a single chart, thus 

avoiding the need for an excessive number of separate charts. 

For a Nominal chart, the difference between subgroup average and its 

corresponding nominal, Xi - Ni is plotted for detecting whether or not any 

assignable causes of variation affecting the process average are present. For 
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the purpose of dispersion control, the use of the traditional Range chart is 

recommended as adequate. In situations where the process tolerance is 

unilateral (hence no nominal specification is available) or the process mean 

for the component differs significantly from its nominal size, the design 

target or historical average may be used instead (Devich (1988), Al-Salti et 

al. (1992)). 

As long as the subgroup size remains unchanged, this kind of chart 

will have constant control limits regardless of the type of parts being 

machined. The method also allows the control limits to be calculated sooner 

through the combination of data fr01n successive lots. As such, control of the 

process under surveillance can be achieved earlier. 

Nominal XBAR & R charts may be used as a useful diagnostic tool 

for process problems provided the fallowing conditions are strictly adhered 

to: 

(a) the process is homogeneous, 

(b) the variance is constant across different components, 

( c) the process is not changed or modified, which would reduce the 

process dispersion. 

Quite often, different components exhibit different amounts of 

variation, even though they are produced by the same machine. If the 

fundamental assumption of constant standard deviation is violated, the 

Nominal chart is no longer valid. In this instance, Standardized or Short Run 

XBAR-R charts, which are a straightforward adaptation of the Nominal 

charts, are recommended by Bothe (1989,1990b). These are simply a further 

extension of the previous idea where process dispersion is normalized for 

the traditional Shewhart chart along with the mean bias to enable 

components with different averages, as well as different dispersions, to be 

plotted on the same chart (Enner at al. (1989)). 
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The problem with this method lies in the establishment and 

subsequent updating of the two scaling factors, namely Tar(~) and Ta.I(~) 

for each part. Several ways to obtain these values were suggested by Bothe 

(l 990b ). After eliminating outliers, historical data in the form of prior charts, 

records from final inspection or audit results of prior runs may be used to 

calculate these values. In the case of new components having no historical 

data, reasonable values can be determined from data for similar components 

provided this is guided by the experience, knowledge and judgement of the 

personnel involved with the process under consideration. As another 

alternative, these values may even be derived from the design specifications 

if no other better choices are available. 

As long as the appropriate scaling factors are available, out-of-control 

points can be detected right from the beginning of production. 

In addition to the portrayal of observations from various part numbers, 

Bothe (1989) stated that this method permits the plotting of observations on 

different product characteristics of the same part, on the same chart. In this 

manner, a single chart with data fro1n all operations plotted on it can be used 

to keep track of the material for a particular lot. 

This approach of mixing production lots and normalizing process 

output data has been highlighted by many authors as an essential part of the 

quality assurance and improvement strategy in low volume, wide variety 

manufacturing for two main reasons : 

(a) Reduction of the nmnber of control charts and charting effort 

required which results in time and cost savings as well as higher 

productivity. 

(b) Time-related process changes such as runs, trends and cycles can 

be more readily detected since pertinent process data is not 

scattered over separate charts. 
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While it is true that the first point may justify its use, some authors 

have expressed doubts concerning the appropriateness of combining data 

from different components to maximize information about the process 

behaviour. Ermer et al. (1989) argued convincingly that the desire for 

process improvement will unlikely be realized with this idea. As noted in 

their paper, different parts produced by the same machine are not necessarily 

sufficiently similar in terms of dispersion to justify plotting them together on 

the same Nominal chart. This statement is true because other operating 

factors, such as type of material, may have a significant effect on the 

variability of the parts. Recognising this fact, a study to determine whether 

any of the influential factors has a systematic effect on the variability is 

necessary prior to the implementation of this charting method. As 

demonstrated by Koons et al. (199la,1991b)), data collected for this 

purpose can be examined by multiple regression and ANOVA techniques. 

In addition, even if the parts do not differ in variability, the special 

causes of variation affecting one of them may not be the same as those 

influencing others, and it would be difficult to separate_ out the special 

causes of variation for each part in order to determine if an out of control 

signal is truly present on the chart. This invalidates the use of sequence rules 

with Nominal charts, across product changes, to identify non-random 

patterns which suggest the presence of assignable causes. 

Ermer et al. (1989) also stated that there is a contradiction between 

the Standardized charting method and the philosophy of monitoring a 

process which is truly homogeneous. The reason provided for this is that as 

process dispersions are quite different, the processes obviously differ not 

only in terms of special causes of variation but also in the common causes of 

variation affecting them, these processes, therefore, should not be evaluated 

together. Unless they ar,e monitored with separate charts, the use of 

sequence rules to provide useful diagnostic information will not be 
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appropriate. Furthermore, identification and subsequent removal of common 

causes of variation in the individual processes will be made complicated. 

This, they maintain, definitely obstructs continuous process improvement. 

As pointed out by Enner et al. (1989), the normalizing approach also 

loses its appeal as a quality control procedure due to the following practical 

problems: 

(a) Although the calculations for standardized charts are not difficult, 

they are more involved than traditional Shewhart charts. 

(b) The coded data do not appear to have any physical meaning to 

production operators who usually have little background in 

statistics. 

( c) Since the control limits for this chart never change, process 

improvements that are being implemented from time to time will 

not be reflected by the chart. In other words, no visual 

impression is available as to how much improvement has been 

made to the process. 

Additionally, considerable effort and time have to be spent to obtain, 

review and revise the scaling factors if necessary. Furthermore, care must be 

taken to ensure that proper scaling factors are being used in each calculation 

to avoid misinterpretation regarding the stability of the controlled process. 

In any kind of machine set-up, whether manual or automatic, there 

exists a certain amount of natural variability in the setting regardless of how 

well it is performed. This issue must not be overlooked and set-up 

acceptance should be based on sound statistical principles. On a long term 

basis, for the same machine or production process, the set-up error, which is 

defined as the deviation of average output from the desired value, tends to 

fluctuate in a random maimer around its expected value which is usually 

assumed to be zero. In every set-up, therefore, as long as the set-up error is 

within its natural spread, no adjustment is necessary and the production 
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should be allowed to run to avoid over control. The set-up method can of 

course be improved to reduce this source of variation provided it is 

economically feasible to do so. 

In the presence of significant set-up variation, the use of Nominal and 

Short Run charts is not appropriate, Robinson (1991) and Bothe (1990b) 

demonstrated this. In particular, out of control conditions are indicated by 

the charts although the process is well in statistical control. These warning 

signals are actually caused by the set-up variation rather than out of control 

states. To cope with this situation, Bothe (1990b) suggested that two sets of 

scaling factors, i.e 'set-up' and 'run' factors should be used for each part 

number, he further discussed how they can be derived. Similarly, Robinson 

(1991) proposed that separate charts should be drawn for monitoring setup

to-setup variation and piece-to-piece variation in isolation. He and Robinson 

et al. (1993) illustrated this idea and exemplified how this can be achieved. 

For monitoring the first source of variation, he suggested charting the 

average value of the first five pieces (or the so called 'first offs') relative to 

nominal specification and the control limits for the resulting chart are 

derived by treating this as an individual values chart. As for control of piece

to-piece variation (or drift within a batch or a set-up), he suggested use of 

the traditional Range chart or a chart for the difference in average departure 

from nominal between the first five pieces and the last five pieces (or the 

'last offs') for each short production run. He also mentioned use of the more 

practical 'Modified' control limits on the 'Deviation' chart to ensure that most 

individual items produced will confonn to specifications. However, as he 

pointed out, this approach is not suitable if the required tolerance varies 

between runs. 

When piece-to-piece variation is confounded with set-up variation, 

the Nominal and Short run charts do not provide adequate means of 

reflecting the actual status of the process. By contrast, separate monitoring 
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of these components of variation does not only give a real picture of the 

process but also provides smne guidance as to what might need to be fixed 

when an out-of-control signal is present. 

In a low volwne manufacturing environment, efficient use of the 

limited amount of data and the need for increased sensitivity to process 

changes are very important. In the light of these, Al-Salti et al. (1991) 

investigated the suitability of the moving average, moving range and cusum 

control charting teclmiques using transformed individual readings as a 

potential answer. They arrived at the conclusion that problems encountered 

during the implementation of a traditional SPC approach to small batch 

manufacturing can be avoided. However, the problem here again centers 

around the validity of evaluating different types of component together as if 

they are manufactured by the same process. Furthermore, historical data, 

which are required for estimating the scaling factors used in the 

transformations, may not be readily available. It was also pointed out, in the 

same paper, that cyclical behaviour and trends are expected on the moving 

average and moving range charts though nothing has changed. This is likely 

to cause difficulty in interpretation. 

In statistical process control, measurement error should be given due 

consideration as this constitutes part of the inherent variation of a stable 

cause system. More simply stated, the natural variability observed in 

measured values of the quality characteristic of any industrial product is due 

in part to the variability of the product and in part to the variability in the 

method of measurement. This latter is sometimes negligible, but at other 

times cannot be ignored without risk. If the standard deviation of 

measurement error varies in smne systematic manner, a Nominal chart will 

give misleading signals, especially when the measurement error is relatively 

significant. 
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In his paper, Farnum (1992) incorporated this component of variation 

into some process models having made certain reasonable assumptions. He 

then developed a charting procedure for one particular model. This assumes 

nonconstant process and measure1nent error, more specifically the short run 

process has constant coefficient of variation coupled with a measurement 

system whose error variability is proportional to the true reading. The 

resulting procedure seeks to remove the differences in average and 

dispersion between various components to enable them to be monitored with 

the use of a single chart. As long as subgroup size does not change, this 

charting method yields a cominon set of control limits for every component 

irrespective of their design specifications. These limits can be established 

early by utilizing data from different production lots in a predetermined 

manner. As with any charting method which plots different components on 

the same chart, caution shou1d be exercised when sequence rules are 

applied. 

Although efforts were made to justify the proposed models, a 

problem lies in identification of the model that is most appropriate in any 

given instance. Particularly is the problem acute if the decision as to which 

model to use is made by those without relevant knowledge, experience and 

proper training. It is also worth noting that, when an out-of-control point is 

present, the special causes responsible for this observation might not be 

easily identified, i.e one cannot tell whether the process has really changed, 

or whether the observed change is due to an inconsistent method of 

measurement or to the measurement process not being carried out using the 

stipulated procedure. 

4. 'Self-Starting' Procedure Based on 'Running' Estimates of the 

Process Parameters 
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A series of articles by Quesenberry (1991a,1991b,1991 c) presented 

an innovative approach to control, particularly pertinent to short-run 

processes where the total output is low and processes are in the start-up 

phase where early control is desired. The first paper considered 

independently identically distributed normal processes whereas the 

following two are devoted to monitoring processes with attribute data, 

namely, Binomial and Poisson processes, under various assumptions about 

the process parameters. Unlike the preceding approach, a non-linear 

transfonnation technique, specifically the 'Probability Integral 

Transfonnation' teclmique, in conjunction with the usual linear 

transfonnation, was used to develop new charting procedures. These 

procedures enable production operators to begin charting essentially with the 

first units or samples of production whether or not prior knowledge of the 

process parameters is available. Consequently, the task of identifying and 

removing assignable causes, and thereby bringing the process into control, 

can begin at an earlier stage. For the case where no relevant data is available 

in advance of a production run, the control parameters are 'estimated' and 

'updated' sequentially from the current data stream. These 'running' 

estimates, together with the innnediately succeeding observations are in turn 

used to test whether the process remains stable (see Hawkins (1993), 

pp.258). These dynamic estimates also provide information about the 

process capability thus allowing production personnel to determine if the 

process can be expected to meet the specifications consistently. Howev,er, 

for the case of monitoring quality characteristics on a continuous scale, 

Castillo et al. (1994) cautioned that the nonnality assumption of the 

measurements on which the relevant 'Q' charts are based should be checked 

in practice because, '.... for a small number of parts skewed distributions 

may characterize the process better'. 
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As the resulting plotted statistics are either standard normal variables 

with independent observations or approximately so, the proposed 'Q' charts 

are all plotted on standard normal scales. Although this permits the plotting 

of components with significantly different averages and dispersions, and 

even different statistics, on the same chart, thus simplifying charting 

administration, caution should be exercised and different symbols should be 

used to avoid misinterpretation. When subgroups or sampling inspection 

units vary in size, it is well understood that this situation is difficult to handle 

by classical methods. By contrast, the control limits and interpretation of 

point patterns for 'Q' charts are not affected by a varying sample size. 

The behaviour of these charts for particular situations were studied 

using simulated data. The results show that 'Q' charts based on known and 

unknown parameters, are in close agreement with each other after the first 

few points, for in-control processes. As for processes with sustained shift in 

a parameter, however, the points on 'Q' charts which update the parameter 

estimates progressively from the data sequence will eventually settle into a 

pattern indicative of an in-control process. This problem was also 

highlighted by Castillo et al. (1994). They showed that the strength of the 

signal from 'Q' charts (for the case with unknown mean but with known 

standard deviation) when a persistent step change in mean occurs depends 

on both the number of srunples before and qfier the shift. It was 

demonstrated in the same paper that, as a consequence of this, the average 

run length (ARL) performance of the 'Q' charts is poor in some cases. In 

order to enhance the sensitivity of 'Q' charts (for the case with unknown 

standard deviation) to chru1ges in process mean, Castillo et al. suggested 

different ways for estimating the unknown standard deviation. 

Due to the discrete nature of Binomial and Poisson processes, 

comparisons were made between the proposed 'Q' charts, standard 

normalizing charts and charts using other transformation techniques in the 

21 



goodness of their normal approximations. Generally, it is found that charts 

based on 'Q' transformations are superior. 

Despite its mathematical elegance, this 'Q' approach suffers from a 

number of drawbacks. Since no simple recursive formula is available and 

highly sophisticated computations are involved, implementation requires the 

use of complex mathematical algorithms. Reduction of this sophisticated 

concept to simple to use practical tools remains an issue. 

Like any other methods involving transformation, the resulting plotted 

points on 'Q' charts do not appear to have any physical meaning to 

production operators. 

Another disadvantage of this approach is the failure of 'Q' charts to 

reflect both the process-tolerance incompatibilities and severe off-target 

conditions which occur right from the beginning of production runs, except 

for the case where process parameters are known in advance or can be 

reliably estimated from the available historical data. As a consequence of 

this, unless close examination of the raw data is carried out, timely 

corrective actions will likely not be initiated until a considerable number of 

defects have been produced. This problem arises because such charts are 

designed to ensure that the process under surveilance is in a, state of 

statistical control and hence they are unlikely to indicate any process trouble 

if no change in the process parameters takes place, even though the process 

is incapable or substantially off-target immediately after set-up. 

It is perhaps worth noting that the two expressions (13) in 

Quesenberry (1991a) are in error. The correct versions of the formulae are: 

w . 
l 

and 
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- -1 Q (X.) = <I> [G . (w. )] 
I nl +·. +n; -I I 

i = 2,3,···. 

where the notation used here is as defined in the original paper. In fact, the 

former is pointed out in Corrigenda (October 1991 issue of JQT), but the 

latter is left out. It should also be noted that the number of degrees of 

freedom of the !-distribution associated with the argument w; for the case 

where all the subgroups are of the srune size (i.e n1 = n2 = ... = Ylt = n, say) as 

given in equation (25) of Castillo et al. (1994) are in error and should be 

replaced by i(n-1). As such, the validity of their simulation results on the 

run length performance of this 'Q' chart is questionable. 

A significant contribution to this approach comes from Dawkins 

(1987) who proposed two cusum procedures based on transformed 

individual readings for checking the constancy of process average and 

variability obtained at process start-up, along with some implementation 

details and illustrative exrunples. These were proposed as substitutes for the 

standard cusum procedures which generally assu1ne known parameters. The 

need for such an approach and the reasons for the inappropriateness of 

traditional cusum procedures were explained by means of an example on 

bias and precision control for che1nical assays. The proposed method 

provides another useful alten1ative for controlling, particularly, short run 

processes as it does not require knowledge of process parameters in advance 

of production runs and eliminates the need for a separate preliminary study. 

In order to effectively apply the cusum procedure, it is well 

understood that successive values for which the sum is accumulated should 

be independent and identically distributed. For this reason, the following 

transformation formula (attributable to Wallace (1959)) was suggested to 
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obtain a sequence of independent and approxi1nately standard normal 

variables, uj 's, :-

where 

U . =(8}-15)[( ·-2)1n(1+ ~2 )]i 
1 Sj-13 J 1-

2 

~· = ~(X1 -X1-1) vi sj-1 

X1 : jth individual reading 

X 1 : mean of the first j readings 

S 1 : standard deviation of the first j readings 

By maintaining a cusum of successive Uj's, starting from the 3rd 

observation, and using the established control rule, process mean stability 

can thus be monitored progressively without having to wait until adequate 

process perfonnance data has built up. However, this method should not be 

used indiscriminately. Careful examination of the above transformation 

formula reveals that the resulting U1 's are always positive and can be 

regarded as 'folded' standard normal variables which can assume positive 

values only. In fact, this normal approximation formula was originally 

considered by Wallace (1959) for converting upper tail values of the 

student-t distribution to corresponding standard normal deviates. Hence, the 

need for a modification to the formula is indicated. The minor change 

necessary is simply the addition of a negative sign to the transformed value 

U1 if T1 is less than zero. For purposes of controlling process dispersion, 

Hawkins suggested using the scale cusum given in his previous paper 

(Hawkins (1981 )) which involves cumulative summing of the following 

quantities :-

(~-0.822) 
v. = ----------} 0.349 
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He made some efforts to justify his recommendation for a 'self

starting' cusum over the adoption of a cusum procedure based on some start

up calibration data. These included consideration of the average run length 

properties of the two methods. His simulation results indicate that 'self

starting' cusum procedures are superior to those obtained with some 25 

special start-up values, not to mention the short run situations where usually 

much less than this is available for initiating conventional cusum charts. 

A final concern about this approach is its likely lack of robustness to 

both non-normality and to the presence of outliers in the underlying 

distribution of process measurements. Without previous data, there is often 

no assurance that the process output will conform reasonably to a normal 

distribution. The question arises, therefore, as to what effect departures from 

the normality assumption will have upon performance. Hawkins (1987) 

argued, by quoting others' results, that his 1nethod works for non-normal 

heavy-tailed data with little loss in ARL perfonnance. However, his 

argument is unconvincing because evaluating the efficiency of the proposed 

method should involve consideration of the distribution resulting from the 

given transformation and the possible correlations between successive 

transformed values, and not solely the applicability of the t-test based on the 

studentized deviate, T1 . This is a question that warrants further investigation, 

perhaps by some simulation studies. 

The latter issue is particularly pertinent as a sequence of 

measurements (which might include occasional outliers) is used 

simultaneously both for process control and to refine parameter estimates. 

Apparently, incorporating unknowingly occasional valid extreme 

observations into the estimates of the process parameters will cause inflation 

or deflation of them. This can have a substantial negative impact on the 

performance of the control method. To cope with this as well as to protect 
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the cusum method (which is intended primarily for 'picking up' sustained 

mean shifts of small magnitude) frmn signals generated solely by isolated 

outliers, Hawkins (1993) suggested a robustification approach using 

'winsorisation'. 'Winsorizing' the measurements means that any measurement 

beyond a preset threshold will be set equal to it and used in subsequent 

calculations. In this manner, 'winsorisation' reduces or limits the effect of 

outliers on the parameter estimates and the properties of the control charts. 

This idea was further discussed by Hawkins (1993) who also examined the 

relationship between the 'winsorizing' constants for 'self-starting' cusums and 

cusums based on a large process perf onnance study. He stated that this 

method provides good protection against outliers with little additional cost in 

computational effort. In the same paper, he also showed that, 'winsorizing' 

causes little loss to cusum procedures in responsiveness to actual mean 

shifts for various sets of clean, containinated and clean-contaminated data. 

5. Control Based on Exponentially Weighted Moving Averages 

In the event of the historical process mean, µ0 being available but not 

the standard deviation, Castillo et al. (1994) proposed two alternative 

methods as improvements to the 'Q'-type mean control technique based on 

individual measurements. These methods are based on some exponentially 

weighted moving average (EWMA) type control statistics. The first method 

results from a straightforward adaptation of the standard EWMA control 

algorithm with the smoothing factor, A. chosen to be 0 .1, the initial value of 

the mean equated to µ0 and the unknown standard deviation, cr estimated 

sequentially in some suggested manner. The resulting EWMA statistic is 

plotted on a control chart with limits 
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where 
A s 
a =-' t c4 

with t = 2,3, ... 

c 4 is a control chart factor depending on t that can be found from most of 

the standard text books on SPC and L denotes the number of standard 

deviations for the width of the control limits. 

The other control algoritlun was derived from the well known Kalman 

model (see for eg., Crowder(l 989)) upon noting that the assumed i.i.d in

control model for the process measure1nents can be represented by a special 

case of the Kalman model. The resulting control statistic is given by the 

following recursive expression :-

This latter was referred to as the adaptive Kalman .filtering control method 

since the smoothing factors or Kalman weights, A / ' s change adaptively 

according to 

The variance components of the model, including the process variance, er 2 

and the posterior variance of the current process mean, q1 , are estimated 

and updated from the data sequence as follows :-
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" 2 2 a i = S1 ' 
"2 2 at = st t=2,3, ... 

The initial value q 0 was found to have practically no effect on the ARL 

performance of the method provided it is greater than zero. Following 

Crowder (1989), the control limits for this method were given as 

It was demonstrated using simulation, that for a particular choice of 

the design parameters; A., q0 and L, both control methods have better ARL 

performance than the corresponding 'Q' chart for 'picking up' sustained mean 

shift, especially when the shift size is small. It was also found that these 

methods (with the particular choice of the design parameters) are superior to 

the classical Shewhart chart (classical in the sense that the process 

parameters are assumed known) for s1nall magnitudes of mean shift. 

Furthermore, it was observed that the first control method has a comparable 

performance to the classical EWMA chart. Despite these, the choice of the 

design parameters are arbitrary and no consideration is made of the 

optimality of the design for this control technique. 

A control method based on the adaptive Kalman filtering similar to 

the above, coupled with a tracking signal feature, has also been proposed as 

an improvement to the 'Q' chart for the case where both µ and a are 

unknown. In order to use this method, some prior estimates of µ (denoted 
" " by µ 0) and a (denoted by cr0) are required. In the short-run or low volume 

manufacturing environment, reasonably accurate estiinates may not be 

available. However, it ·was shown using simulation, that this control 
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technique can provide better ARL performance than the 'Q' chart for large 

shift sizes (more than 2 standard deviations) if the estimate of µ differs 

from the true value by less than 1 standard deviation and the cr is under or 

over-estimated by less than 50%. The method involves the computation of 

the so-called smoothed error statistic and the smoothed mean absolute 

deviation, defined respectively as :-

Q(t) = ae1 (t) :r (1- a)Q(t -1); Q(O) = 0 

where the one-step-ahead forecast error, 

and the variance of the process is updated sequentially by 

" 2 " 2 ( )( - )2 a 1 = aa,_1 + 1-a X1 -X1_ 1 

For this control technique, a signal is triggered when 

Q ( t) 
~ ( t) 

> L 

where the control limit L is between 0 and 1. 

As the computational effort involved is substantial, implementation of 

the above control algorithms requires computerisation. Other issues of 

practical importance include ease of use and understanding of the methods 
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by shop-floor personnel. Furthennore, no guidelines about the choice of the 

design parameters to achieve desired operating performance are available. 

All the methods discussed thus far either ignore or give inadequate 

consideration to the problem of process 'warm up', when the process is 

invariably unstable. On the other hand, the following approach, which 

determines the 'control' li1nits based on given specifications, appears to be 

capable of handling this problem effectively. 

6. Deriving 'Control' Limits From Specifications 

Without the data necessary to set up conventional control charts, 

compounded with the proble1n of process 'warm up', it inakes some sense to 

use product specifications to provide control information. A control 

technique that pre-determines its 'control' limits by reference only to the 

specifications rather than requiring an accmnulation of data for computation 

of control limits, is known as Pre-Control (P.C). 

P.C was first proposed by Shainin (1954) as a replacement for various 

on-line quality control methods and, in particular, as an improvement to 

X and R charts. It provides a simple, flexible and effective tool for process 

monitoring as well as set-up approval, particularly in the low volume 

manufacturing environment. P. C is conceptually different from traditional 

charting techniques in that it focusses directly on preventing non-conforming 

units from occurring rather than on maintaining a process in a state of 

statistical control. The basic principles underlying the P. C technique are 

illustrated in Figure 1. 
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Figure 1. Pre-Control Scheme 

Lower PC line 
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Suppose that the quality characteristic of interest is a variable on a 

continuous scale such as a physical dimension. The tolerance width is 

divided by 4. The boundaries of the middle half of the tolerance then 

become the Pre-Control lines. The area between these P.C lines is called the 

Target Area (T.A) or green zone. The remaining areas inside the tolerance 

are labelled yellow zones and those beyond the specification limits are 

called red zones. Assuming that the measurements on the quality 

characteristic under focus are normally distributed, correctly centered and 

that the process is just capable of meeting the specifications (i.e its natural 

spread, 6cr, equals the tolerance width), then approximately 1 in 14 times an 

observation will fall in eit11er yellow zone by chance alone. Two consecutive 

values in these zones or one in the red zone is deemed adequate grounds for 

stopping the process and making adjustments. 

Pre-Control operating ndes are developed around these fundamental 

notions. In P.C, the decision for approval of set-up and resumption of a 
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corrected process is based on the following rule :- ' .. .If five consecutive units 

are within the target area before the occurrence of a red or two consecutive 

yellows, the set-up is qualified and full production can commence .. .' The 

reason is that this occurrence signifies that the process is well centered and 

highly likely to be producing at a satisfactory quality level. In fact, Bhote 

(1980) stated, without proof, that, with a slightly different rule, a minimum 

Cpk of 1.33 will automatically result ! However, this statement is subject to 

debate. As a counter example, it can be shown that, there is as large as 70% 

chance that a process with Cp of 1.33, but with a mean level of 0.5 standard 

deviation units away fr01n the target (i.e a process with cpk of 1.17) will be 

approved for running ! As the quality level resulting from such a process 

may not be satisfactory, as in manufacturing situations where critical or 

safety components are produced, such a definite unqualified statement is 

dangerous. Unlike X and R charts, whenever any process-tolerance 

incompatibilities exist, this rule ensures that appropriate study and action is 

initiated as soon as production is attempted. It is this process check rule that 

is the source of the largest claimed dollar savings and quality improvements 

(Satterthwaite (1973)). 

Following set-up approval, P.C necessitates occasional sampling of 

just two consecutive units, to monitor the process performance, in contrast 

with the usual sample size of four or five for traditional control charting 

methods. Having items in either of the yellow zones is acceptable except 

when two occur consecutively because this is taken as indicative of the 

imminent production of defective items. Two successive yellows on the 

same side of the target signal the departure of the process mean from the 

target value or nominal specification, whereas if they occur on different 

sides, the process spread has inost likely increased beyond its acceptable 

limit. In this manner, P.C enables corrective action to be taken usually 

before unacceptable work is produced and, hopefully, avoids repeated 

32 



minor, and unnecessary corrections. In the event of getting an item in either 

part of the red zone, the process is stopped immediately, as it is already 

producing defective items ! Variations in this basic P. C plan applicable to 

less common situations are given in Shainin (1954) and Putnam (1962). 

In order to justify his recommendation for 'pre-control', Shainin (1954, 

1965, 1984a, 1984b) made some effort to discuss its statistical power. These 

included consideration of the expected proportion of non-conforming items 

produced resulting from the ongoing use of 'pre-control' based on a 

particular sampling rule. He showed that, using the currently recommended 

sampling rule of six inspection checks, on average, per trouble indication, a 

maximum average fraction defective (tenned the Average Produced Quality 

Limit (APQL)) of less than 2% results for a normally distributed process, on 

a long term basis. In view of the implicit assumption from which the APQL 

is derived, that no change in pr0cess setting or spread occurs after set-up, 

the validity of this measure is questionable. However, a successful 

application of this technique in a 'zero defects' environment has been 

reported by Brown (1966). Some general guidelines about sampling 

frequency appeared in Satterthwaite (1973), Shainin (1988) and Traver 

(1985). Without previous knowledge of the average time between, process 

adjustments, Shainin (1984a, 1984b) suggested that a 20-minute sampling 

interval should first be used and adjusted subsequently. 

As pointed out in Cook (1989), apart from the necessary frequency of 

periodic sampling, most of the doubts about 'pre-control' relate to the 

nonnality assumption. The general consensus amongst practitioners, is that 

even for stable processes it is doubtful that the fit to normality in the 

distribution tails is particularly close. By means of simulation, Sinibaldi 

(1985) examined the effect of non-normality on the appropriateness of 'pre

control'. His results show that 'pre-control' works for some skewed 

distributed processes but the total process spread, 6 cr, has to be three 
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quarters of the tolerance or less for the ability to hold a process target to 

markedly decrease. In addition, he evaluated the relative performance of 

'pre-control' and X and R control on normal and skewed distributed 

processes with frequently changing means. The results of the comparison 

indicate that 'pre-control' causes more incorrect mean shift signals and has 

less effective control to target (as measured by the overall average, x and 

the average distance of all items produced from the process target) than X 

control. However, using 'pre-control' to detect deterioration in the process 

spread results in fewer false alarms than using its counterpart, the R chart, 

for the same purpose. 

In an attempt to illustrate smne 'weaknesses' in X and R control, 

Bhote (1980) highlighted some touted attributes of 'pre-control' which 

include the following:-

(a) No calculations need to be perfonned for 'pre-control' operation 

except the extremely simple initial setting of 'pre-control' lines. 

(b) Measurements can be observed and compared to specification 

limits in a way that is easily understood by operators without much 

likelihood of misinterpretation. 

( c) Such eventualities as tool wear do not cause a premature reaction 

from 'pre-control'. It will only issue wan1ing signals at times when 

the process is soon likely to produce defective products. 

Taking a more complete view, Logothetis (1990) argued effectively that, 

despite its simplicity, 'pre-control' cannot be considered a serious technique 

of statistical process control. He, in fact, used the same case studies as 

Bhote (1980) (who used them to illustrate the 'weaknesses' of X and R 

control charts) to demonstrate the usefulness of statistical process control as 

a whole and the weaknesses of 'pre-control'. 

The most productive use of Pre-Control is achieved when the process 

capability and tolerance are closely matched. In the event that the process 
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capability is more than adequate, Hopper (1969) stated that, although it can 

be safely used, the basic form of P. C would result in premature stoppages 

for resetting. In such circmnstances, he suggests use of 'modified' Pre

Control lines to make the most efficient use of this desirable state of affairs. 

However, this has the added difficulty of estimating the process standard 

deviation. In addition, P.C in this modified form does not provide adequate 

protection against worsening process capability, though it is unlikely to 

happen during production for short run processes. 

When the process is not capable of economically producing within 

tolerance, P.C would lead to unnecessary tampering with the process as the 

warning signals are, in fact, due to random variation. Such actions are bound 

to increase the runount of defective work produced. In this case, both 

Satterthwaite (1973) and Hopper (1969) agree with the relaxation of Pre

Control lines. The use of process capability to determine P.C lines as 

mentioned by the latter would result in statistical process control in the true 

Shewhart sense, i.e identification ru1d removal of assignable causes of 

variation in the production system. Again, the problem here lies in the 

establishment of the required process capability. Given an estimate of the 

process spread, X & R charts with conventional control limits, a subgroup 

size of four and usual decision rules imposed will be more sensitive to 

substantial shifts in process average and increases in standard deviation. 

Apart from having a smaller chance of false signals, it can be shown that 

these customary charting techniques are superior in detecting a mean shift of 

more than 0.68cr and an increase in standard deviation by more than a 

quarter respectively. As such, the use of P. C in this modified form in 

situations where such process changes are more likely to occur may not be 

justified. 

While P. C has many useful features and practical advantages, 

Montgomery (1991) warned, by giving several drawbacks, that it should not 
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be used indiscriminately. From the standpoint of its intended purpose, 

namely, capability control, however, only two points he made are relevant. 

First, since no chart is usually constructed, all the sensitizing rules and 

pattern-recognition procedures associated with the control chart cannot be 

used. Thus, the diagnostic infonnation about the process contained in point 

patterns, along with the record keeping aspect of the chart is lost. Second, 

the assumption of adequate process capability is crucial because this will 

otherwise result in poor perfonnance of P.C operation as mentioned above. 

The simplicity and versatility of P. C 1nake it an attractive tool for a 

large variety of applications. However, despite its 1nany years of existence, 

P.C remains a largely under-used technique. 

Although for P.C not essential, charting provides objective control 

evidence in the fonn of a graphical record to customers. Furthennore, it 

enables diagnosis of potential / process problems by analysing the point 

patterns displayed on the chart, even though there is no trouble indication 

from P.C. In view of these benefits, Lewis (1991) presented a chart which 

exploits the concept of Pre-Control in conjunction with run techniques 

producing the so called, Preliminary Control Chart. 

A new type of control chart which originates from the idea of Pre

Control, named the 'Balance' chart (B.C) has been introduced by Thomas 

(1990). It offers solutions to a number of different types of control problems. 

B.C can operate in several different modes. With most types of 

control chart, prior estimation of the process mean and standard deviation is 

necessary. However, when B. C is used in Pre-Control mode, it eliminates 

the need for estimating these parameters but instead, derives 'pseudolimits' ( 

+pL) from the specified tolerance. As such, this chart makes it possible to 

start monitoring a process without any infonnation about its perfonnance. 

For this reason, it provides another useful alten1ative for controlling short 

run processes. 
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Thomas (1991) suggested that the use of B.C in Pre-Control mode 

requires continuous monitoring. Successive 1neasurements from the process 

on a certain quality characteristic are classified as -1, 0 or 1 according to 

their values relative to ±pL and specification boundaries. Cumulative 

recording and plotting of these data about a target line give information both 

on the process 'accuracy' and 'precision'. A mathematical derivation of the 

control limits which define the maximum deviation of the plot from the 

target line, and the maximum number of positive and negative changes from 

the start of the run is given in Thomas (1990). In addition, several rules 

governing the maximum number of changes in a given run length were 

developed to indicate the possible presence of process troubles. With 

manual charting, however, too many supple1nentary rules will complicate the 

interpretation of the Balance chart. 

Besides data scoring, B.C has the unique feature that the operating 

rules and control limits are common to every application of the chart. Thus, 

it has great potential for computerisation. 

Like 'pre-control', this technique does not require exact measurements, 

but only needs to know into which 'band' the measurements fall. In order to 

justify his recommendation, the author who proposed this charting method 

also provides comparison of the Balance chart and the X-BAR chart 

operating characteristics for a mean shift of I standard deviation, along with 

some illustrative examples which clearly show that B.C possesses higher 

sensitivity. 

The last two charting methods falling in this category were presented 

by Bayer (1957) (see also Sealy (1954)) and Maxwell (1953), They were 

developed for quality control applications in job shops with diversified 

product and many set-ups and short-runs. Both methods are essentially the 

same, as they are adaptations of the Nominal X-BAR & R charts where 

limits are derived on the assumption that the process is just capable of 
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meeting the required tolerance. The only difference between them is that the 

latter expresses the coded measurements and 'control' limits in terms of 

'cells'. 

Representing the full tolerance width by 10 cells, the resulting 'cell' 

chart has constant control limits regardless of the tolerance or the actual 

process capability, provided the sample size remains unchanged. Thus, it is 

possible to have just one chart per machine on which all parts and all 

tolerances processed can be controlled. However, these methods of control 

charting cannot handle unitolerance situations. 

A comparison between XBar and R control and 'pre-control', based on 

certain statistical grounds and assuming a barely capable process has been 

presented by Tang and Barnett (1994). The results of the companson 

indicate that the former are superior in many circumstances. 

7. Adjusting Set-up Continuously Based On Process Output 

As a substitute for conventional SPC for low volume production, an 

entirely different approach was proposed in Lill et al. (1991 ), 'Statistical 

Setup Adjustment' (SSA). This represents a form of 'feedback control' where 

the deviation from the desired ditnension or error of the measured output 

characteristic, is used to calculate the best possible adjustment to be made in 

a machine set-up, starting with the first piece produced. As such, it is not a 

set-up approval method but one which provides an algorithm as to how 

much adjustment should be made as each of the successive observations 

arises. Methods are also presented to 1ninimize the nmnber of adjustments, 

to avoid early false signals and to anticipate the effects of a known trend 

such as tool wear. 

As discussed earlier, in the presence of significant set-up variation, 

Robinson (1991) and Bothe (1990b) proposed separate monitoring of the 
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set-up processes and their subsequent nms. If the set-up varies from the 

desired setting but is within predictable limits, no machine adjustment is 

necessary. This is due to the fact that such corrective action is not only 

uneconomical, but would probably result in a greater percentage of defects. 

SSA differs from this method in that it does not accept the risk of inaccurate 

set-up as a consequence of natural set-up variation which inevitably exists, 

but is constantly 'forcing' the set-up value to the desired dimension. This 

approach is, therefore, in line with Taguchi's idea of quality loss, i.e 

emphasis is placed on the uniformity of product quality characteristic about 

its target value rather than 1nere confonnance to specifications. 

In Statistical Setup Adjustment, both the machine variations and set

up errors are modelled with conceptual nonnal populations. From available 

information and experience, a 'maximum likelihood' estimator of the set-up 

error can be obtained and hence the correct adjustment derived. However, 

determination of the standard deviation of set-up variability based on 

subjective judgement, as suggested, is somewhat arbitrary and hence its 

reliability is doubted. In fact, it is possible to obtain such an estimate directly 

from the available data. 

In this work, the implicit assumption is made that set-up is the critical 

or dominant 'system' that largely determines quality of the output. In other 

words, defects are the direct result of the accuracy of tools or precision of 

adjustment of the set-up. Therefore, theoretically, SSA does not provide 

protection against mean shift or increase in process spread due to some 

special causes during the production run. 

If set-up is the dominant cause system, this method works provided 

the effects of adjustments are manifested instantaneously and in full. The 

realization of tl1is, however, requires dynamic machine control with 

automatic inspection feedback and measurable means of adjustment. 
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8. Monitoring Process Input Parameters 

By monitoring the process output, traditional SPC and the approaches 

discussed above, at best, indicate only when production is not free of 

troubles. In many instances, when an out-of-control condition is indicated, 

numerous corrective measures are possible and the correct course of action 

is not always obvious. As such, delay in preventing waste is inevitable. For 

small lot production, this can be regarded as the same shortcoming as 'post 

mortem' inspection! 

In view of this litnitation, recent research into the area of applying 

SPC in low volume manufacturing environments has given up trying to 

monitor the process output but instead has concentrated on the process 

inputs (see for eg., Foster (1988), Thompson (1989)). Foster (1988) 

presented this idea for controlling highly technical or time consuming 

processes where corrective measures for unacceptable work are often 

uncertain or even unknown. The implementation strategy for the suggested 

approach involves the creation of a 'true' process by compiling a 'Master 

Process Requirements List' from all specifications used for a particular 

process, selection of the vital few critical input parameters to be monitored 

and process capability evaluation. 

9. Economically Optimal Control Procedures 

While, traditionally, the development of SPC techniques has been 

mainly concen1ed with statistical efficiency, the ultimate objective of any 

process control strategy is cost reduction as a result of reduced scrap, 

rework and rejects, improved product quality and increased productivity. 

This objective may be accomplished by having an econ01nically optimum 

policy governing the process monitoring, adjustment and maintenance 
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activities. In the light of this, over the last four decades, a considerable 

amount of study has been devoted to the design of process control methods 

with respect to economic criteria. Various process models and cost 

structures have been proposed and the corresponding optimal control 

strategies derived. However, 1nuch of the theoretical work on incorporating 

cost considerations into the design of process control procedures has been 

undertaken implicitly in the context of long production runs. 

The economic decision models currently available for on-line quality 

control can be broadly classified into two types. These are the economic

process-control models and the economic models for traditional SPC. In 

their paper, Adams et al. (1989) distinguished between these two models 

and hightlighted some similarities and differences between them. A thorough 

review of the literature on the latter was provided by Montgomery (1980). 

Recently, Ho et al. (1994) supplemented this work by presenting more 

detailed and complete discussions of different models and aspects of 

economic design for traditional SPC, and by summarizing the published 

work on econ01nic designs of control charts covering the period from 1981 

to 1991. For typical examples of the former, the reader is referred to Box et 

al. (1963, 1974), Bather (1963) and Taguchi (1981). 

Crowder (1992) considered a short run economic-process-control 

model in which observations on a certain measured quality characteristic of 

the product are assumed to be generated by an integrated moving average 

(IMA(l, 1 )) process and the costs involved consist of the usual quadratic loss 

of process mean being off-target and the fixed cost for each adjustment. He 

also made the assu1nptions that any adjusttnent 1nade to the process has a 

known effect (i.e no adjustment error) and that an adjustment changes the 

process mean instantaneously or before the next sample measurement is 

taken (i.e no process dynainics or inertia). Sampling cost and sampling 
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interval were not fonnally considered. Furthennore, deterministic drift and 

step or cyclical changes were not taken into consideration. 

The proposed model seeks to find the sequence of adjustments, a1 's , 

which minimizes the total expected loss, L( n), incurred throughout the 

production run as given by the following expression :-

where C1 is the cost paraineter associated with any squared deviation of 

process mean, µ 1 from target (assmned, without loss of generality, to be 0), 

c2 represents the cost of adjusttnent irrespective of magnitude, n is the 

terminating sample number ai1d 

8(a)=l ij a;t;O 
=0 (f a=O 

Using dynamic progrannning or the backwards induction technique, 

the author derived an algoritlun which enables the optimal control or 

adjustment strategy (i.e the optimal sequence of adjustments, at' S) to be 

obtained numerically. An approximation formula was also given for the case 

where the total nmnber of inspections, n < I 0 and the cost ratio, c = ~ > 200. 

In general, his results can be stated as follows. The resulting decision 

procedur,e as to when and how much adjustment should be made is based on 

the Bayes (or Posterior) esti1nate of the current process mean. It was also 

found that the 'control' or adjusbnent li1nits are changing with time and 

becoming wider towards the end of a production run, in contrast to the fixed 

limits proposed by some for the asymptotic case. This solution, he stressed, 

is consistent with the philosophy of traditional SPC in that it calls for 

adjustments only when the process mean is substantially off-target. In 
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addition, it is found to be intuitively reasonable as the 'widening' action 

limits will decrease the likelihood of perfonning economically unjustified 

adjustments or maintenance near the end of a production run. In the same 

paper, Crowder de1nonstrated, by an example, that using the infinite-run 

(fixed) limits for the short-run problem with relatively large adjustment costs 

can significantly increase the total expected cost. 

Woodward et al. (1993) also presented an approach to short run SPC 

which takes economic factors into consideration. In this work, they assumed 

a normal linear model in which three components of variation are involved. 

These are the set-up, adjustment (or resetting) and inherent process 

variabilities. The model also implies that there is no delay for any adjustment 

to take effect, no occurrence of parruneter changes within a machine set-up 

or production run and that the process standard deviation is constant 

irrespective of product types. In cmnparison to that of Crowder (1992), 

these authors proposed a more realistic cost structure which includes the 

following components : 

(i) inspection cost 

(ii) rework cost 

(iii) scrapping cost 

(iv) cost associated with adjustlnent 

(v) quadratic loss of being off-target 

They considered a sequential sche1ne with three possible control 

actions at each decision point ru1d attempted to derive a control rule using 

Bayesian methods such that the decision made at ru1y stage of the sequential 

procedure minimizes the expected loss over all possible future decisions 

based on a given cost function. However, the solution of this optimal control 

problem is not straightforward ru1d requires the use of techniques such as 

backwards induction. As they stated, in practice, it is iinpossible to find an 

optimal rule for this control plan because of the cmnplexity introduced by 
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the three-way decision structure. In view of this, a simplification in which a 

control decision is only made at two stages was considered. Even with this 

simplified scheme, detennination of the decision boundaries remams 

complicated and requires a great deal of nmnerical computation. 

For both the proposed economic process control models, some prior 

knowledge of the process parameters such as the variance terms or 

availability of some relevant historical data for their estimation is assumed. 

Woodward et al. (1993) described a method to quantify the historical 

information pertinent to their 1nodel. In practice, this could be a problem 

because historical data for this purpose is rarely sufficient in the short-run 

environment. 

Another practical proble1n with these SPC approaches is the difficulty 

in specifying the cost parameters. This is due to the fact that some of the 

cost factors are intangible. For example, it is difficult to figure out the value 

of the cost parameters associated with the quadratic loss of being off-target 

and the loss due to process downtime (as a consequence of process 

adjustment), even by someone who has substantial knowledge of production 

and of the cost involved. As a first step to the implementation of these 

economic decision models, it is advisable to carry out a sensitivity analysis 

of the models to identify the critical parameters and subsequently exercise 

greater caution in their detennination. However, this is a time-consuming 

exercise. 

CONCLUDING REMARKS AND FUTURE 

PERSPECTIVES 

The problems of usmg SPC in the short run environment are 

substantial but not entirely insumtnountable, as the work to date has 

exemplified. An important factor to consider in all SPC developments is the 
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need to find easy to use practical tools. Even methods developed using 

sophisticated techniques need, if they are to be adopted as practical 

instruments, to be able to be synthesised into methods that are easy to use 

and easy to understand. 

Computer power being as it is, there is a tendency to feel that there is 

no longer the need to provide c01npact analytic solutions or methods that 

appeal because of their simplicity. However, idealised, simple solutions are 

often preferred practically to more exact complex methods even with the 

ready availability of computer technology. 

Taking these conunents 'on board', there is undoubtedly scope to 

develop more meaningful economic designs for the short run environment. 

Similarly, if complexity can be contained, the area of multivariate 

investigations is wide open for future develop1nent. 

REFERENCES 

ADAMS, B. M. and WOODALL, W. H. (1989). "An Analysis of Taguchi's 

On-Line Process-Control Procedure Under a Random-Walk Model". 

Technometrics 13, pp. 401-413. 

AL-SALTI, M. and ASPINWALL, E. M. (1991). "Moving Average Moving 

Range and CUSUM Modelling in S1nall Batch Manufacturing". 

Proceedings of 3rd Conference of Asia Pac~fic Quality Control 

Organisation. 

AL-SALTI, M., ASPINWALL, E. M. and STATHAM, A. (1992). 

"Implementing SPC in a Low-volume Manufacturing Environment". 

Quality Forum 18, pp. 125-132. 

AL-SALTI, M., and STATHAM, A. (1994). "A Review of the Literature on 

the Use of SPC in Batch Production". Quality and Reliability 

Engineering International 10, pp. 49-61. 

45 



ALT, F. B., GOODE, J. J. and WADSWORTH, H. M. (1976). "Small 

Sample Probability Li1nits For The Mean of a Multivariate Normal 

Process". ASQC Technical Conference Transactions - Toronto, pp. 170-

176. 

ARMITAGE, S. J. and WILHARM, M. T. (1988). "Techniques For 

Expanding The Sphere of Statistical Process Control". Tappi Journal, 

July, pp. 71-77. 

BATHER, J. A. (1963). "Control Charts and Minimization of Costs". 

Journal of Royal Statistical Society, Series B 25, pp. 49-80. 

BAYER, H. S. (1957). "Quality Control Applied to a Job Shop". ASQC 

National Convention Transactions, pp. 131-137. 

BHOTE, K. E. (1980). World Class Quality, AMA Management Briefing. 

BICKING, C. A. (1962). "Quality Control in the Chemical Process 

Industries". in Quality Control Handbook, 2nd. ed., Eds. J.M. Juran, L.A. 

Seder & F.M. Gryna, Jr., McGraw-Hill Inc., New York, NY. 

BOTHE, D. R. (1988). "SPC for Short Production Runs". Quality, 

December, pp. 58-59. 

BOTHE, D. R. (1989). "A Powerful New Control Chart for Job Shops". 

ASQC 43rd Annual Quality Congress Transactions, pp. 265-270. 

BOTHE, D. R. (l 990a). "A Control Chart for Short Production Runs". 

Quality Australia 7, pp. 19-20. 

BOTHE, D. R. (1990b). "SPC For Short Production Runs". Quality 

Australia 7, pp. 53-56. 

BOX, G. E. P. and JENKINS, G. M. (1963). "Further Contributions to 

Adaptive Quality Control : Si1nultaneous Estimation of Dynamics : Non

zero Costs". Bulletin of the International Statistical Institute 34, pp. 943-

974. 

46 



BOX, G. E. P., JENKINS, G. M. and MacGREGOR, J. F. (1974). "Some 

Recent Advances in Forecasting and Control, Part II". Applied Statistics 

23, pp.158-179. 

BROWN, N. R. (1966). "Zero Defects the Easy Way with Target Area 

Control". Modern Machine Shop, July, pp. 96-100. 

BURR, I. W. (1954). "Short Runs". Industrial Quality Control, September, 

pp. 17-22. 

BURR, I. W. (1976). Statistical Quality Control Methods. Marcel Dekker 

Inc., Milwaukee, Wisconsin. 

BURR, J. T. (1989). "SPC in The Short Run". ASQC 43rd Annual Quality 

Congress Transactions, pp. 776-780. 

CASTILLO, E. D. and MONTGOI\1ERY, D. C. (1994). "Short-Run 

Statistical Process Control : Q-Chart Enhance1nents and Alternative 

Methods". Quality and Reliability Engineering International I 0, pp. 87-

97. 

COOK, H. M. Jr. (1989). "S01ne Statistical Control Techniques for Job 

Shops". 43rd Annual Quality Congress Transactions, pp. 638-642. 

CRICHTON, J. R. (1988). "Guidelines and Teclu1iques for Applying 

Control Charts in a Batch Operation". Tappi Journal, December, pp. 91-

95. 

CROWDER, S. V. (1989). "An Application of Adaptive Kalman Filtering to 

Statistical Process Control". in Statistical Process Control in Automated 

Manufacturing, Eds. J. B. Keats & N.F. Hubele, Marcel Dekker, New 

York, NY. 

CROWDER, S. V. (1992). "An SPC Model For Short Production Runs : 

Minimizing Expected Cost". Technometrics 34, pp. 64-73. 

CRYER, J. D. and RYAN, T. P. (1990). "The Estimation of Sigma For an X 

Chart : MR/d2 or S/c4 ?". Journal of Quality Technology 22, pp. 187-

192. 

47 



DO VI CH, R. A. (1988). "Small Lot SPC ... Really !".Machine and Tool Blue 

Book, December, pp. 12-14. 

ERMER, D. S. and BORN, D. D. (1989). "Statistical Process Control for 

Short Production Runs : ~X-l\1R Control Charts". Quality Improvement 

Techniques For Manufacturing, Products And Services, Eds. A.H. 

Abdelmonem, AT & T Bell Laboratories, pp. 43-87. 

FARNUM, N. R. (1992). "Control Charts for Short Runs: Nonconstant 

Process and Measure1nent Error". Journal of Quality Technology 24, pp. 

138-144. 

FOSTER, G. K. (1988). "Implementing SPC in Low Volume 

Manufacturing". ASQC Annual Quality Congress Transactions, pp. 261-

267. 

GRANT, E. L. and LEAVENWORTH, R. S. (1980). Statistical Quality 

Control, 5th ed., McGraw-Hill, New York, NY. 

HAWKINS, D. M. (1981). "A CUSUM for a Scale Parameter". Journal of 

Quality Technology 13, pp. 228-231. 

HA WK.INS, D. M. (1987). "Self-Starting Cusmn Charts for Location and 

Scale". The Statistician 36, pp. 299-315. 

HAWKINS, D. M. (1991 ). "Multivariate Quality Control Based on 

Regression-Adjusted Variables". Technometrics 33, pp. 61-75. 

HAWKINS, D. M. (1993). "Regression Adjustment for Variables in 

Multivariate Quality Control". Journal of Quality Technology 25, pp. 

170-182. 

HAWKINS, D. M. (1993). "Robustification of Cumulative Sum Charts by 

Winsorization". Journal of Quality Technology 25, pp. 248-261. 

HILLIER, F. S. (1964). "X Chart Control Limits Based on A Small Number 

of Subgroups". Industrial Quality Control, February, pp. 24-29. 

48 



HILLIER, F. S. (1967). ''Small Sa1nple Probability Limits for the Range 

Chart" . American Statistical Association Journal, December, pp. 1488-

1493. 

HILLIER, F.S. (1969). "x and R Chart Control Limits Based On a Small 

Number of Subgroups" . Journal of Quality Technology l, pp. 17-26. 

HO, C. and CASE, K. E. (1994). "Econo1nic Design of Control Charts : A 

Literature Review for 1981-1991 ".Journal of Quality Technology 26, pp. 

39-53. 

HOPPER, A. G. (1969). Basic Statistical Quality Control. McGraw-Hill, 

New York, NY. 

KING, E. P. (1954). "Probability Li1nits for The Average Charts When 

Process Standards Are Unspecified". Industrial Quality Control, May, 

pp. 62-64. 

KOONS, G. F. and LUNER, J. J. (1991a). "SPC : Use in Low Volume 

Manufacturing Environment". in Statistical Process Control In 

Manufacturing, Eds. J.B. Keats & D.C. Montgomery, Marcel Dekker, 

New York, NY & ASQC Quality Press, Milwaukee, Wisconsin. 

KOONS, G. F. and LUNER, J. J. (199lb). "SPC in Low Volume 

Manufacturing : A Case Study". Journal Qf Quality Technology 23, pp. 

287-295. 

LEWIS, E. (1991). "The Preliminary Control Chart". Quality Forum 17, pp. 

106-110. 

LILL, M. H., YEN CHU and KEN CHUNG. (1991). "Statistical Setup 

Adjustment for Low Volume Manufacturing". in Statistical Process 

Control in Manufacturing, Eds. J.B. Keats & D.C. Montgomery, Marcel 

Dekker, New York, NY & ASQC Quality Press, Milwaukee, Wisconsin. 

LOGOTHETIS, N. (1990). "The Theory of Pre-Control: A Serious Method 

or A Colourful Naivity ?". Total Quality Management 1, pp. 207-220. 

49 



MAXWELL, H. E. (1953). "A Simplified Control Chart for the Job Shop". 

Industrial Quality Control, Nove1nber, pp. 34-37. 

MONTGOMERY, D. C. (1980). "The Econ01nic Design of Control Charts: 

A Review and Literature Survey". Journal of Quality Technology 12, pp. 

75-87. 

MONTGOMERY, D. C. (1991). Introduction To Statistical Quality 

Control, 2nd ed., Jolm Wiley & Sons, New York, NY. 

MURRAY, I. and OAKLAND, J. S. (1988). "Detecting Lack of Control in a 

New, Untried Process". Quality And Reliability Engineering 

International 4, pp. 331-338. 

NELSON, L. S. (1982). "Control Charts for Individual Measurements". 

Journal o.fQuality Technology 14, pp. 172-173. 

NELSON, L. S. (1984). "The Shewhart Control Chart Tests for Special 

Causes". Journal o.f Quality Technology 16, pp. 237-239. 

NUGENT, B. A. (1990). "SPC in Short Run Processes". Proceedings of The 

IEEE 1990 National Aerospace and Electronics Conference, May 21-25, 

Dayton, OH, USA. pp. 1304-1307. 

PUTNAM, A. 0. (1962). "Pre-Control". Quality Control Handbook, 2nd 

ed., Eds. J.M. Juran, L.A. Seder & F.M. Gryna, Jr., McGraw-Hill, New 

York, NY. 

PROSCHAN, F. and SALVAGE, I. R. (1960). "Starting a Control Chart". 

Industrial Quality Control, Septe1nber, pp. 12-13. 

QUESENBERRY, C. P. (1991a). "SPC Q Charts for Start-up Processes and 

Short or Long Runs". Journal of Quality Technology 23, pp. 213-224. 

QUESENBERRY, C. P. (1991b). "SPC Q Charts for a Binomial Parameter 

p: Short or Long Runs". Journal o.f Quality Technology 23, pp. 239-246. 

QUESENBERRY, C. P. (199lc). "SPC Q Charts for a Poisson Parameter: 

Short or Long Runs". Journal o_(Quality Technology 23, pp. 296-303. 

50 



QUESENBERRY, C. P. (1993). "The Effect of Sample Size on Estimated 

Limits for X and X Control Charts". Journal of Quality Technology 25, 

pp. 237-247. 

ROBINSON, G. (1991). "SPC for Short Production Runs: An Example". 

Quality Australia 8, pp. 55-57. 

ROBINSON, G., TOUW, J. V. D. and VEEVERS, A. (1993). "Control 

Processes, Not Products". The Quality Magazine, June, pp. 88. 

ROES, K. C. B., DOES, R. J. M. M. and SCHURINK, Y. (1993). 

"Shewhart-Type Control Charts for Individual Observations". Journal of 

Quality Technology 25, pp. 188-198. 

SATTERTHWAITE, F. E. (1973). "Pre-control for Supervisors". Quality 

Progress, February, pp. 26-28. 

SEALY, E. H. (1954). A First Guide To Quality Control For Engineers. 

Her Majesty's Stationery Office, UK. 

SHAININ, D. (1954). "Chart Control Without Charts -- Simple, Effective J. 

& L. Quality Pre-control". ASQC Quality Control Convention Paper, pp. 

405-417. 

SHAININ, D. (1965). "Techniques for Maintaining a Zero Defects 

Program". AMA Management Bulletin 71, pp. 16-21. 

SHAININ, D. (1984a). "How to Improve Upon the Benefits of the Good, 

Old X and R Control Charts". World Quality Congress '84 Transactions, 

pp. 48-56. 

SHAININ, D. (1984b). "Better Than Good Old X & R Charts Asked By 

Vendees". ASQC 38th Quality Congress Transactions - Chicago, pp. 

302-307. 

SHAININ, D. (1988). "Pre-control". Quality Control Handbook, 4th ed., 

J.M. Juran, McGraw-Hill, New York, NY. 

51 



SINIBALDI, F. J. (1985). "Pre-control, Does It Really Work with Non

nonnality". ASQC Quality Congress Transactions - Baltimore, pp. 428-

433. 

TAGUCHI, G. (1981 ). On-Line Quality Control Control During 

Production. Tokyo, Japanese Standards Association. 

TANG, P. F. and BARNETT, N. (1994). "A Comparison of Mean and 

Range Charts with Pre-Control Having Particular Reference to Short Run 

Production". To appear in Nov-Dec issue of Quality and Reliability 

Engineering International. 

THOMAS, D. E. (1990). "The Balance Chart : A New SPC Concept". 

Quality And Reliability Engineering International 6, pp. 357-371. 

THOMAS, D. E. (1991 ). "The Balance of Probability : A New Concept of 

Statistical Process Control". Quality Forum 17, pp. 129-140. 

THOMPSON, L. A. Jr. (1989). "SPC and The Job Shop". ASQC 43rd 

Annual Quality Congress Transactions, pp. 896-901. 

TRAVER, R. W. (1985). "A Good Alten1ative to x-R Charts". Quality 

Progress, September, pp. 11-14. 

WALLACE, D. L. (1959). "Bounds on Nonnal Approximations to student's 

and the Chi-square Distributions". Annals qf Mat~ematical Statistics 30, 

pp. 1121-1130. 

WOODWARD, P. W. and NAYLOR, J. C. (1993). "An Application of 

Bayesian Methods in SPC". The Statistician 42, pp. 461-469. 

YANG, C. H. and HILLIER, F. S. (1970). "Mean and Variance Control 

Chart Limits Based On a Small Nmnber of Subgroups". Journal of quality 

Technology 2, pp. 9-16. 

52 




